
Counting Basic-Irreducible Factors Mod pk in
Deterministic Poly-Time and p-Adic Applications

Ashish Dwivedi
IIT Kanpur, India

Joint work with

Rajat Mittal (IIT Kanpur, India) and Nitin Saxena (IIT Kanpur, India)

34TH COMPUTATIONAL COMPLEXITY CONFERENCE (CCC) 2019
Rutgers University, New Brunswick, NJ, USA

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 1 / 33

Overview

1 Introduction

2 The Problem

3 Randomized Algorithm

4 Challenges in Derandomization

5 A Deterministic Algorithm

6 Conclusion and Open Questions

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 2 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known:

Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n?

(given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk .

(Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 3 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3.

Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3

Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32.

Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 4 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1?

Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors,

otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p

and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p.

Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2.

(x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 5 / 33

Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 6 / 33

Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 6 / 33

Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 6 / 33

Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 6 / 33

Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 6 / 33

Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 6 / 33

Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 6 / 33

Overview

1 Introduction

2 The Problem

3 Randomized Algorithm

4 Challenges in Derandomization

5 A Deterministic Algorithm

6 Conclusion and Open Questions

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 7 / 33

The Problem

Input: a univariate f (x) ∈ Z[x] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 8 / 33

The Problem

Input: a univariate f (x) ∈ Z[x] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 8 / 33

The Problem

Input: a univariate f (x) ∈ Z[x] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 8 / 33

The Problem

Input: a univariate f (x) ∈ Z[x] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 8 / 33

The Problem

Input: a univariate f (x) ∈ Z[x] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 8 / 33

The Problem

Input: a univariate f (x) ∈ Z[x] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 8 / 33

The Problem

Input: a univariate f (x) ∈ Z[x] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 8 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more-

A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 9 / 33

Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33

Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33

Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33

Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33

Overview

1 Introduction

2 The Problem

3 Randomized Algorithm

4 Challenges in Derandomization

5 A Deterministic Algorithm

6 Conclusion and Open Questions

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 11 / 33

Randomized Algorithm: Framework

[BLQ’ 13] uses randomized algorithm mod p repeatedly as a black-box
(eg. Cantor-Zassenhaus CZ).

Fact: any root mod pk is a lift of some root mod p` for all ` ≤ k.

r = r0 + pr1 + . . .+ pk−1rk−1

r is a lift of r0 mod p, r0 + pr1 mod p2 and so on.

Idea: Find each ri one by one using the CZ algorithm to incrementally
build up the lifts of r0 with higher and higher precision leading up to r .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 12 / 33

Randomized Algorithm: Framework

[BLQ’ 13] uses randomized algorithm mod p repeatedly as a black-box
(eg. Cantor-Zassenhaus CZ).

Fact: any root mod pk is a lift of some root mod p` for all ` ≤ k.

r = r0 + pr1 + . . .+ pk−1rk−1

r is a lift of r0 mod p, r0 + pr1 mod p2 and so on.

Idea: Find each ri one by one using the CZ algorithm to incrementally
build up the lifts of r0 with higher and higher precision leading up to r .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 12 / 33

Randomized Algorithm: Framework

[BLQ’ 13] uses randomized algorithm mod p repeatedly as a black-box
(eg. Cantor-Zassenhaus CZ).

Fact: any root mod pk is a lift of some root mod p` for all ` ≤ k.

r = r0 + pr1 + . . .+ pk−1rk−1

r is a lift of r0 mod p, r0 + pr1 mod p2 and so on.

Idea: Find each ri one by one using the CZ algorithm to incrementally
build up the lifts of r0 with higher and higher precision leading up to r .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 12 / 33

Randomized Algorithm: Framework

[BLQ’ 13] uses randomized algorithm mod p repeatedly as a black-box
(eg. Cantor-Zassenhaus CZ).

Fact: any root mod pk is a lift of some root mod p` for all ` ≤ k.

r = r0 + pr1 + . . .+ pk−1rk−1

r is a lift of r0 mod p,

r0 + pr1 mod p2 and so on.

Idea: Find each ri one by one using the CZ algorithm to incrementally
build up the lifts of r0 with higher and higher precision leading up to r .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 12 / 33

Randomized Algorithm: Framework

[BLQ’ 13] uses randomized algorithm mod p repeatedly as a black-box
(eg. Cantor-Zassenhaus CZ).

Fact: any root mod pk is a lift of some root mod p` for all ` ≤ k.

r = r0 + pr1 + . . .+ pk−1rk−1

r is a lift of r0 mod p, r0 + pr1 mod p2 and so on.

Idea: Find each ri one by one using the CZ algorithm to incrementally
build up the lifts of r0 with higher and higher precision leading up to r .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 12 / 33

Randomized Algorithm: Framework

[BLQ’ 13] uses randomized algorithm mod p repeatedly as a black-box
(eg. Cantor-Zassenhaus CZ).

Fact: any root mod pk is a lift of some root mod p` for all ` ≤ k.

r = r0 + pr1 + . . .+ pk−1rk−1

r is a lift of r0 mod p, r0 + pr1 mod p2 and so on.

Idea: Find each ri one by one using the CZ algorithm to incrementally
build up the lifts of r0 with higher and higher precision leading up to r .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 12 / 33

Randomized Algorithm: Notation

If pα|f (x) mod pk then any root r = r0 + pr1 + . . .+ pk−1rk−1 is
independent of rk−α and beyond.

In other words,
r = r0 + pr1 + . . .+ pk−α−1rk−α−1 + pk−α ∗+ . . .+ pk−1∗,
where ∗ denotes everything in Fp.

In short, we write
r = r0 + pr1 + . . .+ pk−α∗

where r is called a representative root representing pα ‘distinct’ roots of
f mod pk .

The randomized algorithm will return all the roots in representative form-
at most deg(f) many!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 13 / 33

Randomized Algorithm: Notation

If pα|f (x) mod pk then any root r = r0 + pr1 + . . .+ pk−1rk−1 is
independent of rk−α and beyond.

In other words,
r = r0 + pr1 + . . .+ pk−α−1rk−α−1 + pk−α ∗+ . . .+ pk−1∗,
where ∗ denotes everything in Fp.

In short, we write
r = r0 + pr1 + . . .+ pk−α∗

where r is called a representative root representing pα ‘distinct’ roots of
f mod pk .

The randomized algorithm will return all the roots in representative form-
at most deg(f) many!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 13 / 33

Randomized Algorithm: Notation

If pα|f (x) mod pk then any root r = r0 + pr1 + . . .+ pk−1rk−1 is
independent of rk−α and beyond.

In other words,
r = r0 + pr1 + . . .+ pk−α−1rk−α−1 + pk−α ∗+ . . .+ pk−1∗,
where ∗ denotes everything in Fp.

In short, we write
r = r0 + pr1 + . . .+ pk−α∗

where r is called a representative root representing pα ‘distinct’ roots of
f mod pk .

The randomized algorithm will return all the roots in representative form-
at most deg(f) many!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 13 / 33

Randomized Algorithm: Notation

If pα|f (x) mod pk then any root r = r0 + pr1 + . . .+ pk−1rk−1 is
independent of rk−α and beyond.

In other words,
r = r0 + pr1 + . . .+ pk−α−1rk−α−1 + pk−α ∗+ . . .+ pk−1∗,
where ∗ denotes everything in Fp.

In short, we write
r = r0 + pr1 + . . .+ pk−α∗

where r is called a representative root representing pα ‘distinct’ roots of
f mod pk .

The randomized algorithm will return all the roots in representative form-
at most deg(f) many!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 13 / 33

Randomized Algorithm

Recall: Incrementally build up r by finding co-ordinates ri one by one.

To get candidates for r0 apply CZ on f (x) mod p.

For every r0 obtained do the following:
{

Shift: f (x) 7→ f (r0 + px),

Divide: Get g(x) = f (r0 + px)/pα mod pk−α where pα||f (r0 + px).

Repeat the Shift-Divide cycle on g(x) mod pk−α to get corresponding
r1s and so on.
}

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 14 / 33

Randomized Algorithm

Recall: Incrementally build up r by finding co-ordinates ri one by one.

To get candidates for r0 apply CZ on f (x) mod p.

For every r0 obtained do the following:
{

Shift: f (x) 7→ f (r0 + px),

Divide: Get g(x) = f (r0 + px)/pα mod pk−α where pα||f (r0 + px).

Repeat the Shift-Divide cycle on g(x) mod pk−α to get corresponding
r1s and so on.
}

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 14 / 33

Randomized Algorithm

Recall: Incrementally build up r by finding co-ordinates ri one by one.

To get candidates for r0 apply CZ on f (x) mod p.

For every r0 obtained do the following:
{

Shift: f (x) 7→ f (r0 + px),

Divide: Get g(x) = f (r0 + px)/pα mod pk−α where pα||f (r0 + px).

Repeat the Shift-Divide cycle on g(x) mod pk−α to get corresponding
r1s and so on.
}

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 14 / 33

Randomized Algorithm

Recall: Incrementally build up r by finding co-ordinates ri one by one.

To get candidates for r0 apply CZ on f (x) mod p.

For every r0 obtained do the following:
{

Shift: f (x) 7→ f (r0 + px),

Divide: Get g(x) = f (r0 + px)/pα mod pk−α where pα||f (r0 + px).

Repeat the Shift-Divide cycle on g(x) mod pk−α to get corresponding
r1s and so on.
}

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 14 / 33

Randomized Algorithm

Recall: Incrementally build up r by finding co-ordinates ri one by one.

To get candidates for r0 apply CZ on f (x) mod p.

For every r0 obtained do the following:
{

Shift: f (x) 7→ f (r0 + px),

Divide: Get g(x) = f (r0 + px)/pα mod pk−α where pα||f (r0 + px).

Repeat the Shift-Divide cycle on g(x) mod pk−α to get corresponding
r1s and so on.
}

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 14 / 33

Randomized Algorithm

Recall: Incrementally build up r by finding co-ordinates ri one by one.

To get candidates for r0 apply CZ on f (x) mod p.

For every r0 obtained do the following:
{

Shift: f (x) 7→ f (r0 + px),

Divide: Get g(x) = f (r0 + px)/pα mod pk−α where pα||f (r0 + px).

Repeat the Shift-Divide cycle on g(x) mod pk−α to get corresponding
r1s and so on.
}

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 14 / 33

Randomized Algorithm: Correctness

Recall g(x) = f (r0 + px)/pα mod pk−α.

Essentially every iteration reduces finding roots of f (x) mod pk , which are
lifts of r0, to roots of g(x) mod pk−α.

For any root r ′ of g mod pk−α the corresponding roots of f mod pk are:
r0 + p(r ′+pk−α∗)

Always α ≥ 1, so the process stops in at most k iterations.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 15 / 33

Randomized Algorithm: Correctness

Recall g(x) = f (r0 + px)/pα mod pk−α.

Essentially every iteration reduces finding roots of f (x) mod pk , which are
lifts of r0, to roots of g(x) mod pk−α.

For any root r ′ of g mod pk−α the corresponding roots of f mod pk are:
r0 + p(r ′+pk−α∗)

Always α ≥ 1, so the process stops in at most k iterations.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 15 / 33

Randomized Algorithm: Correctness

Recall g(x) = f (r0 + px)/pα mod pk−α.

Essentially every iteration reduces finding roots of f (x) mod pk , which are
lifts of r0, to roots of g(x) mod pk−α.

For any root r ′ of g mod pk−α the corresponding roots of f mod pk are:
r0 + p(r ′+pk−α∗)

Always α ≥ 1, so the process stops in at most k iterations.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 15 / 33

Randomized Algorithm: Correctness

Recall g(x) = f (r0 + px)/pα mod pk−α.

Essentially every iteration reduces finding roots of f (x) mod pk , which are
lifts of r0, to roots of g(x) mod pk−α.

For any root r ′ of g mod pk−α the corresponding roots of f mod pk are:
r0 + p(r ′+pk−α∗)

Always α ≥ 1, so the process stops in at most k iterations.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 15 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high?

deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?

The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗,

r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,

r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗,

r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 16 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Partitioning the root-set: A path from root to a leaf denotes a
representative-root of f . The tree has at most d leaves.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 17 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Claim: The degree of a node distributes to its children.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 18 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Multiplicity Property:

Let r0 be a root of multiplicity m of f (x) mod p
then the degree of children corresponding to r0 is at most m.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 19 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Multiplicity Property: Let r0 be a root of multiplicity m of f (x) mod p
then the degree of children corresponding to r0 is at most m.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 19 / 33

Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f)k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

So, the size of tree is polynomial in input size and the algorithm runs in
randomized poly(deg(f), k log p) time.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 20 / 33

Overview

1 Introduction

2 The Problem

3 Randomized Algorithm

4 Challenges in Derandomization

5 A Deterministic Algorithm

6 Conclusion and Open Questions

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 21 / 33

Challenges in Derandomization

Challenge: Extend the properties, of the randomized algorithms, to the
deterministic (poly-time) context.

Can we still cluster (may be implicitly) the roots of f mod pk into deg(f)
many clusters, deterministically? (CZ is not available)

Can we generalize the multiplicity argument of [BLQ’13] in the
deterministic context?

Can we extend the techniques to count basic-irreducible factors f mod pk?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 22 / 33

Challenges in Derandomization

Challenge: Extend the properties, of the randomized algorithms, to the
deterministic (poly-time) context.

Can we still cluster (may be implicitly) the roots of f mod pk into deg(f)
many clusters, deterministically? (CZ is not available)

Can we generalize the multiplicity argument of [BLQ’13] in the
deterministic context?

Can we extend the techniques to count basic-irreducible factors f mod pk?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 22 / 33

Challenges in Derandomization

Challenge: Extend the properties, of the randomized algorithms, to the
deterministic (poly-time) context.

Can we still cluster (may be implicitly) the roots of f mod pk into deg(f)
many clusters, deterministically? (CZ is not available)

Can we generalize the multiplicity argument of [BLQ’13] in the
deterministic context?

Can we extend the techniques to count basic-irreducible factors f mod pk?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 22 / 33

Challenges in Derandomization

Challenge: Extend the properties, of the randomized algorithms, to the
deterministic (poly-time) context.

Can we still cluster (may be implicitly) the roots of f mod pk into deg(f)
many clusters, deterministically? (CZ is not available)

Can we generalize the multiplicity argument of [BLQ’13] in the
deterministic context?

Can we extend the techniques to count basic-irreducible factors f mod pk?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 22 / 33

Challenges in Derandomization

Last year Cheng, Gao, Rojas, Wan [ANTS’ 18] partially derandomized in
time exponential in the parameter k .

We give the first deterministic poly(d , k log p) time algorithm to count the
roots. A complete derandomization.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 23 / 33

Challenges in Derandomization

Last year Cheng, Gao, Rojas, Wan [ANTS’ 18] partially derandomized in
time exponential in the parameter k .

We give the first deterministic poly(d , k log p) time algorithm to count the
roots. A complete derandomization.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 23 / 33

Overview

1 Introduction

2 The Problem

3 Randomized Algorithm

4 Challenges in Derandomization

5 A Deterministic Algorithm

6 Conclusion and Open Questions

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 24 / 33

Deterministic Algorithm

Can not apply Cantor-Zassenhaus!

Intermediate roots are not available!

Shifting same way is not possible!

Needs a different perspective.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 25 / 33

Deterministic Algorithm

Can not apply Cantor-Zassenhaus!

Intermediate roots are not available!

Shifting same way is not possible!

Needs a different perspective.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 25 / 33

Deterministic Algorithm

Can not apply Cantor-Zassenhaus!

Intermediate roots are not available!

Shifting same way is not possible!

Needs a different perspective.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 25 / 33

Deterministic Algorithm

Can not apply Cantor-Zassenhaus!

Intermediate roots are not available!

Shifting same way is not possible!

Needs a different perspective.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 25 / 33

Deterministic Algorithm: Tool 1

A shift g(x) 7→ g(a + px) is equivalent to g(x0+px) mod 〈x0−a〉.

Similarly,

g(a + px) 7→ g(a + pb + p2x) ⇔ g(x0 + px1+p2x) mod 〈x0−a, x1−b〉.

So we consider the representation- x → x0 + px1 + . . .+ pk−1xk−1.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 26 / 33

Deterministic Algorithm: Tool 1

A shift g(x) 7→ g(a + px) is equivalent to g(x0+px) mod 〈x0−a〉.

Similarly,

g(a + px) 7→ g(a + pb + p2x) ⇔ g(x0 + px1+p2x) mod 〈x0−a, x1−b〉.

So we consider the representation- x → x0 + px1 + . . .+ pk−1xk−1.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 26 / 33

Deterministic Algorithm: Tool 1

A shift g(x) 7→ g(a + px) is equivalent to g(x0+px) mod 〈x0−a〉.

Similarly,

g(a + px) 7→ g(a + pb + p2x) ⇔ g(x0 + px1+p2x) mod 〈x0−a, x1−b〉.

So we consider the representation- x → x0 + px1 + . . .+ pk−1xk−1.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 26 / 33

Deterministic Algorithm: Tool 2

Given g(x) mod p, how can we count the roots of g?

Apply Polynomial Method:

h(x) := (g(x), xp − x) mod p

h(x) implicitly stores all the roots of g . The degree of h gives count!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 27 / 33

Deterministic Algorithm: Tool 2

Given g(x) mod p, how can we count the roots of g?

Apply Polynomial Method:

h(x) := (g(x), xp − x) mod p

h(x) implicitly stores all the roots of g . The degree of h gives count!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 27 / 33

Deterministic Algorithm: Tool 2

Given g(x) mod p, how can we count the roots of g?

Apply Polynomial Method:

h(x) := (g(x), xp − x) mod p

h(x) implicitly stores all the roots of g . The degree of h gives count!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 27 / 33

Deterministic Algorithm

Initialization:

h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉.

deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉.

deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33

Time Complexity

Why the deterministic algorithm is efficient?

The deterministic algorithm virtually creates a Roots-Tree:

f (x)

I0,0 I0,1 I0,2

I1,2D ∗ ∗

∗ ∗

h0,0 h0,1 h0,2

h1,0 h1,1 h1,2

h2,0 h2,1

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 29 / 33

Time Complexity

Why the deterministic algorithm is efficient?
The deterministic algorithm virtually creates a Roots-Tree:

f (x)

I0,0 I0,1 I0,2

I1,2D ∗ ∗

∗ ∗

h0,0 h0,1 h0,2

h1,0 h1,1 h1,2

h2,0 h2,1

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 29 / 33

Time Complexity

Why the deterministic algorithm is efficient?
The deterministic algorithm virtually creates a Roots-Tree:

f (x)

I0,0 I0,1 I0,2

I1,2D ∗ ∗

∗ ∗

h0,0 h0,1 h0,2

h1,0 h1,1 h1,2

h2,0 h2,1

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 29 / 33

Time Complexity

Consider a Node N labelled by split ideal I .

For all ā ∈ Z(I), [N] := deg(I)× degree of the node Nā in [BLQ’ 13] tree.

Degree of a node distributes to degree of its children.

Inductively, it yields that degree of root deg(f) is at least sum of the
degrees of the leaves.

Similar to the randomized root tree, the size of the deterministic root tree
is polynomial in input size.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 30 / 33

Time Complexity

Consider a Node N labelled by split ideal I .

For all ā ∈ Z(I), [N] := deg(I)× degree of the node Nā in [BLQ’ 13] tree.

Degree of a node distributes to degree of its children.

Inductively, it yields that degree of root deg(f) is at least sum of the
degrees of the leaves.

Similar to the randomized root tree, the size of the deterministic root tree
is polynomial in input size.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 30 / 33

Time Complexity

Consider a Node N labelled by split ideal I .

For all ā ∈ Z(I), [N] := deg(I)× degree of the node Nā in [BLQ’ 13] tree.

Degree of a node distributes to degree of its children.

Inductively, it yields that degree of root deg(f) is at least sum of the
degrees of the leaves.

Similar to the randomized root tree, the size of the deterministic root tree
is polynomial in input size.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 30 / 33

Time Complexity

Consider a Node N labelled by split ideal I .

For all ā ∈ Z(I), [N] := deg(I)× degree of the node Nā in [BLQ’ 13] tree.

Degree of a node distributes to degree of its children.

Inductively, it yields that degree of root deg(f) is at least sum of the
degrees of the leaves.

Similar to the randomized root tree, the size of the deterministic root tree
is polynomial in input size.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 30 / 33

Time Complexity

Consider a Node N labelled by split ideal I .

For all ā ∈ Z(I), [N] := deg(I)× degree of the node Nā in [BLQ’ 13] tree.

Degree of a node distributes to degree of its children.

Inductively, it yields that degree of root deg(f) is at least sum of the
degrees of the leaves.

Similar to the randomized root tree, the size of the deterministic root tree
is polynomial in input size.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 30 / 33

Overview

1 Introduction

2 The Problem

3 Randomized Algorithm

4 Challenges in Derandomization

5 A Deterministic Algorithm

6 Conclusion and Open Questions

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 31 / 33

Conclusion

Our algorithm extends to exactly count basic irreducible factors of
f mod pk .

Recently, D., Mittal, Saxena [ISSAC’ 19] gave a randomized poly-time
algorithm to factor f mod pk for k ≤ 4.

Open: Testing irreducibility of f mod pk in deterministic (even
randomized) poly-time?

Questions?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 32 / 33

Conclusion

Our algorithm extends to exactly count basic irreducible factors of
f mod pk .

Recently, D., Mittal, Saxena [ISSAC’ 19] gave a randomized poly-time
algorithm to factor f mod pk for k ≤ 4.

Open: Testing irreducibility of f mod pk in deterministic (even
randomized) poly-time?

Questions?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 32 / 33

Conclusion

Our algorithm extends to exactly count basic irreducible factors of
f mod pk .

Recently, D., Mittal, Saxena [ISSAC’ 19] gave a randomized poly-time
algorithm to factor f mod pk for k ≤ 4.

Open: Testing irreducibility of f mod pk in deterministic (even
randomized) poly-time?

Questions?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 32 / 33

Conclusion

Our algorithm extends to exactly count basic irreducible factors of
f mod pk .

Recently, D., Mittal, Saxena [ISSAC’ 19] gave a randomized poly-time
algorithm to factor f mod pk for k ≤ 4.

Open: Testing irreducibility of f mod pk in deterministic (even
randomized) poly-time?

Questions?

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 32 / 33

Thank You for your attention!

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 33 / 33

	Introduction
	The Problem
	Randomized Algorithm
	Challenges in Derandomization
	A Deterministic Algorithm
	Conclusion and Open Questions

