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Introduction

Root finding of univariates modulo a prime is a well studied problem!

Many efficient randomized algorithms are known.

Open: A deterministic poly-time algorithm?

Known: Deterministic poly-time root counting.

What about factoring modulo a composite n? (given prime factors of n)

It reduces to factoring modulo a prime power pk . (Chinese Remaindering)
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Introduction

Getting roots mod pk

For roots of multiplicity 1 of f mod p, Hensel’s lifting guarantees unique
lift mod pk .

Eg. Given f (x) = x2 − 10x + 21 and p = 3.

⇒ f ≡ x(x − 1) mod 3. Roots: 0, 1!

Let f ≡ (x − 3a)(x − 1− 3b) mod 9

⇒ a ≡ 1 mod 3 and b ≡ 2 mod 3 Unique solution!

So f (x) ≡ (x − 3)(x − 7) mod 32. Roots after lift: 3, 7!

The lifting goes on same way for any power 3k .
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Introduction

First issue:

Multiplicity > 1? Hensel lifting fails!

It requires co-prime factors, otherwise non-unique lift or no lift at all.

Eg. f = x2 + p and so f ≡ x2 mod p. Root 0 doesn’t lift mod p2.

The hard case is- f (x) ≡ (x − a)e mod p!

Second issue:

The coefficient ring Z/〈pk〉 is not a unique factorization domain!

Exponentially many factors.

Eg. x2 + px mod p2. (x + pα) is a factor for all α ∈ Fp.

Due to this, the search space could be exponential at every stage of lifting!

It becomes non-trivial to find or even count all the factors.
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Introduction

Gathen and Hartlieb [1996] showed that when k is large, factorizations are
nicely connected with unique p-adic factorization.

They also gave example that factors are not always nicely connected.

Eg. Let f = x4 + 249x2 + 1458 and pk = 36.

So f ≡ x4 mod 3 Hard Case!

f =(x2 + 243) (x2 + 6) mod 36 an irreducible factorization.

A completely unrelated irreducible factorization:

f =(x + 351) (x + 135) (x2 + 243x + 249) mod 36.
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The Problem

Input: a univariate f (x) ∈ Z[x ] and a prime power pk (in bits).

Output: Find and count exactly the roots of f mod pk .

There could be pk many roots of f mod pk ; exponential in input size.

Berthomieu, Lecerf and Quintin [BLQ 2013] gave a randomized poly-time
algorithm to find and count exactly the roots of f mod pk .

Open: A deterministic polynomial time algorithm to exactly count the
roots of f mod pk?

Counting roots is stronger than just showing the existence of a root.

Extension to count irreducible factors will give an irreducibility criteria.
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Our Results

Derandomization is a holy-grail in computational complexity.

It is interesting to know how we can search deterministically in an
exponential space.

We give a deterministic poly-time algorithm to exactly count roots .

We will do more- A Structural Result.

The root set partitions into at most deg(f ) many subsets of easily
computable size.

It is similar to the property shown by a univariate over fields.

Our result extends to count exactly the basic-irreducible factors of
f mod pk as well.
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Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33



Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33



Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33



Efficiently Partitioning the Root Set

To get exponentially many roots efficiently, the real challenge is to first
find a compact representation of the root set of f mod pk .

This was first achieved by Berthomieu, Lecerf and Quintin (2013) in
randomized setting.

By efficiently partitioning the root set of f mod pk , [BLQ 13] gave the
first randomized poly-time algorithm to find (& count) exactly the roots of
f mod pk .

We give a simple exposition of [BLQ 13] which helps understand our
deterministic algorithm.

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 10 / 33



Overview

1 Introduction

2 The Problem

3 Randomized Algorithm

4 Challenges in Derandomization

5 A Deterministic Algorithm

6 Conclusion and Open Questions

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 11 / 33



Randomized Algorithm: Framework

[BLQ’ 13] uses randomized algorithm mod p repeatedly as a black-box
(eg. Cantor-Zassenhaus CZ).

Fact: any root mod pk is a lift of some root mod p` for all ` ≤ k.

r = r0 + pr1 + . . .+ pk−1rk−1

r is a lift of r0 mod p, r0 + pr1 mod p2 and so on.

Idea: Find each ri one by one using the CZ algorithm to incrementally
build up the lifts of r0 with higher and higher precision leading up to r .
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Randomized Algorithm: Notation

If pα|f (x) mod pk then any root r = r0 + pr1 + . . .+ pk−1rk−1 is
independent of rk−α and beyond.

In other words,
r = r0 + pr1 + . . .+ pk−α−1rk−α−1 + pk−α ∗+ . . .+ pk−1∗,
where ∗ denotes everything in Fp.

In short, we write
r = r0 + pr1 + . . .+ pk−α∗

where r is called a representative root representing pα ‘distinct’ roots of
f mod pk .

The randomized algorithm will return all the roots in representative form-
at most deg(f ) many!
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Randomized Algorithm

Recall: Incrementally build up r by finding co-ordinates ri one by one.

To get candidates for r0 apply CZ on f (x) mod p.

For every r0 obtained do the following:
{

Shift: f (x) 7→ f (r0 + px),

Divide: Get g(x) = f (r0 + px)/pα mod pk−α where pα||f (r0 + px).

Repeat the Shift-Divide cycle on g(x) mod pk−α to get corresponding
r1s and so on.
}
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Randomized Algorithm: Correctness

Recall g(x) = f (r0 + px)/pα mod pk−α.

Essentially every iteration reduces finding roots of f (x) mod pk , which are
lifts of r0, to roots of g(x) mod pk−α.

For any root r ′ of g mod pk−α the corresponding roots of f mod pk are:
r0 + p(r ′+pk−α∗)

Always α ≥ 1, so the process stops in at most k iterations.
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Randomized Algorithm: Time Complexity

The time taken could be very high?

deg(f )k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

Roots are: r0,1 + pr1,0 + p2∗, r0,2 + pr1,1 + p2∗,
r0,2 + pr1,2 + p2r2,0 + p3∗, r0,2 + pr1,2 + p2r2,1 + p3∗
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Partitioning the root-set: A path from root to a leaf denotes a
representative-root of f . The tree has at most d leaves.
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Claim: The degree of a node distributes to its children.
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gr1,2D ∗ ∗
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Multiplicity Property:

Let r0 be a root of multiplicity m of f (x) mod p
then the degree of children corresponding to r0 is at most m.
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Randomized Algorithm: Time Complexity

The time taken could be very high? deg(f )k many roots in the end?
The algorithm forms a virtual tree of roots:

f (x)

gr0,0 gr0,1 gr0,2

gr1,2D ∗ ∗

∗ ∗

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1

So, the size of tree is polynomial in input size and the algorithm runs in
randomized poly(deg(f ), k log p) time.
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Challenges in Derandomization

Challenge: Extend the properties, of the randomized algorithms, to the
deterministic (poly-time) context.

Can we still cluster (may be implicitly) the roots of f mod pk into deg(f )
many clusters, deterministically? (CZ is not available)

Can we generalize the multiplicity argument of [BLQ’13] in the
deterministic context?

Can we extend the techniques to count basic-irreducible factors f mod pk?
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Challenges in Derandomization

Last year Cheng, Gao, Rojas, Wan [ANTS’ 18] partially derandomized in
time exponential in the parameter k .

We give the first deterministic poly(d , k log p) time algorithm to count the
roots. A complete derandomization.
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Deterministic Algorithm

Can not apply Cantor-Zassenhaus!

Intermediate roots are not available!

Shifting same way is not possible!

Needs a different perspective.
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Deterministic Algorithm: Tool 1

A shift g(x) 7→ g(a + px) is equivalent to g(x0+px) mod 〈x0−a〉.

Similarly,

g(a + px) 7→ g(a + pb + p2x) ⇔ g(x0 + px1+p2x) mod 〈x0−a, x1−b〉.

So we consider the representation- x → x0 + px1 + . . .+ pk−1xk−1.
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Deterministic Algorithm: Tool 2

Given g(x) mod p, how can we count the roots of g?

Apply Polynomial Method:

h(x) := (g(x), xp − x) mod p

h(x) implicitly stores all the roots of g . The degree of h gives count!
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Deterministic Algorithm

Initialization:

h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .
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GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33



Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).

GCD: h`+1(x) = (g(x), xp − x) mod I`.

Update: I`+1 := I` + 〈h`+1〉.

In the end, all ideals implicitly store all the roots of f mod pk .

Ashish Dwivedi (IIT Kanpur) Root counting modulo prime powers 28 / 33



Deterministic Algorithm

Initialization:
h0(x) := (f (x), xp − x) mod p.

I0 := 〈h0(x0)〉. deg(I0) = deg(h0)= count on roots mod p.

Intermediate Step:

Let I` = 〈h0(x0), h1(x0, x1), . . . , h`(x0, . . . , x`)〉. deg(I`) :=
∏

degxi hi

The split ideal I` splits as I` =
⋂
〈x0 − a0, x1 − a1, . . . , x` − a`〉.

Shift: g(x) := f (x0 + px1 + . . .+ p`x` + p`+1x) mod I`

The reduction f (x0 + px1 + . . .+ p`x` + p`+1x) mod I` can be seen as
performing shift by all the roots ā of I` simultaneously (CRT).
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Time Complexity

Why the deterministic algorithm is efficient?

The deterministic algorithm virtually creates a Roots-Tree:

f (x)

I0,0 I0,1 I0,2

I1,2D ∗ ∗

∗ ∗

h0,0 h0,1 h0,2

h1,0 h1,1 h1,2

h2,0 h2,1
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Time Complexity

Consider a Node N labelled by split ideal I .

For all ā ∈ Z(I ), [N] := deg(I )× degree of the node Nā in [BLQ’ 13] tree.

Degree of a node distributes to degree of its children.

Inductively, it yields that degree of root deg(f ) is at least sum of the
degrees of the leaves.

Similar to the randomized root tree, the size of the deterministic root tree
is polynomial in input size.
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Conclusion

Our algorithm extends to exactly count basic irreducible factors of
f mod pk .

Recently, D., Mittal, Saxena [ISSAC’ 19] gave a randomized poly-time
algorithm to factor f mod pk for k ≤ 4.

Open: Testing irreducibility of f mod pk in deterministic (even
randomized) poly-time?

Questions?
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Thank You for your attention!
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