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Abstract polynomial sizearithmetic circuits. This result gave fur-
ther impetus to research on this problem and subsequently
We study the identity testing problem for deptharithmetic algorithms were developed for some restricted models of
circuits (XTIX circuit). We give the first deterministic poly-  arithmetic circuits.
nomial time identity test foEIIX circuits with bounded top Raz and Shpilka [RS04] gave a deterministic polynomial
fanin. We also show that thenk of a minimal and sim-  time algorithm for non-commutative formulas. Klivans and
ple XIIX circuit with bounded top fanin, computing zero, Spielman [KS01] noted that even for depth 3 circuits where
can be unbounded. These results answer the open queghe fanin of the topmost gate was bounded, deterministic
tions posed by Klivans-Spielman [KS01] and Dvir-Shpilka identity testing was an open problem. Subsequently, Dvir
[DSO05]. and Shpilka [DS05] gave a deterministjaasipolynomial
time algorithm for depth 3 arithmetic circuit{IX cir-
cuits) where the fanin of the topmost gate is bounded (note
1 Introduction that if the topmost gate is H gate than the polynomial is
zero if and only if one of the factors is zero and the problem
is then easily solved). In this paper, we resolve this proble
and give a deterministipolynomial timealgorithm for the
identity testing of suci.IIX circuits. Our main theorem is:

Polynomial Identity Testing (PIT) is the following prob-
lem: given an arithmetic circuif computing a polynomial
p(z1,x2, -+ ,x,) over a fieldF, determine if the polyno-

mial is identically zero. Besides being an interesting prob Thegrem 1.1. There exists a deterministic algorithm that
lem in itself, many other well-known problems such as Pri- 4, input a circuitC of depth3 and degreed over a field

mality Testing and Bipartite Matching also reduce to PIT. F, determines if the polynomial computed by the circuit is
Moreover fundamental structural results in complexity- the identically zero in time poli, d*), wherek is the fanin of
9 il

ory such as IPPSPACE and the PCP theorem involve the (¢ topmost addition gate andis the number of inputs. In

use of identity testing. particular if & is bounded, then we get a deterministic poly-

_ The first randomized algorithm for identity testing was omja] time algorithm for identity testing of depth 3 cirtui
discovered independently by Schwartz [Sch80] and Zip-

pel [Zip79] and it involves evaluating the polynomial at Dvir and Shpilka [DS05] gave a structural result for
a random point and accepting if and only if the polyno- XIIX circuitsC with bounded top fanin that compute zero.
mial evaluates to zero at that point. This was followed Let rankC) be the rank of the linear functions that appear
by randomized algorithms that used fewer random bitsin C. Then they showed that such simple and minidal
[CK97, LV98, AB03] and a derandomization of the polyno- can have rank atmosgblylog(d). They also asked whether
mial involved in primality testing [AKS04] but a complete the upper bound of rank can be improvedi¢k). We an-
derandomization remains distant. swer this in the negative by giving identities of the followi
Recently, a surprising development was by Impaggliazzo form:

and Kabanets [IKO3] who showed that efficient determinis-
tic algorithms for identity testing would also imply strong
arithmetic circuit lower bounds. More specifically, they
showed that if identity testing has an efficient determinis-
tic polynomial time algorithm then NEXP does not have

*The authors are supported by research funding from Infosgiiolo- 2) LetF be a field of odd Cha:raCteri.StiP- Then f(_:’r
gies Limited, Bangalore. any numberm > 1, there is a minimal and sim-

Theorem 1.2. 1) LetF be a field of characteristi.
Then for any numbeim > 1, there is a minimal and
simpleXII¥ zero-circuitC, overF, having parame-
ters: (k,d,rank(C)) = (3,2™ 1 m + 1).




ple XII¥ zero-circuitC, overF, having parameters:
(k,d,rank(C)) = (p,p™ 1, m).

Theorem 2.1. (Thm 1.4 of [DS05]). Lek > 3,d > 2, and
let C = 0 be a simple and minimalIIX circuit of degree
d with k& multiplication gates and inputs, then ran{C) <

20(k?) log(d)*—2.

Effectively, this means that if we have such a ciratiit
andk is a constant then we can check whether it is zero or
not in time O(d@™C)) = 20(os(d)"™") _This gave hope of
finding a polynomial time algorithm if we can improve the
upper bound on the raf®) to a constant (i.e. independent

Proving lower bounds for general arithmetic circuits is of d). Infact, [DS05] conjectured that ra®) = O(k).
one of the central problems of complexity theory. Due to the Here we give an identity that contradicts this conjecture.
difficulty of the problem research has focused on restricted Thus, methods of [DS05] are unlikely to give an efficient
models like monotone circuits and bounded depth circuits. algorithm and we give new techniques in section 3 that solve
For monotone arithmetic circuits, exponential lower band the problem.
on the size [SS77, JS80] and linear lower bounds on the Fork = 3 [DS05] shows that a minimal, simpeIl®
depth [SS80, TT94] have been shown. However, only weak zero circuit should have rar®(log d). We show below that

Section2 gives an overview oEIIY circuits and section
3 describes the identity test f&IIY circuits of bounded
top fanin.

2 YIIX Arithmetic Circuits

lower bounds are known for bounded depth arithmetic cir- this bound is tight.
cuits [Pud94, RS01]. Thus, a more restricted model Was| amma 2.2. Define

considered — the model of dep3harithmetic circuits (also
called XIIX circuits if we assume alternate addition and
multipication gates with addition gate at the top).SAI%
circuit computes a polynomial of the form:

k d;
C(x) = Z H Li;(@)

where L;;'s are homogeneous linear functions (or linear
forms). Exponential lower bounds on the siz&3f>: arith-
metic circuits has been shown over finite fields [GK98]. For
generalIIY circuits over infinite fields only the quadratic
lower bound of [SW99] is known.

No efficient algorithm for identity testing aEIIX cir-

)

cuits is known. Here we are interested in studying the iden-

tity testing problem for a restricted case BfI¥ circuits

C(I‘l, s 7x'rn7y) =
II (Y + o121 + -+ + b))
b1,...,bm €Fo

by+-+b, =0(MOC2)

+ I
b1,....b;m €F2
bl +“'+mel(mOd2)

I

b1,....bm EF2
b+ +bm=1(M0Od2)

(blxl + -+ b’m,x'rn)

+ (y+b1I1 ++bmxm)

Then, ovelfsy, C is a simple and minimaLIlX zero circuit
of degreed = 2™~ ! with & = 3 multiplication gates and
having “unbounded” rankC) = log(d) + 2.

Proof. For brevity denote the output of the three multipli-

— when the top fanin is bounded. This case was posed agation gates by, 75, Ts in order.

a challenge by Klivans and Spielman [KS01] anduasi-
polynomial timealgorithm was given by Dvir and Shpilka
[DSO05].

2.1 Previous Approaches

Let C be aXII¥ circuit, as in Equation (1), computing
the zero polynomial. We will calC to be minimal if no
proper subset of the multiplication gates@®$ums to zero.
We say that is simpleif there is no linear function that ap-
pears in all the multiplication gates (up to a multiplicativ
constant).Rankof C is the rank of the linear forms appear-
inginC.

The quasipolynomial time algorithm of [DS05] is based
on the result — rank of a minimal and simpEI>: circuit
with bounded top fanin and computing zero is “small”. For-
mally, the result says:

Letas,...,a, € F be suchthata; + - -+ an,) =
1(mod2). Then what i< modulo (a1 + « - - + amZm)?
Since(a;z1 + -+ + amxy) OCCurs as a factor dfy we
deducel, = 0(modayxy + - - - + amxy,). Further,

II

blv---abWLE]FZ
bi+-+b,=0(Mod2)

11

by,..., by, €EFo
bi+-+bm=0(M0OM2)

R (am + bm)xm)
11 (y+ b1z + -+ bnin)

bl,...,bm,EFZ
bi+-+b,=1(M0d2)

(modajzy + -+ + amTm)
(modayzy + -+ 4 amTm)

T (y—l—blxl + "'+bm$m)

(y+(a1+b1)x1+~--

(modayxy + -+ + amTm)

T3



Thus, we deducel; + T+ 73 =0 (modaizy +--- +
amTy,) for any ay,...,am € F, (a1 + -+ + ap) =
1(mod2). Also, notice thatl; = 0(mody) and T, =
T3(mody) implying thatTy + 15 + T5 = 0(mody). Thus,
we get that:

v 11
bi,...;bm €EF2
b1+ +b,=1(MOd2)

divides C(z1, ..., Zm, )

But the divisor above has a degree higher than that of
implying thatC = 0 (see Lemma 3.4).

Moreover, it is easy to see thétis a minimal, simple
YIIY circuit of degree2™ 1. |

The above identity is over a very special fiel#>= Are
there minimal, simpl&TIY: identities of bounded but un-
bounded rank over any field? We are not sure about fields
of characteristi® but over fields of prime characteristic the
following result answers in the affirmative.

Lemma 2.3. Letp be an odd prime. Define:

C(l’l, 71'm) ==
p—1
H (blxl + -+ bmxm)
i=0 b1, b €F,

bi+-+bm=i(MOdp)

Then, oveif,, C is a simple and minimaL Il zero circuit
of degreed = p™~! with k = p multiplication gates and
having “unbounded” rankC) = log,,(d) + 1.

Proof. Fix anig € F, and letay,...,a, € I, such that
(a1 + -+ am) = ip(modp). Now we comput& modulo
(@121 4+ amTm):

I

b1,..,bm €F,
b1+ +bm =i(MOdp)

i= b1, b €Fp

iFig b1+...+bm2i(m0dp)
(modayzy + -+ + amTm)
p—1

>, I

i=0 b1,yesbm €Fp
00 4 tb,, =i(MOd p)

R +(bm — am)xm)

|
—

P

C= (b1xy + -+ + by)

-
Il
=)

bS]
—_

(b1x1 + -+ b))

((by —ay)zy + -+

(modayzy + -+ 4 amTm)

3
L

S|

i=1 b1,...,bm €Fy
bi+-+bm=i(MOd p)

(modaiz; + - + amTm)

s
v |
[

11 (bray + -+ bnam)  +

b17~--7b7nE]Fp
b1+ +bm=i(MOd p)

.
Il
_

II

b1, sbm €F,
bi+-+bn=—i(MOd p)

(modayzy + -+ + am@m)

2
EZ H (biz1 + -+ bpam) +
=1 b1,...,bm €Fyp
bi+-+bm=i(MOdp)
(_1)PM71 H (b1$1 R bmxm)

b1y, bm €Fp
by+--+b,=i(MOp)

(mOdChxl + -+ anbxm)
=0 (modaiz1 + - + AmTm)

Thus, we deduce that for amy, . .., a,, € F,:
C(Ih .

= I

ai,...,am €Fp

divides C(z1,. ..

7$m) =0 (moda1x1 + -+ amxm)

(@121 4 - + amm)

s Tm)

But the divisor above has a degree higher than that of
implying thatC = 0 (see Lemma 3.4).

Moreover, it is easy to see thétis a minimal, simple
YIIX circuit of degreg™ 1. [ |

2.2 Overview of Our Algorithm

In this section we give an overview of our algorithm. The
input is aXII¥ circuit C(zy,...,x,) having an addition
gate at the top with fanik and computing a polynomial of
total degree atmost over a fieldF. Our algorithm is re-
cursive such that in each recursive dalleduces while the
base ring (initially, it wa¥) becomes larger. The intermedi-
ate larger rings that appear are all ensured to be local. The



dimension of the base ring (ové&) increases by a factor
of atmostd in each recursive call and thus, the complexity
comes out to beoly(d*, n) (assuming the field operations
in F take constant time).

We will now demonstrate a snapshot of the algorithm.
Let R be a local ring over the fielfl having maximal ideal
M. The circuitC(z1, . .., z,) iN R[z1, . .., z,] looks like:

C=T+Tr+ - +Tk
where eaclf; is a product of linear forms
Ty = LiLip--- Lig
and where eacl;; is a linear form:
Lij = ajjo + aijiz1 + aijoza + -+ - + Qijnzn

for somea;;i, aijo, - - ,aijn € Fanda;jo € M. We want
to check ifC computes the identically zero polynomial over
R. We do this by “suitably” picking “coprime” polynomials
p1,-- ., and recursively verifying that:

C=0(modp;) forl<i<lI

By our version of Chinese Remaindering Theorem for local
rings we deduce that:

l
C =0 (mod Hpi)
i=1

Our choice of the polynomialg; ensures that the to-
tal degree of]'[ﬁzlpi(zl,...,zn) is more than that of
C(z1,...,2n). Whence we deduce th& computes the
identically zero polynomial oveR.

Our choice of the polynomials; will ensure two things:

i) There is an invertible linear transformationon the
variablesz such that it ‘simplifies’ the polynomial;:

Topi(21y. ..y 2n) = (z1+m1)-(z1+m2) - - (z1+ms)

where,m; € M. Thus, the ringS; := R[z1]/(7 o p;)
is a local ring.
i) p; ‘occurs’in one of thel’;’s thus, o C can be viewed
as aXII¥ circuit with top fanin atmos{k — 1), to-
tal degreel and(n — 1) variate over the (larger) ring
S;. Thus, we can cheak = 0 (modp;) by checking
7o C = 0 overS; recursively.

The Algorithm

In this section we give a deterministic polynomial time
algorithm that tests whether a givEBiIX arithmetic circuit

basic idea is the same as used in the proof of Lemmas 2.2
and 2.3— look at the values 6f modulo product of linear
forms. Here, the polynomials that we get will be over some
localring R D F instead of being oveF but we can show
that some of the “nice” properties Bfz, . . ., z,] continue

to hold inR][z1, ..., z,]. Specifically, we need that:

divide

1) if coprime f(z1,...,2n), g(z1,...,2n)

p(z1,...,2n) thenf - g | pin R.

2) ifthe total degree of (21, . .
p(z1,...,2,) then overR:

fe,

., zn) IS more than that of

cza)lp(z1, v 2n) = p(21,.00,2,) =0

3.1 Local Rings

3.1.1 Preliminaries

In this article we shall be working with some special kinds

of rings known agdocal rings. For the sake of completeness

we define local rings and mention their elementary proper-
ties. We refer the interested reader to [McD74] for further
properties of such rings.

Definition 3.1. A commutative ringR is said to be docal
ring if it has a unique maximal ideal.

Example: Consider ringR = Flzy,z2]/ (23, z2(z2 +
x1)). Observe thaR is a local ring with the unique maxi-
mal ideal M generated by, x5. Also note thatM is the
set ofnilpotentelements, i.e., for any elememt € M there
isak > 1 such thatn® = 0in R.

Indeed we shall be considering ringswhich are finite
dimensional commutative algebras over some fieldIn
that case, the unigue maximal ide®d of R consists of all
the nilpotent elements adk. Moreover, every element €
R can be uniquely written as= « +m, o € Fandm €
M. This implies that there is a unique ring homomorphism
¢ : R — F such that¢(a + m) a. Further, if the
dimension of R overF is d then there is an integer €
[d] such that the product of anty(not necessarily distinct)
elements ofM is zero inR.

We can define theing of fractions S™ of a ring S as
the set of element§ where,u,v € S andv is not a zero
divisor of S. Clearly, ST is also a ring. We will be con-
sidering polynomials over ringS and S™. A polynomial
f(z) € S|z] is calledmonicif its leading coefficient is a
unit of S. The following is a well known lemma that re-
lates polynomial factorization over the rirfgto its ring of
fractionsS™.

Lemma 3.2 (Gauss' Lemma) Supposef,g € S[z] and

of bounded top fanin computes the zero polynomial. The i € S[z] such that:f = gh. If g is monic therh € S|[z].



Proof. A proof for the case off = Z can be found in  Now by the assumption of the lemma:
any algebra text, eg. [NZM91]. The proof for genefais

similar in spirit. n p=0  (modf)
= p=fq forsomegin R[z1,z22, " ,2zn_1][2n]
also, p=0  (modg)
3.1.2 Properties of multivariate polynomials over local = fqg=0 (modyg)
rings = a*fg=0 (modg) in R(z1,22, " ,2n-1)[2n]
In this section we will show that (multivariate) polynomi- = ¢=0 (modg) in R(z1,22, , 2n—1)[2]
als over local rings have divisibility properties analogao . p=fgh forsomehin R(z1,2a,  ,2zn_1)[2n]

those of polynomials over fields. Throughout this section ] ) o ) o
we will assume thaR is a local ring over a field and the Since, the leading coefficient of, in fg is in R*
natural ring homomorphism fromk to F is ¢. The map  &nd p,fg are in Rlzi, 2, -+, zp1][zn], therefore by
¢ can be extended in the natural way to a homomorphism G2uss Lemma (see Lemma 3.2) we get that in fact
from R[z1, 20, , 2] 10 Flz1,22,--- ,2,]. The unique R[z1,22,++ , 2n_1][2s]) @and sO

tmh:/l[/ln?lzldoe;l ](;TR is M andt is the least integer such p=0(modfg) inRlz1, 2, ,2n]

[ |
Lemma 3.3. Let R be a local ring andp, f,g €

Rz, 29, - - - 2] be multivariate polynomials such that f)

and(g) are coprime. Moreover, Lemma 3.4. Suppose thap, f € Rz, 22, -+ ,2,] andp

has total degree@. Moreoverf has total degre@’ > d and

p=0 (modf) cpnta@ns at Iggst one monomial of degw@ewhose cogﬁi—
cientis a unit inR. Then,p = 0 (modf) = p = 01in
p=0 (modg) Rlz1, 22, 2n).
Then p=0 (modfg) Proot.

Sincep =0 (mod f) we have
Proof. Let the (total) degrees af( f) and¢(g) bed; and

d, respectively. Then by applying a suitable invertible lin- p=fgforsome g€ Rlz1, 22, -+, 2],

ear transformation on the variables z, - - - , z,, ifneeded, By applying a suitable linear transformation of the varébl
we can assume without loss of generality that the coeffi- ,, ., ... . ifneeded, we can assume that the coefficient
cients of=; in f and that oz, in g are both units oft. of = in / is a unit of R. Now Viewp, f, g as univariate
Consequently, in the produgy the coefficient ob % T g polynomials inz,, over the ringR|[z1, z2, - - - , z,—1] and let
also a unit. the degree of with respect toy,, bet. Then the coefficient

Now think of f and g as polynomials in one vari- of z¢t* on the rhs is non-zero whereas all the terms on the
able z, with coefficients coming from the ring of frac- lhs have degree at mogt< d’ + ¢, a contradiction. ®
tions —R(Zl, 29, 7Zn—1) - OfR[Zl, 29, ;Zn—l]- Now
since ¢(f) and ¢(g) are coprime oveff, they are also
coprime as univariate polynomials in, over the func- 3.2 Description of the Identity Test

tion field F(z1, 22, -+ ,2,—1). Consequently, there exists
a,b € F(z1,29, -+, 2n—1)[2n] SUch that: Let the given circuit over field be:
ad(f) +bp(g) = LinF(z1, 22, , 2n_1)[2nl. Clxi,...,xn) =T +To + -+ T}
. d
Thatis, where, for alli € [k], T; = [[;_, Li;. Further,L;; =

ZZ:l QijkTh Whereaijk cF.

af +bg=1in (R/M)(z1, 22, 2n-1)|zn]. In this section we will say that polynomiais b, ¢, d €
Flz1,..., z,] satisfya = b (modc, d) iff

By the well known Hensel Lifting lemma we get that there
y 9 g (@(z1y .+ 20) = b(z1 -y 2))

exista*,b* € R(z1, 22, , 2n—1)[2n] SUCh that:
iISiNFlz1,...,25]/(c(z1,. .y 2n),d(21, ...y 2n))
a*f+bg=1in(R/M") (21,22, , 2n—1)[2n]
whichis R(z1, 22, -+, Zn—1)[2n] Input: The two inputs to the algorithm are:



(Ty,...,Ty), wherek > 1 andT;’s are products of Step 3: (When all theT;’s are in R) Let d’ be the maximum

linear forms inF[z1, ..., x,] and have total degre&

<l11 "'l1617 DRI lml "'lmem>: Where m Z
0, e1,...,e,m € [d] andl;;’s are linear forms in

Flzq,...,x,] such that:
l11 = ... = llel = I
21 = ... = 1262 = X9 (mOdl‘l)
Ilsn = = l3¢; = x3 (MOdxy, )
1 = ... = lmem = T'm (mOdiL’l, e ,CEm_l)
Output: The output of the algorithm,
|D(<T1, . ,Tk> R <111 .. '11817' .. 7lnﬂ .- 'lmem>): is

YES iff

Th+---+1, =0 (modln~-~llel,...,lm1~-

. lmem>-

ID((Ty,...

Step 1:

Step 2:

Th) s (lin e lieys - - “lme,,)) ):

(Defining a local ring) Let us definelacal ring R as:

alml"

def

R = Flz1,...,zn]/Z

where,Z = (l11- - lie;s---slmi- - lme,, ). Thus,
each T; can be viewed as a polynomial in

Rl[Zm+1,- - .,zy,]) and we want to check whether
Ti+---+T, =0 inR.

We will say that two polynomials

a(X1,...,a,), blxy,...,2,) € Flzq,...,2,] are

coprime overR if a(zy,...,a,)(modxy,..., %)

and b(x1,...,x,)(modxy,...,x,) are coprime in

the standard sense ovér

(Base case of one multiplication gate)df= 1 then
we need to check whether

Ty =0 (modI).

Let f(z1,...,2,) be the product of those linear fac-
tors of T that contain only the variables, ..
Viewing T; as a polynomial over the ring, the above
congruence holds iff

.y Ty

f(xh B axm,) =0 (mOdZ)

By simply expanding ouf, the above condition can be
checked in timeoly(d™) and theroutput the result.

Step 4:

degree off1, ..., Ty as polynomials oveR.

If d = 0then each off}, ..
hence we can check

., Ty is in the ringR and

T+ -+ T, =0 (mod7)

in time poly(d™) andoutput the result.
Thus, in the subsequent stéps- 2 andd’ > 1.

(Collecting “useful” linear forms) Form thiargestset
S ={s1,...,sp} oflinear forms inF[x,, 41, . . ., Ty]
such that the elements 6fsatisfy:

— for eachi € [B] there is g € [k] such thai(s; +
r) is a linear factor ofl; for somer € R.

— foreveryi # j € [B], s;, s; are coprime.

Sinced’ > 1, S is not empty. For each € [B],
let f; € [d'] be the largest number such that +
r1),...,(s; +ry,) are linear factors (with repetition)
of someTj, sayT;,, wherery,...,ry € R. Further-
more, for ani € [B], lets;q,...,sif, € Flay, ..., x,]
be all the linear forms (with repetition) that occur in
T,, and are congruent t§ (modz1, ..., ).

The way we have defined;'s we have that for any
Jj € [k], s; can occur atmosf; times among the linear
factors ofT; taken(modzy,...,z,). Thus, we get
the following bound:

(f1—|—...—|—fB)Zd/.

If (fi+...+ fg) = d’ then form the sel/ of T}'s that
produce monomials (in the variables, . 1, . .., z,) of
degreed’. Wlog letU = {T,..., T} } and note that
k' > 1. Fori € [K'], let:

f1
TL' :gi(]?l,...,I‘lm)' H(Sl+ri,1j)
j=1
s
[1(sn +ris)
j=1

where, for alliy € [k'], i2 € [B], i3 € [d'], 74y ,ipis €
Randg;, € Flzy,...,ZTm].

Note that the coefficient of any degréé monomial
(in the variablesc,;,+1,...,2,)INTy + ...+ T isa
multiple (inF) of:

Z gi(l‘l, e

i1€[k’]

s T

We can clearly check whether this is z€rnodZ), in
time poly(d™). If it is not zero theroutput NO.



Step 5: (Going modulo various products of linear forms) For f € Rwhile F € R[x,,41,- - , x,] with coefficients of the

i € [B], define a linear tranformatios; acting on highest degree monomials (i, 41, - - ., z,) of F coming
the variableg 1, . . ., z,, such that; fixeszq, ..., .., from F. Clearly, 7, = 0in R iff f = 0 (modZ). This
sendss; — x,,+1 and transforms:,, 42, ..., x, such can be checked by expanding qitc1, . .., x,,), since the

that it is an invertible linear map. L&’ € [B] be such  expansion will have atmosft™ terms we can do this in time
thatB’ = Bif (fi +...+ fp) = d' otherwiseB’ is poly(d™).
the smallest number such thgy + ...+ fp/) > d'.

Output a YES iff each of the following recursive calls NOW we assume that > 2 and that the claim is true

return a YES: for values smaller thak. If all the linear forms occurring
inTy,...,T, are in R then in Step 3 we just expand out
ID ( (01T e (a3} - T;’s and check whether the sum is z¢modZ). Otherwise
in Step 4 we collect the maximum number of linear forms
(- leys o by lmey,, 01(811 - 517,)) ) (possibly repeated){si1,...,81f,, " sSB1s---+SBfp}

such that for ali € [B], s;1 - - - s;4, occurs in somd; and
the polynomials

ID ( (08 (T0)) icpop i} »

S11°°81fy 5--+5 SB1" " SB
(i lieys - slmi - lme, 0B/ (31 SBrg)) ) { h o}

are mutually coprime oveR.

Recall thatd’ is the maximum degree df;, ..., T as
polynomials inR[Z, 41, ..,%,]. In Step 4 if we do not
have “enough” linear forms i.ef; + ... + fg = d’' then
observe that the sum of the degrBéerms in the expansion
of (Ty + ...+ Tg)is:

3.3 Proof of Correctness

We continue using the notation set in the last subsection.
The claim here is summarized as:

Theorem 3.5. ID( (T1,...,T}), (0) ) returns YES iff

Ty +---+ Tz = 0inF. Furthermore, the time taken is

poly(n, d*). Z gi(@1, ... am) | - s "'SéB
i€[k’]

Proof. Note that in all the recursive calls that

ID((Ty,...,T;), (0)) makes tolD(-,-) the size of the

! Thus, forT; + ... + T} to vanish(modZ) it is necessary
first argument reduces by one and that of the second ar-thatZie[k’] g vanishegmodZ), which can be checked in

gument increases by one, thus < k. Therefore, time poly(d™). If it vanishes then we have:
if h(k) denotes the time taken biD( (Th,...,Tk),

(11 Ueyy - slm1 -+ lme,, ) ) then we have the following . . ,
recurrence: degree of 7} + ... + T}) as polynomials oveR is < d
<(fi+...+fB)
hk) < B h(k—1)+poly(n,d™)

< (d+1)-h(k - 1) + poly(n d’;) With this assurance we move on to the most “expensive”
- ’ step — Step 5. Firstly, note thaf(s;;) = ... = oi(sif,) =

Thus, we get thak(k) = poly(n, d*). 0i(8i) = Tmy1 (MOAiy, ..., 2n) SO the input of theB’

calls toID are well-formed. Observe that for any invert-

To show that the output ofD((Ti,...,T%),(0)) is ible linear transformatiorr; that is sending the variables

correct we prove the correctness of x1, - .., T, to their linear combinations we have:

ID( <Tla---aTk> ) <l11 "'llel7~-~alm1 "'lmem> ) by

induction onk: ID ( (0i(T5)) e friy -

Claim 3.5.1. |D( <T1,...,Tk>, <lll"'llela-~-7 <l11"'llelwn,lml"'lmen”Ui(Sil---sifi»)

lm1 -+ lme,,) ) returns YES iff iff

Ti+- + Ty =0(modliy - liey, ooy b1+ I, )- ID ( {T5) et gy -

Proof of Claim 3.5.1. The base case of the induction is (linlieys -y bt - lmeny s Sit---Sif;) )

whenk = 1, handled by Step 2. In this cagé¢ can be

written as f(x1,...,2m) - F(Tm41,...,T,) Such that Thus, induction hypothesis ensures that if the following tw
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