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Abstract. Border complexity of polynomials plays an integral role in GCT (Geometric complex-4
ity theory) approach to P ̸= NP. It tries to formalize the notion of ‘approximating a polynomial’ via5

limits (Bürgisser FOCS’01). This raises the open question VP
?
= VP; as the approximation involves6

exponential precision which may not be efficiently simulable. Recently (Kumar ToCT’20) proved the7

universal power of the border of top-fanin-2 depth-3 circuits (Σ[2]ΠΣ). Here we answer some of the8

related open questions. We show that the border of bounded top-fanin depth-3 circuits (Σ[k]ΠΣ for9
constant k) is relatively easy– it can be computed by a polynomial size algebraic branching program10
(ABP). There were hardly any de-bordering results known for prominent models before our result.11

Moreover, we give the first quasipolynomial-time blackbox identity test for the same. Prior best12
was in PSPACE (Forbes,Shpilka STOC’18). Also, with more technical work, we extend our results13
to depth-4. Our de-bordering paradigm is a multi-step process; in short we call it DiDIL –divide,14

derive, induct, with limit. It ‘almost’ reduces Σ[k]ΠΣ to special cases of read-once oblivious algebraic15
branching programs (ROABPs) in any-order.16
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1. Introduction: Border complexity, GCT and beyond. Algebraic circuit20

is a natural (& non-uniform) model of polynomial computation, which comprises the21

vast study of algebraic complexity [118]. We say that a polynomial f ∈ F[x1, . . . , xn],22

over a field F is computable by a circuit of size s and depth d if there exists a directed23

acyclic graphs of size s (nodes + edges) and depth d such that its leaf nodes are24

labelled by variables or field constants, internal nodes are labelled with + and ×,25

and the polynomial computed at the root is f . Further, if the output of a gate is26

never re-used then it is a Formula. Any formula can be converted into a layered27

graph called Algebraic Branching Program (ABP). Various complexity measures can28

be defined on the computational model to classify polynomials in different complexity29

classes. For eg. VP (respectively VBP, respectively VF) is the class of polynomials30

of polynomial degree, computable by polynomial-sized circuits (respectively ABPs,31

respectively formulas). Finally, VNP is the class of polynomials, each of which can32

be expressed as an exponential-sum of projection of a VP circuit family. For more33

details, refer to subsection 2.1 and [113, 87].34

The problem of separating algebraic complexity classes has been a central theme35

of this study. Valiant [118] conjectured that VBP ̸= VNP, and even a stronger36

VP ̸= VNP, as an algebraic analog of P vs. NP problem. Over the years, an im-37

pressive progress has been made towards resolving this, however, the existing tools38

have not been able to resolve this conclusively. In this light, Mulmuley and Sohoni39

[92] introduced Geometric Complexity Theory (GCT) program, where they studied40
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2 P. DUTTA, P. DWIVEDI AND N. SAXENA

the border (or approximative) complexity, with the aim of approaching Valiant’s con-41

jecture and strengthening it to: VNP ̸⊆ VBP, i.e. (padded) permanent does not lie42

in the orbit closure of ‘small’ determinants. This notion was already studied in the43

context of designing matrix multiplication algorithms [115, 17, 18, 36, 83]. The hope,44

in the GCT program, was to use available tools from algebraic geometry and repre-45

sentation theory, and possibly settle the question once and for all. This also gave a46

natural reason to understand the relationship between VP and VP (or VBP and VBP).47

Outside VP vs. VNP implication, GCT has deep connections with computational48

invariant theory [50, 94, 53, 29, 70], algebraic natural proofs [57, 21, 34, 80], lower49

bounds [30, 56, 83], optimization [8, 28] and many more. We refer to [31, Sec. 9] and50

[94, 91] for expository references.51

The simplest notion of the approximative closure comes from the following defini-52

tion [25, 26]: a polynomial f(x) ∈ F[x1, . . . , xn] is approximated by g(x, ε) ∈ F(ε)[x]53

if there exists a Q(x, ε) ∈ F[ε][x] such that g = f+εQ. We can also think analytically54

(in F = R Euclidean topology) that limε→0 g = f . If g belongs to a circuit class C55

(over F(ε), i.e. any arbitrary ε-power is allowed as ’cost-free’ constants), then we say56

that f ∈ C, the approximative closure of C. Further, one could also think of the closure57

as Zariski closure (algebraic definition over any F), i.e. taking the closure of the set58

of polynomials (considered as points) of C: Let I be the smallest (annihilating) ideal59

whose zeros cover {coefficient-vector of g | g ∈ C}; then put in C each polynomial f60

with coefficient-vector being a zero of I. Interestingly, all these notions are equivalent61

over the algebraically closed field C [95, §2.C].62

The size of the circuit computing g defines the approximative (or border) complex-63

ity of f , denoted size(f); evidently, size(f) ≤ size(f). Due to the possible 1/εM terms64

in the circuit computing g, evaluating it at ε = 0 may not be necessarily valid (though65

limit exists). Hence, given f ∈ C, does not immediately reveal anything about the66

exact complexity of f . Since g(x, ε) = f(x) + ε ·Q(x, ε), we could extract the coeffi-67

cient of ε0 from g using standard interpolation trick, by setting random ε-values from68

F. However, the trivial bound on the circuit size of f would depend on the degree69

M of ε, which could provably be exponential in the size of the circuit computing g,70

i.e. size(f) ≤ size(f) ≤ exp(size(f)) [25, Thm. 5.7].71

1.1. De-bordering: The upper bound results. The major focus of this72

paper is to address the power of approximation in the restricted circuit classes. Given73

a polynomial f ∈ C, for an interesting class C, we want to upper bound the exact74

complexity of f (we call it ‘de-bordering’). If C = C, then C is said to be closed under75

approximation: Eg. 1) ΣΠ, the sparse polynomials (with complexity measure being76

sparsity), 2) Monotone ABPs [22], and 3) ROABP (read-once ABP) respectively ARO77

(any-order ROABP), with measure being the width. ARO is an ABP with a natural78

restriction on the use of variables per layer; for definition and a formal proof, see79

Theorem 2.8 and Theorem 2.23.80

Why care about upper bounds? One of the fundamental questions in the GCT81

paradigm is whether VP
?
= VP [91, 58]. Confirmation or refutation of this question82

has multiple consequences, both in the algebraic complexity and at the frontier of83

algebraic geometry. If VP = VP, then any proof of VP ̸= VNP will in fact also84

show that VNP ̸⊆ VP, as conjectured in [94]; however a refutation would imply that85

any realistic approach to the VP vs. VNP conjecture would even have to separate86

the permanent from the families in VP\VP (and for this, one needs a far better87

understanding than the current state of the art).88

The other significance of the upper bound result arises from the flip [90, 94]89
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DEMYSTIFYING THE BORDER OF DEPTH-3 ALGEBRAIC CIRCUITS 3

whose basic idea in a nutshell is to understand the theory of upper bounds first, and90

then use this theory to prove lower bounds later. Taking this further to the realm91

of algorithms: showing de-bordering results, for even restricted classes (eg. depth-3,92

small-width ABPs), could have potential identity testing implications. For details,93

see subsection 1.2.94

De-bordering results in GCT are in a very nascent stage; for example, the bound-95

ary of 3× 3 determinants was only recently understood [69]. Note that here both the96

number of variables n and the degree d are constant. In this work, however, we target97

polynomial families with both n and d unbounded. So getting exact results about98

such border models is highly nontrivial considering the current state of the art.99

De-bordering small-width ABPs. The exponential degree dependence of ε [25, 26]100

suggests us to look for separation of restricted complexity classes or try to upper bound101

them by some other means. In [24], the authors showed that VBP2 ⊆ VBP2 = VF ;102

here VBP2 denotes the class of polynomials computed by width-2 ABP. Surprisingly,103

we also know that VBP2 ⊆ VF = VBP3 [13, 9]. Very recently, [22] showed polynomial104

gap between ABPs and border-ABPs, in the trace model, for noncommutative and105

also for commutative monotone settings (along with VQP ̸= VNP).106

Quest for de-bordering depth-3 circuits. Outside such ABP results and depth-107

2 circuits, we understand very little about the border of other important models.108

Thus, it is natural to ask the same for depth-3 circuits, plausibly starting with depth-109

3 diagonal circuits (Σ∧Σ), i.e. polynomials of the form
∑

i∈[s] ci · ℓdi , where ℓi are110

linear polynomials. Interestingly, the relation between waring rank (minimum s to111

compute f) and border-waring rank (minimum s, to approximate f) has been studied112

in mathematics since ages [116, 23, 15, 54], yet it is not clear whether the measures113

are polynomially related or not. However, we point out that Σ∧Σ has a small ARO;114

this follows from the fact that Σ∧Σ has small ARO by duality trick [106], and ARO115

is closed under approximation [96, 46]; for details see Theorem 2.24.116

This pushes us further to study depth-3 circuits Σ[k]Π[d]Σ; these circuits compute117

polynomials of the form f =
∑

i∈[k]

∏
j∈[d] ℓij where ℓij are linear polynomials. This118

model with bounded fanin has been a source of great interest for derandomization119

[42, 75, 72, 109, 6]. In a recent twist, Kumar [79] showed that border depth-3 fanin-2120

circuits are ‘universally’ expressive; i.e. Σ[2]Π[D]Σ over C can approximate any homo-121

geneous d-degree, n-variate polynomial; though his expression requires an exceedingly122

large D = exp(n, d).123

Our upper bound results. The universality result of border depth-3 fanin-2 circuits124

makes it imperative to study Σ[2]Π[d]Σ, for d = poly(n) and understand its compu-125

tational power. To start with, are polynomials in this class even ‘explicit’ (i.e. the126

coefficients are efficiently computable)? If yes, is Σ[2]Π[d]Σ ⊆ VNP? (See [58, 44] for127

more general questions in the same spirit.) To our surprise, we show that the class is128

very explicit; in fact every polynomial in this class has a small ABP. The statement129

and its proof is first of its kind which eventually uses analytic approach and ‘reduces’130

the Π-gate to ∧-gate. We remark that it does not reveal the polynomial dependence131

on the ε-degree. However, this positive result could be thought as a baby step towards132

VP = VP. We assume the field F characteristic to be = 0, or large enough. For a133

detailed statement, see Theorem 3.2.134

Theorem 1.1 (De-bordering depth-3 circuits). For any constant k, Σ[k]ΠΣ ⊆135

VBP, i.e. any polynomial in the border of constant top-fanin size-s depth-3 circuits,136

can also be computed by a poly(s)-size algebraic branching program (ABP).137
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4 P. DUTTA, P. DWIVEDI AND N. SAXENA

Remarks. 1. When k = 1, it is easy to show that ΠΣ = ΠΣ [24, Prop. A.12] (see138

Theorem 2.22).139

2. The size of the ABP turns out to be sexp(k). It is an interesting open question140

whether f ∈ Σ[k]ΠΣ has a subexponential ABP when k = Θ(log s).141

3. Σ[k]ΠΣ is the orbit closure of k-sparse polynomials [88, Thm. 1.31]. Separating142

the orbit and its closure of certain classes is the key difficulty in GCT. Theorem 1.1143

is one of the first such results to demystify orbit closures (of constant-sparse polyno-144

mials).145

Extending to depth-4. Once we have dealt with depth-3 circuits, it is natural146

to ask the same for constant top-fanin depth-4 circuits. Polynomials computed by147

Σ[k]ΠΣΠ[δ] circuits are of the form f =
∑

i∈[k]

∏
j gij where deg(gij) ≤ δ. Unfor-148

tunately, our technique cannot be generalised to this model, primarily due to the149

inability to de-border Σ∧ΣΠ[δ]. However, when the bottom Π is replaced by ∧, we150

can show Σ[k]ΠΣ∧ ⊆ VBP; we sketch the proof in Theorem 5.1.151

1.2. Derandomizing the border: The blackbox PITs. Polynomial Identity152

Testing (PIT) is one of the fundamental decision problems in complexity theory. The153

Polynomial Identity Lemma [99, 37, 120, 111] gives an efficient randomized algorithm154

to test the zeroness of a given polynomial, even in the blackbox settings (known as155

Blackbox PIT), where we are not allowed to see the internal structure of the model156

(unlike the ’whitebox’ setting), but evaluations at points are allowed. It is still an157

open problem to derandomize blackbox PIT. Designing a deterministic blackbox PIT158

algorithm for a circuit class is equivalent to finding a set of points such that for every159

nonzero circuit, the set contains a point where it evaluates to a nonzero value [47,160

Sec. 3.2]. Such a set is called hitting set.161

A trivial explicit hitting set for a class of degree d polynomial of size O(dn) can be162

obtained using the Polynomial Identity Lemma. Heintz and Schnorr [68] showed that163

poly(s, n, d) size hitting set exists for d-degree, n-variate polynomials computed (as164

well as approximated) by circuits of size s. However, the real challenge is to efficiently165

obtain such an explicit set.166

Constructing small size explicit hitting set for VP is a long standing open prob-167

lem in algebraic complexity theory, with numerous algorithmic applications in graph168

theory [86, 93, 45], factoring [78, 40], cryptography [5], and hardness vs random-169

ness results [68, 97, 1, 71, 43, 41]. Moreover, a long line of depth reduction results170

[119, 7, 77, 117, 64] and the bootstrapping phenomenon [3, 82, 61, 10] has justified the171

interest in hitting set construction for restricted classes; e.g. depth 3 [42, 75, 109, 6],172

depth 4 [51, 12, 48, 112, 100, 101, 38], ROABPs [4, 67, 51, 60, 19] and log-variate173

depth-3 diagonal circuits [49]. We refer to [113, 107, 81] for expositions.174

PIT in the border. In this paper we address the question of constructing hitting175

set for restrictive border circuits. H is a hitting set for a class C, if g(x, ε) ∈ CF(ε),176

approximates a non-zero polynomial f(x) ∈ C, then ∃a ∈ H such that g(a, ε) ̸∈ ε·F[ε],177

i.e. f(a) ̸= 0. Note that, as H will also ‘hit’ polynomials of class C, construction of178

hitting set for the border classes (we call it ‘border PIT’) is a natural and possibly179

a different avenue to derandomize PIT. Here, we emphasize that a ∈ Fn such that180

g(a, ε) ̸= 0, may not hit the limit polynomial f since g(a, ε) might still lie in ε · F[ε];181

because f could have really high complexity compared to g. Intrinsically, this property182

makes it harder to construct an explicit hitting set for VP.183

We also remark that there is no ‘whitebox’ setting in the border and thus we184

cannot really talk about ‘t-time algorithm’; rather we would only be using the term185
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‘t-time hitting set’, since the given circuit after evaluating on a ∈ Fn, may require186

arbitrarily high-precision in F(ε).187

Prior known border PITs. Mulmuley [91] asked the question of constructing an188

efficient hitting set for VP. Forbes and Shpilka [52] gave a PSPACE algorithm over the189

field C. In [62], the authors extended this result to any field. A very few better hitting190

set constructions are known for the restricted border classes, eg. poly-time hitting set191

for ΠΣ = ΠΣ [14, 76], quasi-poly hitting set for (resp. ) Σ∧Σ ⊆ ARO ⊆ ROABP192

[51, 4, 67] and poly-time hitting set for the border of a restricted sum of log-variate193

ROABPs [19].194

Why care about border PIT? PIT for VP has a lot of applications in the context195

of borderline geometry and computational complexity, as observed by Mulmuley [91].196

For eg. Noether’s Normalization Lemma (NNL); it is a fundamental result in algebraic197

geometry where the computational problem of constructing explicit normalization198

map reduces to constructing small size hitting set of VP [91, 50]. Close connection199

between certain formulation of derandomization of NNL, and the problem of showing200

explicit circuit lower bounds is also known [91, 89].201

The second motivation comes from the hope to find an explicit ‘robust’ hitting202

set for VP [52]; this is a hitting set H such that after an adequate normalization,203

there will be a point in H on which f evaluates to (say) 1. This notion overcomes204

the discrepancy between a hitting set for VP and a hitting set for VP [52, 88]. We205

know that small robust hitting set exists [32], but an explicit PSPACE construction206

was given in [52]. It is not at all clear whether the efficient hitting sets known for207

restricted depth-3 circuits are robust or not.208

Our border PIT results. We continue our study on Σ[k]Π[d]Σ and ask for209

a better than PSPACE constructible hitting set. Already a polynomial-time hitting210

set is known for Σ[k]Π[d]Σ [108, 109, 6]. But, the border class seems to be more211

powerful, and the known hitting sets seem to fail. However, using our structural212

understanding and the analytic DiDIL technique, we are able to quasi-derandomize213

the class completely. For the detailed statement, see Theorem 4.1.214

Theorem 1.2 (Quasi-derandomizing depth-3). There exists an explicit quasi-215

polynomial time (sO(log log s)) hitting set for Σ[k]ΠΣ-circuits of size s and constant216

k.217

Remarks. 1. For k = 1, as ΠΣ = ΠΣ, there is an explicit polynomial-time hitting set.218

2. Our technique necessarily blows up the size to sexp(k)·log log s. Therefore, it219

would be interesting to design a subexponential time algorithm when k = Θ(log s); or220

poly-time for k = O(1).221

3. We can not directly use the de-bordering result of Theorem 1.1 and try to find222

efficient hitting set, as we do not know explicit good hitting set for general ABPs.223

4. One can extend this technique to construct quasi-polynomial time hitting set224

for depth-4 classes: Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ], when k and δ are constants. For details,225

see section 6.226

The log-variate regime. In recent developments [3, 82, 61, 41] low-variate poly-227

nomials, even in highly restricted models, have gained a lot of clout for their general228

implications in the context of derandomization and hardness results. A slightly non-229

trivial hitting set for trivariate ΣΠΣ∧-circuits [3] would in fact imply quasi-efficient230

PIT for general circuits (optimized to poly-time in [61] with a hardness hypothesis).231

This motivation has pushed researchers to work on log-variate regime and design ef-232

ficient PITs. In [49], the authors showed a poly(s)-time blackbox identity test for233
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n = O(log s) variate size-s circuits that have poly(s)-dimensional partial derivative234

space; eg. log-variate depth-3 diagonal circuits. Very recently, Bisht and Saxena [19]235

gave the first poly(s)-time blackbox PIT for sum of constant-many, size-s, O(log s)-236

variate constant-width ROABPs (and its border).237

We remark that non-trivial border-PIT in the low-variate bootstraps to non-trivial238

PIT for VP as well [3, 61]. Motivated thus, we try to derandomize log-variate Σ[k]ΠΣ-239

circuits. Unfortunately, direct application of Theorem 1.2 fails to give a polynomial-240

time PIT. Surprisingly, adapting techniques from [49] to extend the existing result241

(Theorem 4.3), combined with our DiDIL technique, we prove the following. For242

details, see Theorem 4.4.243

Theorem 1.3 (Derandomizing log-variate depth-3). There exists an explicit244

poly(s)-time hitting set for n = O(log s) variate, size-s, Σ[k]ΠΣ circuits, for constant245

k.246

1.3. Limitation of standard techniques. In this section, we briefly discuss247

about the standard techniques for both the upper bounds and PITs, in the border248

sense, and point out why they fail to yield our results.249

Why known upper bound techniques fail? One of the most obvious way to250

de-border restricted classes is to essentially show a polynomial ε-degree bound and251

interpolate. In general, the bound is known to be exponential [26, Thm. 5.7] which252

crucially uses [84, Prop. 1]. This proposition essentially shows the existence of an253

irreducible curve C whose degree is bounded in terms of the degree of the affine variety,254

that we are interested in. The degree is in general exponentially upper bounded by255

the size [27, Thm. 8.48]. Unless and until, one improves these bounds for varieties256

induced by specific models (which seems hard), one should not expect to improve the257

ε-degree bound, and thus interpolation trick seems useless.258

As mentioned before, Σ∧Σ-circuits could be de-bordered using the duality trick259

[106] (see Theorem 2.16) to make it an ARO and finally using Nisan’s characterization260

giving ARO = ARO [96, 46, 66] (Theorem 2.23). But this trick is directly inapplicable261

to our models with the Π-gate, due to large waring rank & ROABP-width, as one262

could expect 2d-blowup in the top fanin while converting Π-gate to ∧. We also remark263

that the duality trick was made field independent in [47, Lemma 8.6.4]. In fact,264

very recently, [20, Theorem 4.3] gave an improved duality trick with no size blowup,265

independent of degree and number of variables.266

Moreover, all the non-trivial current upper bound methods, for limit, seem to need267

an auxiliary linear space, which even for Σ[2]ΠΣ is not clear, due to the possibility268

of heavy cancellation of ε-powers. To elaborate, one of the major bottleneck is that269

individually limε→0 Ti, for i ∈ [2] may not exist, however, limε→0(T1 + T2) does exist,270

where Ti ∈ ΠΣ (over F(ε)[x]). For eg. T1 := ε−1(x+ ε2y)y and T2 := −ε−1(y+ εx)x.271

No generic tool is available to ‘capture’ such cancellations, and may even suggest a272

non-linear algebraic approach to tackle the problem.273

Furthermore, [102] explicitly classified certain factor polynomials to solve non-274

border Σ[2]ΠΣ∧ PIT. This factoring-based idea seems to fail miserably when we275

study factoring mod ⟨εM ⟩; in that case, we get non-unique, usually exponentially-276

many, factorizations. For eg. x2 ≡ (x − a · εM/2) · (x + a · εM/2) mod ⟨εM ⟩; for277

all a ∈ F. In this case, there are, in fact, infinitely many factorizations. Moreover,278

limε→0 1/εM ·
(
x2 − (x− a · εM/2) · (x+ a · εM/2)

)
= a2. Therefore, infinitely many279

factorizations may give infinitely many limits. To top it all, Kumar’s result [79] hinted280

a possible hardness of border-depth-3 (top-fanin-2). In that sense, ours is a very non-281
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linear algebraic proof for restricted models which successfully opens up a possibility282

of finding non-representation-theoretic, and elementary, upper bounds.283

Why known PIT techniques fail? Once we understand Σ[k]ΠΣ, it is natural284

to look for efficient derandomization. However, as we do not know efficient PIT for285

ABPs, known techniques would not yield an efficient PIT for the same. Further,286

in a nutshell—1) limited (almost non-existent) understanding of linear/algebraic de-287

pendence under limit, 2) exponential upper bound on ε, and 3) not-good-enough288

understanding of restricted border classes make it really hard to come up with an289

efficient hitting set. We elaborate these points below.290

Dvir and Shpilka [42] gave a rank-based approach to design the first quasipoly-291

nomial time algorithm for Σ[k]ΠΣ. A series of works [74, 108, 109, 110] finally gave292

a sO(k)-time algorithm for the same. Their techniques depend on either generaliz-293

ing Chinese remaindering (CR) via ideal-matching or certifying paths, or via efficient294

variable-reduction, to obtain a good enough rank-bound on the multiplication (ΠΣ)295

terms. Most of these approaches required a linear space, but possibility of exponen-296

tial ε-powers and non-trivial cancellations make these methods fail miserably in the297

limit. Similar obstructions also hold for [88, 103, 16] which give efficient hitting sets298

for the orbit of sparse polynomials (which is in fact dense in ΣΠΣ). In particular,299

Medini and Shpilka [88] gave PIT for the orbits of variable disjoint monomials (see300

[88, Defn. 1.29]), under the affine group, but not the closure of it. Thus, they do not301

even give a subexponential PIT for Σ[2]ΠΣ.302

Recently, Guo [59] gave a sδ
k

-time PIT, for non-SG (Sylvester-Gallai) Σ[k]ΠΣΠ[δ]303

circuits, by constructing explicit variety evasive subspace families; but to apply this304

idea to border PIT, one has to devise a radical-ideal based PIT idea. Currently, this305

does not work in the border, as ε mod ⟨εM ⟩ has an exponentially high nilpotency.306

Since radical⟨εM ⟩ = ⟨ε⟩, it ’kills’ the necessary information unless we can show a307

polynomial upper bound on M .308

Finally, [6] came up with faithful map by using Jacobian + certifying path tech-309

nique, which is more about algebraic rank rather than linear-rank. However, it is not310

at all clear how it behaves wrt limε→0. For eg. f1 = x1 + εM · x2, and f2 = x1, where311

M is arbitrary large. Note that the underlying Jacobian J(f1, f2) = εM is nonzero;312

but it flips to zero in the limit. This makes the whole Jacobian machinery collapse313

in the border setting; as it cannot possibly give a variable reduction for the border314

model. (Eg. one needs to keep both x1 and x2 above.)315

Very recently, [38] gave a quasipolynomial time hitting set for exact Σ[k]ΠΣ∧316

and Σ[k]ΠΣΠ[δ] circuits, when k and δ are constant. This result is dependent on the317

Jacobian technique which fails under taking limit, as mentioned above. However, a318

polynomial-time whitebox PIT for Σ[k]ΠΣ∧ circuits was shown using DiDI-technique319

(Divide, Derive and Induct). This cannot be directly used because there was no ε320

(i.e. without limit) and Σ[k]ΠΣ∧ has only blackbox access. Further, Theorem 1.1 gives321

an ABP, where DiDI-technique cannot be directly applied. Therefore, our DiDIL-322

technique can be thought of as a strict generalization of the DiDI-technique, first323

introduced in [38], which now applies to uncharted borders.324

In a recent breakthrought result, Limaye, Srinivasan and Tavenas [85] showed325

the first superpolynomial lower bound for constant-depth circuits. Their lower bound326

result, together with the ‘hardness vs randomness’ tradeoff result of [35] gives the first327

deterministic subexponential-time blackbox PIT algorithm for general constant-depth328

circuits. Interestingly, these methods can be adapted in the border setting as well [11].329

However, compared to their algorithms, our hitting sets are significantly faster!330
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1.4. Main tools and a brief road-map. In this section, we sketch the proof of331

Theorems 1.1-1.3. The proofs are analytic, based on induction on the top fan-in and332

rely on a common high level picture. They use logarithmic derivative, and its power-333

series expansion; we call the unifying technique as DiDIL (Di = Divide, D=Derive, I334

= Induct, L = Limit). We essentially reduce to the well-known ‘wedge’ models (as335

fractions, with unbounded top-fanin) and then ‘interpolate’ it (for Theorem 1.1) or336

deduce directly about its nonzeroness (Theorem 1.2-1.3).337

Basic tools and notations. The analytic tool that we use, appears in algebra (&338

complexity theory) through the ring of formal power series R[[x1, . . . , xn]] (in short339

R[[x]]), see [98, 40, 114]. One of the advantages of the ring R[[x]] emerges from340

the following inverse identity: (1 − x1)
−1 =

∑
i≥0 xi

1, which does not make sense341

in R[x], but is available now. Lastly, the logarithmic derivative operator dlog y(f) =342

(∂yf)/f plays a very crucial role in ‘linearizing’ the product gate, since dlogy(f · g) =343

∂y(fg)/(fg) = (f · ∂yg + g · ∂yf)/(fg) = dlogy(f) + dlogy(g). Essentially, this344

operator enables us to use power-series expansion and converts the
∏
-gate to ∧.345

The road-map. The base case when the top fan-in k = 1, i.e., we have a single346

product of affine linear forms, and we are interested in its border. It is not hard347

to see that the polynomial in the border is also just a product of appropriate affine348

forms; for details refer to section 3). Now, suppose we have a depth-3 circuit of top349

fan-in 2, g(x, ε) = T1+T2, where each Ti is a product of affine linear forms. The goal350

is to somehow reduce this to the case of single summand. Before moving forward,351

we remark that some ideas described below, directly, can even be formally incorrect!352

Nonetheless, this sketch is “morally’” correct and, the eventual road-map insinuates353

the strength of the DiDIL-technique.354

For simplicity, let us assume that each linear form has a non-zero constant term355

(for instance by a random translation of the variables). Moreover, every variable xi is356

replaced by xi ·z for a new variable z; this variable z is the ‘degree counter’ that helps357

to keep track of the degree of the polynomials involved. Now, dividing both sides by358

T1, we get g/T1 = 1+T2/T1, and taking derivatives with respect to the variable z, we359

get ∂z(g/T1) = ∂z(T2/T1). This has reduced the number of summands on the right360

hand side to 1, although each summand has become more complicated now, and we361

have no control on what happens as ε → 0.362

Since T1 is invertible in the power series ring in z, T2/T1 is well defined as363

well. Moreover, limε→0 T1 exists (well not really, but formally a proper ε-scaling364

of it does, which suffices since derivarive wrt z does not affect the ε-scaling!) and is365

non-zero. From this it follows that after some truncation wrt high degree z monomials,366

limε→0 ∂z(T2/T1) exists and has a nice relation to the original limit of g; see Claim 3.4!367

Lastly, and crucially, ∂z(T2/T1) mod zd = (T2/T1) ·dlog(T2/T1) mod zd can be368

computed by a not-too-complicated circuit structure. Interestingly, the circuit form is369

closed under this operation of dividing, taking derivatives and taking limits! Note that370

the dlog operator distributes the product gate into summation giving dlog(T2/T1) =371 ∑
dlog(Σ), where Σ denotes linear polynomials, and we observe that dlog(Σ) = Σ/Σ ∈372

Σ∧Σ, the depth-3 powering circuits, over some ‘nice’ ring. The idea is to expand 1/ℓ,373

where ℓ is a linear polynomial, as sum of powers of linear terms using the inverse374

identity:375

1/(1− a · z) ≡ 1 + a · z + · · ·+ ad−1 · zd−1 mod zd .376

When there is a single remaining summand, the border of the more general struc-377

ture is easy-to-compute, and can be shown to have an algebraic branching program of378
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not too large size. For details, we refer to Claim 3.6. For a constant k (& even gen-379

eral bounded depth-4 circuits), the above idea can be extended with some additional380

clever division and computation.381

The PIT results also have a similar high level strategy, although there are addi-382

tional technical difficulties which need some care at every stage. At the core, the idea is383

really “primal” and depends on the following: If a bivariate polynomial G(X,Z) ̸= 0,384

then either its derivative ∂Z G(X,Z) ̸= 0, or its constant-term G(X, 0) ̸= 0 (note:385

G(X, 0) = G mod Z). So, if G(a, 0) ̸= 0 or ∂ZG(b, Z) ̸= 0, then the union-set {a, b}386

hits G(X,Z), i.e. either G(a, Z) ̸= 0 or G(b, Z) ̸= 0.387

2. Preliminaries. In this section, we describe some of the assumptions and388

notations used throughout the paper.389

Notation. Denote [n] = {1, . . . , n}, and x = (x1, . . . , xn). For, a = (a1, . . . , an), b =390

(b1, . . . , bn) ∈ Fn, and a variable t, we denote a+ t · b := (a1 + tb1, . . . , an + tbn).391

We also use F[[x]], to denote the ring of formal power series over F. Formally,392

f =
∑

i≥0 cix
i, with ci ∈ F, is an element in F[[x]]. Further, F(x) denotes the function393

field, where the elements are of the form f/g, where f, g ∈ F[x] (g ̸= 0).394

Logarithmic derivative. Over a ring R and a variable y, the logarithmic derivative395

dlogy : R[y] −→ R(y) is defined as dlogy(f) := ∂y f/f ; here ∂y denotes the partial396

derivative wrt variable y. One important property of dlog is that it is additive over a397

product as dlogy(f ·g) = ∂y(fg)/(fg) = (f ·∂yg+ g·∂yf)/(fg) = dlogy(f)+dlogy(g).398

[dlog linearizes product]399

Valuation. Valuation is a map valy : R[y] −→ Z≥0, over a ring R, such that valy(·)400

is defined to be the maximum power of y dividing the element. It can be easily401

extended to fraction field R(y), by defining valy(p/q) := valy(p) − valy(q); where it402

can be negative.403

Field. We denote the underlying field as F and assume that it is of characteristic 0404

(eg. Q,Qp). All our results hold for other fields (eg. Fpe) of large characteristic p.405

Approximative closure. For an algebraic complexity class C, the approximation is406

defined as follows [24, Def. 2.1].407

Definition 2.1 (Approximative closure of a class). Let CF be a class of poly-408

nomials defined over a field F. Then, f(x) ∈ F[x1, . . . , xn] is said to be in Ap-409

proximative Closure C if and only if there exists polynomial Q ∈ F[ε,x] such that410

CF(ε) ∋ g(x, ε) = f(x) + ε ·Q(x, ε).411

Cone-size of monomials. For a monomial xa, the cone of xa is the set of all412

sub-monomials of xa. The cardinality of this set is called cone-size of xa. It equals413 ∏
i∈[n] (ai + 1), where a = (a1, . . . , an). We will denote cs(m), as the cone-size of the414

monomial m.415

Here is an important lemma, originally from [47, Corollary 4.14], which shows416

that small partial derivative space implies existence of small cone-size monomial. For417

a detailed proof, we refer [55, Lemma 2.3.15]418

Theorem 2.2 (Cone-size concentration). Let F be a field of characteristic 0 or419

greater than d. Let P be a set of n-variate d-degree polynomials over F such that for420

all P ∈ P, the dimension of the partial derivative space of P is at most k. Then every421

nonzero P ∈ P has a cone-size-k monomial with nonzero coefficient.422

The next lemma shows that there are only few low-cone monomials in a non-zero423

n-variate polynomial.424
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Lemma 2.3 (Counting low-cones, [49, Lem 5]). The number of n-variate mono-425

mials with cone-size at most k is O(rk2), where r := (3n/ log k)log k.426

The following lemma is the same as [49, Lemma 4]. It is proved by multivariate427

interpolation.428

Lemma 2.4 (Coefficient extraction). Given a circuit C, over the underlying field429

F(ε), we can ‘extract’ the coefficient of a monomial m in C; in poly(size(C), cs(m), d)430

time, where cs(m) denotes the cone-size of m.431

2.1. Basics of algebraic complexity. We will give a brief definition of various432

computational models and tools used in our results. Interested readers can refer433

[113, 47, 105] for more refined versions.434

Algebraic Circuits, defined over a field F, are directed acyclic graphs with a unique435

root node. The leaf nodes of the graph is labelled by variables or field constants and436

internal nodes are either labelled with + or ×. Further the edges can bear field437

constants. The output of the circuit, through root, is the polynomial it computes.438

The size and depth of circuit is the size and depth of the underlying graph.439

Circuit size. Some of the complexity parameters of a circuit are depth (number of440

layers), syntactic degree (the maximum degree polynomial computed by any node),441

fanin (maximum number of inputs to a node).442

Operation on Complexity Classes. For class C and D defined over ring R, our443

bloated model is any combination of sum, product, and division of polynomials from444

respective classes. For instance, C/D = {f/g : f ∈ C, 0 ̸= g ∈ D} similarly C · D for445

products, C +D for sum, and other possible combinations. Also we use CR to denote446

the basic ring R on which C is being computed over.447

Hitting set. A set of points H ⊆ Fn is called a hitting-set for a class C of n-variate448

polynomials if for any nonzero polynomial f ∈ C, there exists a point in H where f449

evaluates to a nonzero value. A T (s)-time hitting-set would mean that the hitting-set450

can be generated in time ≤ T (s), for input size s.451

Definition 2.5 (Algebraic Branching Program (ABP)). ABP is a computational452

model which is described using a layered graph with a source vertex s and a sink vertex453

t. All edges connect vertices from layer i to i + 1. Further, edges are labelled by454

univariate polynomials. The polynomial computed by the ABP is defined as455

f =
∑

path γ:s⇝t

wt(γ)456

where wt(γ) is product of labels over the edges in path γ. Number of layers (∆)457

defines the depth and the maximum number of vertices in any layer (w) defines the458

width of an ABP. The size (s) of an ABP is the sum of the graph-size and the degree of459

the univariate polynomials that label. If d is the maximum degree of univariates then460

s ≤ dw2∆; in fact, we will take the latter as the ABP-size bound in our calculations.461

We remark that ABP is closed under both addition and multiplication, which is462

straightforward from the definition. In fact, we also need to eliminate division in463

ABPs. Here is an important lemma stated below.464

Lemma 2.6 (Strassen’s division elimination). Let g(x, y) and h(x, y) be com-465

puted by ABPs of size s and degree < d. Further, assume h(x, 0) ̸= 0. Then,466

g/h mod yd can be written as
∑d−1

i=0 Ci · yi, where each Ci is of the form ABP/ABP467

of size O(sd2).468

Moreover, in case g/h is a polynomial, then it has an ABP of size O(sd2).469

This manuscript is for review purposes only.



DEMYSTIFYING THE BORDER OF DEPTH-3 ALGEBRAIC CIRCUITS 11

Proof. ABPs are closed under multiplication, which makes interpolation, wrt y,470

possible. Interpolating the coefficient Ci, of y
i, gives a sum of d ABP/ABP’s; which471

can be rewritten as a single ABP/ABP of size O(sd2).472

Next, assume that g/h is a polynomial. For a random (a, a0) ∈ Fn+1, write473

h(x + a, y + a0) =: h(a, a0) − h̃(x, y) and define g′ := g(x + a, y + a0). Clearly474

0 ̸= h(a, a0) ∈ F and h̃ ∈ ⟨x, y⟩. Of course, h̃ has a small ABP. Using the inverse475

identity in F[[x, y]], we have g(x+ a, y + a0)/h(x+ a, y + a0) =476

(g′/h(a, a0))/(1− h̃/h(a, a0)) ≡ (g′/h(a, a0)) ·

 ∑
0≤i<d

(h̃/h(a, a0))
i

 mod ⟨x, y⟩d .477

Note that, the degree blowsup in the above summands to O(d2) and the ABP-size is478

O(sd). ABPs are closed under addition/ multiplication; thus, we get an ABP of size479

O(sd2) for the polynomial g(x+a, y+a0)/h(x+a, y+a0). This implies the ABP-size480

for g/h as well.481

Our interest primarily is in the following two ABP-variants: ROABP and ARO.482

Definition 2.7 (Read-once Oblivious Algebraic Branching Program (ROABP)).483

An ABP is defined as Read-Once Oblivious Algebraic Branching Program (ROABP)484

in a variable order (xσ(1), . . . , xσ(n)) for some permutation σ : [n] → [n], if edges of485

i-th layer of ABP are univariate polynomials in xσ(i).486

Definition 2.8 (Any-order ROABP (ARO)). A polynomial f ∈ F[x] is com-487

putable by ARO of size s if for all possible permutation of variables there exists a488

ROABP of size at most s in that variable order.489

2.2. Properties of any-order ROABP (ARO). We will start with defining490

the partial coefficient space of a polynomial f to ’characterise’ the width of ARO. We491

can work over any field F.492

Let A(x) be a polynomial over F in n variables with individual degree d. Denote493

the set M := {0, . . . , d}n. Note that, one can write A(x) as494

A(x) =
∑
α∈M

coefA(x
α) · xα .495

Consider a partition of the variables x into two parts y and z, with |y| = k. Then,496

A(x) can be viewed as a polynomial in variables y, where the coefficients are poly-497

nomials in F[z]. For monomial ya, let us denote the coefficient of ya in A(x) by498

A(y,a) ∈ F[z]. The coefficient A(y,a) can also be expressed as a partial derivative499

∂A/∂ya, evaluated at y = 0 (and multiplied by an appropriate constant), see [51,500

Section 6]. Moreover, we can also write A(x) as501

A(x) =
∑

a∈{0,...,d}k

A(y,a) · ya .502

One can also capture the space by the coefficient matrix (also known as the partial503

derivative matrix) where the rows are indexed by monomials pi from y, columns are504

indexed by monomials qj from z = x\y and (i, j)-th entry of the matrix is coefpi·qj (f).505

The following lemma formalises the connection between ARO width and dimen-506

sion of the coefficient space (or the rank of the coefficient matrix).507
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Lemma 2.9 ([96]). Let A(x) be a polynomial of individual degree d, computed by508

an ARO of width w. Let k ≤ n and y be any prefix of length k of x. Then509

dimF{A(y,a) | a ∈ {0, . . . , d}k} ≤ w .510

We remark that the original statement was for a fixed variable order. Since, ARO511

affords any-order, the above holds for any-order as well. The following lemma is the512

converse of the above lemma and shows us that the dimension of the coefficient space513

is rightly captured by the width.514

Lemma 2.10 (Converse lemma [96]). Let A(x) be a polynomial of individual515

degree d with x = (x1, . . . , xn), such that for some w, for any 1 ≤ k ≤ n, and y,516

any-order-prefix of length k, we have517

dimF{A(y,a) | a ∈ {0, . . . , d}k} ≤ w .518

Then, there exists an ARO of width w for A(x).519

2.3. Properties of depth-3 diagonal circuits. In this section we will discuss520

various properties of Σ∧Σ circuits and basic waring-rank. The corresponding bloated521

model is Σ∧Σ/Σ∧Σ, that computes elements of the form f/g, where f, g ∈ Σ∧Σ. The522

following lemma gives us a sum of powers representation of monomial. For proofs see523

[33, Proposition 4.3].524

Lemma 2.11 (Waring identity for a monomial [33]). Let M = xb1
1 · · ·xbk

k , where525

1 ≤ b1 ≤ · · · ≤ bk, and roots of unity Z(i) := {z ∈ C : zbi+1 = 1}. Then,526

M =
∑

ε(i)∈Z(i):i=2,··· ,k

γε(2),...,ε(k) · (x1 + ε(2)x2 + . . .+ ε(k)xk)
d
,527

where d := deg(M) = b1+· · ·+bk, and γε(2),··· ,ε(k) are scalars (rk(M) :=)
∏k

i=2 (bi+1)528

many.529

Remark. For fields other than F = C: We can go to a small extension (at most dk),530

for a monomial of degree d, to make sure that ε(i) exists.531

Using this, we show that Σ∧Σ is closed under constant-fold multiplication.532

Lemma 2.12 (Σ∧Σ closed under multiplication). Let fi ∈ F[x], of syntactic533

degree ≤ di, be computed by a Σ∧Σ circuit of size si, for i ∈ [k]. Then, f1 · · · fk has534

Σ∧Σ circuit of size O((d2 + 1) · · · (dk + 1) · s1 · · · sk).535

Proof. Let fi =:
∑

j ℓ
eij
ij ; by assumption eij ≤ di. Each summand of

∏
i fi af-536

ter expanding can be expressed as Σ∧Σ using Theorem 2.11 of size at most (d2 +537

1) · · · (dk +1) ·
(∑

i∈[k] size(ℓiji)
)
. Summing up, for all s1 · · · sk many products, gives538

the upper bound.539

Remark. The above lemma, and its proof, hold good for the more general Σ∧Σ∧540

circuits.541

Using the additive and multiplicative closure of Σ∧Σ, we can show that Σ∧Σ/Σ∧Σ542

is closed under constant-fold addition.543

Lemma 2.13 (Σ∧Σ/Σ∧Σ closed under addition). Let fi ∈ F[x], of syntactic544

degree di, be computable by Σ∧Σ/Σ∧Σ of size si, for i ∈ [k]. Then,
∑

i∈[k] fi has a545

(Σ∧Σ/Σ∧Σ) representation of size O((
∏

i di) ·
∏

i si).546
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Proof. Let fi =: ui1/ui2, where uij ∈ Σ∧Σ of size at most si. Then547

f =
∑
i∈[k]

fi =

∑
i∈[k]

ui1

∏
j ̸=i

uj2

 /

∏
i∈[k]

ui2

 .548

Use Theorem 2.12 on each product-term in the numerator to obtain Σ∧Σ of size549

O((
∏

i di)·
∏

i si). Trivially, Σ∧Σ is closed under addition; so the size of the numerator550

is O((
∏

i di) ·
∏

i si). Similar argument can be given for the denominator.551

Remark. The above holds for Σ∧Σ∧/Σ∧Σ∧ circuits as well.552

Using a simple interpolation, the coefficient of ye can be extracted from f(x, y) ∈553

Σ∧Σ again as a small Σ∧Σ representation.554

Lemma 2.14 (Σ∧Σ coefficient extraction). Let f(x, y) ∈ F[x][y] be computed by555

a Σ∧Σ circuit of size s and degree d. Then, coefye(f) ∈ F[x] is a Σ∧Σ circuit of size556

O(sd), over F[x].557

Proof sketch. Let f =:
∑

i αi · ℓeii , with ei ≤ s and degy(f) ≤ d. Thus, write558

f =:
∑d

i=0 fi · yi, where fi ∈ F[x]. Interpolate using (d + 1)-many distinct points559

y 7→ α ∈ F, and conclude that fi has a Σ∧Σ circuit of size O(sd).560

Like coefficient extraction, differentiation of Σ∧Σ circuit is easy too.561

Lemma 2.15 (Σ∧Σ differentiation). Let f(x, y) ∈ F[x][y] be computed by a Σ∧Σ562

circuit of size s and degree d. Then, ∂y (f) is a Σ∧Σ circuit of size O(sd2), over563

F[x][y].564

Proof sketch. Theorem 2.14 shows that each fe has O(sd) size circuit where565

f =:
∑

e fe y
e. Doing this for each e ∈ [0, d] gives a blowup of O(sd2) and the566

representation: ∂y (f) =
∑

e fe · e · ye−1 .567

Remark. Same property holds for Σ∧Σ∧ circuits.568

Lastly, we show that Σ∧Σ circuit can be converted into ARO. In fact, we give569

the proof for a more general model Σ∧Σ∧. The key ingredient for the lemma is the570

duality trick.571

Lemma 2.16 (Duality trick [106]). The polynomial f = (x1 + . . . + xn)
d can be572

written as573

f =
∑
i∈[t]

fi1(x1) · · · fin(xn),574

where t = O(nd), and fij is a univariate polynomial of degree at most d.575

We remark that the above proof works for fields of characteristic = 0, or > d.576

Now, the basic idea is to convert ∧Σ∧ into ΣΠΣ{1}∧ (i.e. sum-of-product-of-577

univariates) which is subsumed by ARO [65, Section 2.5.2].578

Lemma 2.17 (Σ∧Σ∧ as ARO). Let f ∈ F[x] be an n-variate polynomial com-579

putable by Σ∧Σ∧ circuit of size s and syntactic degree D. Then f is computable by580

an ARO of size O(sn2D2).581

Proof sketch. Let ge = (g1(x1) + · · ·+ gn(xn))
e
, where deg(gi) · e ≤ D. Using582

Theorem 2.16 we get ge =
∑O(ne)

i=1 hi1(x1) · · ·hin(xn), where each hij is of degree at583

most D.584

We do this for each power (i.e. each summand of f) individually, to get the final585

sum-of-product-of-univariates; of top-fanin O(sne) and individual degree at most D.586

This is an ARO of size O(sne) · n ·D ≤ O(sn2D2).587
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2.4. Basic mathematical tools. For the time-complexity bound, we need to588

optimize the following function:589

Lemma 2.18. Let k ∈ N≥4, and h(x) := x(k − x)7x. Then, maxi∈[k−1] h(i) =590

h(k − 1).591

Proof sketch. Differentiate to get h′(x) = (k−x)7x−x7x+x(k−x)(log 7)7x = 7x ·592

[x2(− log 7)+x(k log 7−2)+k]. It vanishes at x =
(

k
2 − 1

log 7

)
+

√(
k
2 − 1

log 7

)2
− k

log 7593

. Thus, h is maximized at the integer x = k − 1.594

Here is an important lemma to show that positive valuation with respect to y,595

lets us express a function as a power-series of y.596

Lemma 2.19 (Valuation). Let f ∈ F(x, y) such that valy(f) ≥ 0. Then, f ∈597

F(x)[[y]]
⋂
F(x, y).598

Proof sketch. Let f = g/h such that g, h ∈ F[x, y]. Now, valy(f) ≥ 0, implies599

valy(g) ≥ valy(h). Let valy(g) = d1 and valy(h) = d2, where d1 ≥ d2 ≥ 0. Further,600

write g = yd1 · g̃ and h = yd2 · h̃. Write, h̃ = h0 + h1 y + h2 y
2 + · · ·+ hd y

d, for some601

d; with hi ∈ F[x]. Note that h0 ̸= 0. Thus602

f = yd1−d2 · g̃/(h0 + h1y + · · ·+ hdy
d)603

= yd1−d2 · (g̃/h0) ·
(
(h1/h0) + (h2/h0)y + · · ·+ (hd/h0)y

d
)−1 ∈ F(x)[[y]]604605

Claim 2.20. For our linear-map Ψ, and g ∈ ΣΠ[δ] : Ψ(g) ∈ ΣΠ[δ] of size 3δ ·606

size(g) (for n ≫ δ).607

Proof sketch. Each monomial xa of degree δ, can produce
∏

i(ai+1) ≤ ((
∑

i ai+608

n)/n)n ≤ (δ/n + 1)n-many monomials, by AM-GM inequality as
∑

i ai ≤ δ. As609

δ/n → 0, we have (1 + δ/n)n → eδ. As e < 3, the upper bound follows.610

2.5. De-bordering simple models. In this section we will discuss known de-611

bordering results of restricted models like product of sum of univariates and ARO.612

Polynomials approximated by ΠΣ can be easily de-bordered [24, Prop.A.12]. In613

fact, it is the only constructive de-bordering result known so far. We extend it to614

show that same holds for polynomials approximated by ΠΣ∧ circuits. In fact, we615

start it by showing a much more general theorem.616

Let C and D be two classes over F[x]. Consider the bloated-class (C/C) · (D/D),617

which has elements of the form (g1/g2) · (h1/h2), where gi ∈ C and hi ∈ D (g2h2 ̸= 0).618

One can also similarly define its border (which will be an element in F(x)). Here is619

an important observation.620

Lemma 2.21. (C/C) · (D/D) ⊆ (C/C) · (D/D).621

Proof. Suppose (g1/g2) · h1/h2 = f + ε ·Q, where Q ∈ F(x, ε) and f ∈ F(x). Let622

valε(gi) =: ai and valε(hi) =: bi. Denote, gi =: εai · g̃i, similarly h̃i. Further, assume623

g̃i =: ĝi + ε · ĝ′i; similarly for h̃i, we define ĥi ∈ F[x]. Note that ĝi ∈ C, similarly624

ĥi ∈ D.625

So, LHS = εa1−a2+b1−b2 · (g̃1/g̃2) · (h̃1/h̃2). This has a limit limε→0, so a1 + b1 −626

a2 − b2 ≥ 0. If it is ≥ 1, the limit in RHS is 0 and so f = 0. If a1 + b1 − a2 − b2 = 0,627

then628

f = (ĝ1/ĝ2) · (ĥ1/ĥ2) ∈ (C/C) · (D/D) .629

Now, we show an important de-bordering result on ΠΣ∧ circuits.630
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Lemma 2.22 (De-bordering ΠΣ∧). Consider a polynomial f ∈ F[x] which is631

approximated by ΠΣ∧ of size s over F(ε)[x]. Then there exists a ΠΣ∧ (hence an632

ARO) of size s which exactly computes f(x).633

Proof. We will show that ΠΣ∧ = ΠΣ∧ ⊆ ARO. From Theorem 2.21 (and its634

proof), it follows that ΠΣ∧ ⊆
∏
(Σ∧). However, we note that Σ∧ = Σ∧ and it does635

not change the size (as it can not increase the sparsity). Therefore, the size does not636

increase and further it is an ARO. Thus, the conclusion follows.637

Next we show that polynomials approximated by ARO can be easily de-bordered.638

To the best of our knowledge the following lemma was sketched in [46]; also implicitly639

in [66].640

Lemma 2.23 (De-bordering ARO). Consider a polynomial f ∈ F[x] which is641

approximated by ARO of size s over F(ε)[x]. Then, there exists an ARO of size s642

which exactly computes f(x).643

Proof. By definition, there exists a polynomial g = f + εQ computable by width644

w ARO over F(ε)[x]. Note that w ≤ s. In this proof, we will use the partial deriva-645

tive matrix. With respect to any-order-prefix y ⊂ x, consider the partial derivative646

matrix N(g). Using Theorem 2.9 and 2.10, we know rkF(ε)(N(g)) ≤ w. This means647

determinant of any (w + 1)× (w + 1) minor of N(g) is identically zero. One can see648

that the entries of the minor are coefficients of monomials of g which are in F[ε][x\y].649

Thus, determinant polynomial will remain zero even under the limit of ε = 0. Since,650

limε→0 g = f , each minor (under limit) captures partial derivative matrix of f of651

corresponding rows and columns. Thus, we get rkF(N(f)) ≤ w. Theorem 2.10 shows652

that there exists an ARO, of width w over F, which exactly computes f .653

An obvious consequence of Theorem 2.17 and Theorem 2.23 is the following de-654

bordering result.655

Lemma 2.24 (De-bordering Σ∧Σ∧). Consider a polynomial f ∈ F[x] which is656

approximated by Σ∧Σ∧ of size s over F(ε)[x] and syntactic degree D. Then there657

exists an ARO of size O(sn2D2) which exactly computes f(x).658

2.6. Basic PIT tools. We dedicate this section to discuss some basic PIT tools659

that we will require in the main section. We will start with the simplest one obtained660

using PIT lemma of [111, 120, 37, 99].661

Lemma 2.25 (Trivial hitting set). For a class of n-variate, individual degree < d662

polynomial f ∈ F[x1, . . . , xn] there exists an explicit hitting-set H ⊆ Fn of size dn+1.663

In other words, there exists a point α ∈ H such that f(α) ̸= 0 (if f ̸= 0).664

The above result becomes interesting when n = O(1) as it yields a polynomial-665

time explicit hitting set. For general n, we have better results for restricted circuits, for666

eg. sparse circuits ΣΠ, [2, 76] gave a map which reduces multivariate sparse polynomial667

into univariate polynomial of small degree, while preserving the non-identity. Since668

testing (low-degree) univariate polynomial is trivial, we get a simple PIT algorithm669

for sparse polynomials.670

Indeed if identity of sparse polynomial can be tested efficiently, product of sparse671

polynomials ΠΣΠ can be tested efficiently. We formalise this in the following lemma.672

Lemma 2.26 ([104, Lemma 2.3]). For the class of n-variate, degree d polynomial673

f ∈ F[x1, . . . , xn] computable by ΠΣΠ of size s, there exist an explicit hitting set of674

size poly(s, d).675

Finally, we state the best known PIT result for ARO, see [67, 60] for more details.676
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Theorem 2.27 (ARO hitting set). For the class of d-degree n-variate polyno-677

mials f ∈ F[x] computable by size s ARO, there exists an explicit hitting set of size678

sO(log log s).679

The following lemma is useful to construct hitting set for product of two circuit680

classes when the hitting set of individual circuit is known.681

Lemma 2.28. Let H1,H2 ⊆ Fn of size s1 and s2 respectively be the hitting set682

of the class of n-variate degree d polynomials computable by C1 and C2 respectively.683

Then, for the class of polynomials computable by C1 · C2 there is an explicit hitting set684

H of size s1 · s2 ·O(d).685

Proof. Let f = f1 · f2 ∈ C1 · C2 such that f1 ∈ C1 and f2 ∈ C2. For each ai ∈ H1,686

bj ∈ H2 define a ‘formal-sum’ evaluation point (over F[t]) c := (cℓ)1≤ℓ≤n such that687

cℓ := aiℓ + t · bjℓ; where t is a formal variable. Collect these points, going over i, j, in688

a set H. It can be seen, by shifting and scaling, that non-zeroness is preserved: there689

exists c ∈ H such that 0 ̸= f(c) ∈ F[t] and deg f(c) = O(d). Using trivial hitting set690

from Theorem 2.25 we obtain the final hitting set H of size O(s1 · s2 · d).691

Remark. The above argument easily extends to circuit classes (C1/C1) · (C2/C2),692

which compute rationals of the form (g1/g2) · (h1/h2), where gi ∈ C1 and hi ∈ C2693

(g2h2 ̸= 0).694

3. De-bordering depth-3 circuits. In this section we will discuss the proof of695

de-bordering result (Theorem 1.1). Before moving on, we discuss the bloated model696

on which we will induct.697

Definition 3.1 (Bloated model). We call a circuit C ∈ Gen(k, s), over the698

fractional ring R(x), with parameter k and size s, if it computes f ∈ R(x) where699

f =
∑

i∈[k] Ti, such that Ti = (Ui/Vi) · Pi/Qi, with Ui, Vi, Pi, Qi ∈ R[x] such that700

Ui, Vi ∈ ΠΣ and Pi, Qi ∈ Σ∧Σ.701

Further, size(C) =
∑

i∈[k] size(Ti), and size(Ti) = size(Ui) + size(Vi) + size(Pi) +702

size(Qi).703

It is easy to see that size-s Σ[k]ΠΣ lies in Gen(k, s), which will be our general704

model of induction. Here is the main de-bordering theorem for depth-3 circuits.705

Theorem 3.2 (De-bordering Σ[k]ΠΣ). Let f(x) ∈ F[x1, . . . , xn], such that f706

can be computed by a Σ[k]ΠΣ-circuit of size s. Then f is also computable by an ABP707

(over F), of size sO(k·7k).708

Proof. We will use DiDIL technique as discussed in subsection 1.4. The k = 1709

case is obvious, as ΠΣ = ΠΣ and trivially it has a small ABP. Further, as discussed710

before, k = 2 is already non-trivial. Eventually it involves de-bordering Gen(1, s); as711

DiDIL technique reduces the k = 2 problem to Gen(1, s) and then we interpolate.712

Base step: De-bordering Gen(1, s). Let g(x, ε) ∈ R(x, ε) be approximating f ∈713

R(x); here R is a commutative ring (the ring will be clear later in the next few714

paragraphs). We also assume the syntactic degree bound, of the denominator and715

numerator computing g to be d. Here is the de-bordering result.716

Claim 3.3. Gen(1, s) ∈ ABP/ABP, of size O(sd4n), while the syntactic degree717

blows up to O(nd2).718

Proof. Using Definition 3.1,719

g(x, ε) =: (U(x, ε)/V (x, ε)) · P (x, ε)/Q(x, ε) = f(x) + ε · S(x, ε) ,720
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where U, V, P,Q ∈ R(ε)[x] such that U, V ∈ ΠΣ, P,Q ∈ Σ∧Σ. Let a1 := valε(U),721

a2 := valε(V ), b1 := valε(P ) and b2 := valε(Q). Extracting the maximum ε-power, we722

get723

f + ε · S = ε(a1−a2)+(b1−b2) ·
(
Ũ/Ṽ

)
·
(
P̃ /Q̃

)
,724

where Ũ , Ṽ , P̃ , Q̃ ∈ R(ε)[x], and their valuations wrt. ε are zero i.e. limε→0 Ũ exists725

(similarly for Ṽ , P̃ , Q̃). Since, LHS is well-defined at ε = 0, it must happen that726

(a1−a2)+(b1− b2) ≥ 0. If (a1−a2)+(b1− b2) ≥ 1, then f = 0, and we have trivially727

de-bordered. Therefore, we can assume (a1 − a2) + (b1 − b2) = 0 which implies that728

f = (lim
ε→0

Ũ/ lim
ε→0

Ṽ ) · (lim
ε→0

P̃ / lim
ε→0

Q̃) ∈ (ΠΣ/ΠΣ) · (ARO/ARO) ⊆ ABP/ABP .729

We have used the fact that Ũ , Ṽ ∈ ΠΣ and P̃ , Q̃ ∈ Σ∧Σ of size at most s, over R(ε)[x].730

Further, by Lemma 2.22 and Lemma 2.24, we know that ΠΣ = ΠΣ and Σ∧Σ ⊆ ARO;731

therefore f is computable by a ratio of two ABPs of size at most O(s · d4n) and the732

degree gets blown up to atmost O(nd2).733

Bloat out: Reducing Σ[k]ΠΣ to de-bordering Gen(k − 1, ·). Let f0 := f be734

an arbitrary polynomial in Σ[k]ΠΣ, approximated by g0 ∈ F(ε)[x], computed by735

a depth-3 circuit C of size s over F(ε), i.e. g0 := f0 + ε · S0. Further, assume that736

deg(f0) < d0 := d ≤ s; we keep the parameter d separately, to optimize the complexity737

later. Here, we also stress that one could think of homogeneous circuits and thus the738

degree can be assumed to be the syntactic degree as well. Then, g0 =:
∑

i∈[k] Ti,0,739

such that Ti,0 is computable by a ΠΣ-circuit of size at most s over F(ε). Moreover,740

define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 = 1 as the base input case (of Gen(1, ·) ).741

As explained in the preliminaries, we do a safe division and derivation for reduction.742

Φ homomorphism. To ensure invertibility and facilitate derivation, we define a homo-743

morphism744

Φ : F(ε)[x] → F(ε)[x, z] , such that xi 7→ z · xi + αi ,745

where αi are random elements in F. Essentially, it suffices to ensure that Φ(Ti,0)|x=α =746

Ti,0(α) ̸= 0 for all i ∈ [k]. We will be working with different ring Ri(x), at i-th step747

of induction, with R0 := F[z]/
〈
zd
〉
; here think of the z-variable as ‘cost-free’. The748

map Φ can be thought of as a ‘shift & scale’ map. In a way, choosing random z and749

then shifting and scaling it back gives the original f . So, our target is to prove the750

size upper bound for Φ(f0) over R(x), and thereby prove upper bound for f0.751

Divide and derive. Let vi,0 := valz(Φ(Ti,0)). By Φ-map, vi,0 ≥ 0, for each i ∈ [k].752

Further, wrt ε-valuation, assume that Φ(Ti,0) =: εai,0 · T̃i,0, where T̃i,0 =: ti,0 + ε ·753

t̃i,0(x, z, ε) (ti,0 = T̃i,0|ε=0). Note that, vi,0 = valz(T̃i,0). Without loss of generality,754

assume mini∈[k] valz(T̃i,0) = vk,0, i.e. wrt k, otherwise we can rearrange. Then, we755

divide Φ(g0) by T̃k,0 and derive wrt z:756
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Φ(f0)/T̃k,0 + ε · Φ(S0)/T̃k,0 = εak,0 +

k−1∑
i=1

Φ(Ti,0)/T̃k,0 [Divide]757

=⇒ ∂z

(
Φ(f0)/T̃k,0

)
+ ε∂z

(
Φ(S0)/T̃k,0

)
=

k−1∑
i=1

∂z

(
Φ(Ti,0)/T̃k,0

)
[Derive]758

=

k−1∑
i=1

(
Φ(Ti,0)/T̃k,0

)
· dlog

(
Φ(Ti,0)/T̃k,0

)
(3.1)759

=: g1 .760761

Definability. Let R1 := F[z]/⟨zd1⟩, and d1 := d0 − vk,0 − 1. For i ∈ [k − 1], define762

Ti,1 := (Φ(Ti,0)/T̃k,0) · dlog(Φ(Ti,0)/T̃k,0) , and f1 := ∂z (Φ(f0)/tk,0) .763

Claim 3.4. g1 approximates f1 correctly, i.e. limε→0 g1 = f1, where g1 (respec-764

tively f1) are well-defined over R1(ε,x) (respectively R1(x)).765

Proof. As we divide by the minimum valuation, by Lemma 2.19 we have766

valz(Φ(Ti,0)/T̃k,0) ≥ 0 =⇒ Φ(Ti,0)/T̃k,0 ∈ F(x, ε)[[z]] =⇒ Ti,1 ∈ F(x, ε)[[z]] .767

Note that valz(Φ(f0) + ε · S0) = valz(
∑

i∈[k] Φ(Ti,0)) ≥ vk,0. Setting, ε = 0, im-768

plies that valz(Φ(f0)) ≥ vk,0 and hence, Φ(f0)/T̃k,0 ∈ F(x, ε)[[z]] (by Lemma 2.19).769

Moreover, (Φ(f0)/T̃k,0)|ε=0 = Φ(f0)/tk,0 ∈ F(x, z). Combining these it follows that770

Φ(f0)/tk,0 ∈ F(x)[[z]] =⇒ f1 ∈ F(x)[[z]] .771

Once we know that each Ti,1 and f1 are well-defined power-series, we claim that772
Eqn. (3.1) holds mod zd0−vk,0−1. Note that, Φ(f0) + ε · Φ(S0) =

∑
i∈[k] Ti, holds773

mod zd. Thus after dividing by the minimum valuation element (with z-valuation774

vk,0), it holds mod zd0−vk,0 ; finally after differentiation it must hold mod zd0−vk,0−1.775

Further, as limε→0 T̃k,0 exists, we must have ∂z(Φ(f0)/tk,0) = limε→0 g1; i.e. g1776

approximates f1 correctly, over R1(x).777

However, we stress that we also think of these as elements over F(x, z, ε), with778

z-degree being ‘kept track of’ (which could be > d). All these different ‘lenses’ of779

looking and computing will be important later.780

Now what with the lower fanin? The main claim now is to show that– 1) f1 ∈781

Gen(k − 1, ·), and 2) assuming we know Gen(k − 1, ·) has small ABP/ABP, how to lift782

it for f0 (we will show how to generally reduce fanin in the next few paragraphs).783

To show that, we will show that each Ti,1 has small (ΠΣ/ΠΣ)·(Σ∧Σ/Σ∧Σ)-circuit784

over R1(x, ε) and then we will interpolate. Once the degree of z is maintained to be785

small, this interpolation would not be costly, which will finally achieve our goal; as786

polynomially many sum of ratios of ABPs is still a ratio of small ABPs. We remark787

that these two steps are needed in the general reduction as well, and thus once we788

show the general inductive reduction, we will illustrate these steps.789

Inductive step (j-th step): Reducing Gen(k − j, ·) to Gen(k − j − 1, ·). Suppose,790

we are at the j-th (j ≥ 1) step. Our induction hypothesis assumes–791

1.
∑

i∈[k−j] Ti,j =: gj , over Rj(x, ε), such that it approximates fj correctly,792

where fj ∈ Rj(x), where Rj := F[z]/⟨zdj ⟩.793
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2. Here, Ti,j =: (Ui,j/Vi,j) · (Pi,j/Qi,j), where

Ui,j , Vi,j ∈ ΠΣ and Pi,j , Qi,j ∈ Σ∧Σ, each in Rj(ε)[x] .

Each can be thought as an element in F(x, z, ε)
⋂

F(x, ε)[[z]] as well. As-794

sume that the syntactic degree of each denominator and numerator of Ti,j is795

bounded by Dj .796

3. vi,j := valz(Ti,j) ≥ 0, for i ∈ [k − j]. Wlog, assume that mini vi,j = vk−j,j .797

Moreover, Ui,j |z=0 ∈ F(ε)\{0} (similarly for Vi,j).798

We do like the j = 0-th step done above, without applying any new homomorphism.799

Similar to that reduction, we divide and derive to reduce the fanin further by 1.800

Divide and Derive. Let Tk−j,j =: εak−j,j · T̃k−j,j , where T̃k−j,j =: (tk−j,j + ε · t̃k−j,j)801

is not divisible by ε. Divide gj =: fj + ε · Sj , by T̃k−j,j , to get:802

fj/T̃k−j,j + ε · Sj/T̃k−j,j = εak−j,j +

k−j−1∑
i=1

Ti,j/T̃k−j,j803

=⇒ ∂z

(
fj/T̃k−j,j

)
+ ε · ∂z

(
Sj/T̃k−j,j

)
=

k−j−1∑
i=1

∂z

(
Ti,j/T̃k−j,j

)
804

=

k−j−1∑
i=1

(
Ti,j/T̃k−j,j

)
· dlog

(
Ti,j/T̃k−j,j

)
(3.2)805

=: gj+1 .806807

Definability. LetRj+1 := F[z]/⟨zdj+1⟩, where dj+1 := dj−vk−j,j−1. For i ∈ [k−j−1],808

define809

Ti,j+1 :=
(
Ti,j/T̃k−j,j

)
· dlog

(
Ti,j/T̃k−j,j

)
, and fj+1 := ∂z(fj/tk−j,j) .810

811

Claim 3.5 (Induction hypotheses). (i) gj+1 (respectively fj+1) are well-defined812

over Rj+1(x, ε) (respectively ,Rj+1(x)).813

(ii) gj+1 approximates fj+1 correctly, i.e., limε→0 gj+1 = fj+1.814

Proof. Remember, fj and Ti,j ’s are elements in F(x, z, ε) which also belong to815

F(x, ε)[[z]]. After dividing by the minimum valuation, by similar argument as in816

Claim 3.4, it follows that Ti,j+1 and fj+1 are elements in F(x, z, ε)
⋂
F(x, ε)[[z]],817

proving the second part of induction-hypothesis-(2). In fact, trivially vi,j+1 ≥ 0, for818

i ∈ [k − j − 1] proving induction-hypothesis-(3).819

Similarly, Eqn. (3.2) holds over Rj+1(ε,x), or equivalently mod zdj+1 ; this is820

because of the division by z-valuation of vk−j,j and then differentiation, showing821

induction-hypothesis-(1). So, Eqn. (3.2) being computed mod zdj+1 is indeed valid.822

We also mention that using similar argument as in Claim 3.4, fj+1 ∈ F(x)[[z]].823

Finally, as fj+1 exists, it is obvious to see that limε→0 gj+1 = fj+1.824

Invertibility of ΠΣ-circuits. Before going into the size analysis, we want to remark that825

the dlog computation plays a crucial role here and the invertibility of the ΠΣ-circuits826

are crucial for our arguments to go through. The action dlog(Σ∧Σ) ∈ Σ∧Σ/Σ∧Σ, is827

of poly-size (Lemma 2.15).828
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What is the action on ΠΣ? As dlog distributes the product additively, so it suffices829

to work with dlog(ΠΣ); and we show that dlog(ΠΣ) ∈ Σ∧Σ, is of poly-size. For the830

time being, assume these hold. Then, we simplify831

Ti,j/T̃k−j,j = ε−ak−j,j · (Ui,j · Vk−j,j)/(Vi,j · Uk−j,j) · (Pi,j ·Qk−j,j)/(Qi,j · Pk−j,j) ,832

and its dlog. Therefore, one can define Ui,j+1 := ε−ak−j,j · Ui,j · Vk−j,j ; similarly833

Vi,j+1 := Vi,j · Uk−j,j . We stress that dlog computation will produce Σ∧Σ/Σ∧Σ834

which will further multiply with P ′s and Q’s; it will be clear after the lemma. This835

directly means: Ui,j+1|z=0, Vi,j+1|z=0 ∈ F(ε) \ {0}. This proves the second part of836

induction-hypothesis-(3).837

The overall size blowup. Finally, we show the main step: how to use dlog which838

is the crux of our reduction. We assume that at the j-th step, size(Ti,j) ≤ sj and by839

assumption s0 ≤ s.840

Claim 3.6 (Size blowup from DiDIL). T1,k−1 ∈ (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) over841

Rk−1(x, ε) of size sO(k7k). It is computed as an element in F(ε,x, z), with syntactic842

degree (in x, z) dO(k).843

Proof. Steps j = 0 vs j > 0 are slightly different because of the homomorphism844

Φ. However the main idea of using dlog and expand it as a power-series is the same,845

which eventually shows that dlog(ΠΣ) ∈ Σ∧Σ with a controlled blowup.846

For j = 0, we want to study dlog’s effect on Φ(Ti,0)/T̃k,0. As dlog distributes847

over product and thus it suffices to study dlog(ℓ), where ℓ ∈ R(ε)[x]. However, by848

the property of Φ, each ℓ must be of the form ℓ = A − zB, where A ∈ F(ε)\{0} and849

B ∈ F(ε)[x]. Using the power series expansion, we have the following, over R1(x, ε):850

dlog(ℓ) = − ∂z (A− z ·B)

A (1− z ·B/A)
= −B

A
·
d1−1∑
j=0

(
z ·B
A

)j

.(3.3)851

852

Note,(B/A) and (−z ·B/A)j have a trivial ∧Σ circuits, each of size O(s). For all j use853

Lemma 2.12 on (B/A) · (−z · B/A)j to obtain an equivalent Σ∧Σ of size O(j · d · s).854

Re-indexing gives us the final Σ∧Σ circuit for dlog(ℓ) of size O(d3 · s). We use the855

fact that d1 ≤ d0 = d. Here the syntactic degree blowsup to O(d2).856

For j > 0, the above equation holds over Rj(x). However, as mentioned before,857

the degree could be Dj (possibly > dj) of the corresponding A and B. Thus, the858

overall size after the power-series expansion would be O(D2
jdsize(ℓ)) [here again we859

use that dj ≤ d].860

Effect of dlog on Σ∧Σ is, naturally, more straightforward because it is closed under861

differentiation, as shown in Lemma 2.15. Using Lemma 2.15, we obtain Σ∧Σ/Σ∧Σ cir-862

cuit for dlog(Pi,j) of size O
(
D2

j · sj
)
. Similar claim can be made for dlog(Qi,j). Also,863

dlog(Ui,j · Vk−j,j) ∈
∑

dlog(Σ), which could be computed using the above Equation.864

Thus,865

dlog(Ti,j/T̃k−j,j) ∈ dlog(ΠΣ/ΠΣ)± Σ[4]dlog(Σ∧Σ)866

⊆ Σ∧Σ+ Σ[4]Σ∧Σ/Σ∧Σ = Σ∧Σ/Σ∧Σ .867868

Here, Σ[4] means sum of 4-many expressions. The first containment is by linearization.869

Express dlog(ΠΣ/ΠΣ) as a single Σ∧Σ-expression of size O(D2
jdjsj), by summing up870
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the Σ∧Σ-expressions obtained from dlog(Σ). Next, there are 4-many Σ∧Σ/Σ∧Σ ex-871

pressions of size O(D2
j sj) as there are 4-many P ’s and Q’s. Additionally, the syntactic872

degree of each denominator and numerator of Σ∧Σ/Σ∧Σ grows up to O(Dj). Finally,873

we club Σ∧Σ/Σ∧Σ expressions (4 of them) to express it as a single Σ∧Σ/Σ∧Σ expres-874

sion using Lemma 2.15, with size blowup of O(D12
j s4j ). Finally, add the single Σ∧Σ875

expression of size O(D3
j sj), and degree O(dDj), to get O(s5jD

16
j d) size representation.876

Also, we need to multiply with Ti,j/T̃k−j,j which is of the form (ΠΣ/ΠΣ) ·877

(Σ∧Σ/Σ∧Σ), where each Σ∧Σ is basically product of two Σ∧Σ expressions of size sj878

and syntantic degree Dj and clubbed together, owing a blowup of O(Djs
2
j ). Hence,879

multiplying this (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ)-expression with the Σ∧Σ/Σ∧Σ expression880

obtained from dlog-compuation, gives a size blowup of sj+1 := s7jD
O(1)
j d.881

As mentioned before, the main blowup of syntactic degree in the dlog compu-882

tation could be O(dDj) and clearing expressions and multiplying the without-dlog883

expression increases the syntactic degree only by a constant multiple. Therefore,884

Dj+1 := O(dDj) =⇒ Dj = dO(j). Hence, sj+1 = s7j · dO(j) =⇒ sj ≤ (sd)O(j·7j). In885

particular, sk−1 ≤ sO(k·7k); here we used that d ≤ s. This calculation quantitatively886

establishes induction-hypothesis-(2).887

Roadmap to trace back f0. The above claim established that gk−1 ∈ Gen(1, ·) and ap-888

proximates fk−1 correctly. We also know that Gen(1, ·) ∈ ABP/ABP, from Claim 3.3.889

Whence, gk−1 having sO(k7k)-size bloated-circuit implies: it can be computed as a890

ratio of ABPs with size sO(k7k) ·D4
k−1 · n = sO(k7k), and syntactic degree n ·D2

k−1 =891

dO(k). Now, we recursively ‘lift’ this quantity, via interpolation, to recover in order,892

fk−2, fk−3, . . . , f0; which we originally wanted.893

Interpolation: To integrate and limit. As mentioned above, we will interpolate894

recursively. We know fk−1 = ∂z(fk−2/t2,k−2) has a ABP/ABP circuit over F(x, z),895

i.e. each denominator and numerator is being computed in F[x, z], and size bounded896

by Sk−1 := sO(k7k). Here is an important claim about the size of fk−2 (we denote it897

by Sk−2).898

Claim 3.7 (Tracing back one step). fk−2 can be expressed as

fk−2 =

dk−2−1∑
i=0

(ABP/ABP) zi ,

of size sO(k7k) and syntactic degree dO(k).899

Proof. Let the degree of fk−1 (both denominator and numerator) be bounded by900

D′
k−1 := dO(k) and further we know that keeping information (of the power series)901

till mod zdk−1 suffices. While computing it, it may happen that valuation of each902

denominator and numerator is > 0, i.e. it is of the form ze1 · (ABP)/ze2 · (ABP) (e1, e2903

being valuations wrt z1). It must happen that e1 ≥ e2, if it is indeed a power series904

in z; the ei’s are bounded by D′
k−1. Furthermore, these ABPs (after dividing by905

z-power) have similar size as z is considered free [think of them being computed over906

F(z)[x]]. Therefore, ABP/ABP can be expressed as
∑dk−1−1

i=0 Ci,k−1 · zi, by using the907

inverse identity: 1/(1− z) ≡ 1 + . . .+ zdk−1−1 mod zdk−1 . Here, each Ci,k−1 has an908

ABP/ABP of size at most O(Sk−1 ·D′
k−1

2
); for details see Lemma 2.6.909
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Once we get fk−1 =
∑dk−1−1

i=0 Ci,k−1z
i, definite-integration implies:910

fk−2/t2,k−2 − fk−2/t2,k−2|z=0 ≡
dk−1∑
i=1

(Ci,k−1/i) · zi mod zdk−1+1 .911

The final trick is to get fk−2/t2,k−2|z=0 and ‘reach’ fk−2. As, fk−2/t2,k−2 ∈ F(x)[[z]],912

substituting z = 0 yields an element in F(x). Recall the identity:913

fk−2/t2,k−2|z=0 = lim
ε→0

(T1,k−2/T̃2,k−2|z=0 + εa2,k−2)914

∈ lim
ε→0

(F(ε) · (Σ∧Σ/Σ∧Σ) + εa2,k−2) .915
916

Since, F(ε) ·(Σ∧Σ/Σ∧Σ)+εa2,k−2 ∈ Σ∧Σ/Σ∧Σ, over F(ε)(x). We know that the limit917

exists and is ARO/ARO (⊆ ABP/ABP) of syntactic degree dO(k) and size sk−1 ·dO(k).918

Thus, from the above equation, it follows:919

fk−2/t2,k−2 = fk−2/t2,k−2|z=0 +

dk−1∑
i=1

(Ci,k−1/i) · zi ∈
dk−1∑
i=0

(ABP/ABP) · zi ,920

of size dk−1 · Sk−1D
′2
k−1 + sk−1 · dO(k), and degree D′

k−1 + dO(k). Lastly,921

t2,k−2 ∈ lim
ε→0

(ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ) ⊆ (ΠΣ/ΠΣ) · (ARO/ARO) .922

Thus, it has size sk−2, by previous Claims and degree bound Dk−2. Moreover, we923

know that valz(t2,k−2) ≥ v2,k−2 = dk−2−dk−1−1. Thus, multiply t2,k−2 and truncate924

it till dk−2 − 1. This gives us the blowup: size Sk−2 = dk−1 · Sk−1D
′2
k−1 + sk−1 · dO(k)925

and degree D′
k−2 = D′

k−1 + dO(k).926

So, we get: fk−2 has
∑dk−2−1

i=0 (ABP/ABP)zi of size Sk−2 = sO(k7k) and degree927

D′
k−2 = dO(k).928

The z = 0-evaluation. To trace back further, we imitate the step as above; and get929

fj one by one. But we first need a claim about the z = 0 evaluation of fj/tk−j,j .930

Claim 3.8 (For definite integration). fj/tk−j,j |z=0 ∈ ARO/ARO ⊆ ABP/ABP931

of size sO(k7k).932

Proof. Note that, gj/T̃k−j,j =
∑

i∈[k−j] Ti,j/T̃k−j,j ∈ F(x)[[z, ε]], as valuation wrt933

z respectively ε is non-negative. Therefore,934 (
fj

tk−j,j

) ∣∣∣∣
z=0

= lim
ε→0

∑
i∈[k−j]

(
Ti,j

T̃k−j,j

)∣∣∣∣
z=0

935

= lim
ε→0

∑
i∈[k−j]

(
ε−ak−j,j · Ui,j · Vk−j,j

Uk−j,j · Vi,j
· Pi,j ·Qk−j,j

Pk−j,j ·Qi,j

) ∣∣∣∣
z=0

936

∈ lim
ε→0

∑
i∈[k−j]

(
F(ε) · Σ∧Σ

Σ∧Σ

)
= lim

ε→0

(
Σ∧Σ
Σ∧Σ

)
⊆
(
ARO

ARO

)
.937

938

Here we crucially used induction-hypothesis-(3) part: each Ui,j , Vi,j at z = 0, is an939

element in F(ε). Also, we used that Σ∧Σ is closed under constant-fold multiplication940

(Lemma 2.12). Finally, we take the limit to conclude that Σ∧Σ/Σ∧Σ ⊆ ARO/ARO.941
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To show the ABP-size upper bound, let us denote the size(fj/tk−j,j |z=0) =: S′
j ,942

and the syntactic degree D′
j . We claim that S′

j = O(s
O(k−j)
j · D′

j
4
n). Because, we943

have a sum of k − j many Σ∧Σ/Σ∧Σ expressions each of size sj ; Σ∧Σ is closed944

under multiplication (Lemma 2.12) and Σ∧Σ to ARO conversion introduces exponent945

4 in the degree (Lemma 2.17). Each time the syntactic degree blowup is only a946

constant multiple, thus D′
j := dO(k) (which is ≤ sO(k)). Therefore, S′

j = sO(k−j)·j7j =947

sO(j(k−j)7j) = sO(k7k). Here, we use the fact that maxj∈[k−1] j(k− j)7j = (k− 1)7k−1948

(see Lemma 2.18). This finishes the proof.949

Size blowup. Suppose the ABP-size of fj is Sj ; thus we need to estimate S0.950

We remark that we do not need to eliminate division at each tracing-back-step951

(which we did to obtain fk−2). Since once we have
∑dj−1

i=0 (ABP/ABP) ·zi, it is easy to952

integrate (wrt z) without any blowup as we already have all the ABP/ABP’s in hand953

(they are z-free). The main size blowup (= S′
j) happens due to z = 0 computation954

which we calculated above (Claim 3.8). Thus, the final recurrence is Sj = Sj+1 + S′
j .955

This gives S0 = sO(k7k), which is the size of Φ(f), over F(z,x), being computed as an956

ABP/ABP.957

Finally, plugging ‘random’ z, shifting-and-scaling, gives us f ; represented as an958

ABP/ABP of similar size. At the final stage, we eliminate the division-gate which959

gives us f represented as an ABP of size sO(k7k).960

Remark. Our proof de-bordered Gen(k, s), and that too for any field of characteristic961

= 0 or ≥ d.962

4. Blackbox PIT for border depth-3 circuits. We divide the section into two963

parts. First subsection deals with proving Theorem 1.2, while the second subsection964

deals with optimally better hitting sets in the log-variate regime.965

4.1. Quasi-derandomizing Σ[k]ΠΣ circuits. Induction step of DiDIL is im-966

portant to give any meaningful upper bound of circuit complexity. However, hitting967

set construction demands less— each inductive step of fanin reduction must preserve968

non-zeroness. Eventually, we exploit this to give an efficient hitting set construction969

for Σ[k]ΠΣ, and in the process of reducing the top fanin analyse the bloated model970

Gen(k, ·).971

Theorem 4.1 (Efficient hitting set for Σ[k]ΠΣ). There exists an explicit quasi-972

polynomial time (sO(k·7k·log log s)) hitting set for Σ[k]ΠΣ-circuits of size s and constant973

k.974

Proof. The basic reduction strategy is same as section 3. Let f0 := f be an975

arbitrary polynomial in Σ[k]ΠΣ, approximated by g0 ∈ F(ε)[x], computed by a depth-976

3 circuit C of size s over F(ε), i.e. g0 := f0 + ε · S0. Further, assume that deg(f0) <977

d0 := d ≤ s. Let g0 =:
∑

i∈[k] Ti,0, such that Ti,0 is computable by a ΠΣ-circuit of size978

atmost s over F(ε). As before, define R0 := F[z]/⟨zd⟩. Thus, f0+ ε ·S0 =
∑

i∈[k] Ti,0,979

holds over R0(x, ε).980

Define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 = 1 to set the input instance of981

Gen(k, s). Of course, we assume that each Ti,0 ̸= 0 (otherwise it is a smaller fanin982

than k).983

Φ homomorphism. To ensure invertiblity and facilitate derivation, we define the same984

Φ as in section 3, i.e. Φ : F(ε)[x] → F(ε)[x, z] such that xi 7→ z ·xi+αi. For the upper985

bound proof, we took αi ∈ F to be random; but for the PIT purpose, we cannot986
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work with a random shift. The purpose of shifting was to ensure the invertibility,987

i.e., F(ε) ∋ Ti,0(α) ̸= 0; that is easy to ensure since ℓ(y, y2, . . . , yn) ̸= 0, for any linear988

polynomial ℓ, over any field. Since, deg(
∏

i Ti,0) ≤ s, α = (i, i2, . . . , in), for some989

i ∈ [s] works! In the proof, we will work with every such α (s-many), and for the990

right-value, non-zeroness will be preserved, which suffices.991

0-th step: Reduction from k to k−1. We will use the same notation as in section 3.992

We know that g1 approximates f1 correctly over R1(x, ε). Rewriting the same, we993

have994

(4.1)

f0+ε ·S0 =
∑
i∈[k]

Ti,0 , overR0(x, ε) =⇒ f1+ε ·S1 =
∑

i∈[k−1]

Ti,1 , over R1(x, ε) .995

Here, define Ti,1 := (Φ(Ti,0)/T̃k,0) · dlog(Φ(Ti,0)/T̃k,0), for i ∈ [k − 1] and f1 :=996

∂z (Φ(f0)/tk,0), same as before. Also, we will consider Ti,1 as an element of F(x, z, ε)997

and keep track of deg(z).998

The “iff” condition. Note that the equality in Equation 4.1 over R1(ε,x) is only999

“one-sided”. Whereas, to reduce identity testing, we need a necessary and sufficient1000

condition: If f0 ̸= 0, we would like to claim that f1 ̸= 0 (over R1(x)). However, it may1001

not be directly true because of the loss of z-free terms of f0, due to differentiation.1002

Note that f1 ̸= 0 implies valz(f1) < d =: d1. Further, f1 = 0, over R1(x), implies–1003

either, (1) Φ(f0)/tk,0 is z-free. This implies Φ(f0)/tk,0 ∈ F(x), which further1004

implies it is in F, because z-free implies x-free, by substituting z = 0, by the definition1005

of Φ. Also, note that f0, tk,0 ̸= 0 implies Φ(f0)/tk,0 is a nonzero element in F. Thus,1006

it suffices to check whether Φ(f0)|z=0 = f0(α) is non-zero or not.1007

or, (2) ∂z(Φ(f0)/tk,0) = zd1 · p where p ∈ F(z,x) s.t. valz(p) ≥ 0. By simple1008

power series expansion, one can conclude that p ∈ F(x)[[z]] (Lemma 2.19). Hence,1009

Φ(f0)/tk,0 = zd1+1 · p̃,where p̃ ∈ F(x)[[z]] =⇒ valz(Φ(f0)) ≥ d ,1010

a contradiction. Here we used the simple fact that differentiation decreases the valu-1011

ation by 1.1012

Conversely, it is obvious that f0 = 0 implies f1 = 0. Thus, we have proved the1013

following:1014

f0 ̸= 0 over F[x] ⇐⇒ f1 ̸= 0 over R1(x), or 0 ̸= Φ(f0)|z=0 ∈ F.1015

Recall, Claim 3.6 shows that Ti,1 ∈ (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) with a polynomial blowup.1016

Therefore, subject to z = 0 test, we have reduced the identity testing problem to k−1.1017

We will recurse over this until we reach k = 1.1018

Induction step. Assume that we are at the end of j-th step (j ≥ 1). Our inductive1019

hypothesis assumes the following invariants:1020

1.
∑

i∈[k−j] Ti,j = fj + ε ·Sj over Rj(ε,x), where Ti,j ̸= 0 and Rj := F[z]/⟨zdj ⟩.1021

2. Each Ti,j = (Ui,j/Vi,j)·(Pi,j/Qi,j) where Ui,j , Vi,j ∈ ΠΣ and Pi,j , Qi,j ∈ Σ∧Σ.1022

3. valz(Ti,j) ≥ 0, for all i ∈ [k − j]. Moreover, Ui,j |z=0 ∈ F(ε)\{0} (similarly1023

Vi,j).1024

4. f0 ̸= 0 iff: fj ̸= 0 over Rj(x), or
∨j−1

i=1 (fi/tk−i,i|z=0 ̸= 0, overF(x)).1025

Reducing the problem to k− j−1. We will follow the j = 0 case, without applying1026

any homomorphism. Again, this reduction step is exactly the same as before, which1027

yields: fj + ε · Sj =
∑

i∈[k−j] Ti,j , over Rj(x, ε) =⇒1028

(4.2) fj+1 + ε · Sj+1 =
∑

i∈[k−j−1]

Ti,j+1, over Rj+1(x, ε).1029
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Here, Ti,j+1 :=
(
Ti,j/T̃k−j,j

)
·dlog(Ti,j/T̃k−j,j), and fj+1 := ∂z(fj/tk−j,j), as before.1030

It remains to show that, all the invariants assumed are still satisfied for j + 1.1031

The first 3 invariants are already shown in section 3. The 4-th invariant is the iff1032

condition to be shown below.1033

The “iff” condition in the induction. The above Equation 4.2 pioneers to reduce from1034

k − j-summands to k − j − 1. But we want an ‘iff’ condition to efficiently reduce the1035

identity testing. If fj+1 ̸= 0, then valz(fj+1) < dj+1. Further, fj+1 = 0, over Rj+1(x)1036

implies–1037

either, (1) fj/tk−j,j is z-free, i.e. fj/tk−j,j ∈ F(x). Now, if indeed f0 ̸= 0, then1038

tk−j,j as well as fj must be non-zero over F(z,x), by induction hypothesis (assuming1039

they are non-zero over Rj(x)). We will eventually show that fj/tk−j,j |z=0 has a1040

small ARO/ARO circuit; which helps us to construct a quasi-polynomial size hitting1041

set using Theorem 2.27.1042

or, (2) ∂z(fj/tk−j,j) = zdj+1 · p, where p ∈ F(z,x) s.t. valz(p) ≥ 0. By simple1043

power series expansion, one concludes that p ∈ F(x)[[z]] (Lemma 2.19). Hence,1044

fj
tk−j,j

∈ zdj+1+1 · p̃, where p̃ ∈ F(x)[[z]] =⇒ valz(fj) ≥ dj =⇒ fj = 0 , over Rj(x).1045

Conversely, fj = 0, over Rj(x), implies valz(fj/T̃k−j,j) ≥ dj − vk−j,j =⇒1046

valz(∂z(fj/T̃k−j,j)) ≥ dj − vk−j,j − 1 = dj+1 =⇒ ∂z(fj/T̃k−j,j) = 0, over Rj+1(ε,x).1047

Fixing ε = 0 we deduce fj+1 = ∂z(fj/tk−j,j) = 0.1048

Thus, we have proved that fj ̸= 0 over Rj(x) iff

fj+1 ̸= 0 over Rj+1(x) , or , 0 ̸= (fj/tk−j,j)|z=0 ∈ F(x) .

This concludes the proof of the 4-th invariant.1049

Note: In the above substitution (z = 0), Σ∧Σ/Σ∧Σ maybe undefined by directly1050

evaluating at numerator and denominator, i.e. = 0/0. But we can keep track of the1051

z degree of numerator and denominator, which will be polynomially bounded as seen1052

in Claim 3.6. We can interpolate and cancel the z-powers to get the ratio.1053

Constructing the hitting set. The above discussion has reduced the problem1054

of testing Φ(f) to testing fk−1 or fj/tk−j,j |z=0, for j ∈ [k − 2]. We know that1055

fk−1 ∈ (ΠΣ/ΠΣ) · (ARO/ARO), of size sO(k7k), from Claim 3.6. We obtain the1056

hitting set of ΠΣ from Theorem 2.26, and for Σ∧Σ we obtain the hitting set from1057

Theorem 2.27 (due to Lemma 2.17). Finally we combine the two hitting sets using1058

Lemma 2.28 and use the fact that the syntactic degree is bounded by sO(k) to obtain1059

a hitting set Hk−1 of size sO(k7k log log s).1060

However, it remains to show– (1) efficient hitting set for fj/tk−j,j |z=0, for j ∈1061

[k − 2], and most importantly (2) how to translate these hitting sets to that of Φ(f).1062

Recall: Claim 3.8 shows that fk/tk−j,j |z=0 ∈ ARO/ARO, of size sO(k7k) (over1063

F(x)). Thus, it has a hitting set Hj of size sO(k7k log log s) (Theorem 2.27).1064

To translate the hitting set, we need a small property which will bridge the gap1065

of lifting the hitting set to f0.1066

Claim 4.2 (Fix x). For b ∈ Fn, if the following two things hold: (i) fj+1|x=b ̸=1067

0, over Rj+1, and (ii) valz(T̃k−j,j |x=b) = vk−j,j, then fj |x=b ̸= 0, over Rj.1068

Proof. Suppose the hypothesis holds, and fj |x=b = 0, over Rj . Then,

valz

((
fj

T̃k−j,j

)∣∣∣∣
x=b

)
≥ dj − vk−j,j =⇒ valz(∂z

((
fj

T̃k−j,j

)∣∣∣∣
x=b

)
≥ dj+1.
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The last condition implies that ∂z(fj/T̃k−j,j)|x=b = 0, over Rj+1(x). Fixing ε = 01069

we deduce fj+1|x=b = 0. This is a contradiction!1070

Finally, we have already shown in section 3 that T̃k−j,j ∈ (ΠΣ/ΠΣ) ·(Σ∧Σ/Σ∧Σ),1071

and tk−j,j ∈ (ΠΣ/ΠΣ) · (ARO/ARO), of size sO(k7k), which is similar to fk−1. Note:1072

valz of a Σ∧Σ again reduces to a Σ∧Σ question.1073

Joining the dots: The final hitting set. We now have all the ingredients to construct1074

the hitting set for Φ(f0). We know Hk−1 works for fk−1 (as well as t2,k−2, because1075

they both are of the same size and belong to (ΠΣ/ΠΣ) · (ARO/ARO)). This lifts1076

to fk−2. But from the 4-th invariant, we know that Hk−2 works for the z = 01077

part. Eventually, lifting this using Claim 4.2, the final hitting set (in x) will be1078

H :=
⋃

j∈[k−1] Hj . We remark that we do not need extra hitting set for each tk−j,j ,1079

because it is already covered by Hk−1. We have also kept track of deg(z) which is1080

bounded by sO(k). We use a trivial hitting set for z which does not change the size.1081

Thus, we have successfully constructed a sO(k7k log log s)-time hitting set for Σ[k]ΠΣ.1082

Remark. This is a PIT for Gen(k, s), and that too for any field of characteristic = 01083

or ≥ d.1084

4.2. Border PIT for log-variate depth-3 circuits. In this section, we prove1085

Theorem 1.3. This proof is dependent on adapting and extending [49] proof, by1086

showing that there is a poly(s)-time hitting set for log-variate Σ∧Σ-circuits.1087

Theorem 4.3 (Derandomizing log-variate Σ∧Σ). There is a poly(s)-time hitting1088

set for n = O(log s) variate Σ∧Σ-circuits of size s.1089

Proof sketch. Let g = f + ε · Q, such that g ∈ Σ∧Σ, over F(ε), approximates1090

f ∈ Σ∧Σ. The idea is the same as [49]— (1) show that f has poly(s, d) partial1091

derivative space, (2) low partial derivative space implies low cone-size monomials,1092

(3) we can extract low cone-size monomials efficiently, (4) number of low cone-size1093

monomials is poly(sd)-many.1094

We remark that (2) is direct from [47, Corollary 4.14] (with origins in [50]); see1095

Theorem 2.2. (4) is also directly taken from [49, Lemma 5] once we assume (1); for1096

the full statement we refer to Lemma 2.3.1097

To show (1), we know that g has poly(s, d) partial-derivative space over F(ε).1098

Denote1099

Vε :=

〈
∂ g

∂xa
| a < ∞

〉
F(ε)

, and V :=

〈
∂ f

∂xa
| a < ∞

〉
F
.1100

Consider the matrix Mε, where we index the rows by ∂xa , while columns are indexed1101

by monomials (say supporting g), and the entries are the operator-values. Suppose,1102

dim(Vε) =: r ≤ poly(s, d) (because of Σ∧Σ). That means, any (r + 1)-many polyno-1103

mials ∂ g
∂xa are linearly dependent. In other words, determinant of any (r+1)× (r+1)1104

minor of Mε is 0. Note that limε→0 Mε = M , the corresponding partial-derivative1105

matrix for f . Crucially, the zeroness of the determinant of any (r+1)× (r+1) minor1106

of Mε translates to the corresponding (r+1)×(r+1) submatrix of M as well [one can1107

also think of det as a “continuous” function, yielding this property]. In particular,1108

dim(V ) ≤ r ≤ poly(s, d).1109

Finally, to show (3), we note that the coefficient extraction lemma [49, Lemma 4]1110

also holds over F(ε). Thus, given the circuit of g, we can decide whether the coefficient1111

of m =: xa is zero or not, in poly(cs(m), s, d)-time; see Lemma 2.4. Note: the1112
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coefficient is an arbitrary element in F(ε); however we are only interested in its non-1113

zeroness, which is merely ‘unit-cost’ for us.1114

We only extract monomials with cone-size poly(s, d) (property (2)) and there are1115

only poly(s, d) many such monomials. Therefore, we have a poly(s)-time hitting set1116

for Σ∧Σ.1117

Once we have Theorem 4.3, we argue that this polynomial-time hitting set can be1118

used to give a poly-time hitting set for Σ[k]ΠΣ. We restate Theorem 1.3 with proper1119

complexity below.1120

Theorem 4.4 (Efficient hitting set for log-variate Σ[k]ΠΣ). There exists an1121

explicit sO(k7k)-time hitting set for n = O(log s) variate, size-s, Σ[k]ΠΣ circuits.1122

Proof sketch. We proceed similarly as in subsection 4.1, with same notations. The1123

reduction and branching out remains exactly the same; in the end, we get that fk−1 ∈1124

(ΠΣ/ΠΣ) · (ARO/ARO). Crucially, observe that this ARO is not a generic poly-sized1125

ARO; these AROs are de-bordered log-variate Σ∧Σ circuits. From Theorem 4.3, we1126

know that there is a sO(k7k)-time hitting set (because of the size blowup, as seen in1127

section 3). Combining this hitting set with ΠΣ-hitting set is easy, by Lemma 2.28.1128

Moreover, tk−j,j are also of the form (ΠΣ/ΠΣ) · (ARO/ARO), where again these1129

AROs are de-bordered log-variate Σ∧Σ circuits and sO(k7k)-time hitting set exists.1130

Therefore, take the union of the hitting sets (as before), each of size sO(k7k). This1131

gives the final hitting set which is again sO(k7k)-time constructible!1132

5. Gentle leap into depth-4: De-bordering Σ[k]ΠΣ∧ circuits. The main1133

content of this section is to sketch the de-bordering theorem for Σ[k]ΠΣ∧. We intend1134

to extend DiDIL and induct on the bloated model, as sketched in subsection 1.4.1135

Theorem 5.1 (Σ[k]ΠΣ∧ upper bound). Let f(x) ∈ F[x1, . . . , xn], such that f1136

can be computed by a Σ[k]ΠΣ∧-circuit of size s. Then f is also computable by an1137

ABP (over F), of size sO(k·7k).1138

Proof sketch. We will go through the proof of Theorem 3.2 (see section 3), while1139

reusing the notations, and point out the important maneuvering for DiDIL to work on1140

this more general bloated-model (ΠΣ∧/ΠΣ∧) · (Σ∧Σ∧/Σ∧Σ∧).1141

Base case. The analysis remains unchanged. We merely have to de-border1142

ΠΣ∧ and Σ∧Σ∧ for numerator and denominator separately using Lemma 2.22 and1143

Lemma 2.24. Then use the product lemma (Lemma 2.21) to conclude:1144

(ΠΣ∧/ΠΣ∧) · (Σ∧Σ∧/Σ∧Σ∧) ⊆ (ΠΣ∧/ΠΣ∧) · (ARO/ARO) ⊆ ABP/ABP .1145

Reducing the problem to k−1. To facilitate DiDIL, we use the same Φ : F(ε)[x] −→1146

F(ε)[x, z]; since αi are random, the bottom Σ∧ circuits are ‘invertible’ (mod zd). By1147

similar argument, it suffices to upper bound Φ(f).1148

We will apply again divide and derive to reduce the fanin step by step. We just1149

need to understand Ti,j . Similar to Claim 3.6, we claim the following.1150

Claim 5.2. T1,k−1 ∈ ΠΣ∧
ΠΣ∧ · Σ∧Σ∧

Σ∧Σ∧ , an element in the ring Rk−1(x, ε), of size at1151

most sO(k7k).1152

Proof. The main part is to show that dlog acts on ΠΣ∧ circuits “well”. To1153

elaborate, we note that Equation 3.3 can be written for Σ∧ circuits, giving a Σ∧Σ∧1154

circuit. To elaborate, let A − z · B =: h ∈ Σ∧, such that 0 ̸= A ∈ F(ε). Therefore,1155
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over R1(x), we have1156

dlog(h) = − ∂z (z ·B)

A (1− z ·B/A)
= −∂z (z ·B)

A
·
d1−1∑
j=0

(
z ·B
A

)j

.1157

1158

Once we use the fact that Σ∧Σ∧ is closed under multiplication (Lemma 2.12), it1159

readily follows that dlog(ΠΣ∧) ∈ Σ∧Σ∧. Moreover, the derivative of Σ∧Σ∧ is again1160

a Σ∧Σ∧ circuit, due to easy interpolation (Lemma 2.15). Following the same proof1161

arguments (as for Theorem 3.2), we can establish the above claim.1162

It was already remarked that properties shown in subsection 2.3 hold for Σ∧Σ∧1163

circuits as well. Therefore, the rest of the calculations remain unchanged, and the1164

size claim holds.1165

Interpolation & Definite integration. It is again not hard to see that1166

fj/tk−j,j |z=0 ∈ lim
ε→0

∑
i∈[k−j]

F(ε) · (Σ∧Σ∧/Σ∧Σ∧) ⊆ ARO/ARO ⊆ ABP/ABP .1167

Here, we have used the facts that Σ∧Σ∧ is closed under multiplication (Lemma 2.12)1168

and Σ∧Σ∧ ⊆ ARO (Lemma 2.24). The remaining steps also follow similarly once we1169

have the ABP/ABP form of de-bordered expressions.1170

We remark that in all the steps the size and degree claims remain the same and1171

hence the final size of the circuit for Φ(f) immediately follows.1172

6. Blackbox PIT for border depth-4 circuits. The DiDIL-paradigm that1173

works for depth-3 circuits can be used to give hitting set for border depth-4 Σ[k]ΠΣΠ[δ]1174

and Σ[k]ΠΣ∧ circuits. But before that, we have to argue that we have efficient hitting1175

set for the wedge model Σ∧ΣΠ[δ], which we discuss in the next subsection. Later, we1176

will proof-sketch the hitting set for border bounded depth-4 circuits.1177

6.1. Efficient hitting set for Σ∧ΣΠ[δ]. Forbes [48] gave quasipolynomial-time1178

blackbox PIT for Σ∧ΣΠ[δ]; this was basically a rank-based method. We will make1179

some small observations to extend the same for Σ∧ΣΠ[δ] as well. We encourage inter-1180

ested readers to refer [48] for details. First, we need some definitions and properties.1181

Shifted Partial Derivative measure x≤ℓ∂≤m is a linear operator first introduced1182

in [73, 63] as:1183

x≤ℓ∂≤m(g) := {xc∂xb (g)}degxc≤ℓ,degxb≤m .1184

It was shown in [48] that the rank of shifted partial derivatives of a polynomial1185

computed by Σ∧ΣΠ[δ] is small. We state the result formally in the next lemma.1186

Consider the fractional field R := F(ε).1187

Lemma 6.1 (Measure upper bound). Let g(ε,x) ∈ R[x1, . . . , xn] be computable1188

by Σ∧ΣΠ[δ] circuit of size s. Then1189

rkx≤ℓ∂≤m(g) ≤ s ·m ·
(
n+ (δ − 1)m+ ℓ

(δ − 1)m+ ℓ

)
.1190

Further they observed that, rank can be lower bounded using Trailing Monomial.1191

Under any monomial ordering, the trailing monomial of g denoted by TM(g) is the1192

smallest monomial in the set support(g) := {xa : coefxa(g) ̸= 0}.1193

Proposition 6.2 (Measure the trailing monomial). Consider g ∈ R[x]. For1194

any ℓ,m ≥ 0,1195

rkspanx≤ℓ∂≤m(g) ≥ rkspanx≤ℓ∂≤m (TM(g)) .1196
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For a large enough characteristic, lower bound on a monomial was obtained.1197

Lemma 6.3 (Monomial lowerbound). Consider a monomial xa ∈ R[x1, . . . , xn].1198

Then,1199

rkspan
(
x≤ℓ∂≤m (xa)

)
≥
(
η

m

)(
η −m+ ℓ

ℓ

)
1200

where η := |support (xa)|.1201

In [48] the above results were combined to show that the trailing monomial of1202

polynomials computed by Σ∧ΣΠ[δ] circuits have log-small support size. Using the1203

same idea we show that if such a polynomial approximates f , then support of TM(f)1204

is also small. We formalize this in the next lemma.1205

Lemma 6.4 (Trailing monomial support). Let g(ε,x) ∈ R[x1, . . . , xn] be com-1206

putable by a Σ∧ΣΠ[δ] circuit of size s such that g = f + ε · Q where f ∈ F[x] and1207

Q ∈ F[ε,x]. Let η := |support(TM(f))|. Then η = O(δ log s).1208

Proof. Let xa := TM(f) and S := {i | ai ̸= 0}. Define a substitution map ρ1209

such that xi → yi for i ∈ S and xi → 0 for i ̸∈ S. It is easy to observe that1210

TM(ρ(f)) = ρ(TM(f)) = ya. Using Lemma 6.1 we know:1211

rkRy≤ℓ∂≤m(ρ(g)) ≤ s ·m ·
(
η + (δ − 1)m+ ℓ

(δ − 1)m+ ℓ

)
=: R .1212

To obtain the upper bound for ρ(f) we use the following claim.1213

Claim 6.5. rkFy
≤ℓ∂≤m(ρ(f)) ≤ R.1214

Proof. Define coefficient matrix N(ρ(g)) with respect to y≤ℓ∂≤m(ρ(g)) as follows:1215

the rows are indexed by the operators y=ℓi ∂y=mi , while the columns are indexed by1216

the terms present in ρ(g); and the entries are the respective operator-action on the1217

respective term in ρ(g). Note that rkF(ε)N(ρ(g)) ≤ R. Similarly define N(ρ(f)) with1218

respect to y≤ℓ∂≤m(ρ(f)), then it suffices to show that rkFN(ρ(f)) ≤ R.1219

For any r > R, let N (ρ(g)) be a r × r sub-matrix of N(ρ(g)). The rank bound1220

ensures: detN (ρ(g)) = 0. This will remain true under the limit ε = 0; thus,1221

det(N (ρ(f))) = 0.1222

Since r > R was arbitrary and linear dependence is preserved, we deduce:

rkFN(ρ(f)) ≤ R .

For lower bound, recall ya = TM(ρ(f)). Then, by Proposition 6.2 and Lemma 6.3,1223

we get:1224

rkFy
≤ℓ∂≤m(ρ(f)) ≥

(
η

m

)(
η −m+ ℓ

ℓ

)
.(6.1)1225

1226

Comparing Claim 6.5 and Equation 6.1 we get:1227

s ≥ 1

m
·
(
η

m

)
·
(
η −m+ ℓ

ℓ

)
/

(
η + (δ − 1)m+ ℓ

(δ − 1)m+ ℓ

)
.1228

For ℓ := (δ−1)(η+(δ−1)m) and m := ⌊n/e3δ⌋, [48, Lem.A.6] showed η ≤ O(δ log s).1229

Existence of a small support monomial in a polynomial, which is being approxi-1230

mated, is a structural result which will help in constructing a hitting set for this larger1231

class. The idea is to use a map that reduces the number of variables to support-size,1232

and then invoke Theorem 2.25.1233
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Theorem 6.6 (Hitting set for Σ∧ΣΠ[δ]). For the class of n-variate, degree d1234

polynomials approximated by Σ∧ΣΠ[δ] circuits of size s, there is an explicit set H ⊆1235

Fn of size sO(δ log s) i.e., for every such nonzero polynomial f there exists an α ∈ H1236

for which f(α) ̸= 0.1237

Proof. Let g(ε,x) ∈ R[x1, . . . , xn] be computable by a Σ∧ΣΠ[δ] circuit of size s1238

such that g =: f + ε ·Q, where f ∈ F[x] and Q ∈ F[ε,x]. Then Lemma 6.4 shows that1239

there exists a monomial xa of f such that η := |support(xa)| = O(δ log s).1240

Let S ∈
(
[n]
η

)
. Define a substitution map ρS such that xi → yi for i ∈ S and1241

xi → 0 for i ̸∈ S. Note that, under this substitution non-zeroness of f is preserved1242

for some S; because monomials of support S ⊇ support(xa) will survive for instance.1243

Essentially ρS(f) is an η-variate degree-d polynomial. For which Theorem 2.25 gives1244

a trivial hitting set of size O(dη). Therefore, with respect to S we get a hitting set1245

HS of size O(dη). To finish, we do this for all such S, to obtain the final hitting set1246

H of size:1247 (
n

η

)
·O (dη) ≤ O((nd)η) .

1248

Remark 6.7. Unlike border-depth-3 PIT result, we obtain this result without de-1249

bordering the circuit at all.1250

6.2. DiDIL on depth-4 models. The DiDIL-paradigm along with the branching1251

idea, in subsection 4.1, can be used to give hitting set for border depth-4 Σ[k]ΠΣΠ[δ]1252

and Σ[k]ΠΣ∧ circuits. For brevity, we denote these two types of (non-border) depth-41253

circuits by Σ[k]ΠΣΥ circuits where Υ ∈ {∧,Π[δ]}. We will give separate hitting set1254

for the border of each class, while analysing them together.1255

Theorem 6.8 (Hitting set for bounded border depth-4). There exists an ex-1256

plicit sO(k·7k·log log s) (respectively sO(δ2k7k log s)-time hitting set for Σ[k]ΠΣ∧ (respec-1257

tively Σ[k]ΠΣΠ[δ])-circuits of size s.1258

Proof sketch. We will again follow the same notation as subsection 4.1. Let g0 :=∑
i∈[k] Ti,0 = f0 + εS0 such that g0 is computable by Σ[k]ΠΣΥ over F(ε). As earlier,

we will instead work with bloated model that preserves the structure on applying the
DiDIL technique. The bloated model we consider is

Σ[k] (ΠΣΥ/ΠΣΥ) (Σ∧ΣΥ/Σ∧ΣΥ) .

Define a map Φ : F(ε)[x] → F(ε)[x, z] such that xi → z · xi + αi. Essentially, our ΣΥ1259

circuits are at most s-sparse, so it suffices to consider the sparse-PIT [76], yielding a1260

different Φ. The invertible map implies: f0 ̸= 0 if and only if Φ(f0) ̸= 0.1261

The next steps are essentially the same: reduce k to the bloated k − 1, and1262

inductively to the bloated k = 1 case. There will be ‘branches’ and for each branch1263

we will give efficient hitting sets; taking their union will give the final hitting set.1264

By Divide and Derive, we will eventually show that1265

f0 ̸= 0 ⇐⇒ fk−1 ̸= 0overRj(x), or

k−2∨
i=1

(fi/tk−i,i|z=0 ̸= 0, overF(x)) .1266

T1,k−1 ∈ (ΠΣΥ/ΠΣΥ) (Σ∧ΣΥ/Σ∧ΣΥ), over Rk−1(x, ε), similar to Claim 5.2. The1267

trick is again to use dlog and show that dlog(ΠΣΥ) ∈ Σ∧ΣΥ. However the size blowup1268

behaves slightly differently. We point this out in the next claim.1269
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Claim 6.9. For Σ[k]ΠΣ∧, respectively Σ[k]ΠΣΠ[δ], we have

T1,k−1 ∈
(
ΠΣ∧
ΠΣ∧

)
·
(
Σ∧Σ∧
Σ∧Σ∧

)
respectively

(
ΠΣΠ[δ]

ΠΣΠ[δ]

)
·
(
Σ∧ΣΠ[δ]

Σ∧ΣΠ[δ]

)
,

over Rk−1(x, ε) of size sO(k7k) respectively (s3δ)O(k7k).1270

Proof sketch. We explain it for one step i.e. over R1(x, ε). Let A−z ·B = h ∈ ΣΥ,1271

such that A ∈ F(ε) (we have already shifted). Therefore, over R1(x), we have1272

dlog(h) = − ∂z (z ·B)

A (1− z ·B/A)
= −B

A
·
d1−1∑
j=0

(
z ·B
A

)j

.1273

1274

Here, use the fact that Σ∧ΣΥ is closed under multiplication. For Σ∧Σ∧ circuits, the1275

calculations remains the same as in section 5. However, for Σ∧ΣΠ[δ] circuits, note1276

that as h is shifted, size(B) is no longer poly(s); but it is at most 3δ ·s, see Claim 2.20.1277

Therefore, the claim follows.1278

Eventually, one can show (using Lemma 2.21 to distribute):1279

fk−1 ∈ (ΠΣΥ/ΠΣΥ) · (Σ∧ΣΥ/Σ∧ΣΥ) ⊆ (ΠΣΥ/ΠΣΥ) · (Σ∧ΣΥ/Σ∧ΣΥ) .1280

When Υ = ∧, we know Σ∧Σ∧ ⊆ ARO and thus this has a hitting set of size1281

sO(k7k log log s) (Theorem 2.27). We also know hitting set for ΠΣ∧ (Theorem 2.26).1282

Combining them using Lemma 2.28, we have a quasipolynomial-time hitting set of1283

size sO(k7k log log s).1284

As seen before, we also need to understand z = 0 evaluation. By similar argument,1285

it will follow that1286

fj/tk−j,j |z=0 ∈ lim
ε→0

∑
i∈[k−j]

F(ε) · (Σ∧ΣΥ/Σ∧ΣΥ) ⊆ Σ∧ΣΥ .1287

When Υ = ∧, we can de-border and this can be shown to be an ARO. Thus, in1288

that case fj/tk−j,j |z=0 ∈ ARO/ARO, where hitting set is known (similarly as before)1289

giving hitting set for each branch. Once we have hitting set for each branch, we can1290

take union (similar to Claim 4.2) to finally give the desired hitting set.1291

Unfortunately, we do not know Σ∧ΣΥ, when Υ = Π[δ], as the duality trick cannot1292

be directly applied. However, as we know hitting set for Σ∧ΣΠ[δ], from Theorem 6.6;1293

we will use it to get the final hitting set. To see why this works, note that we need1294

to ’hit’ fk−1 ∈
(
ΠΣΠ[δ]/ΠΣΠ[δ]

)
· Σ∧ΣΠ[δ]/Σ∧ΣΠ[δ]. We know hitting sets for both1295

ΠΣΠ[δ] (Theorem 2.26) and Σ∧ΣΠ[δ] (Theorem 6.6), thus combining them is easy1296

Lemma 2.28.1297

To get the final estimate, define s′ := sO(δk7k); which signifies the size blowup due1298

to DiDIL. Next, the hitting set Hk−1 for fk−1 has size (nd)O(δ log s′) ≤ sO(δ2k7k log s).1299

We know that similar bound also holds for each branch. Taking their union gives the1300

final hitting set of the size as claimed.1301

7. Conclusion & future direction. This work introduces the DiDIL-technique1302

and successfully de-borders as well as derandomizes Σ[k]ΠΣ. Further we extend this1303

to depth-4 as well. This opens a variety of questions which would enrich border-1304

complexity theory.1305

1. Does Σ[k]ΠΣ ⊆ ΣΠΣ, or Σ[k]ΠΣ ⊆ VF, i.e. does it have a small formula?1306

2. Can we show that VBP ̸= Σ[k]ΠΣ? 11307

1Very recently, Dutta and Saxena [39] showed an exponential gap between the two classes.
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3. Can we improve the current hitting set of sexp(k)·log log s to sO(poly(k)·log log s),1308

or even a poly(s)-time hitting set? The current technique seems to blowup1309

the exponent.1310

4. Can we de-border Σ ∧ ΣΠ[δ], or Σ[k]ΠΣΠ[δ], for constant k and δ? Note that1311

we already have quasi-derandomized the class (Theorem 6.8).1312

5. Can we show that constant border-waring rank is polynomially bounded by1313

waring rank, the degree and the number of variables? i.e. Σ[k] ∧ Σ ⊆ Σ ∧ Σ1314

for constant k?1315

6. Can we de-border Σ[2]ΠΣ∧[2]? i.e. the bottom-layer has variable mixing.1316

De-bordering vs. Derandomization. In this work, we have successfully de-bordered1317

and (quasi)-derandomized Σ[k]ΠΣ. Here, we remark that de-bordering did not di-1318

rectly give us a hitting set, since the de-bordering result was more general than the1319

models where explicit hitting sets are known. However, we were still able to do it1320

because of the DiDIL-technique. Moreover, while extending this to depth-4, we could1321

quasi-derandomize Σ[k]ΠΣΠ[δ], because eventually hitting set for Σ ∧ ΣΠ[δ] is known.1322

However we could not de-border Σ ∧ ΣΠ[δ], because the duality-trick fails to give1323

an ARO. This whole paradigm suggests that de-bordering may be harder than its1324

derandomization.1325
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