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Abstract
Testing whether a set f of polynomials has an algebraic dependence is a basic problem with several
applications. The polynomials are given as algebraic circuits. Algebraic independence testing
question is wide open over finite fields (Dvir, Gabizon, Wigderson, FOCS’07). Previously, the best
complexity known was NP#P (Mittmann, Saxena, Scheiblechner, Trans.AMS’14). In this work
we put the problem in AM ∩ coAM. In particular, dependence testing is unlikely to be NP-hard
and joins the league of problems of “intermediate” complexity, eg. graph isomorphism & integer
factoring. Our proof method is algebro-geometric– estimating the size of the image/preimage of
the polynomial map f over the finite field. A gap in this size is utilized in the AM protocols.

Next, we study the open question of testing whether every annihilator of f has zero constant
term (Kayal, CCC’09). We give a geometric characterization using Zariski closure of the image
of f ; introducing a new problem called approximate polynomials satisfiability (APS). We show
that APS is NP-hard and, using projective algebraic-geometry ideas, we put APS in PSPACE
(prior best was EXPSPACE via Gröbner basis computation). As an unexpected application of
this to approximative complexity theory we get– over any field, hitting-sets for VP can be verified
in PSPACE. This solves an open problem posed in (Mulmuley, FOCS’12, J.AMS 2017); greatly
mitigating the GCT Chasm (exponentially in terms of space complexity).
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1 Introduction
Algebraic dependence is a generalization of linear dependence. Polynomials f1, . . . , fm ∈
F[x1, . . . , xn] are called algebraically dependent over field F if there exists a nonzero polynomial
(called annihilator) A(y1, . . . , ym) ∈ F[y1, . . . , ym] such that A(f1, . . . , fm) = 0. If no A exists,
then the given polynomials are called algebraically independent over F. The transcendence
degree (trdeg) of a set of polynomials is the analog of rank in linear algebra. It is defined as
the maximal number of algebraically independent polynomials in the set. Both algebraic
dependence and linear dependence share combinatorial properties of the matroid structure
[15]. The algebraic matroid examples may not be linear (esp. over Fp) [20].
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<10>:2 Algebraic dependencies

The simplest examples of algebraically independent polynomials are x1, . . . , xn ∈ F[x1, . . .,
xn]. As an example of algebraically dependent polynomials, we can take f1 = x, f2 = y and
f3 = x2 + y2. Then, y2

1 + y2
2 − y3 is an annihilator. The underlying field is crucial in this

concept. For example, polynomials x+ y and xp + yp are algebraically dependent over Fp,
but algebraically independent over Q.

Thus, the following computational question AD(F) is natural and it is the first problem
we consider in this paper: Given algebraic circuits f1, . . . , fm ∈ F[x1, . . . , xn], test if they are
algebraically dependent. It can be solved in PSPACE using a classical result due to Perron
[35, 36, 11]. Perron proved that given a set of algebraically dependent polynomials, there
exists an annihilator whose degree is upper bounded by the product of the degrees of the
polynomials in the set. This exponential degree bound on the annihilator is tight [22].

Computing the annihilator may be quite hard, but it turns out that the decision version
is easy over zero (or large) characteristic using a classical result known as the Jacobian
criterion [21, 6]. The Jacobian efficiently reduces algebraic dependence testing of f1, . . . , fm
over F to linear dependence testing of the differentials df1, . . . , dfm over F(x1, . . . , xn), where
we view dfi as the vector ( ∂fi

∂x1
, . . . , ∂fi

∂xn
). Placing dfi as the i-th row gives us the Jacobian

matrix J of f1, . . . , fm. If the characteristic of the field is zero (or larger than the product
of the degrees deg(fi)) then the trdeg equals rank(J). It follows from [42] that, with high
probability, rank(J) is equal to the rank of J evaluated at a random point in Fn. This gives
a simple randomized polynomial time algorithm solving AD(F) for certain F.

For fields of positive characteristic, if the polynomials are algebraically dependent, then
their Jacobian matrix is not full rank. But the converse is not true. There are infinitely many
input instances (set of algebraically independent polynomials) for which Jacobian fails. The
failure can be characterized by the notion of ‘inseparable extension’ [34]. For example, xp, yp
are algebraically independent over Fp, yet their Jacobian determinant vanishes. Another
example is, {xp−1y, xyp−1} over Fp for prime p > 2. [31] gave a criterion, called Witt-
Jacobian, that works over fields of prime characteristic p; improving the complexity of
independence testing problem from PSPACE to NP#P. [34] gave another generalization of
Jacobian criterion that is efficient in special cases.

Given that an efficient algorithm to tackle prime characteristic is not in close sight, one
could speculate the problem to be NP-hard or even outside the polynomial hierarchy PH. In
this work we show that: For finite fields, AD(F) is in AM ∩ coAM (Theorem 1). This rules
out the possibility of NP-hardness, under standard complexity theory assumptions [4].

Constant term of the annihilators. We come to the second problem AnnAtZero that we
discuss in this paper: Testing if the constant term of every annihilator, of the set of algebraic
circuits f = {f1, . . . , fm}, is zero. Note that the annihilators of f constitute an ideal of the
polynomial ring F[y1, . . . , ym]; this ideal is principal when trdeg of f is m− 1 [22, Lem.7]. In
this case, we can decide if the constant term of the minimal annihilator is zero in PSPACE,
as the unique annihilator (up to scaling) can be computed in PSPACE.

If trdeg of f is less than m− 1, the ideal of the annihilators of f is no longer principal.
Although the ideal is finitely generated, finding the generators of this ideal is computationally
very hard. (Eg. using Gröbner basis techniques, we can do it in EXPSPACE [12, Sec.1.2.1].)
In this case, can we decide if all the annihilators of f have constant term zero? We give two
equivalent characterizations of AnnAtZero– one geometric and the other algebraic –using
which we devise a PSPACE algorithm to solve it in all cases (Theorem 2).

Interestingly, there is an algebraic-complexity application of the above algorithm. We give
a PSPACE-explicit construction of a hitting-set of the class VPFq

(Theorem 3). VPFq
consists

of n-variate degree d = nO(1) polynomials, over the field Fq, that can be ‘infinitesimally
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approximated’ by size s = nO(1) algebraic circuits. This problem is interesting as natural
questions like explicit construction of the normalization map (in Noether’s Normalization
Lemma NNL) reduce to the construction of a hitting-set of VP [32]; which was previously
known to be only in EXPSPACE [32, 33]. This was recently improved greatly, over the
field C, by [16]. Their proof technique uses real analysis and does not apply to finite fields.
We need to develop purely algebraic concepts to solve the finite field case (namely through
AnnAtZero), which then apply to any field. Moreover, we solve the problem of verifying
whether an arbitrary set of points (of small size) is a hitting-set for VP, which was not solved
in [16] even over the field C.

To further motivate the concept of algebraic dependence, we list a few recent problems in
computer science. The first problem is about constructing an explicit randomness extractor
for sources which are polynomial maps over finite fields. Using Jacobian criterion, [13, 14]
solved the problem for fields with large characteristic. The second application is in the
famous polynomial identity testing (PIT) problem. To efficiently design hitting-sets, for
some interesting models, [6, 2, 26] constructed a family of trdeg-preserving maps. For more
background and applications of algebraic dependence testing, see [34]. The annihilator has
been a key concept to prove the connection between hitting-sets and lower bounds [19], and
in bootstrapping ‘weak’ hitting-sets [3].

1.1 Our results
In this paper, we give Arthur-Merlin protocols & algorithms, with proofs using basic tools
from algebraic geometry. The first theorem we prove is about AD(Fq).

I Theorem 1. Algebraic dependence testing of circuits in Fq[x] is in AM ∩ coAM.

This result vastly improves the current best upper bound known for AD(Fq)– from being
‘outside’ the polynomial hierarchy (namely NP#P [31]) to ‘lower’ than the second-level of
polynomial hierarchy (namely AM ∩ coAM). This rules out the possibility of AD(Fq) being
NP-hard (unless polynomial hierarchy collapses to the second-level [4]). Recall that, for zero
or large characteristic F, AD(F) is in coRP (Section 2). We conjecture such a result for
AD(Fq) too.

Our second result is about the problem AnnAtZero (i.e. testing whether all the annihilators
of given f have constant term zero). A priori it is unclear why it should have complexity
better than EXPSPACE (note: ideal membership is EXPSPACE-complete [30]). Firstly, we
relate to a (new) version of polynomial system satisfiability, over the algebraic closure F:
I Problem 1 (Approximate polynomials satisfiability (APS)). Given algebraic circuits f1, . . . , fm ∈
F[x1, . . . , xn], does there exist β ∈ F(ε)n such that for all i, fi(β) is in the ideal εF[ε]? If yes,
then we say that f := {f1, . . . , fm} is in APS.

It is easy to show: Function field F(ε) here can be equivalently replaced by Laurent
polynomials F[ε, ε−1], or, the field F((ε)) of formal Laurent series (use mod εF[ε]). A reason
why these objects appear in algebraic complexity can be found in [8, Sec.5.2] & [29, Sec.5].
They help algebrize the notion of ‘infinitesimal approximation’ (in real analysis think of
ε→ 0 & 1/ε→∞). A notable computational issue involved is that the degree bound of ε
required for β is exponential in the input size [29, Prop.3]; this may again be a “justification”
for APS requiring that much space.

Classically, the exact version of APS has been extremely well-studied– Does there exist
β ∈ Fn such that for all i, fi(β) = 0? This is what Hilbert’s Nullstellensatz (HN) characterizes
and yields an impressive PSPACE algorithm [24, 25]. Note that if system f has an exact
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solution, then it is trivially in APS. But the converse is not true. For example, {x, xy− 1} is
in APS, but there is no exact solution in F. To see the former, assign x = ε and y = 1/ε.
Also, the instance {x, x+ 1} is neither in APS nor has an exact solution. Finally, note that
if we restrict β to come from F[ε]n then APS becomes equivalent to exact satisfiability and
HN applies. This can be seen by going modulo εF[ε], as the quotient F[ε]/εF[ε] is F.

Coming back to AnnAtZero, we show that it is equivalent both to a geometric question
and to deciding APS. This gives us, with more work, the following surprising consequence.

I Theorem 2. APS is NP-hard and is in PSPACE.

We apply this to designing hitting-sets and solving NNL (refer [32] for the background).

I Theorem 3. There is a PSPACE algorithm that (given input n, s, r in unary & suitably
large Fq) outputs a set, of points from Fnq of size poly(nsr, log q), that hits all n-variate
degree-r polynomials over Fq that can be infinitesimally approximated by size s circuits.

More applications? The exact polynomials satisfiability question HN (over F) is highly
expressive and, naturally, most computer science problems get expressed that way. We
claim that in a similar spirit, the APS question expresses those computer science problems
that involve ‘infinitesimal approximation’. Since finite fields do not seem to have a natural
topology allowing approximations, algebraic approximations over arbitrary fields is needed.
The latter has been useful in fast matrix multiplication algorithms.

One prominent example of algebraic approximation is the concept of border rank of tensor
polynomials (used in matrix multiplication algorithms and GCT, see [9, 27, 28]). Border
rank computation of a given tensor (over F) can easily be reduced to an APS instance and,
hence, now solved in PSPACE; this matches the complexity of tensor rank itself [40]. From
the point of view of Gröbner basis theory, APS is a problem that seems a priori much harder
than HN. Now that both of them have a PSPACE algorithm, one may wonder whether
it can be brought all the way down to NP or AM? (In fact, HNC is known to be in AM,
conditionally under GRH [24].)

Our methods in the proof of Theorem 2 imply an interesting “degree bound” related
to the (prime) ideal I of annihilators of polynomials f . Namely, I =

√
I≤d, where I≤d

refers to the subideal generated by degree ≤ d polynomials of I, d is the Perron-like bound
(maxi∈[m] deg(fi))k, and k := trdeg(f). This is equivalent to the geometric fact, which we
prove, that the varieties defined by the two ideals I and I≤d are equal (Theorem 17). This
again is an exponential improvement over what one expects to get from the general Gröbner
basis methods; because, the generators of I may well have doubly-exponential degree.

The hitting-set result (Theorem 3) can be applied to compute, in PSPACE, the explicit
system of parameters (esop) of the invariant ring of the variety ∆[det, s], over Fq, with a
given group action [32, Thm.4.9]. Also, we can now construct, in PSPACE, polynomials in
Fq[x1, . . . , xn] that cannot even be approximated by ‘small’ algebraic circuits. Such results
were previously known only for characteristic zero fields, see [16, Thms.1.1-1.4]. Bringing
this complexity down to P is the longstanding problem of blackbox PIT (& lower bounds),
see [38, 43, 39]. Mulmuley [33] pointed out that small hitting-sets for VP can be designed in
EXPSPACE which is a far worse complexity than that for VP. He called it the GCT Chasm.
We bridge it somewhat, as the proof of Theorem 3 shows that small hitting-sets for VPF can
be designed in PSPACE (like those for VP) for any field F.

In another application, the null-cone problem defined in [10] can be seen as a special case
of APS and using our algorithm, it can be solved in PSPACE. Bürgisser et al. [10] gave an
exponential time algorithm for the above problem (bringing it down from EXPSPACE).
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1.2 Proof ideas

Proof idea of Theorem 1. Suppose we are given algebraic circuits f := {f1, . . . , fm}
computing in Fq[x1, . . . , xn]. For the AM and coAM protocols, we consider the following
system of equations over a ‘small’ extension Fq′ :

For b = (b1, . . . , bm) ∈ Fmq′ , define the system of equations fi(x1, . . . , xn) = bi, for i ∈ [m].
We denote the number of solutions of the above system in Fnq′ as Nb. Let f : Fnq′ → Fmq′ be
the polynomial map a 7→ (f1(a), . . . , fm(a)).

AM gap. [Theorem 9] We establish bounds for the number Nf(a), where a is a random
point in Fnq′ . If f1, . . . , fm are independent, we show that Nf(a) is relatively small. Whereas,
if the polynomials are algebraically dependent then Nf(a) is much more.

Assume f are algebraically independent. Wlog (see the full version of [34, Sec.2]) we can
assume that m = n and for all i ∈ [n], {xi, f1, . . . , fn} are algebraically dependent. The first
step is to show that the zeroset defined by the system of equations, for random f(a), has
dimension ≤ 0 with high probability. This is proved using the Perron degree bound on the
annihilator of {xi, f1, . . . , fn}. Next, one can apply an affine version of Bezout’s theorem to
upper bound Nf(a). On the other hand, suppose f are algebraically dependent, say with
annihilator Q. Let Im(f) := f(Fnq′) be the image of f . Since Q vanishes on Im(f), we know
that Im(f) is relatively small, whence we deduce that Nf(a) is large for ‘most’ a’s.

coAM gap. [Theorem 12] We pick a random point b = (b1, . . . , bm) ∈ Fmq′ and bound Nb,
which is the number of solutions of the system defined above. In the dependent case, we
show that Nb = 0 for ‘most’ b’s. But in the independent case, we show that Nb ≥ 1 for
‘many’ (may be not ‘most’!) b’s. The ideas are based on those sketched above.

The two kinds of gaps shown above are based on the set f−1(f(x)) resp. Im(f). Note
that membership in either of these sets is testable in NP (the latter requires nondeterminism).
Based on this and the gaps between the respective cardinalities, we can invoke Lemma 4 and
devise the AM and coAM protocols for AD(Fq′), which also apply to AD(Fq).

Remark– One advantage in our problem is that we could sample a random point in
the set Im(f). In contrast, it is not clear how to sample a random point in the zeroset
Zer(f) := {x ∈ Fnq′ | f(x) = 0}. Thus, we manage to side-step the NP-hardness associated
with most zeroset properties. Eg. computing the dimension of Zer(f) is NP-hard.

Proof idea of Theorem 2. Let algebraic circuits f := {f1, . . . , fm} in F[x1, . . . , xn] be
given over a field F. We want to determine if the constant term of every annihilator for f is
zero. Redefine the polynomial map f : Fn → Fm; a 7→ (f1(a), . . . , fm(a)). For a subset S of
an affine (resp. projective) space, write S for its Zariski closure in that space, i.e. it is the
smallest subset that contains S and equals the zeroset Zer(I) of some polynomial ideal I.

APS vs AnnAtZero. [Theorem 14] Now, we interpret the problem AnnAtZero in a
geometric way through Lemma 13:

The constant term of every annihilator of f is zero iff the origin point 0 ∈ Im(f).
This has a simple proof using the ideal-variety correspondence [17]. Note that the stronger

condition 0 ∈ Im(f) is equivalent to the existence of a common solution to the equations
fi(x1, . . . , xn) = 0, i = 1, . . . ,m. The latter problem (call it HN for Hilbert’s Nullstellensatz)
is known to be in AM if F = Q and GRH is assumed [24]. However, Im(f) is not necessarily
Zariski closed; equivalently, it may be strictly smaller than Im(f). So, we need new ideas to
test 0 ∈ Im(f).

Next, we observe that although 0 ∈ Im(f) is not equivalent to the existence of a solution
x ∈ Fn to f(x) = 0, it is equivalent to the existence of an “approximate solution” x ∈ F(ε)n,
which is an n-tuple of rational functions in a formal variable ε. The proof idea of this uses
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a degree bound on ε due to [29]. We called this problem APS. As AnnAtZero problem is
already known to be NP-hard [22], APS is also NP-hard.

Upper bounding APS. We now know that: Solving APS for f is equivalent to solving
AnnAtZero for f . AnnAtZero was previously known to be in PSPACE in the special case
when the trdeg k of F(f)/F equals m or m − 1, but the general case remained open (best
being EXPSPACE).

In this work we prove that AnnAtZero is in PSPACE even when k < m− 1. Our simple
idea is to reduce the input to a smaller m = k + 1 instance, by choosing new polynomials
g1, . . . , gk+1 that are random linear combinations of fi’s. We show that with high probability,
replacing {f1, . . . , fm} by {g1, . . . , gk+1} preserves YES/NO instances as well as the trdeg.
This gives a randomized poly-time reduction from the case k < m−1 to k = m−1 (Theorem
17). The latter has a standard PSPACE algorithm.

For notational convenience view F as the affine line A. Define V := Im(f) ⊆ Am. Proving
that the above reduction (of m) does preserve YES/NO instances amounts to proving the
following geometric statement: If V does not contain the origin O ∈ Am, then with high
probability, the variety V ′ := π(V ) does not contain the origin O′ ∈ Ak+1 either, where
π : Am → Ak+1 is a random linear map.

As π is picked at random, the kernel W of π is a random linear subspace of Am. We
have O′ 6∈ π(V ) whenever V ∩W = ∅, but this is not sufficient for proving O′ 6∈ π(V ),
since V may “get arbitrarily close to W” in Am and meet W “at infinity”. Inspired by
this observation, we consider projective geometry instead of affine geometry, and prove
that O′ 6∈ V ′ holds as long as the projective closure of V and that of W are disjoint. The
proof uses a construction of a projective subvariety– the join –to characterize π−1(V ′), and
eventually rules out W ⊆ π−1(V ′) (Lemma 18).

Moreover, we show that this holds with high probability if O 6∈ V : by (repeatedly) using
the fact that a generic (=random) hyperplane section reduces the dimension of a variety by
one.
Proof idea of Theorem 3. Define A := Fq and assume wlog q ≥ Ω(sr2) [1]. [19, Thm.4.4]
showed that a hitting-set, of size h := O(s2n2 log q) in Fnq , exists for the class of degree-r
polynomials, in A[x1, . . . , xn], that can be infinitesimally approximated by size-s algebraic
circuits. So, we can search over all possible subsets of size h from Fnq and ‘most’ of them are
hitting-sets.

How do we certify that a candidate set H is a hitting-set? The idea is to use universal
circuits. A universal circuit has n essential variables x = {x1, . . . , xn} and s′ := O(sr4)
auxiliary variables y = {y1, . . . , ys′}. We can fix the auxiliary variables, from A(ε), in such
a way so that it can output any homogeneous circuit of size-s, approximating a degree-r
polynomial in VPA. Given a universal circuit Ψ, certification of a hitting-set H is based on
the following observation, that follows from the definitions:

Candidate set H =: {v1, . . . ,vh} is a hitting-set iff ∀y ∈ A(ε)s′ , Ψ(y,x) /∈ εA[ε][x] ⇒
∃i ∈ [h], Ψ(y,vi) /∈ εA[ε].

Equivalently: Candidate set H = {v1, . . . ,vh} is not a hitting-set iff ∃y ∈ A(ε)s′ ,
Ψ(y,x) /∈ εA[ε][x] and ∀i ∈ [h], Ψ(y,vi) ∈ εA[ε].

Note that this hitting-set certification is more challenging than the one against polynomials
in VP; because the degree bounds for ε are exponentially high and moreover, we do not know
how to frame the first ‘non-containment’ condition as an APS instance. To translate it to an
APS instance, our key idea is the following.

Pick q ≥ Ω(s′r2) so that a hitting-set exists, in Fnq , that works against polynomials
approximated by the specializations of Ψ. Suppose Ψ(α,x) is not in εA[ε][x], for some
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α ∈ A(ε)s′ . This means that we can write it as
∑
−m≤i≤m′ ε

igi(x) with g−m 6= 0 and
m ≥ 0. Clearly, εm ·Ψ(α,x) infinitesimally approximates the nonzero polynomial g−m ∈ A[x].
By the conditions on Ψ, we know that g−m is a homogeneous degree-r polynomial (and
approximative complexity s′). Thus, by [42], there exists a β ∈ Fnq such that g−m(β) =: a
is a nonzero element in A. We can normalize by this and consider a−1εm ·Ψ(y,x), which
evaluates to 1 + εA[ε] at (α, β). Since this normalization factor only affects the auxiliary
variables y, we get another equivalent criterion:

Candidate set H = {v1, . . . ,vh} is not a hitting-set iff ∃y ∈ A(ε)s′ and ∃x ∈ Fnq such
that, Ψ(y,x)− 1 ∈ εA[ε] and ∀i ∈ [h], Ψ(y,vi) ∈ εA[ε].

We reach closer to APS, but how do we implement ∃?x ∈ Fnq (it takes exponential space)?
The idea is to rewrite it, instead using the (r + 1)-th roots of unity Zr+1 ⊂ A, as:

∃x ∈ A(ε)n, ∀i ∈ [n], xr+1
i − 1 ∈ εA[ε]. This gives us a criterion that is an instance of

APS with n + h + 1 input polynomials (Theorem 21). By Theorem 2 it can be done in
PSPACE; finishing the proof. Moreover, this PSPACE algorithm idea is independent of the
field characteristic. (Eg. it can be seen as an alternative to [16] over the complex field.)

2 Preliminaries
Jacobian. Although this work would not need it, we define the classical Jacobian: For
polynomials f = {f1, · · · , fm} in F[x1, · · · , xn], Jacobian is the matrix Jx(f) := (∂xjfi)m×n,
where ∂xj

fi := ∂fi/∂xj .
Jacobian criterion [21, 6] states: For degree≤ d and trdeg≤ r polynomials f , if char(F) = 0

or char(F) > dr, then trdeg(f) = rankF(x)Jx(f). This yields a randomized poly-time
algorithm [42]. For other fields, Jacobian criterion fails due to inseparability and AD(F) is
open.
AM protocol. Arthur-Merlin class AM is a randomized version of the class NP (see
[4]). Arthur-Merlin protocols, introduced by Babai [5], can be considered as a special type
of interactive proof system in which the randomized poly-time verifier (Arthur) and the
all-powerful prover (Merlin) have only constantly many rounds of exchange. AM contains
interesting problems like determining if two graphs are non-isomorphic. AM ∩ coAM is
the class of decision problems for which both YES and NO answers can be verified by an
AM protocol. It can be thought of as the randomized version of NP ∩ coNP. See [23] for a
few natural algebraic problems in AM ∩ coAM. If such a problem is NP-hard (even under
random reductions) then polynomial hierarchy collapses to the second-level, i.e. PH= Σ2.

In this work AM protocol will only be used to distinguish whether a set S is ‘small’ or
‘large’. Formally, we refer to the Goldwasser-Sipser Set Lowerbound method:

I Lemma 4. [4, Chap.9] Let m ∈ N be given in binary. Suppose S is a set whose membership
can be tested in nondeterministic polynomial time and its size is promised to be either ≤ m
or ≥ 2m. Then, the problem of deciding whether |S|

?
≥ 2m is in AM.

Geometry. Due to limited space we have moved the geometry preliminaries to Appendix
A. One can also refer to a standard text, eg. [17, 18]. Basically, we need terms about affine
(resp. projective) zerosets and the underlying Zariski topology. The latter gives a way to
‘impose’ geometry even in very discrete situations, eg. finite fields in this work.

3 Algebraic dependence testing: Proof of Theorem 1
Given f1, . . . , fm ∈ Fq[x1, . . . , xn], we want to decide if they are algebraically dependent. For
this problem AD(Fq) we could assume, with some preprocessing, that m = n. For, m > n
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means that its a YES instance. If m < n then we could apply a ‘random’ linear map on
the variables to reduce them to m, preserving the YES/NO instances. Also, the trdeg does
not change when we move to the algebraic closure Fq. The details can be found in [34,
Lem.2.7-2.9]. So, we assume the input instance to be f := {f1, . . . , fn} with nonconstant
polynomials.

In the following, let D :=
∏
i∈[n] deg(fi) > 0 and D′ := maxi∈[n] deg(fi) > 0. Let d ∈ N+

and q′ = qd. The value of d will be determined later. Let f : Fnq′ → Fnq′ be the polynomial
map a 7→ (f1(a), . . . , fn(a)). For b = (b1, . . . , bn) ∈ Fnq′ , denote by Nb the size of the preimage
f−1(b) = {x ∈ Fnq′ | f(x) = b}.

Define A := Fq and N b := #{x ∈ An | fi(x) = bi, for all i ∈ [n]} which might be ∞.
Let Q ∈ Fq[y1, . . . , yn] be a nonzero annihilator, of minimal degree, of f1, . . . , fn. If it exists
then deg(Q) ≤ D by Perron’s bound.

3.1 AM protocol
First, we study the independent case.

I Lemma 5 (Dim=0 preimage). Suppose f are independent. Then Nf(a) is finite for all but
at most (nDD′/q′)-fraction of a ∈ Fnq′ .

Proof. For i ∈ [n], let Gi ∈ Fq[z, y1, . . . , yn] be the annihilator of {xi, f1, . . . , fn}. We have
deg(Gi) ≤ D by Perron’s bound. Consider a ∈ Fnq′ such thatG′i(z) := Gi(z, f1(a), . . . , fn(a)) ∈
Fq[z] is a nonzero polynomial for every i ∈ [n]. We claim that Nf(a) is finite for such a.

To see this, note that for any b = (b1, . . . , bn) ∈ An satisfying the equations fi(b) = fi(a),
i ∈ [n], we have

0 = Gi(bi, f1(b), . . . , fn(b)) = Gi(bi, f1(a), . . . , fn(a)) = G′i(bi), ∀i ∈ [n] .

Hence, each bi is a root of G′i. It follows that Nf(a) ≤
∏
i∈[n] deg(G′i) <∞, as claimed.

It remains to prove that the number of a ∈ Fnq′ satisfying G′i = 0, for some index i ∈ [n],
is bounded by nDD′q′−1 · q′n. Fix i ∈ [n]. Suppose Gi =

∑di

j=0 Gi,jz
j , where di := degz(Gi)

and Gi,j ∈ Fq[y1, . . . , yn], for 0 ≤ j ≤ di. The leading coefficient Gi,di is nonzero. As
f1, . . . , fn are algebraically independent, the polynomial Gi,di

(f1, . . . , fn) ∈ Fq[x1, . . . , xn] is
also nonzero. Its degree is ≤ D′ deg(Gi,di) ≤ D′ deg(Gi) ≤ DD′. By [42], for all but at most
(DD′/q′)-fraction of a ∈ Fnq′ , we have Gi,di

(f1(a), . . . , fn(a)) 6= 0 which implies

G′i(z) = Gi(z, f1(a), . . . , fn(a)) =
di∑
j=0

Gi,j(f1(a), . . . , fn(a))zj 6= 0 .

The claim now follows from the union bound. J

We need the following affine version of Bézout’s Theorem. Its proof can be found in [41,
Thm.3.1].

I Theorem 6 (Bézout’s). Let g1, . . . , gn ∈ A[x1, . . . , xn]. Then the number of common zeros
of g1, . . . , gn in An is either infinite, or at most

∏
i∈[n] deg(gi).

Combining Lemma 5 with Bézout’s Theorem, we obtain

I Lemma 7 (Small preimage). Suppose f are independent. Then Nf(a) ≤ D for all but at
most (nDD′/q′)-fraction of a ∈ Fnq′ .
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Next, we study the dependent case (with an annihilator Q).

I Lemma 8 (Large preimage). Suppose f are dependent. Then for k > 0, we have Nf(a) > k

for all but at most (kD/q′)-fraction of a ∈ Fnq′ .

Proof. Let Im(f) := f(Fnq′) be the image of the map. Note that Q vanishes on all the points
in Im(f). So, |Im(f)| ≤ Dq′n−1 by [42].

Let B := {b ∈ Im(f) : Nb ≤ k} be the “bad” images. We can estimate the bad domain
points as,

#{a ∈ Fnq′ : Nf(a) ≤ k} = #{a ∈ Fnq′ : f(a) ∈ B} ≤ k|B| ≤ k|Im(f)| ≤ kDq′n−1 .

which proves the lemma. J

I Theorem 9 (AM). Testing algebraic dependence of f is in AM.

Proof. Fix q′ = qd > 4nDD′ + 4kD and k := 2D. Note that d will be polynomial in the
input size. For an a ∈ Fnq′ , consider the set f−1(f(a)) := {x ∈ Fnq′ | f(x) = f(a)}.

By Lemmas 7 & 8: When Arthur picks a randomly, with high probability, |f−1(f(a))| =
Nf(a) is more than 2D in the dependent case while ≤ D in the independent case. Note that
an upper bound on

∏
i∈[n] deg(fi) can be deduced from the size of the input circuits for fi’s;

thus, we know D. Moreover, containment in f−1(f(a)) can be tested in P. Thus, by Lemma
4, AD(Fq) is in AM. J

3.2 coAM protocol
We first study the independent case.

I Lemma 10 (Large image). Suppose f are independent. Then Nb > 0 for at least (D−1 −
nD′q′−1)-fraction of b ∈ Fnq′ .

Proof. Let S := {a ∈ Fnq′ : Nf(a) ≤ D}. Then |S| ≥ (1 − nDD′q′−1) · q′n by Lemma 7.
As every b ∈ f(S) has at most D preimages in S under f , we have |f(S)| ≥ |S|/D ≥
(D−1 − nD′q′−1) · q′n. This proves the lemma since Nb > 0 for all b ∈ f(S). J

Next, we study the dependent case.

I Lemma 11 (Small image). Suppose f are dependent. Then Nb = 0 for all but at most
(D/q′)-fraction of b ∈ Fnq′ .

Proof. By definition: Nb > 0 iff b ∈ Im(f) := f(Fnq′). It was shown in the proof of Lemma 8
that |Im(f)| ≤ Dq′n−1. The lemma follows. J

I Theorem 12 (coAM). Testing algebraic dependence of f is in coAM.

Proof. Fix q′ = qd > D(2D + nD′). Note that d will be polynomial in the input size. For
b ∈ Fnq′ , consider the set f−1(b) := {x ∈ Fnq′ | f(x) = b} of size Nb.

Define S := Im(f). Note that: b ∈ Fnq′ has Nb > 0 iff b ∈ S. Thus, by Lemma 10
(resp. Lemma 11), |S| ≥ (D−1 − nD′q′−1)q′n > 2Dq′n−1 (resp. |S| ≤ Dq′n−1) when f are
independent (resp. dependent). Note that an upper bound on

∏
i∈[n] deg(fi) can be deduced

from the size of the input circuits for fi’s; thus, we know Dq′n−1. Moreover, containment in
S can be tested in NP. Thus, by Lemma 4, AD(Fq) is in coAM. J

Proof of Theorem 1. The statement immediately follows from Theorems 9 & 12. J
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4 Approximate polynomials satisfiability: Proof of Theorem 2
Theorem 2 is proved in two parts. First, we show that APS is equivalent to AnnAtZero
problem; which means that it is NP-hard [22]. Next, we utilize the beautiful underlying
geometry to devise a PSPACE algorithm.

4.1 APS is equivalent to AnnAtZero
Let A be the algebraic closure of F. Note that for the given polynomials f := {f1, . . . , fm} in
F[x], there is an annihilator over F with nonzero constant term iff there is an annihilator over
A with nonzero constant term. This is because if Q is an annihilator over A with nonzero
constant term, wlog 1, then by basic linear algebra, the linear system defined by the equation
Q(f) = 0, in terms of the unknown coefficients of Q, would also have a solution in F. Thus,
there is an annihilator over F with constant term 1. This proves that it suffices to solve
AnnAtZero over the algebraically closed field A. This provides us with a better geometry.

Write f : An → Am for the polynomial map sending a point x = (x1, . . . , xn) ∈ An to
(f1(x), . . . , fm(x)) ∈ Am. For a subset S of an affine or projective space, write S for its
Zariski closure in that space. We will use O to denote the origin 0 of an affine space.

The following lemma reinterprets APS in a geometric way.

I Lemma 13 (O in the closure). The constant term of every annihilator for f is zero iff
O ∈ Im(f).

Proof. Note that: Q ∈ A[Y1, . . . , Ym] vanishes on Im(f) iff Q(f) vanishes on An, which
holds iff Q(f) = 0, i.e., Q is an annihilator for f . So Im(f) = V (I), where the ideal
I ⊆ A[Y1, . . . , Ym] consists of the annihilators for f . Also note that {O} = V (m), where m is
the maximal ideal 〈Y1, . . . , Ym〉.

Let us study the condition O ∈ Im(f). By the ideal-variety correspondence, {O} =
V (m) ⊆ Im(f) = V (I) is equivalent to I ⊆ m, i.e., Q mod m = 0 for Q ∈ I. But Q mod m

is just the constant term of the annihilator Q. Hence, we have the equivalence. J

As an interesting corner case, the above lemma proves that whenever f are algebraically
independent, we have Am = Im(f). Eg. f1 = X1 and f2 = X1X2 − 1. Even in the dependent
cases, Im(f) is not necessarily closed in the Zariski topology.
I Example 1. Let n = 2, m = 3. Consider f1 = f2 = X1 and f3 = X1X2−1. The annihilators
are multiples of (Y1 − Y2), which means by Lemma 13 that O ∈ Im(f). But there is no
solution to f1 = f2 = f3 = 0, i.e. O /∈ Im(f).
Approximation. Although O ∈ Im(f) is not equivalent to the existence of a solution
x ∈ An to fi = 0, i ∈ [m], it is equivalent to the existence of an “approximate solution”
x ∈ A[ε, ε−1]n, which is a tuple of Laurent polynomials in a formal variable ε. The formal
statement is as follows. Wlog we assume f to be m nonconstant polynomials.

I Theorem 14 (Approx. wrt ε). O ∈ Im(f) iff there exists x = (x1, . . . , xn) ∈ A(ε)n such
that fi(x) ∈ εA[ε], for all i ∈ [m]. Moreover, when such x exists, it may be chosen such that

xi ∈ ε−DA[ε] ∩ εD
′
A[ε−1] =


D′∑

j=−D
cjε

j : cj ∈ A

 , i ∈ [n],

where D :=
∏
i∈[m] deg(fi) > 0 and D′ := (maxi∈[m] deg(fi)) ·D > 0.

The proof of Theorem 14 is almost the same as that in [29]. First, we recall a tool to
reduce the domain from a variety to a curve, proven in [29].
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I Lemma 15. [29, Prop.1] Let V ⊆ An, W ⊆ Am be affine varieties, ϕ : V →W dominant,
and t ∈ W \ ϕ(V ). Then there exists a curve C ⊆ An such that t ∈ ϕ(C) and deg(C) ≤
deg(Γϕ), where Γϕ denotes the graph of ϕ embedded in An × Am.

Next, [29] essentially shows that in the case of a curve one can approximate the preimage
of f by using a single formal variable ε and working in A(ε).

I Lemma 16. [29, Cor. of Prop.3] Let C ⊆ An be an affine curve. Let f : C → Am be
a morphism sending x ∈ C to (f1(x), . . . , fm(x)) ∈ Am, where f1, . . . , fm ∈ A[X1, . . . , Xn].
Let t = (t1, . . . , tm) ∈ f(C). Then there exists p1, . . . , pn ∈ ε− deg(C)A[[ε]] such that
fi(p1, . . . , pn)− ti ∈ εA[[ε]] , for all i ∈ [m].

Finally, we can use the above two lemmas to prove the connection of APS with O ∈ Im(f),
and hence with AnnAtZero (by Lemma 13).

Proof of Theorem 14. First assume that an x, satisfying the conditions in Theorem 14,
exists. Pick such an x. If f are algebraically independent then by Lemma 13 we have that
Am = Im(f) and we are done. So, assume that there is a nonzero annihilator Q for f . We
have Q(f1(x), . . . , fm(x)) = 0 ∈ εA[ε]. On the other hand, as fi(x) ∈ εA[ε], for all i ∈ [m];
we deduce that Q(f1(x), . . . , fm(x)) mod εA[ε] is Q(0), which is the constant term of Q. So
it equals zero. By Lemma 13, we have O ∈ Im(f) and again we are done.

Conversely, assume O ∈ Im(f) and we will prove that x exists. If O ∈ Im(f), then we
can choose x ∈ An and we are done. So assume O ∈ Im(f) \ Im(f). Regard f as a dominant
morphism from An to Im(f). Its graph Γf is cut out in An × Am by Yi − fi(X1, . . . , Xn),
i ∈ [m]. So deg(Γf ) ≤

∏m
i=1 deg(fi) = D by Bézout’s Theorem.

By Lemma 15, there exists a curve C ⊆ An such that O ∈ f(C) and deg(C) ≤ deg(Γf ) ≤
D. Pick such a curve C. Apply Lemma 16 to C, f |C and O, and let p1, . . . , pn ∈
ε− deg(C)A[[ε]] ⊆ ε−DA[[ε]] be as given by the lemma. Then fi(p1, . . . , pn) ∈ εA[[ε]], for
all i ∈ [m].

For i ∈ [n], let xi be the Laurent polynomial obtained from pi by truncating the terms of
degree greater than D′. When evaluating f1, . . . , fm, at (p1, . . . , pn), such truncation does
not affect the coefficient of εk for k ≤ 0 by the choice of D′. So fi(x1, . . . , xn) ∈ εA[ε], for
all i ∈ [m]. J

Remark– The lower bound −D = −
∏m
i=1 deg(fi) for the least degree of xi in ε can be achieved

up to a factor of 1 + o(1). Consider the polynomials f1 = f2 = X1, f3 = Xd−1
1 X2 − 1,

and fi = Xd
i−2 − Xi−1 for i = 4, . . . ,m, where m = n + 1. Then we are forced to choose

x1 ∈ εA[ε] and xi ∈ ε−(d−1)di−2 ·A[ε−1], for i = 2, . . . , n. So the least degree of xn in ε is at
most −(d− 1)dn−2, while −D = −dn−1.

4.2 Putting APS in PSPACE
Owing to the exponential upper bound on the precision (= degree wrt ε) shown in Theorem
14, one expects to solve APS in EXPSPACE only. Surprisingly, in this section, we give
a PSPACE algorithm. This we do by reducing the general AnnAtZero instance to a very
special instance, that is easy to solve.

Let A be the algebraic closure of the field F. Let f1, . . . , fm ∈ F[X1, . . . , Xn] be given.
Denote by k the trdeg of F(f1, . . . , fm)/F. Computing k can be done in PSPACE using
linear algebra [36, 11]. We assume k < m − 1, since the cases k = m − 1 and k = m are
again easy. In the case k = m, the input instances are always in APS since Im(f) = Am.
And in the case k = m− 1, the ideal of the annihilators is a principal ideal, and hence has a
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unique generator (up to scaling). The degree of this generator is at most
∏m
i=1 deg(fi). Thus

checking whether it has a nonzero constant term can be solved in PSPACE by solving an
exponential sized linear system of equations using [11].

We reduce the number of polynomials from m to k + 1 as follows: Fix a finite subset
S ⊆ F, and choose ci,j ∈ S at random for i ∈ [k + 1] and j ∈ [m]. For this to work, we need
a large enough S and F. For i ∈ [k + 1], let gi :=

∑m
j=1 ci,jfj .

Let δ := (k + 1)(maxi∈[m] deg(fi))k/|S|. Our algorithm is immediate once we prove the
following claim.

I Theorem 17 (Random reduction). It holds, with probability ≥ (1− δ), that
(1) the transcendence degree of F(g1, . . . , gk+1)/F equals k, and
(2) the constant term of every annihilator for g1, . . . , gk+1 is zero iff the constant term of
every annihilator for f1, . . . , fm is zero.

First, we reformulate the two items of Theorem 17 in a geometric way, and later we will
analyze the error probability.

For d ∈ N, denote by Ad (resp. Pd) the d-dimensional affine space (resp. projective space)
over A := F. Let f : An → Am (resp. g : An → Ak+1) be the polynomial map sending x to
(f1(x), . . . , fm(x)) (resp. (g1(x), . . . , gk+1(x))). Let O and O′ be the origin of Am and that
of Ak+1 respectively. Define the affine varieties V := Im(f) ⊆ Am and V ′ := Im(g) ⊆ Ak+1.
Then dim V = trdeg f = k.

Let π : Am → Ak+1 be the linear map sending (x1, . . . , xm) to (y1, . . . , yk+1) where
yi =

∑m
j=1 ci,jxj . Then g = π ◦ f and V ′ = π(V ).1 Now (1) of Theorem 17 is equivalent to

dim V ′ = k, and (2) is equivalent to O′ ∈ V ′ iff O ∈ V .

An V = Im(f) Am

V ′ = Im(g) Ak+1

f

g

⊆

π|V π

⊆

We will give sufficient conditions of (1) and (2) in terms of incidence properties. Note that
O ∈ V implies O′ ∈ V ′, since π(O) = O′. Now suppose O 6∈ V . Let W := π−1(O′), which
is a linear subspace of Am. Then O′ 6∈ π(V ) iff V ∩W = ∅. However, V ∩W = ∅ does not
imply O′ 6∈ V ′, as V may “get infinitesimally close to W” without actually meeting W , so
that O′ ∈ π(V ) = V ′. See Example 2 in the appendix.

To overcome this problem, we consider projective geometry instead of affine geometry.
Suppose Am have coordinatesX1, . . . , Xm and Pm have homogeneous coordinatesX0, . . . , Xm.
Regard Am as a dense open subset of Pm via (x1, . . . , xm) 7→ (1, x1, . . . , xm). Then H :=
Pm \ Am ∼= Pm−1 is the hyperplane at infinity, defined by X0 = 0. Denote by Vc (resp. Wc)
the projective closure of V (resp. W ) in Pm. Then V = Vc ∩Am. Let WH := Wc ∩H, which
is a projective subspace of H.

For distinct points P,Q ∈ Pm, write PQ for the projective line passing through them.

I Lemma 18 (Sufficient conditions). We have:
(1) dim V ′ = k, if Vc ∩WH = ∅, and
(2) O′ 6∈ V ′, if Vc ∩Wc = ∅.

1 To see V ′ ⊇ π(V ), note that π−1(V ′) contains Im(f) and is closed, and hence contains V = Im(f).
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Proof. (1): Assume dim V ′ < k. Choose P ∈ π(V ). The dimension of π−1(P )∩V is at least
dim V − dim V ′ ≥ 1 [17, Thm.11.12]. Denote by Y and Z the projective closure of π−1(P )
and that of π−1(P )∩V in Pm respectively. Then Z ⊆ Y ∩Vc. As dim Z = dim π−1(P )∩V ≥ 1
and dim H = m− 1, we have Z ∩H 6= ∅ [17, Prop.11.4].

As π is a linear map, π−1(P ) = Y ∩ Am is a translate of π−1(O′) = W = Wc ∩ Am. It is
well known that two projective subspaces W1,W2 6⊆ H have the same intersection with H iff
W1 ∩Am and W2 ∩Am are translates of each other.2 So, Y ∩H = Wc ∩H = WH . Therefore,
Vc ∩WH = Vc ∩ Y ∩H ⊇ Z ∩H 6= ∅.

(2): Assume to the contrary that Vc∩Wc = ∅ but O′ ∈ V ′. We will derive a contradiction.
As WH ⊆Wc, we have Vc ∩WH = ∅ and hence dim V ′ = k by (1).

Denote by J(Vc,WH) the join of Vc and WH , which is defined to be the union of the
projective lines PQ, where P ∈ Vc and Q ∈WH . It is known that J(Vc,WH), as the join of
two disjoint projective subvarieties, is again a projective subvariety of Pm [17, Example 6.17].
Consider P ∈ Vc and Q ∈WH . If P ∈ H, the line PQ lies in H and does not meet Am. Now
suppose P ∈ Vc \H = V . Then PQ meets OQ at the point Q. So PQ∩Am is a translate of
OQ ∩ Am ⊆ Wc ∩ Am = W .

Conversely, let P ∈ V . Let WP denote the unique translate of W containing P . Let `P
be an affine line contained in WP and passing through P (note that WP is the union of such
lines). Then `P is a translate of an affine line ` ⊆ W . As `P and ` are translates of each
other, their projective closures intersect H at the same point Q. We have Q ∈ ` ∩H ⊆WH .
So `P = PQ ∩ Am ⊆ J(Vc,WH) ∩ Am. We conclude that

J(Vc,WH) ∩ Am =
⋃
P∈V

WP . (1)

We claim that J(Vc,WH) ∩ Am = π−1(V ′). As π is a linear map, Equation (1) implies
J(Vc,WH) ∩ Am ⊆ π−1(V ′). We prove the other direction by comparing dimensions. It is
known that for two disjoint projective subvarieties V1 and V2, dim J(V1, V2) = dim V1 +
dim V2 + 1 [17, Prop.11.37-Ex.11.38]. Therefore,

dim J(Vc,WH) = dim Vc + dim WH + 1 = dim V + dim W = k + dim W .

So, dim J(Vc,WH) ∩ Am = k + dim W . On the other hand, we have π−1(V ′) ∼= V ′ ×W .
So dim π−1(V ′) = dim V ′ + dim W = k + dim W . Now J(Vc,WH) ∩ Am and π−1(V ′) are
(irreducible) affine varieties of the same dimension, and one is contained in the other. So
they must be equal. This proves the claim.

As O′ ∈ V ′, we have W = π−1(O′) ⊆ π−1(V ′) =
⋃
P∈V WP . So WP = W for some

P ∈ V , since W is a linear space. But then P ∈ V ∩WP = V ∩W ⊆ Vc ∩Wc, contradicting
the assumption Vc ∩Wc = ∅. J

Remark– The converse of Lemma 18 (Condition 2) is false; see Example 3 in the appendix.
Error probability. It remains to bound the probability of failure of the conditions Vc∩WH =
∅ and (in the case O 6∈ V ) Vc ∩Wc = ∅ in Lemma 18. We need the following lemma.

I Lemma 19 (Cut by hyperplanes). Let V ⊆ Pm be a projective subvariety of dimension r and
degree d. Let r′ ≥ r+ 1. Choose ci,j ∈ S at random, for i ∈ [r′] and 0 ≤ j ≤ m. Let W ⊆ Pm
be the projective subspace cut out by the equations

∑m
j=0 ci,jXj = 0, i = 1, . . . , r′, where

2 Indeed, Wi ∩ Am is defined by linear equations
∑m

j=1 aj,tXj + a0,t = 0 iff Wi ∩ H is defined by
homogeneous linear equations X0 = 0 and

∑m

j=1 aj,tXj = 0. So the constant terms a0,t do not matter.
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X0, . . . , Xm are homogeneous coordinates of Pm. Then V ∩W = ∅ holds with probability at
least 1− (r + 1)d/|S|.

Proof. For i ∈ [r′], let Hi ⊆ Pm be the hyperplane defined by
∑m
j=0 ci,jXj = 0. By ignoring

Hi for i > r + 1, we may assume r′ = r + 1. Let V0 := V and Vi := Vi−1 ∩Hi for i ∈ [r′].
It suffices to show that dim Vi = dim Vi−1 − 1 holds with probability at least 1− d/|S|, for
each i ∈ [r′] (the dimension of the empty set is −1 by convention).

Fix i ∈ [r′] and ci′,j , for i′ ∈ [i − 1] and 0 ≤ j ≤ m. So Vi−1 is also fixed. Note
that Vi−1 6= ∅ since taking a hyperplane section reduces the dimension by at most one. If
dim Vi 6= dim Vi−1−1, then dim Vi = dim Vi−1, and Hi contains some irreducible component
of Vi−1 [17, Exercise 11.6]. Let Y be an irreducible component of Vi−1, and fix a point
P ∈ Y . Then Y ⊆ Hi only if P ∈ Hi, which holds only if ci,0, . . . , ci,m satisfy a nonzero
linear equation determined by P . This occurs with probability at most 1/|S| (eg. by fixing
all but one ci,j). We also have deg(Vi−1) ≤ deg(V ) ≤ d, and hence the number of irreducible
components of Vi−1 is bounded by d. By the union bound, Hi contains an irreducible
component of Vi−1 with probability at most d/|S|. J

Proof of Theorem 17. As mentioned above, Theorem 17 is equivalent to showing that, with
probability at least 1 − δ: (1) dim V ′ = k, and (2) O′ ∈ V ′ iff O ∈ V . Note that Wc is
cut out in Pm by the linear equations

∑m
j=1 ci,jXj = 0, i = 1, . . . , k + 1. So WH is cut

out in H ∼= Pm−1 (corresponding to X0 = 0) by the linear equations
∑m
j=1 ci,jXj = 0,

i = 1, . . . , k + 1. We also have deg(Vc ∩H) ≤ deg(Vc) ≤ (maxi∈[m] deg(fi))k (see, e.g., [9,
Thm.8.48]).

Assume O ∈ V . Then O′ ∈ V ′ since π(O) = O′. Applying Lemma 19 to each of
the irreducible components of Vc ∩ H and WH , as subvarieties of H ∼= Pm−1, we see
Vc ∩WH = (Vc ∩H)∩WH = ∅ holds with probability at least 1− k deg(Vc ∩H)/|S| ≥ 1− δ.
So by Lemma 18, dim V ′ = k holds with probability at least 1− δ.

Now assume O 6∈ V . Let πO,H : Vc → H be the projection of Vc from O to H, defined by
P 7→ OP ∩H for P ∈ Vc. It is well defined since O 6∈ Vc. The image πO,H(Vc) is a projective
subvariety of H [17, Thm.3.5]. If Vc ∩Wc contains a point P , then πO,H(Vc) ∩WH contains
πO,H(P ). Conversely, if πO,H(Vc) ∩WH contains a point Q, then there exists P ∈ Vc such
that Q = πO,H(P ), and we have P ∈ OQ ⊆ Wc. We conclude that πO,H(Vc) ∩WH = ∅ iff
Vc ∩Wc = ∅, which implies Vc ∩WH = ∅.

Note that dim πO,H(Vc) = dim Vc = k, since πO,H(Vc) = J({O}, Vc) ∩ H. We also
have deg(πO,H(Vc)) ≤ deg(Vc) [17, Eg.18.16]. Applying Lemma 19 to πO,H(Vc) and WH ,
as subvarieties of H ∼= Pm−1, we see πO,H(Vc) ∩WH = ∅ holds with probability at least
1− (k + 1) deg(πO,H(Vc))/|S| ≥ 1− δ.

By Lemma 18 and the previous paragraphs, it holds with probability at least 1− δ that
dim V ′ = k and O′ 6∈ V ′. J

Proof of Theorem 2. AnnAtZero is known to be NP-hard [22]. The NP-hardness of APS
follows from Lemma 13 and Theorem 14.

Given an instance f of APS, we can first find the trdeg k. Fix a subset S ⊂ A to be
larger than 2(k + 1)(maxi∈[m] deg(fi))k (which can be scanned using only polynomial-space).
Consider the points ((ci,j | i ∈ [k + 1], j ∈ [m])) ∈ S(k+1)×m; for each such point define
g := {gi :=

∑m
j=1 ci,jfj | i ∈ [k + 1]}. Compute the trdeg of g, and if it is k then solve

AnnAtZero for the instance g. Output NO iff some g failed the AnnAtZero test.
All these steps can be achieved in space polynomial in the input size, using the uniqueness

of the annihilator for g [22, Lem.7], Perron’s degree bound [36] and linear algebra [11]. J
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5 Hitting-set for VP: Proof of Theorem 3
Suppose p is a prime. Define A := Fp. We want to find hitting-sets for certain polynomials in
A[x1, . . . , xn]. Fix a p-power q ≥ Ω(sr6), for the given parameters s, r. Assume that p - (r+1).
Also, fix a model for the finite field Fq [1]. We now define the notion of ‘infinitesimally
approximating’ a polynomial by a small circuit.

Approximative closure of VP. [7] A family (fn|n) of polynomials from A[x] is in the class
VPA if there are polynomials fn,i and a function t : N 7→ N such that gn has a poly(n)-size
poly(n)-degree algebraic circuit, over the field A(ε), computing gn(x) = fn(x) + εfn,1(x) +
ε2fn,2(x) + . . .+ εt(n)fn,t(n)(x). That is, gn ≡ fn mod εA[ε][x].

The smallest possible circuit size of gn is called the approximative complexity of fn, namely
size(fn).

It may happen that gn is much easier than fn in terms of traditional circuit complexity.
That possibility makes the definition interesting and opens up a long line of research.

Hitting-set for VPA. Given functions s = s(n) and r = r(n), a finite subset H ⊂ An is
called a hitting-set for degree-r polynomials of approximative complexity s, if for every such
nonzero polynomial f : ∃v ∈ H, f(v) 6= 0.

Explicitness. We are interested in computing such a hitting-set in poly(s, log r, log q)-
time.

Before our work, the best result known was EXPSPACE [33, 32]. Heintz and Schnorr [19]
proved that poly(s, log qr)-sized hitting-sets exist aplenty (for degree-r size-s polynomials).

I Lemma 20. [19, Thm.4.4] There exists a hitting-set H ⊂ Fnq of size O(s2n2) (assuming q ≥
Ω(sr2)) that hits all nonzero degree-r n-variate polynomials in A[x] that can be infinitesimally
approximated by size-s algebraic circuits.

Note that for the hitting-set design problem it suffices to focus only on homogeneous
polynomials. They are known to be computable by homogeneous circuits, where each gate
computes a homogeneous polynomial (see [43]).

Universal circuit. It can simulate any circuit of size-s computing a degree-r homogeneous
polynomial in A(ε)[x1, . . . , xn]. We define the universal circuit Ψ(y,x) as a circuit in n

essential variables x and s′ := O(sr4) auxiliary variables y. The variables y are the ones
that one can specialize in A(ε), to compute a specific polynomial in A(ε)[x1, . . . , xn]. Every
specialization gives a homogeneous degree-r size-s′ polynomial. Moreover, the set of these
polynomials is closed under constant multiples (see [16, Thm.2.2]).

Note that by [19] there is a hitting-set, with m := O(s′2n2) points in Fnq (∵ q ≥ Ω(s′r2)),
for the set of polynomials P approximated by the specializations of Ψ(y,x). A universal
circuit construction can be found in [37, 43]. Using the above notation, we give a criterion
to decide whether a candidate set is a hitting-set.

I Theorem 21 (hs criterion). Set H =: {v1, . . . ,vm} ⊂ Fnq is not a hitting-set for the family
of polynomials P iff there is a satisfying assignment (α, β) ∈ A(ε)s′ × A(ε)n such that:

(1) ∀i ∈ [n], βir+1 − 1 ∈ εA[ε], and
(2) Ψ(α, β)− 1 ∈ εA[ε], and
(3) ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε].

Remark– The above criterion holds for algebraically closed fields A of any characteristic.
Thus, it reduces those hitting-set verification problems to APS as well.

CCC 2018
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Proof. First we show that: ∃x ∈ A(ε), xr+1− 1 ∈ εA[ε] implies x ∈ A[[ε]]∩A(ε) (= rational
functions defined at ε = 0).

Recall the formal power series A[[ε]] and its group of units A[[ε]]∗. Note that for any
polynomial a = (

∑
i0≤i≤d aiε

i) with ai0 6= 0, the inverse a−1 = ε−i0 · (
∑
i0≤i≤d aiε

i−i0)−1

is in ε−i0 · A[[ε]]∗. This is just a consequence of the identity (1− ε)−1 =
∑
i≥0 ε

i. In other
words, any rational function a ∈ A(ε) can be written as an element in ε−iA[[ε]]∗, for some
i ≥ 0. Thus, write x as ε−i · (b0 + b1ε+ · · · ) for i ≥ 0 and b0 ∈ A∗. This gives

xr+1 − 1 = ε−i(r+1)(b0 + b1ε+ b2ε
2 + · · · )r+1 − 1 .

For this to be in εA[ε], clearly i has to be 0 (otherwise, ε−i(r+1) remains uncancelled);
implying that x ∈ A[[ε]].

Moreover, we deduce that br+1
0 − 1 = 0. Thus, condition (1) implies that b0 is one of

the (r + 1)-th roots of unity Zr+1 ⊂ A (recall that, since p - (r + 1), |Zr+1| = r + 1). Thus,
x ∈ Zr+1 + εA[[ε]].

[⇒]: Suppose H is not a hitting-set for P. Then, there is a specialization α ∈ A(ε)s′ of
the universal circuit such that Ψ(α,x) computes a polynomial in A[ε][x] \ εA[ε][x], but still
‘fools’ H, i.e.: ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε]. What remains to show is that conditions (1) and
(2) can be satisfied too.

Consider the polynomial g(x) := Ψ(α,x)|ε=0. It is a nonzero polynomial, in A[x] of
degree-r, that ‘fools’ H. By [42], there is a β ∈ Znr+1 such that a := g(β) is in A∗. Clearly,
βr+1
i − 1 = 0, for all i. Consider ψ′ := a−1 · Ψ(α,x). Note that ψ′(β) − 1 ∈ εA[ε], and
ψ′(vi) ∈ εA[ε] for all i. Moreover, the normalized polynomial ψ′(x) can easily be obtained
from the universal circuit Ψ by changing one of the coordinates of α (eg. the incoming wires
of the root of the circuit). This means that the three conditions (1)-(3) can be simultaneously
satisfied by (some) (α′, β) ∈ A(ε)s′ × Znr+1.

[⇐]: Suppose the satisfying assignment is (α, β′) ∈ A(ε)s′ × A(ε)n. As shown before,
condition (1) implies: β′i ∈ Zr+1 + εA[[ε]] for all i ∈ [n]. Let us define βi := β′i|ε=0, for all
i ∈ [n]; they are in Zr+1 ⊂ A. By Condition (3): ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε].

Previous calculations suggest that Ψ(α,x) is in ε−jA[[ε]][x], for some j ≥ 0. Expand the
polynomial Ψ(α,x), wrt ε, as:

g−j(x)ε−j + · · ·+ ε−2g−2(x) + g−1(x)ε−1 + g0(x) + εg1(x) + ε2g2(x) + . . . .

Let us study Condition (2). If for each 0 ≤ ` ≤ j, polynomial g−`(x) is zero, then
Ψ(α, β′)|ε=0 = 0 contradicting the condition. Thus, we can pick the largest 0 ≤ ` ≤ j such
that the polynomial g−`(x) 6= 0.

Note that the normalized circuit ε` ·Ψ(α,x) equals g−` at ε = 0. This means that g−` ∈ P ,
and it is a nonzero polynomial fooling H. Thus, H cannot be a hitting-set for P and we are
done. J

Proof of Theorem 3. Given a prime p and parameters n, r, s in unary (wlog p - (r + 1)), fix
a field Fq with q ≥ Ω(sr6). Fix the universal circuit Ψ(y,x) with n essential variables x and
s′ := Ω(sr4) auxiliary variables y. Fix m := Ω(s′2n2).

For every subset H =: {v1, . . . ,vm} ⊂ Fnq solve the APS instance described by Conditions
(1)-(3) in Theorem 21. These are (n+m+1) algebraic circuits of degree poly(srn, log p) and a
similar bitsize. Using the algorithm from Theorem 2 it can be solved in poly(srn, log p)-space.

The number of subsets H is qnm. So, in poly(nm log q)-space we can go over all of them.
If APS fails on one of them (say H) then we know that H is a hitting-set for P. Since Ψ is
universal, for homogeneous degree-r size-s polynomials in A[x], we output H as the desired
hitting-set. J
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Remark– One advantage in our method compared to the one in [16] is that we can check
whether any given set of points is a hitting-set for VPA. The method in [16] can not do
this, as it only designed robust hitting sets. Another improvement over [16] is that in our
case the bit-complexity of the coordinates in hitting-set points is O(log rs), whereas the
bit-complexity of the hitting-set points in [16] is poly(n, s, r).

6 Conclusion
Our result on algebraic dependence testing in AM ∩ coAM gives further indication that a
randomized polynomial time algorithm for the problem exists. Studying the following special
case might be helpful to get an idea for designing better algorithms.

Given quadratic polynomials f1, . . . , fn ∈ F2[x1, . . . , xn], test if they are algebraically
dependent in randomized polynomial time [34].

As indicated in this paper, approximate polynomials satisfiability, or equivalently testing
zero-membership in the Zariski closure of the image, may have further applications to
problems in computational algebraic geometry and algebraic complexity.

We know that HN is in AM over fields of characteristic zero, assuming GRH [24]. Can
we solve AnnAtZero (or APS) in AM for fields of characteristic zero assuming GRH [22]?
This would also imply a better hitting-set construction for VP.
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A From Section 2: Algebraic-Geometry

Let A := F be the algebraic closure of a field F. For d ∈ N+, write Ad for the d-dimensional
affine space over A. It is defined to be the set Ad, equipped with the Zariski topology, defined
as follows: A subset S of Ad is closed iff it is the set of common zeros of some subset of
polynomials in A[X1, . . . , Xd]. For other subsets S it makes sense to consider the closure S–
the smallest closed set containing S. Set S is dense in Ad if S = Ad. Complement of closed
sets are called open.

A closed set is called a hypersurface (resp. hyperplane) if it is definable by a single
polynomial (resp. single linear polynomial).

Define A× := A \ {0}. Write Pd for the d-dimensional projective space over A, defined
to be the quotient set (Ad+1 \ {(0, . . . , 0)})/ ∼. Where (x0, . . . , xd) ∼ (y0, . . . , yd) iff there
exists c ∈ A× such that yi = cxi for 0 ≤ i ≤ d. The set Pd is again equipped with the
Zariski topology, where a subset is closed iff it is the set of common zeros of some subset of
homogeneous polynomials in A[X0, . . . , Xd]. We use (d+ 1)-tuples (x0, . . . , xd) to represent
points in Pd.

Closed subsets of Ad or Pd are also called algebraic sets or zerosets. An algebraic set is
irreducible if it cannot be written as the union of finitely many proper algebraic sets. An
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irreducible algebraic subset of an affine (resp. projective) space is also called an affine variety
(resp. projective variety). (In some references, varieties are not required to be irreducible,
but in this work we always assume it.) An algebraic set V can be uniquely represented as
the union of finitely many varieties, and these varieties are called the irreducible components
of V .

Affine zerosets (resp. varieties) are in 1-1 correspondence with radical (resp. prime) ideals.
Irreducible decomposition of an affine variety mirrors the factoring of an ideal into primary
ideals. Finally, note that the affine points are in 1-1 correspondence with maximal ideals; it
is a simple reformulation of Hilbert’s Nullstellensatz.

The affine space Ad may be regarded as a subset of Pd via the map (x1, . . . , xd) 7→
(1, x1, . . . , xd). Then the subspace topology of Ad induced from the Zariski topology of Pd is
just the Zariski topology of Ad. The set Pd \ Ad is the projective subspace of Pd defined by
X0 = 0, called the hyperplane at infinity.

For an algebraic subset V of Ad ⊆ Pd, the smallest algebraic subset V ′ of Pd containing
V (i.e. the intersection of all algebraic subsets containing V ) is the projective closure of
V , and we have V ′ ∩ Ad = V . To see this, note that for P = (x1, . . . , xd) ∈ Ad \ V , there
exists a polynomial Q ∈ A[X1, . . . , Xd] of degree D ∈ N not vanishing on P (but vanishing
on V ). Then its homogenization Q′ ∈ A[X0, . . . , Xd], defined by replacing each monomial
M =

∏d
i=1 X

di
i by XD−deg(M)

0
∏d
i=1 X

di
i , does not vanish on (1, x1, . . . , xd). So, (1,x) /∈ V ′.

For distinct points P = (x0, . . . , xd), Q = (y0, . . . , yd) ∈ Pd, write PQ for the projective
line passing through them, i.e., PQ consists of the points (ux0 + vy0, . . . , uxd + vyd), where
(u, v) ∈ A2 \ {(0, 0)}.

The dimension of a variety V is defined to be the largest integer m such that there exists
a chain of varieties ∅ ( V0 ( V1 ( · · · ( Vm = V . More generally, the dimension of an
algebraic set V , denoted by dim V , is the maximal dimension of its irreducible components.
Eg. we have dim Ad = dim Pd = d. The dimension of the empty set is −1 by convention.
One dimensional varieties are called curves.

The degree of a variety V in Ad (resp. Pd) is the number of intersections of V with a
general affine subspace (resp. projective subspace) of dimension d− dim V . More generally,
we define the degree of an algebraic set V , denoted by deg(V ), to be the sum of the degrees
of its irreducible components. The degree of an algebraic subset of Ad coincides with the
degree of its projective closure in Pd.

Suppose V ⊆ Ad is an algebraic set, defined by polynomials f1, . . . , fk. Let (a1, . . . , ad) ∈
Ad. Then the set {(x1 + a1, . . . , xd + ad) : (x1, . . . , xd) ∈ V } is called a translate of V . It is
also an algebraic set, defined by fi(X1 − a1, . . . , Xd − ad), i = 1, . . . , k.

Let V ⊆ An, W ⊆ Am be affine varieties. A morphism from V to W is a function
f : V →W that is a restriction of a polynomial map An → Am. A morphism f : V →W is
called dominant if Im(f) = W . The preimage of a closed subset under a morphism is closed
(i.e. morphisms are continuous in the Zariski topology).

For a polynomial map f : An → Am and an affine variety V ⊆ An, W := f(V ) is also an
affine variety (i.e., it is irreducible). To see this, assume to the contrary that W is the union
of two proper closed subsets W1 and W2. By the definition of closure, f(V ) is not contained
in either W1 or W2, i.e., it intersects both. Then f−1(W1) ∩ V and f−1(W2) ∩ V are two
proper closed subsets of V , and their union is V . This contradicts the irreducibility of V .

The graph Γf of a morphism f is the set {(x, f(x)) : x ∈ V } ⊆ V ×W ⊆ An ×Am. Here
V ×W = {(x, y) : x ∈ V, y ∈ W} denotes the product of V and W , which is a subvariety
of the (n+m)-dimensional affine space An × Am ∼= An+m. Note the graph Γf is closed in
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An ×Am: Suppose f sends x ∈ V to (f1(x), . . . , fm(x)) ∈ Am, where fi ∈ A[X1, . . . , Xn] for
i ∈ [m]. And suppose V is defined by an ideal I ⊆ A[X1, . . . , Xn]. Then Γf is defined by the
ideal of A[X1, . . . , Xn, Y1, . . . , Ym] generated by I and the polynomials Yi − fi(X1, . . . , Xn),
i = 1, . . . ,m.

B From Section 4

I Example 2. Letm = 4, (f1, f2, f3, f4) = (X1, X2, X1X2−1, X1+X2). Then k := trdegf = 2.
Let (g1, g2, g3) = (f1, f3, f1 + f2 − f4) = (X1, X1X2 − 1, 0). Suppose Am has coordinates
Y1, . . . , Y4 and Ak+1 has coordinates Z1, . . . , Z3.

Then V ⊆ Am is defined by Y1Y2 − Y3 − 1 = 0 and Y1 + Y2 − Y4 = 0, and W is defined
by Y1 = 0, Y3 = 0, and Y2 − Y4 = 0. So V ∩W = ∅. But V ′ ⊆ Ak+1 is the plane Z3 = 0,
which contains the origin.
I Example 3. Consider Example 2 but choose f4 to be X1 +X2 + 1 instead of X1 +X2. Now
we have g3 = 1, V is defined by Y1Y2 − Y3 − 1 = 0 and Y1 + Y2 − Y4 + 1 = 0, and V ′ is the
plane Z3 = 1. So O′ 6∈ V ′.

On the other hand, suppose Pm has coordinates Y0, . . . , Y4. Then Vc ∩H is defined by
Y0 = Y1Y2 = Y1 + Y2 − Y4 = 0, and WH is defined by Y0 = Y1 = Y2 − Y4 = Y3 = 0. So
(0, 0, 1, 0, 1) ∈ Vc ∩WH ⊆ Vc ∩Wc.

CCC 2018


	Introduction
	Our results
	Proof ideas

	Preliminaries
	Algebraic dependence testing: Proof of Theorem 1 
	AM protocol
	coAM protocol

	Approximate polynomials satisfiability: Proof of Theorem 2
	APS is equivalent to AnnAtZero
	Putting APS in PSPACE

	Hitting-set for VP: Proof of Theorem 3
	Conclusion
	From Section 2: Algebraic-Geometry 
	From Section 4

