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Abstract

We study the identity testing problem for depth3 arithmetic
circuits (ΣΠΣ circuit). We give the first deterministic poly-
nomial time identity test forΣΠΣ circuits with bounded top
fanin. We also show that therank of a minimal and sim-
ple ΣΠΣ circuit with bounded top fanin, computing zero,
can be unbounded. These results answer the open ques-
tions posed by Klivans-Spielman [KS01] and Dvir-Shpilka
[DS05].

1 Introduction

Polynomial Identity Testing (PIT) is the following prob-
lem: given an arithmetic circuitC computing a polynomial
p(x1, x2, · · · , xn) over a fieldF, determine if the polyno-
mial is identically zero. Besides being an interesting prob-
lem in itself, many other well-known problems such as Pri-
mality Testing and Bipartite Matching also reduce to PIT.
Moreover fundamental structural results in complexity the-
ory such as IP=PSPACE and the PCP theorem involve the
use of identity testing.

The first randomized algorithm for identity testing was
discovered independently by Schwartz [Sch80] and Zip-
pel [Zip79] and it involves evaluating the polynomial at
a random point and accepting if and only if the polyno-
mial evaluates to zero at that point. This was followed
by randomized algorithms that used fewer random bits
[CK97, LV98, AB03] and a derandomization of the polyno-
mial involved in primality testing [AKS04] but a complete
derandomization remains distant.

Recently, a surprising development was by Impaggliazzo
and Kabanets [IK03] who showed that efficient determinis-
tic algorithms for identity testing would also imply strong
arithmetic circuit lower bounds. More specifically, they
showed that if identity testing has an efficient determinis-
tic polynomial time algorithm then NEXP does not have
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polynomial sizearithmetic circuits. This result gave fur-
ther impetus to research on this problem and subsequently
algorithms were developed for some restricted models of
arithmetic circuits.

Raz and Shpilka [RS04] gave a deterministic polynomial
time algorithm for non-commutative formulas. Klivans and
Spielman [KS01] noted that even for depth 3 circuits where
the fanin of the topmost gate was bounded, deterministic
identity testing was an open problem. Subsequently, Dvir
and Shpilka [DS05] gave a deterministicquasipolynomial
time algorithm for depth 3 arithmetic circuits (ΣΠΣ cir-
cuits) where the fanin of the topmost gate is bounded (note
that if the topmost gate is aΠ gate than the polynomial is
zero if and only if one of the factors is zero and the problem
is then easily solved). In this paper, we resolve this problem
and give a deterministicpolynomial timealgorithm for the
identity testing of suchΣΠΣ circuits. Our main theorem is:

Theorem 1.1. There exists a deterministic algorithm that
on input a circuitC of depth3 and degreed over a field
F, determines if the polynomial computed by the circuit is
identically zero in time poly(n, dk), wherek is the fanin of
the topmost addition gate andn is the number of inputs. In
particular if k is bounded, then we get a deterministic poly-
nomial time algorithm for identity testing of depth 3 circuits.

Dvir and Shpilka [DS05] gave a structural result for
ΣΠΣ circuitsC with bounded top fanin that compute zero.
Let rank(C) be the rank of the linear functions that appear
in C. Then they showed that such simple and minimalC
can have rank atmostpolylog(d). They also asked whether
the upper bound of rank can be improved toO(k). We an-
swer this in the negative by giving identities of the following
form:

Theorem 1.2. 1) Let F be a field of characteristic2.
Then for any numberm ≥ 1, there is a minimal and
simpleΣΠΣ zero-circuit C, over F, having parame-
ters: (k, d, rank(C)) = (3, 2m−1,m + 1).

2) Let F be a field of odd characteristicp. Then for
any numberm ≥ 1, there is a minimal and sim-
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ple ΣΠΣ zero-circuitC, over F, having parameters:
(k, d, rank(C)) = (p, pm−1,m).

Section2 gives an overview ofΣΠΣ circuits and section
3 describes the identity test forΣΠΣ circuits of bounded
top fanin.

2 ΣΠΣ Arithmetic Circuits

Proving lower bounds for general arithmetic circuits is
one of the central problems of complexity theory. Due to the
difficulty of the problem research has focused on restricted
models like monotone circuits and bounded depth circuits.
For monotone arithmetic circuits, exponential lower bounds
on the size [SS77, JS80] and linear lower bounds on the
depth [SS80, TT94] have been shown. However, only weak
lower bounds are known for bounded depth arithmetic cir-
cuits [Pud94, RS01]. Thus, a more restricted model was
considered – the model of depth3 arithmetic circuits (also
called ΣΠΣ circuits if we assume alternate addition and
multipication gates with addition gate at the top). AΣΠΣ
circuit computes a polynomial of the form:

C(x) =

k
∑

i=1

di
∏

j=1

Lij(x) (1)

whereLij ’s are homogeneous linear functions (or linear
forms). Exponential lower bounds on the size ofΣΠΣ arith-
metic circuits has been shown over finite fields [GK98]. For
generalΣΠΣ circuits over infinite fields only the quadratic
lower bound of [SW99] is known.

No efficient algorithm for identity testing ofΣΠΣ cir-
cuits is known. Here we are interested in studying the iden-
tity testing problem for a restricted case ofΣΠΣ circuits
– when the top fanin is bounded. This case was posed as
a challenge by Klivans and Spielman [KS01] and aquasi-
polynomial timealgorithm was given by Dvir and Shpilka
[DS05].

2.1 Previous Approaches

Let C be aΣΠΣ circuit, as in Equation (1), computing
the zero polynomial. We will callC to be minimal if no
proper subset of the multiplication gates ofC sums to zero.
We say thatC is simpleif there is no linear function that ap-
pears in all the multiplication gates (up to a multiplicative
constant).Rankof C is the rank of the linear forms appear-
ing in C.

The quasipolynomial time algorithm of [DS05] is based
on the result – rank of a minimal and simpleΣΠΣ circuit
with bounded top fanin and computing zero is “small”. For-
mally, the result says:

Theorem 2.1. (Thm 1.4 of [DS05]). Letk ≥ 3, d ≥ 2, and
let C ≡ 0 be a simple and minimalΣΠΣ circuit of degree
d with k multiplication gates andn inputs, then rank(C) ≤

2O(k2) log(d)k−2.

Effectively, this means that if we have such a circuitC
andk is a constant then we can check whether it is zero or
not in timeO(drank(C)) = 2O(log(d)k−1). This gave hope of
finding a polynomial time algorithm if we can improve the
upper bound on the rank(C) to a constant (i.e. independent
of d). Infact, [DS05] conjectured that rank(C) = O(k).
Here we give an identity that contradicts this conjecture.
Thus, methods of [DS05] are unlikely to give an efficient
algorithm and we give new techniques in section 3 that solve
the problem.

For k = 3 [DS05] shows that a minimal, simpleΣΠΣ
zero circuit should have rankO(log d). We show below that
this bound is tight.

Lemma 2.2. Define

C(x1, . . . , xm, y) :=
∏

b1,...,bm∈F2

b1+···+bm≡0(mod2)

(y + b1x1 + · · · + bmxm)

+
∏

b1,...,bm∈F2

b1+···+bm≡1(mod2)

(b1x1 + · · · + bmxm)

+
∏

b1,...,bm∈F2

b1+···+bm≡1(mod2)

(y + b1x1 + · · · + bmxm)

Then, overF2, C is a simple and minimalΣΠΣ zero circuit
of degreed = 2m−1 with k = 3 multiplication gates and
having “unbounded” rank(C) = log(d) + 2.

Proof. For brevity denote the output of the three multipli-
cation gates byT1, T2, T3 in order.

Let a1, . . . , am ∈ F be such that(a1 + · · · + am) =
1(mod2). Then what isC modulo(a1x1 + · · · + amxm)?
Since(a1x1 + · · · + amxm) occurs as a factor ofT2 we
deduceT2 = 0(moda1x1 + · · · + amxm). Further,

T1 =
∏

b1,...,bm∈F2

b1+···+bm≡0(mod2)

(y + b1x1 + · · · + bmxm)

≡
∏

b1,...,bm∈F2

b1+···+bm≡0(mod2)

(y + (a1 + b1)x1 + · · ·

· · · + (am + bm)xm) (moda1x1 + · · · + amxm)

≡
∏

b1,...,bm∈F2

b1+···+bm≡1(mod2)

(y + b1x1 + · · · + bmxm)

(moda1x1 + · · · + amxm)

≡ T3 (moda1x1 + · · · + amxm)
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Thus, we deduce:T1 + T2 + T3 ≡ 0 (moda1x1 + · · · +
amxm) for any a1, . . . , am ∈ F, (a1 + · · · + am) =
1(mod2). Also, notice thatT1 = 0(mody) and T2 =
T3(mody) implying thatT1 + T2 + T3 = 0(mody). Thus,
we get that:









y ·
∏

b1,...,bm∈F2

b1+···+bm≡1(mod2)

(b1x1 + · · · + bmxm)









divides C(x1, . . . , xm, y)

But the divisor above has a degree higher than that ofC
implying thatC ≡ 0 (see Lemma 3.4).

Moreover, it is easy to see thatC is a minimal, simple
ΣΠΣ circuit of degree2m−1.

The above identity is over a very special field –F2. Are
there minimal, simpleΣΠΣ identities of boundedk but un-
bounded rank over any fieldF? We are not sure about fields
of characteristic0 but over fields of prime characteristic the
following result answers in the affirmative.

Lemma 2.3. Letp be an odd prime. Define:

C(x1, . . . , xm) :=

p−1
∑

i=0

∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

(b1x1 + · · · + bmxm)

Then, overFp, C is a simple and minimalΣΠΣ zero circuit
of degreed = pm−1 with k = p multiplication gates and
having “unbounded” rank(C) = logp(d) + 1.

Proof. Fix ani0 ∈ Fp and leta1, . . . , am ∈ Fp such that
(a1 + · · ·+ am) = i0(modp). Now we computeC modulo
(a1x1 + · · · + amxm):

C =

p−1
∑

i=0

∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

(b1x1 + · · · + bmxm)

≡

p−1
∑

i=0
i6=i0

∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

(b1x1 + · · · + bmxm)

(moda1x1 + · · · + amxm)

≡

p−1
∑

i=0
i6=i0

∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

((b1 − a1)x1 + · · ·

· · · + +(bm − am)xm) (moda1x1 + · · · + amxm)

≡

p−1
∑

i=1

∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

(b1x1 + · · · + bmxm)

(moda1x1 + · · · + amxm)

≡

p−1

2
∑

i=1











∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

(b1x1 + · · · + bmxm) +

∏

b1,...,bm∈Fp

b1+···+bm≡−i(modp)

(b1x1 + · · · + bmxm)











(moda1x1 + · · · + amxm)

≡

p−1

2
∑

i=1











∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

(b1x1 + · · · + bmxm) +

(−1)pm−1

·
∏

b1,...,bm∈Fp

b1+···+bm≡i(modp)

(b1x1 + · · · + bmxm)











(moda1x1 + · · · + amxm)

≡ 0 (moda1x1 + · · · + amxm)

Thus, we deduce that for anya1, . . . , am ∈ Fp:

C(x1, . . . , xm) ≡ 0 (moda1x1 + · · · + amxm)

⇒





∏

a1,...,am∈Fp

(a1x1 + · · · + amxm)





divides C(x1, . . . , xm)

But the divisor above has a degree higher than that ofC
implying thatC ≡ 0 (see Lemma 3.4).

Moreover, it is easy to see thatC is a minimal, simple
ΣΠΣ circuit of degreepm−1.

2.2 Overview of Our Algorithm

In this section we give an overview of our algorithm. The
input is aΣΠΣ circuit C(x1, . . . , xn) having an addition
gate at the top with fanink and computing a polynomial of
total degree atmostd over a fieldF. Our algorithm is re-
cursive such that in each recursive callk reduces while the
base ring (initially, it wasF) becomes larger. The intermedi-
ate larger rings that appear are all ensured to be local. The
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dimension of the base ring (overF) increases by a factor
of atmostd in each recursive call and thus, the complexity
comes out to bepoly(dk, n) (assuming the field operations
in F take constant time).

We will now demonstrate a snapshot of the algorithm.
Let R be a local ring over the fieldF having maximal ideal
M. The circuitC(z1, . . . , zn) in R[z1, . . . , zn] looks like:

C = T1 + T2 + · · · + Tk

where eachTi is a product of linear forms

Ti = Li1Li2 · · ·Lid

and where eachLij is a linear form:

Lij = aij0 + aij1z1 + aij2z2 + · · · + aijnzn

for someaij1, aij2, · · · , aijn ∈ F andaij0 ∈ M. We want
to check ifC computes the identically zero polynomial over
R. We do this by “suitably” picking “coprime” polynomials
p1, . . . , pl and recursively verifying that:

C ≡ 0 (modpi) for 1 ≤ i ≤ l

By our version of Chinese Remaindering Theorem for local
rings we deduce that:

C ≡ 0 (mod
l

∏

i=1

pi)

Our choice of the polynomialspi ensures that the to-
tal degree of

∏l

i=1 pi(z1, . . . , zn) is more than that of
C(z1, . . . , zn). Whence we deduce thatC computes the
identically zero polynomial overR.

Our choice of the polynomialspi will ensure two things:

i) There is an invertible linear transformationτ on the
variablesz such that it ‘simplifies’ the polynomialpi:

τ ◦pi(z1, . . . , zn) = (z1+m1)·(z1+m2) · · · (z1+ms)

where,mj ∈ M. Thus, the ringSi := R[z1]/(τ ◦ pi)
is a local ring.

ii) pi ‘occurs’ in one of theTj ’s thus,τ ◦ C can be viewed
as aΣΠΣ circuit with top fanin atmost(k − 1), to-
tal degreed and(n − 1) variate over the (larger) ring
Si. Thus, we can checkC = 0 (modpi) by checking
τ ◦ C = 0 overSi recursively.

3 The Algorithm

In this section we give a deterministic polynomial time
algorithm that tests whether a givenΣΠΣ arithmetic circuit
of bounded top fanin computes the zero polynomial. The

basic idea is the same as used in the proof of Lemmas 2.2
and 2.3– look at the values ofC modulo product of linear
forms. Here, the polynomials that we get will be over some
local ring R ⊃ F instead of being overF but we can show
that some of the “nice” properties ofF[z1, . . . , zn] continue
to hold inR[z1, . . . , zn]. Specifically, we need that:

1) if coprime f(z1, . . . , zn), g(z1, . . . , zn) divide
p(z1, . . . , zn) thenf · g | p in R.

2) if the total degree off(z1, . . . , zn) is more than that of
p(z1, . . . , zn) then overR:

f(z1, . . . , zn)|p(z1, . . . , zn) ⇒ p(z1, . . . , zn) = 0

3.1 Local Rings

3.1.1 Preliminaries

In this article we shall be working with some special kinds
of rings known aslocal rings. For the sake of completeness
we define local rings and mention their elementary proper-
ties. We refer the interested reader to [McD74] for further
properties of such rings.

Definition 3.1. A commutative ringR is said to be alocal
ring if it has a unique maximal ideal.

Example: Consider ringR = F[x1, x2]/(x3
1, x2(x2 +

x1)). Observe thatR is a local ring with the unique maxi-
mal idealM generated byx1, x2. Also note thatM is the
set ofnilpotentelements, i.e., for any elementm ∈ M there
is ak ≥ 1 such thatmk = 0 in R.

Indeed we shall be considering ringsR which are finite
dimensional commutative algebras over some fieldF. In
that case, the unique maximal idealM of R consists of all
the nilpotent elements ofR. Moreover, every elementr ∈
R can be uniquely written asr = α + m, α ∈ F andm ∈
M. This implies that there is a unique ring homomorphism
φ : R → F such thatφ(α + m) = α. Further, if the
dimension ofR over F is d then there is an integert ∈
[d] such that the product of anyt (not necessarily distinct)
elements ofM is zero inR.

We can define thering of fractionsSfr of a ring S as
the set of elementsu

v
where,u, v ∈ S andv is not a zero

divisor of S. Clearly,Sfr is also a ring. We will be con-
sidering polynomials over ringsS andSfr . A polynomial
f(z) ∈ S[z] is calledmonic if its leading coefficient is a
unit of S. The following is a well known lemma that re-
lates polynomial factorization over the ringS to its ring of
fractionsSfr .

Lemma 3.2 (Gauss’ Lemma). Supposef, g ∈ S[z] and
h ∈ Sfr [z] such that:f = gh. If g is monic thenh ∈ S[z].
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Proof. A proof for the case ofS = Z can be found in
any algebra text, eg. [NZM91]. The proof for generalS is
similar in spirit.

3.1.2 Properties of multivariate polynomials over local
rings

In this section we will show that (multivariate) polynomi-
als over local rings have divisibility properties analogous to
those of polynomials over fields. Throughout this section
we will assume thatR is a local ring over a fieldF and the
natural ring homomorphism fromR to F is φ. The map
φ can be extended in the natural way to a homomorphism
from R[z1, z2, · · · , zn] to F[z1, z2, · · · , zn]. The unique
maximal ideal ofR is M and t is the least integer such
thatMt = 0 in R.

Lemma 3.3. Let R be a local ring and p, f, g ∈
R[z1, z2, · · · zn] be multivariate polynomials such thatφ(f)
andφ(g) are coprime. Moreover,

p ≡ 0 (modf)

p ≡ 0 (modg)

Then p ≡ 0 (modfg)

Proof. Let the (total) degrees ofφ(f) andφ(g) bedf and
dg respectively. Then by applying a suitable invertible lin-
ear transformation on the variablesz1, z2, · · · , zn if needed,
we can assume without loss of generality that the coeffi-
cients ofzdf

n in f and that ofzdg
n in g are both units ofR.

Consequently, in the productfg the coefficient ofzdf+dg
n is

also a unit.
Now think of f and g as polynomials in one vari-

able zn with coefficients coming from the ring of frac-
tions –R(z1, z2, · · · , zn−1) – of R[z1, z2, · · · , zn−1]. Now
since φ(f) and φ(g) are coprime overF, they are also
coprime as univariate polynomials inzn over the func-
tion field F(z1, z2, · · · , zn−1). Consequently, there exists
a, b ∈ F(z1, z2, · · · , zn−1)[zn] such that:

aφ(f) + bφ(g) = 1 in F(z1, z2, · · · , zn−1)[zn].

That is,

af + bg = 1 in (R/M)(z1, z2, · · · , zn−1)[zn].

By the well known Hensel Lifting lemma we get that there
exista∗, b∗ ∈ R(z1, z2, · · · , zn−1)[zn] such that:

a∗f + b∗g = 1 in (R/Mt)(z1, z2, · · · , zn−1)[zn]

which isR(z1, z2, · · · , zn−1)[zn]

Now by the assumption of the lemma:

p ≡ 0 (modf)

⇒ p = fq for someq in R[z1, z2, · · · , zn−1][zn]

also, p ≡ 0 (modg)

⇒ fq ≡ 0 (modg)

⇒ a∗fq ≡ 0 (modg) in R(z1, z2, · · · , zn−1)[zn]

⇒ q ≡ 0 (modg) in R(z1, z2, · · · , zn−1)[zn]

∴ p = fgh for someh in R(z1, z2, · · · , zn−1)[zn]

Since, the leading coefficient ofzn in fg is in R∗

and p, fg are in R[z1, z2, · · · , zn−1][zn], therefore by
Gauss Lemma (see Lemma 3.2) we get that in facth ∈
R[z1, z2, · · · , zn−1][zn] and so

p ≡ 0 (modfg) in R[z1, z2, · · · , zn]

Lemma 3.4. Suppose thatp, f ∈ R[z1, z2, · · · , zn] andp
has total degreed. Moreoverf has total degreed′ > d and
contains at least one monomial of degreed′ whose coeffi-
cient is a unit inR. Then,p ≡ 0 (modf) ⇒ p = 0 in
R[z1, z2, · · · , zn].

Proof.
Sincep ≡ 0 (modf) we have

p = fg for some g ∈ R[z1, z2, · · · , zn].

By applying a suitable linear transformation of the variables
z1, z2, · · · , zn, if needed, we can assume that the coefficient
of zd′

n in f is a unit ofR. Now view p, f, g as univariate
polynomials inzn over the ringR[z1, z2, · · · , zn−1] and let
the degree ofg with respect tozn bet. Then the coefficient
of zd′+t

n on the rhs is non-zero whereas all the terms on the
lhs have degree at mostd < d′ + t, a contradiction.

3.2 Description of the Identity Test

Let the given circuit over fieldF be:

C(x1, . . . , xn) = T1 + T2 + · · · + Tk

where, for alli ∈ [k], Ti =
∏d

j=1 Lij . Further,Lij =
∑n

k=1 aijkxk whereaijk ∈ F.
In this section we will say that polynomialsa, b, c, d ∈

F[z1, . . . , zn] satisfya ≡ b (modc, d) iff

(a(z1, . . . , zn) − b(z1, . . . , zn))

is in F[z1, . . . , zn]/(c(z1, . . . , zn), d(z1, . . . , zn))

Input: The two inputs to the algorithm are:
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• 〈T1, . . . , Tk〉, wherek ≥ 1 andTi’s are products of
linear forms inF[x1, . . . , xn] and have total degreed.

• 〈l11 · · · l1e1
, . . . , lm1 · · · lmem

〉, where m ≥
0, e1, . . . , em ∈ [d] and lij ’s are linear forms in
F[x1, . . . , xn] such that:

l11 = . . . = l1e1
= x1

l21 = . . . = l2e2
= x2 (modx1)

l31 = . . . = l3e3
= x3 (modx1, x2)

...
...

lm1 = . . . = lmem
= xm (modx1, . . . , xm−1)

Output: The output of the algorithm,
ID(〈T1, . . . , Tk〉 , 〈l11 · · · l1e1

, . . . , lm1 · · · lmem
〉), is

YES iff

T1 + · · · + Tk = 0 (modl11 · · · l1e1
, . . . , lm1 · · · lmem

).

ID( 〈T1, . . . , Tk〉 , 〈l11 · · · l1e1
, . . . , lm1 · · · lmem

〉) ):

Step 1: (Defining a local ring) Let us define alocal ring R as:

R
def
= F[x1, . . . , xm]/I

where, I = (l11 · · · l1e1
, . . . , lm1 · · · lmem

) . Thus,
each Ti can be viewed as a polynomial in
R[xm+1, . . . , xn] and we want to check whether

T1 + · · · + Tk = 0 in R.

We will say that two polynomials
a(x1, . . . , an), b(x1, . . . , xn) ∈ F[x1, . . . , xn] are
coprime overR if a(x1, . . . , an)(modx1, . . . , xm)
and b(x1, . . . , xn)(modx1, . . . , xm) are coprime in
the standard sense overF.

Step 2: (Base case of one multiplication gate) Ifk = 1 then
we need to check whether

T1 = 0 (modI).

Let f(x1, . . . , xm) be the product of those linear fac-
tors ofT1 that contain only the variablesx1, . . . , xm.
Viewing T1 as a polynomial over the ringR, the above
congruence holds iff

f(x1, . . . , xm) = 0 (modI).

By simply expanding outf , the above condition can be
checked in timepoly(dm) and thenoutput the result.

Step 3: (When all theTi’s are inR) Let d′ be the maximum
degree ofT1, . . . , Tk as polynomials overR.

If d′ = 0 then each ofT1, . . . , Tk is in the ringR and
hence we can check

T1 + · · · + Tk = 0 (modI)

in timepoly(dm) andoutput the result.

Thus, in the subsequent stepsk ≥ 2 andd′ ≥ 1.

Step 4: (Collecting “useful” linear forms) Form thelargestset
S = {s1, . . . , sB} of linear forms inF[xm+1, . . . , xn]
such that the elements ofS satisfy:

– for eachi ∈ [B] there is aj ∈ [k] such that(si +
r) is a linear factor ofTj for somer ∈ R.

– for everyi 6= j ∈ [B], si, sj are coprime.

Sinced′ ≥ 1, S is not empty. For eachi ∈ [B],
let fi ∈ [d′] be the largest number such that(si +
r1), . . . , (si + rfi

) are linear factors (with repetition)
of someTj , sayTπi

, wherer1, . . . , rfi
∈ R. Further-

more, for ani ∈ [B], let si1, . . . , sifi
∈ F[x1, . . . , xn]

be all the linear forms (with repetition) that occur in
Tπi

and are congruent tosi(modx1, . . . , xm).

The way we have definedfi’s we have that for any
j ∈ [k], si can occur atmostfi times among the linear
factors ofTj taken(modx1, . . . , xm). Thus, we get
the following bound:

(f1 + . . . + fB) ≥ d′.

If (f1 + . . .+fB) = d′ then form the setU of Tj ’s that
produce monomials (in the variablesxm+1, . . . , xn) of
degreed′. Wlog let U = {T1, . . . , Tk′} and note that
k′ ≥ 1. For i ∈ [k′], let:

Ti = gi(x1, . . . , xm) ·





f1
∏

j=1

(s1 + ri,1j)



 · · ·

· · ·





fB
∏

j=1

(sB + ri,Bj)





where, for alli1 ∈ [k′], i2 ∈ [B], i3 ∈ [d′], ri1,i2i3 ∈
R andgi1 ∈ F[x1, . . . , xm].

Note that the coefficient of any degreed′ monomial
(in the variablesxm+1, . . . , xn) in T1 + . . . + Tk′ is a
multiple (inF) of:

∑

i∈[k′]

gi(x1, . . . , xm).

We can clearly check whether this is zero(modI), in
timepoly(dm). If it is not zero thenoutput NO.
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Step 5: (Going modulo various products of linear forms) For
i ∈ [B], define a linear tranformationσi acting on
the variablesx1, . . . , xn such thatσi fixesx1, . . . , xm,
sendssi 7→ xm+1 and transformsxm+2, . . . , xn such
that it is an invertible linear map. LetB′ ∈ [B] be such
thatB′ = B if (f1 + . . . + fB) = d′ otherwiseB′ is
the smallest number such that(f1 + . . . + fB′) > d′.

Output a YES iff each of the following recursive calls
return a YES:

ID
(

〈σ1(Ti)〉i∈[k]\{π1}
,

〈l11 · · · l1e1
, . . . , lm1 · · · lmem

, σ1(s11 . . . s1f1
)〉 )

...
...

ID
(

〈σB′(Ti)〉i∈[k]\{πB′} ,
〈

l11 · · · l1e1
, . . . , lm1 · · · lmem

, σB′(sB′1 . . . sB′fB′
)
〉 )

3.3 Proof of Correctness

We continue using the notation set in the last subsection.
The claim here is summarized as:

Theorem 3.5. ID(
〈

T1, . . . , Tk̃

〉

, 〈0〉 ) returns YES iff
T1 + · · · + Tk̃ = 0 in F. Furthermore, the time taken is

poly(n, dk̃).

Proof. Note that in all the recursive calls that
ID(

〈

T1, . . . , Tk̃

〉

, 〈0〉) makes toID(·, ·) the size of the
first argument reduces by one and that of the second ar-
gument increases by one, thusm ≤ k̃. Therefore,
if h(k) denotes the time taken byID( 〈T1, . . . , Tk〉 ,
〈l11 · · · l1e1

, . . . , lm1 · · · lmem
〉 ) then we have the following

recurrence:

h(k) ≤ B′ · h(k − 1) + poly(n, dm)

≤ (d + 1) · h(k − 1) + poly(n, dk̃)

Thus, we get thath(k̃) = poly(n, dk̃).

To show that the output ofID(
〈

T1, . . . , Tk̃

〉

, 〈0〉) is
correct we prove the correctness of
ID( 〈T1, . . . , Tk〉 , 〈l11 · · · l1e1

, . . . , lm1 · · · lmem
〉 ) by

induction onk:

Claim 3.5.1. ID( 〈T1, . . . , Tk〉 , 〈l11 · · · l1e1
, . . . ,

lm1 · · · lmem
〉 ) returns YES iff

T1 + · · · + Tk = 0 (modl11 · · · l1e1
, . . . , lm1 · · · lmem

).

Proof of Claim 3.5.1. The base case of the induction is
whenk = 1, handled by Step 2. In this caseT1 can be
written as f(x1, . . . , xm) · F (xm+1, . . . , xn) such that

f ∈ R while F ∈ R[xm+1, · · · , xn] with coefficients of the
highest degree monomials (inxm+1, . . . , xn) of F coming
from F. Clearly, T1 = 0 in R iff f = 0 (modI). This
can be checked by expanding outf(x1, . . . , xm), since the
expansion will have atmostdm terms we can do this in time
poly(dm).

Now we assume thatk ≥ 2 and that the claim is true
for values smaller thank. If all the linear forms occurring
in T1, . . . , Tk are inR then in Step 3 we just expand out
Ti’s and check whether the sum is zero(modI). Otherwise
in Step 4 we collect the maximum number of linear forms
(possibly repeated){s11, . . . , s1f1

, · · · , sB1, . . . , sBfB
}

such that for alli ∈ [B], si1 · · · sifi
occurs in someTj and

the polynomials

{s11 · · · s1f1
, . . . , sB1 · · · sBfB

}

are mutually coprime overR.
Recall thatd′ is the maximum degree ofT1, . . . , Tk as

polynomials inR[xm+1, . . . , xn]. In Step 4 if we do not
have “enough” linear forms i.e.f1 + . . . + fB = d′ then
observe that the sum of the degreed′ terms in the expansion
of (T1 + . . . + Tk) is:





∑

i∈[k′]

gi(x1, . . . , xm)



 · sf1

1 · · · sfB

B

Thus, forT1 + . . . + Tk to vanish(modI) it is necessary
that

∑

i∈[k′] gi vanishes(modI), which can be checked in
timepoly(dm). If it vanishes then we have:

degree of(T1 + . . . + Tk) as polynomials overR is < d′

≤ (f1 + . . . + fB′)

With this assurance we move on to the most “expensive”
step – Step 5. Firstly, note thatσi(si1) = . . . = σi(sifi

) =
σi(si) = xm+1 (modx1, . . . , xm) so the input of theB′

calls to ID are well-formed. Observe that for any invert-
ible linear transformationσi that is sending the variables
x1, . . . , xn to their linear combinations we have:

ID
(

〈σi(Tj)〉j∈[k]\{πi}
,

〈l11 · · · l1e1
, . . . , lm1 · · · lmem

, σi(si1 . . . sifi
)〉 )

iff

ID
(

〈Tj〉j∈[k]\{πi}
,

〈l11 · · · l1e1
, . . . , lm1 · · · lmem

, si1 . . . sifi
〉 )

Thus, induction hypothesis ensures that if the following two
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tests return YES:

ID
(

〈σ1(Tj)〉j∈[k]\{π1}
,

〈l11 · · · l1e1
, . . . , lm1 · · · lmem

, σ1(s11 . . . s1f1
)〉 )

and

ID
(

〈σ2(Tj)〉j∈[k]\{π2}
,

〈l11 · · · l1e1
, . . . , lm1 · · · lmem

, σ2(s21 . . . s2f2
)〉 )

then we can deduce that:

(T1 + · · · + Tk) = 0 (modI, s11 . . . s1f1
) and

(T1 + · · · + Tk) = 0 (modI, s21 . . . s2f2
)

Since, s1, s2 were coprime overF we have that
s11 . . . s1f1

, s21 . . . s2f2
are also coprime overR. Thus,

by Lemma 3.3 we can combine the above two conditions to
get:

(T1 + · · · + Tk) = 0 (modI, s11 · · · s1f1
· s21 · · · s2f2

)

By extending this argument, we get that if all theB′ calls
to ID return YES then:

(T1+· · ·+Tk) = 0 (modI, s11 · · · s1f1
. . . sB′1 · · · sB′fB′

)

Now since the degree of(s11 · · · s1f1
. . . sB′1 · · · sB′fB′

) is
more than the degree of(T1+ · · ·+Tk) as polynomials over
R, by Lemma 3.4 we conclude that:

T1 + · · · + Tk = 0 (modI).

Thus, when the algorithm returns YES it is right. When the
algorithm returns NO it is easy to see that(T1 + · · · + Tk)
is indeed not zero inR. �

4 Conclusion

We give an efficient algorithm for the identity testing
of ΣΠΣ circuits with bounded top fanin. The problem of
identity testing for generalΣΠΣ arithmetic circuits remains
open. Also, it would be interesting to see if this method can
be generalized forΣΠΣΠ circuits where the fanin of the
topmost addition gate is bounded.

The identities given in Theorem 1.2 are all over fields
of prime characteristic. We believe that the bounded rank
conjecture of [DS05] might hold true over fields of charac-
teristic0, for example,Q. Proving such a result might give
new insights into the structure ofΣΠΣ identities.
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