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DETERMINISTIC IDENTITY TESTING PARADIGMS FOR
BOUNDED TOP-FANIN DEPTH-4 CIRCUITS*

PRANJAL DUTTAT, PRATEEK DWIVEDI}, AND NITIN SAXENAS

Abstract. Polynomial Identity Testing (PIT) is a fundamental computational problem. The
famous depth-4 reduction result by Agrawal and Vinay (FOCS 2008) has made PIT for depth-4
circuits an enticing pursuit. A restricted depth-4 circuit computing a n-variate degree-d polynomial
of the form Zle Hj gij, where degg;; < 9 is called SEISIP! circuit. On further restricting 9ij

to be sum of univariates we obtain SIFITITA circuits. The largely open, special-cases of SIFITISII]
for constant k and §, and SIFIIISA have been a source of many great ideas in the last two decades.
For eg. depth-3 ideas of Dvir and Shpilka (STOC 2005), Kayal and Saxena (CCC 2006), and Saxena
and Seshadhri (FOCS 2010 and STOC 2011). Further, depth-4 ideas of Beecken, Mittmann and
Saxena (ICALP 2011), Saha, Saxena and Saptharishi (Comput.Compl. 2013), Forbes (FOCS 2015),
and Kumar and Saraf (CCC 2016). Additionally, geometric Sylvester-Gallai ideas of Kayal and
Saraf (FOCS 2009), Shpilka (STOC 2019), and Peleg and Shpilka (CCC 2020, STOC 2021). Very
recently, a subexponential-time blackbox PIT algorithm for constant-depth circuits was obtained via
lower bound breakthrough of Limaye, Srinivasan, Tavenas (FOCS 2021). We solve two of the basic
underlying open problems in this work.

We give the first polynomial-time PIT for LHIISA. We also give the first quasipolynomial
time blackboz PIT for both SFIIILA and SFIILIIC), A key technical ingredient in all the three
algorithms is how the logarithmic derivative, and its power-series, modify the top Il-gate to A.

Key words. Polynomial identity testing, hitting set, depth-4 circuits

AMS subject classifications. 68W30, 68Q25

1. Introduction: PIT & beyond. Algebraic circuits are natural algebraic
analog of boolean circuits, with the logical operations being replaced by + and x
operations over the underlying field. The study of algebraic circuits comprise the large
study of algebraic complexity, mainly pioneered (and formalized) by Valiant [93]. A
central problem in algebraic complexity is an algorithmic design problem, known as
Polynomial Identity Testing (PIT): given an algebraic circuit C over a field F and input
variables 1, ..., T,, determine whether C computes the identically zero polynomial.
PIT has found numerous applications and connections to other algorithmic problems.
Among the examples are algorithms for finding perfect matchings in graphs [63, 67,
27], primality testing [4], polynomial factoring [56, 22|, polynomial equivalence [24],
reconstruction algorithms [52, 89, 48] and the existence of algebraic natural proofs
[16, 57]. Moreover, efficient design of PIT algorithms is intrinsically connected to
proving strong lower bounds [43, 1, 46, 26, 33, 17, 23]. Interestingly, PIT also emerges
in many fundamental results in complexity theory such as IP = PSPACE [88, 64], the
PCP theorem [10, 11], and the overarching Geometric Complexity Theory (GCT)
program towards P # NP [69, 68, 36, 45].

There are broadly two settings in which the PIT question can be framed. In
the whitebox setup, we are allowed to look inside the wirings of the circuit, while in
the blackbox setting we can only evaluate the circuit at some points from the given

*A preliminary version appeared in 36" Computational Complexity Conference (CCC), 2021.
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2 P. DUTTA, P. DWIVEDI AND N. SAXENA

domain. There is a very simple randomized algorithm for this problem - evaluate
the polynomial at a random point from a large enough domain. With very high
probability, a nonzero polynomial will have a nonzero evaluation; this is famously
known as the Polynomial Identity Lemma [71, 18, 95, 87]. It has been a long standing
open question to derandomize this algorithm.

For many years, blackbox identity tests were only known for depth-2 circuits which
compute sparse polynomials [13, 53]. In a surprising result, Agrawal and Vinay [7]
showed that a complete derandomization of blackbox identity testing for just depth-
4 algebraic circuits (XTIXII) already implies a near complete derandomization for
the general PIT problem. More recent depth reduction results [54, 40], and the
bootstrapping phenomenon [2, 58, 38, 9] show that even PIT for very restricted classes
of depth-4 circuits (even depth-3) would have very interesting consequences for PIT
of general circuits. These results make the identity testing regime for depth-4 circuits,
a very meaningful pursuit.

Three PITs in one-shot. Following the same spirit, here we solve three important
(and open) PIT questions. We give the first deterministic polynomial-time whitebox
PIT algorithm for the bounded sum of product of sum of univariates circuits [76, Open
Prob. 2]. Further, we give a quasipolynomial-time blackbox algorithm for the same
class of circuits. These circuits are denoted by L¥ITIXA and compute polynomials of
the form Zie[k]Hj (gijl(ml) + -4 g”n(l‘n))

Whitebox and Blackboz PIT for the SIFITISA circuits is in polynomial

and quasi-polynomial time respectively.
A similar technique also gives a quasi-polynomial time blackbox PIT algorithm for
the bounded sum of product of bounded degree sparse polynomials circuits. They are
denoted by SFTIXIIN (where k and § are constants).

Blackbox PIT for the ST circuits is in quasi-polynomial time.
LHFIIXIIP circuits compute polynomials which are of the form Yiemw Il gi5(x), where
deg(g;j) <. Even § = 2 was a challenging open problem [59, Open Problem 2].

1.1. Main results: An analytic detour to three PITs. Though some at-
tempts have been made to solve PIT for SFITISA, an efficient PIT for k > 3 even in
the whitebox settings remains open, see [76, Open Prob. 2]. Our first result addresses
this problem and designs a polynomial time algorithm (Algorithm 3.1). In our pursuit
we discover an analytic and non-ideal based new technique which we refer as DiDI.
Throughout the paper, we will work with F = Q, though all the results hold for field
of large characteristic.

THEOREM 1.1 (Whitebox SFITISA PIT). There is a deterministic, whitebox
sOC™)_time PIT algorithm for SWITISA circuits of size s, over Flx].

Remark 1.2.
1. Case k < 2 can be solved by invoking [76, Theorem 5.2]; but k > 3 was open.
2. Our technique necessarily blows up the exponent exponentially in k. In par-
ticular, it would be interesting to design an efficient time algorithm when
k = 0O(logs).
3. It is not clear if the current technique gives PIT for SMIIZAR! circuits,
i.e. sum of bivariate polynomials computed and fed into the top product gate.

Next, we go to the blackbox setting and address two models of interest, namely—
YA and SFISIP! where k, 6 are constants. Our work builds on previous ideas
for unbounded top fanin (1) Jacobian [5], (2) the known blackbox PIT for X AXA
and YA XTI [41, 29] while maneuvering with an analytic approach via power-series,
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which unexpectedly reduces the top II-gate to a A-gate.

THEOREM 1.3 (Blackbox depth-4 PIT).
1. There is a sOk1081985) time blackbox PIT algorithm for SFIIISA circuits of
size s, over Flx].
2. There is a s°0°k1989) time blackbor PIT algorithm for SFIIXIIO circuits
of size s, over Flx].

Remark 1.4.
1. Theorem 1.3 (b) has a better dependence on k, but worse on s, than Theo-
rem 1.1. Our results are quasipoly-time even up to k,d = poly(log s).
2. Theorem 1.3 (a) is better than Theorem 1.3 (b), because XAXA has a faster
algorithm than ¥ A XTI
3. Even for SBIIEA and BTSB! models, we leave the poly-time blackbox
question open.

1.2. Prior works on related models. In the last two decades, there has been a
surge of results on identity testing for restricted classes of bounded depth algebraic cir-
cuits (e.g. ‘locally’ bounded independence, bounded read/occur, bounded variables).
There have been numerous results on PIT for depth-3 circuits with bounded top fanin
(known as S TI¥-circuits). Divir and Shpilka [25] gave the first quasipolynomial-time
deterministic whitebox algorithm for k¥ = O(1), using rank based methods, which fi-
nally lead Karnin and Shpilka [49] to design algorithm of same complexity in the
blackbox setting. Kayal and Saxena [51] gave the first polynomial-time algorithm
of the same. Later, a series of works in [84, 85, 86, 5] generalized the model and
gave n?F)_time algorithm when the algebraic rank of the product polynomials are
bounded.

There has also been some progress on PIT for restricted classes of depth-4 circuits.
A quasipolynomial-time blackbox PIT algorithm for multilinear M TS II-circuits was
designed in [47], which was further improved to a nO**)_time deterministic algorithm
in [80]. A quasipolynomial blackbox PIT was given in [12, 59] when algebraic rank
of the irreducible factors in each multiplication gate as well as the bottom fanin
are bounded. Further interesting restrictions like sum of product of fewer variables,
and more structural restrictions have been exploited, see [32, 6, 29, 66, 60]. Some
progress has also been made for bounded top-fanin and bottom-fanin depth-4 circuits
via incidence geometry [39, 90, 73]. In fact, very recently, [74] gave a polynomial-time
blackbox PIT for SBIIXIIE - circuits.

The authors recently generalised their novel DiDI-technique to solve ’border PIT’
of depth-4 circuits [20]. Specifically, they give a §O(k-T"loglogs) ime and sO(07 k7" 1og s)
time blackbox PIT algorithm for LFIIIEA and SFIITEIIN respectively. By definition,
border classes capture exact complexity classes, hence border PIT results seeminly
subsumes the results we present in this paper. However, the whitebox PIT algorithm
here is much more efficient than their quasi-poly time blackbox algorithm. Further,
the time complexity of blackbox PIT algorithms has a better dependence on k and
0 compared to their exponential dependence. Lastly, the proofs in this paper are
simpler as we don’t have to deal with an infinitesimally close approximation of poly-
nomials in border complexity classes. Very recently, Dutta and Saxena [21] showed an
exponential-gap fanin-hierarchy theorem for bounded depth-3 circuits which is also
based on a finer generalization of the DiDI-technique.

In a breakthrought result by Limaye, Srinivasan and Tavenas [62] the first super-
polynomial lower bound for constant depth circuits was obtained. Their lower bound

This manuscript is for review purposes only.
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4 P. DUTTA, P. DWIVEDI AND N. SAXENA

Model Time Ref.
Ry poly(n, d*) [85]
Multilinear ST poly(n®*9))  [80, 5]
YIIXII of bounded trdeg poly(strdee) [12]
»®OMIEIY of bounded local trdeg  QP(n) [60]

DN INIIE poly(n, d) [74]
SETINA 5O (k-T"loglog s) [20]
SETIRTI6] $O(62-k:T" log 5) [20]
SIS SUBEXP(n)  [62]
Whitebox ZFIIEA sOkT) This work.
SFEITEA 5O(kloglog s) This work.
SH ISl 00"k logs)  This work.

TABLE 1

Time complexity comparison of PIT algorithms related to ZIIXIL circuits

result, together with the ‘hardness vs randomness’ tradeoff result of [17] gives the
first deterministic blackbox PIT algorithm for general depth-4 circuits which runs in
s9(°) for all real € > 0. Their result is the first subexponential time PIT algorithm for
depth-4 circuits. Moreover, compared to their algorithm, our quasipoly time blackbox
and polynomial time whitebox algorithms are significantly faster.

Limitations of known techniques. People have studied depth-4 PIT only with
extra restrictions, mostly due to the limited applicability of the existing techniques as
they were tailor-made for the specific models and do not generalize. E.g. the previous
methods handle § =1 (i.e. linear polynomials at the bottom) or k = 2 (via factoring,
[76]). While k =2 to 3, or § =1 to 2 (i.e. ‘linear’ to ‘quadratic’) already demands a
qualitatively different approach.

Whitebox ZFITIEA model generalizes the famous bounded top fanin depth-3 cir-
cuits LFITIY of [51]; but their Chinese Remaindering (CR) method, loses applicability
and thus fails to solve even a slightly more general model. The blackbox setting in-
volved similar ‘certifying path’ ideas in [85] which could be thought of as general
CR. It comes up with an ideal I such that f # 0 mod I and finally preserves it un-
der a constant-variate linear map. The preservation gets harder (for both SHEIYA
and E[k]HEH[5]) due to the increased non-linearity of the ideal I generators. Intu-
itively, larger ¢ via ideal-based routes, brings us to the Grébner basis method (which
is doubly-exponential-time in n) [94]. We know that ideals even with 3-generators
(analogously k = 4) already capture the whole ideal-membership problem [79].

The algebraic-geometric approach to tackle SFIIXIIN has been explored in
[12, 39, 66, 37]. The families which satisfy a certain Sylvester—Gallai configuration
(called SG-circuits) is the harder case which is conjectured to have constant tran-
scendence degree [39, Conj. 1]. Non-SG circuits is the case where the nonzeroness-
certifying-path question reduces to radical-ideal non-membership questions [35]. This
is really a variety question where one could use algebraic-geometry tools to design a
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poly-time blackbox PIT. In fact, very recently, Guo [37] gave a %" -time PIT by con-
structing explicit variety evasive subspace families. Unfortunately, this is not the case
in the ideal non-membership; this scenario makes it much harder to solve SFITISITP!
From this viewpoint, radical-ideal-membership explains well why the intuitive S 1I2
methods do not extend to XTI

Interestingly, Forbes [29] found a quasipolynomial-time PIT for Y A XM using
shifted-partial derivative techniques; but it naively fails when one replaces the A-gate
by II (because the ‘measure’ becomes too large). The duality trick of [81] completely
solves whitebox PIT for ¥ AX¥A, by transforming it to a read-once oblivious ABP
(ROABP); but it is inapplicable to our models with the top II-gate (due to large
waring rank and ROABP-width). A priori, our models are incomparable to ROABP,
and thus the famous PIT algorithms for ROABP [32, 31, 41] are not expected to help
either.

Similarly, a naive application of the Jacobian and certifying path technique from
[5] fails for our models because it is difficult to come up with a faithful map for
constant-variate reduction. Kumar and Saraf [59] crucially used that the computed
polynomial has low individual degree (such that [26] can be invoked), while in [60] they
exploits the low algebraic rank of the polynomials computed below the top Il-gate.
Neither of them hold in general for our models. Very recently, Peleg and Shpilka [74]
gave a poly-time blackbox PIT for LPBIILIIR, via incidence geometry (e.g. Edelstein-
Kelly theorem involving ‘quadratic’ polynomials), by solving [39, Conj. 1] for k =
3,0 = 2. The method seems very strenuous to generalize even to ‘cubic’ polynomials
(6=3=k).

PIT for other models. Blackbox PIT algorithms for many restricted models
are known. Egs. ROABP related models [75, 44, 3, 41, 42, 31, 8], log-variate circuits
[30, 14], and non-commutative models [34, 61].

1.3. Techniques and motivation. Both the proofs are analytic as they use
logarithmic derivative, and its power-series expansion which greatly transform the
respective models. Where the nature of the first proof is inductive, the second is
a more direct one-shot proof. In both the cases, we essentially reduce to the well-
understood wedge models, that have unbounded top fanin, yet for which PITs are
known. This reduction is unforeseeable and quite ‘power’ful.

The analytic tool that we use, appears in algebra and complexity theory through
the formal power series ring R[[z1,...,z,]] (in short R[[x]]), see [70, 92, 22]. The
advantages of the ring R[[x]] are many and they usually emerge because of the inverse
identity: (1 —z1)™' = Y_,5, 2}, which does not make sense in R[z], but is valid in
R[[z]]. Other analytic tools used are inspired from Wronskian (linear dependence)
[55, Theorem 7] [50], Jacobian (algebraic dependence) [12, 5, 72], and logarithmic
derivative operator dlog , (f) = (0, f)/f.

We will be work with the division operator (e.g. R(z1), over a certain ring R).
However, the divisions do not come for free as they require invertibility with respect
to z; throughout (again landing us in R[[z1]]. For circuit classes C, D we define class

C/D:={f/g|feC.D>g+#0}
Similarly C - D to denotes the class taking respective products.

1.3.1. The DiDI-technique. In Theorem 1.1 we introduce a novel technique for
designing PIT algorithms which comprises of inductively applying two fundamental
operations on the input circuits to reduce it to a more tractable model. Suppose
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6 P. DUTTA, P. DWIVEDI AND N. SAXENA

we want to test Zie[k] T; L 0 where each T; is computable by IIXA. The idea is
to DIvide it by T}, to obtain 1 + Zie[kfl] T; /Ty, and then Derivative to reduce the
fanin to £ — 1 and obtain Zie[kq] T;. Naturally, these operations pushes us to work
with the fractional ring (e.g. R(z1), over a certain ring R), further it also distorts
the model as 7;’s are no longer computable by simple IIXA circuits. However, with
careful analytically analysis we establish that the non-zeroness is preserved in the
reduced model. The process is then repeated until we reach k = 1, while maintaining
the invariants which help us in preserving the non-zeroness till the end. We finish the
proof by showing that the identity testing of reduced model can be done using known
PIT algorithms.

1.3.2. Jacobian hits again. In Theorem 1.3 we exploit the prowess of the Ja-
cobian polynomial first introduced in [12] and later explored in [5] to unify known

PIT algorithms and design new ones. Suppose we want to test Zie[k] T; z 0, where

T; € TIXTIP) (respec. TIXA). We associate the Jacobian J(T%,...,T,) to captures
the algebraic independence of T7,...,T, assuming this to be a transcendence basis
of the T;’s. We design a variable reducing linear map ® which preserves the alge-
braic independece of Ti,...,T,. and show that for any C: C(T},...,Tx) = 0 <—
C(®(Ty),...,P(Tx)) = 0. Such a map is called ‘faithful’ [5]. The map ® ultimately
provides a hitting set for T7 + ...+ T , as we reduce to a PIT of a polynomial over
‘few’ (roughly equal to k) variables, yielding a QP-time algorithm.

2. Preliminaries. Before proving the results, we describe some of the assump-
tions and notations used throughout the paper. @ denotes (x1,...,x,). [n] denotes

{1,...,n}.

2.1. Notations and Definitions.

e Logarithmic derivative. Over a ring R and a variable y, the logarithmic
derivative dlog, : R[y] — R(y) is defined as dlog,(f) := 0, f/f; here 9,
denotes the partial derivative with respect to variable y. One important
property of dlog is that it is additive over a product as

dlogy(f-g) — ay(f g) — (f ayg + g ai/f) — dlogy(f)—i-dlogy(g)
f-g fg
We refer this effect as linearization of product.

e Circuit size. Sparsity sp(-) refers to the number of nonzero monomials. In
this paper, it is a parameter of the circuit size. In particular, size(gy - - gs) =
Sicis) (sP(9:) + deg(g:)), for gi € SA (vespectively YII00). In whitebox set-
tings, we also include the bit-complezity of the circuit (i.e. bit complexity of
the constants used in the wires) in the size parameter. Some of the com-
plexity parameters of a circuit are depth (number of layers), syntactic degree
(the maximum degree polynomial computed by any node), fanin (maximum
number of inputs to a node).

e Hitting set. A set of points H C F" is called a hitting-set for a class C
of n-variate polynomials if for any nonzero polynomial f € C, there exists a
point in H where f evaluates to a nonzero value. A T'(n)-time hitting-set
would mean that the hitting-set can be generated in time T'(n), for input size
n.

e Valuation. Valuation is a map val, : Rly] — Z>¢, over a ring R, such that
valy (+) is defined to be the maximum power of y dividing the element. It can be
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BOUNDED DEPTH-4 IDENTITY TESTING PARADIGMS 7

easily extended to fraction field R(y), by defining val, (p/q) := val,(p)—val,(q);
where it can be negative.

e Field. We denote the underlying field as F and assume that it is of character-
istic 0. All our results hold for other fields (eg. Q,,F,) of large characteristic
(see Remarks in Section 3-4).

e Jacobian. The Jacobian of a set of polynomials f = {f1,..., fin} in Flz] is
defined to be the matrix J»(f) := (0, (fi))mxn' Let SCx = {x1,...,2n}
and |S| = m. Then, polynomial Jg(f) denotes the minor (i.e. determinant
of the submatrix) of J(f), formed by the columns corresponding to the
variables in S.

2.2. Basics of Algebraic Complexity Theory. For detailed discussion on the
basics of Algebraic Complexity Theory we will encourage readers to refer [91, 82, 65,
83, 78]. Here we will formally state a few of the PIT results and properties of circuits
for the later reference.

Trivial PIT Algorithm. The simplest PIT algorithm for any circuit in general
is due to Polynomial Identity Lemma [71, 18, 95, 87]. When the number of variables
is small, say O(1), then this algorithm is very efficient.

LEMMA 2.1 (Trivial PIT). For a class of n-variate, individual degree < d poly-
nomial f € Flx] there exists a deterministic PIT algorithm which runs in time O(d™).

Sparse Polynomial. Sparse PIT is testing the identity of polynomials with
bounded number of monomials. There have been a lot of work on sparse-PIT, in-
terested readers can refer [13, 53] and references therein. For the proof of poly-time
hitting set of Sparse PIT see [82, Thm. 2.1].

THEOREM 2.2 (Sparse-PIT map [53]). Let p(x) € Flz] with individual degree at
most d and sparsity at most m. Then, there exists 1 < r < (mnlogd)?, such that

n—1
pyyt .yt ) £ 0, mody” — 1.

If p is computable by a size-s Y11 circuit, then there is a deterministic algorithm to
test its identity which runs in time poly(s,m).

Indeed if identity of sparse polynomial can be tested efficiently, product of sparse
polynomial can be tested efficiently. We formalise this in the following;:

LEMMA 2.3 ([77] Lemma 2.3). For a class of n-variate, degree d polynomial
f € Flx] computable by IXIL of size s, there is a deterministic PIT algorithm which
runs in time poly(s, d).

A set H C F" is called a Hitting Set for a class polynomial C C F[x], if for all
gecC
g#0 < JacH:gla)#0.

In literature, PIT has a close association with Hitting set as the two notions are
provably equivalent (refer Lemma 3.2.9 and 3.2.10 [28]). Note that the set H works
for every polynomial of the class. Instead of a PIT algorithm occasionally we will use
such a set.

LEMMA 2.4 (Hitting Set of IIXA). For a class of n-variate, degree d polynomial
f € Flx] computable by IXII of size s, there is an explicit Hitting Set of size poly(s, d).
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Algebraic Branching Program (ABP). An ABP is a layered directed acyclic
graph with ¢ + 1 many layers of vertices Vj, ..., V; with a source a and a sink b such
that all the edges in the graph only go from a to Vp, V;_1 to V; for any i € [g], and
Vg, to b. The edges have univariate polynomials as their weights. The ABP is said to
compute the polynomial

f@) =Y JIwe,

pEpaths(a,b) e€p

where W (e) is the weight of the edge e. The ABP has width-w if |V;| < w, Vi €
{0,...,¢}. In an equivalent definition, polynomials computed by ABP are of the
form AT(Hie[q] D;)B, where A, B € F**![z], and D; € F¥*%[z], where entries are
univariate polynomials. We encourage interested readers to refer [91, 65] for more
detailed discussion.

DEFINITION 2.5 (Read-once oblivious ABP (ROABP)). An ABP is called a read-
once oblivious ABP (ROABP) if the edge weights are univariate polynomials in dis-
tinct variables across layers. Formally, there is a permutation © on the set [q] such
that the entries in the i-th matrixz D; are univariate polynomials over the variable
Tr@y, i-e., they come from the polynomial ring Flay ;).

A polynomial f(z) is said to be computed by width-w ROABPs in any order,
if for every permutation o of the variables, there exists a width-w ROABP in the

variable order o that computes the polynomial f(x). In whitebox setting, identity
testing of any-order ROABP completely solved.

THEOREM 2.6 (Theorem 2.4 [75]). For n-variate polynomials computed by size-s
ROABP, a hitting set of size O(s® + s-n*) can be constructed.

There have been quite a few results on blackbox PIT for ROABPs as well [32, 31,
41]. The current best known algorithm works in quasipolynomial time.

THEOREM 2.7 (Theorem 4.9 [41]). For n-variate, individual-degree-d polynomi-
als computed by width-w ROABPs in any order, a hitting set of size (ndw)©(oglosw)
can be constructed.

Depth-4 Circuits. A polynomial f(x) € F[z] is computable by YASTIO! circuits
if f(x) =3 cq fi(®) where deg f; < 6. The first nontrivial PIT algorithm for this
model was designed in [29].

THEOREM 2.8 (Proposition 4.18 [29]). There is a poly(n,d,dlog s)-explicit hit-
ting set of size (nd)?®1°8%) for the class of n-variate, degree-(< d) polynomials f(zx),
computed by XA -circuit of size s.

Similarly, Y AXA circuits compute polynomials of the form f(x) = >_,cy fi"
where f; is a sum of univariate polynomials. Using duality trick [81] and PIT results
from [75, 41], one can design efficient PIT algorithm for YAXA circuits.

LEMMA 2.9 (PIT for ¥ AXA-circuits). Let P € X AXA of size s. Then, there
exists a poly(s) (respectively sO1°81°89) ) time whitebox (respectively blackbox) PIT for
the same.

Proof sketch. We show that any g(x)® = (g1(21)+. ..+ gn(z,))¢, where deg(g;) <
s can be written as } ., hj1(21) - - hjn(2n), for some hje € Flz,] of degree at most es.
Define, G := (y + g1) -+ (y + gn) — ¥™. In its e-th power, notice that the leading-
coefficient is coef em—1)(G€) = g°. So, interpolate on e(n — 1) + 1 many points (y =
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Bi € F) to get
e(n—1)+1
coef jen-1) (G°) = Z a; G(B;) -
i=1

Now, expand G(3;) = ((8i +91) - - (Bi + gn) — B)¢, by binomial expansion (without
expanding the inner n-fold product). The top-fanin can be atmost s- (e + 1) - (e(n —
1) + 1) = O(se*n). The individual degrees of the intermediate univariates can be at
most es. Thus, it can be computed by an ROABP (of any order) of size at most
O(s%e3n).

Now, if f = Zje[s] fjej is computed by a X AX A circuit of size s, then clearly,
f can also be computed by an ROABP (of any order) of size at most O(s%). So,
the whitebox PIT follows from Theorem 2.6, while the blackbox PIT follows from
Theorem Theorem 2.7. ]

Further, ¥ A¥A can be shown to be closed under multiplication i.e., product of
two polynomials, each computable by a ¥ AYA circuit, is computable by a single
YAYA circuit. To prove that we will need an efficient way to write a product of a few
powers as a sum of powers, using simple interpolation. For an algebraic proof, see
[15, Proposition 4.3].

LEMMA 2.10 (Waring Identity for a monomial). Let M = :cll’l ~-~xZ"", where

1 <b; <...< by, and roots of unity Z(i) := {z € C: 2% =1}. Then,

M = Z Ve(2),...,e(k) * (x1+e(2ao+...+ €(k)l‘k)d ,
c(i)EZ()ri=2, k

where d := deg(M) = by +... 4+ by, and Yo (2), .. (k) are scalars (rk(M) := Hf=2 (b;+1)
many).

Remark. We actually need not work with F = C. We can go to a small extension (at
most d¥), for a monomial of degree d, to make sure that £(i) exists.
Using the above lemma we prove the closure result.

LEMMA 2.11. Let fi(x,y) € Flyl[x], of syntactic degree < d;, be computed by a
SAYA circuit of size s;, for i € [k] (wrt x). Then, f1--- fr has SAYA circuit of size
O((dg—l—l)(dk—f—l) S1°-Sk)-

€ij .

Proof. Let f; = Zj fij’; by assumption e;; < d; (by assumption). Then using

Lemma 2.10, flejll71 . f,j;‘zk has size at most (dz +1)--- (dr + 1) - (Zie[k] Size(fiji)>,

for indices j1, ..., jk. Summing up for all s; --- s, many products (atmost) gives the
upper bound. 0

3. Whitebox PIT for S“¥IIXA. We consider a bloated model of computa-
tion which naturally generalizes XIIXA circuits and works ideally under the DiDI-
techniques.

DEFINITION 3.1. We call a circuit C € Gen(k, s), over R(x), for any ring R, with
parameter k and size-s, if C € SIS A /TIZA) - (EAXA /EAXA). It computes
feR@),if f = Zle T;, where

o I, =: (U,/Vz) . (PZ/QZ), for U;, V; e IIXA, and P;, Q; € XAYA,

o size(T;) = size(U;) +size(V;) +size(P;) +size(Q;), and size(f) = >_,; (4 size(Th).
It is easy to see that all size-s LIFITITA circuit are in Gen(k, s). We will design the
recursive algorithm on Gen(k, s).

This manuscript is for review purposes only.
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10 P. DUTTA, P. DWIVEDI AND N. SAXENA

Proof of Theorem 1.1. Begin with defining T; ¢ := T; and fo := f where T;o €
IIXA; >, Tio = fo, and fo has size < s. Assume deg(f) < d < s; we keep the
parameter d separately, to help optimize the complexity later. In every recursive call
we work with Gen(-,-) circuits.

As the input case, define U;o := Tjo and Vo := P, := Q0 := 1. We will
use the hitting set of product of sparse polynomials (refer section 2.2) to obtain a
point @ = (ay,...,a,) € F” such that U, g|z—a # 0, for all ¢ € [k]. Eventually this
evaluation point will help in maintaining the invertibility of IIXA. Consider

HTzo = HUzo = H Zfij(mj)a

i€ k] i€ k] i€[l] jE[n]

where f;;(x;) are univariate polynomials of degree at most d and ¢ < k-s. Note
that degg < d- k- s and g is computable by a IIXA circuit of size O(s). Invoke
Lemma 2.4 to obtain a hitting set #H, then evaluate g on every point of H to find
an element a € H such that g(a) # 0. We emphasise that in whitebox setting all
Ui, are readily available for evaluation. Since, the size of the set is poly(s) and
each evaluation takes poly(s) time, this preliminary step will add poly(s) time to the
overall time complexity. Moreover, we obtain the a € F™ which possess the required
property.

To capture the non-zeroness, consider a 1-1 homomorphism @ : Flz] — Flz, 2]
such that z; — 21 - x; + a; where a; is the i-th coordinate of a, obtained earlier.
Invertibility implies that fy =0 <= ®(fy) = 0. Now we proceed with the recursive
algorithm which first reduces the identity testing from top-fanin k to & — 1. Note:
k =1 is trivial.

First Step: Efficient reduction from k to k—1. By assumption, Zle Tio =
fo and Ty 0 # 0. Apply ® both sides, then divide and derive:

Z Tio = fo = Z (Tip) = @(fo)

i€k i€[k]
D(T;0) (fo)
ie%l] 5(Tro) ! ~ ®(Tr)
®(T;0) (fo)
- 16;1 0= (‘b(Tk ) ( k,0)>
®(Ts o O(Tio)\ (fo)
(3'1) <I> Tk’o g <¢(Tk,0)> B 821 (‘b(Tk,O)> .

Define the following:
e Ry = F[z1]/(z{). Note that, (3.1) holds over Ry (x).

o Ty := (T, 0)/ (T ) - dlog(®(T;0)/@(Th0)), Vi € [k —1].

o f1:=0:(2(f0)/®(Tkp)), over Ri(x).
Definability of T;; and f;. It is easy to see that these are well-defined terms.

Here, we emphasize that we do not exactly compute/store ’fm as a fraction where
the degree in z; is < d; instead it is computed as an element in F(zq, ), where z is

a formal variable. Formally, we compute T; 1 € F(z1,«), such that T; ; = T} 1, over

This manuscript is for review purposes only.
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BOUNDED DEPTH-4 IDENTITY TESTING PARADIGMS 11

Ri(x). We keep track of the degree of z; in T;;. Thus, Zie[k_l] T;1 = f1, over
Rl(.’ll)

The ‘iff’ condition. To show that our one step of DiDI has reduced the identity
testing of Gen(k—1,-), we need an <= condition. So far equality in (3.1) over Ry ()
is one-sided. Note that fi # 0 implies val,, (f1) < d =: d;. By assumption, ®(T} ) is
invertible over Ry(x). Further, f; = 0, over Ry (), which implies —

1. Either, ®(fo)/®(Tk,0) is z1-free. Then ®(fy)/®(Tk,0) € F(x), which further
implies it is in F, because of the map ® (z1-free implies x-free, by substituting
z1 = 0). Also, note that fo,Tko # 0 implies ®(fo)/P(Tko) is a nonzero
element in F. Thus, it suffices to check whether ®(fy)|.,—0 = ¥(fo) is non-
Zero or not.

2. Or, 0., (®(fo)/®(Tro)) = 2{* - p where p € F(zy,x) s.t. val.,(p) > 0. By
simple power series expansion, one can show that p € F(x)[[z1]].
LEMMA 3.2 (Valuation). Consider f € F(a,y) such that val,(f) > 0. Then,
feF@)[yl] N F(,y).
Proof Sketch 3.3. Let f = g/h, where g,h € F[x,y]. Now, val,(f) > 0,
implies val, (g) > val, (k). Let val,(g) = dq and val,(h) = da, where dy > do >
0. Write g = y% -§and h = y® - h. Write, h = ho+h1y+hay®>+...+hay?,
for some d. Note that hg # 0. Thus,

f=y""%g/(ho+hiy+...+hay?)
= yh %2 (G/ho) - (14 (h1/ho)y + ... + (ha/ho)y*) ™" € F(z)[[y]] -

The last conclusion follows by the inverse identity in the power-series ring.
Hence, ®(fo)/®(Tho) = 2T . ¢ where ¢ € F(x)[[21]], i.e.

©(f0)/®(Tro) € (21" p@(zr) = valsy (®(f0) = d + 1,

a contradiction.
Conversely, it is obvious that fo = 0 implies f; = 0. Thus, we have proved the
following

Z T;0 #0 over Flz] < Z T;1 #0 over Ry(xz), or, 0%# ®(fo)|z=0<cF.
i€[k] i€lk—1]

Eventually, we show that T;, € (IIE A /IIXA) - (EAXA /EAXA), over Ry(x), with
polynomial blowup in size (Claim 3.6). So, the above circuit is in Gen(k — 1, -), over

Ry (), which we recurse on to finally give the identity testing. The subsequent steps
will be a bit more tricky:

Induction step. Assume that we are in the j-th step (j > 1). Our induction
hypothesis assumes —
d.

1 Yiepy T = f3, over Ry(@), where R; = F[z1]/(=), and T ; # 0.

2. val,, (T; ;) > 0,Vi € [k — j].

3. Non-zero preserving iff condition

f#0,over Flz] < f; #0, over R;(x),
j—1

or \/ ((fi/Te—ii)lz=0 # 0, over F(x))

i=0

This manuscript is for review purposes only.
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12 P. DUTTA, P. DWIVEDI AND N. SAXENA

4. Here, T; j =: (Ui7j/‘/i7j) . (Pi,j/Qi,j)a where Ui ;,Vi; € IIXA, and Pi,jaQi,j €
Y AZA, each in R;[x]. Think of them being computed as F(z1,x), with the
degrees being tracked. Wlog, assume that val,, (T;—; ;) is the minimal among
all T; ;’s.
5. Ui jlz=0, Vi jlzi=0 € F\{0}.
We follow as before without applying homomorphism any further. Note that the
‘or condition’ in the hypothesis 3 is similar to the j = 0 case except that there is no
®: this is because ®(fo)|,,=0 # 0 <= P®(fo/Tk0)|z1=0 # 0. This condition just
separates the derivative from the constant-term.
Efficient reduction from k£ — j to k — j — 1. Let val,, (T; ;) =: v;;, for all
i € [k — j]. Note that

Hl}nVB'Zl (n,j) = Inl_in Va|z1 (Pi,j/Qi,j) = Vk—j,j
since val;, (U; ;) = val, (V; ;) = 0 (else we reorder). We remark that 0 < v; ; < d; for

all ¥’s in j-th step; upper-bound is strict, since otherwise T; ; = 0 over R;(x).
Similar to the first step, we divide with T} _; ; which has min val and then derive:

o Ty=1 = >, Ti/Tej;+1=[f/Tiy,

i€k—j) i€lk—j—1]
= Y 0, (Tij/Tejy) = 0= (f/Tei;)
i€lk—j—1]
k—j—1
(3:2) = Y Ti;/Tij;-dlog(Ti;/Ti—j;) = 0= (fi/Th—j;)
i=1

Define the following:
e Rjj1:= IF[zﬂ/(z‘lij“), where dj 1 :==d; —vp—j; — 1.

° j:;i’jJrl = Ti,j/kaj,j . dlog(n,j/kaj,j% Vie [k‘ —j — 1]

L] fj+1 = 821 (fj/kaj,j)a over R]—H(w). _

We emphasize on the fact again that we do not exactly compute 7} ;1 mod z‘lij .
instead it is computed as a fraction in F(z1, x), with formal z;. Formally, we compute
T; j+1 € F(#1, ), such that i‘,j-ﬂ =T, j+1, over Rj11(x). We keep track of the degree
of z; in T; j41. Next, we will show that all the inductive hypotheses assumed hold in
the j*" step as well.

Hypothesis (1): Definability of T; ;1 and f;;1. By the minimal valuation
assumption, it follows that val(f;) > vt—; ;, and thus T; ;41 and fj41 are all well-
defined over R;4q(x). Note that, (3.2) holds over R;yq1(x) as d;11 < d; (because,

whatever identity holds true modzfj must hold modzld”l

have Z;:lj_l Tij1 = fj+1, over Rjj1(x) thus proving the induction hypothesis (1).

as well). Hence, we must

Hypothesis (2): Positivity of Valuation. Since we divide by the minval, by
definition we immediately get val,, (T; j+1) > 0 proving the hypothesis. Further, we
claim that min val computation in DiDI is easy. For this, recall from the definition of
valuation

minval, (P; ;/Q; ;) = min(val,, (P; ;) — val,, (P; ;).

Therefore, for minval we compute val,, (P; ;) and val,, (Q; ;) for all i € [k — j].

This manuscript is for review purposes only.
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Here is an important lemma which shows that coefficient of y° of a polynomial
f(x,y) € Flz,y], computed by a X AXA circuit, can be computed by a small ¥ AXA
circuit.

LEMMA 3.4 (Coefficient extraction). Let f(x,y) € Fly|[x] be computed by a
Y AYA circuit of size s and degree d. Then, coefye(f) € Flx] can be computed by a
small SAYA circuit of size O(sd), over Flx].

Proof Sketch 3.5. Let, f =3, a;-gi'. Of course, e; < s and deg, (f) < d. Thus,
write f = Z?:o fi -y, where f; € F[z]. We can interpolate on d + 1-many distinct
points y € F and conclude that f; has a XAXA circuit of size at most O(sd).

Using Lemma 3.4 we known coef .« (P; ;) and coef .« (Q; ;) are in LAYA over Flz]. We
can keep track of z; degree and thus 1nterpolate to find the minimum e < d; such
that the computed coefficients are # 0, which gives the respective val.

Hypothesis (3): The ‘iff’ condition. The above (3.2) pioneers to reduce from
k — j-summands to k — 7 — 1. But we want a <= condition to efficiently reduce
the identity testing. If fj11 # 0, then val,, (fj+1) < djy1. Further, fj41 = 0, over
Rj+1 () implies—
1. Either, f;/Tj_;, ; is z1-free. This implies it is in F(x). Now, if indeed fy # 0,
then the computed T;; as well as f; must be non-zero over F(zq1,x), by
induction hypothesis (as they are non-zero over R;(x)). However,

( T > _ (Uz‘,j'ij,j> '<Pz',j'ij,j>
Thji) om0 \Uk—jj - Vij/ lsi20 \Pr—jj - Qi
. YAZA .
YAZA

fi DIVADIVN YAXA
€ F-l o—=— ] € .
Th—jj Z DIVIDIVAN DIVADIVA
Here we crucially use that 3AYA is closed under multiplication (Lemma 2.11).
Thus, this identity testing can be done in poly-time (Lemma 2.9). For, de-

tailed time-complexity and calculations, see Claim 3.6 and its subsequent
paragraph.

2. Or, 0., (fj/Tk—j;) = zf”l - p, where p € F(z1,z) s.t. val,,(p) > 0. By a
simple power series expansion, one concludes that p € F(x)[[z1]] (Lemma 3.2).
Hence, one concludes that

djr1+1
€ <z Eh > = val,, (f;) > d;,
Tijy N F(@)((=1]] i) = d;
ie. f; =0, over Rj(x).
Conversely, f; = 0, over R;(), implies
valzl(fj) > dj — Va|z1 (@1 ( fj >> > dj — Vk—j,j — 1
Ty~

= fj+1 =0, over R 1(x).
; #0 over Rj(z) iff

zZ1 =0

Thus,

Thus, we have proved that Eze[k Rt

e F(x) .

21:0

i
.. o fj
Z T;j+1 #0 over Rjyq(x), or, 0# T
k—3.3

i€[k—j—1]

This manuscript is for review purposes only.
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14 P. DUTTA, P. DWIVEDI AND N. SAXENA

Therefore induction hypothesis (3) holds.

Hypothesis (4): Size analysis. We will show that T; ;11 € (IIX A /TIXA) - (EAZA
J/EAXA), over Rji1(x), with only polynomial blowup in size. Let size(T; ;) < s;, for
i € [k — j], and j € [k]. Note that, by assumption, so < s.

CLAIM 3.6 (Final size). T} _1 € (IIS A /IISA) - (SASA /SASA) of size sORT),
over Ri_1(x).

Proof. Steps j = 0 and j > 0 are slightly different because of the ®. However the
main idea of using power-series is the same which eventually shows that dlog(XA) €
SAZA .

We first deal with j = 0. Let A — 2z - B = ®(g) € XA, for some A € F and
B € Ry[x]. Note that A # 0 because of the map ¥. Further, size(B) < O(d - size(g)),
as a single monomial of the form z¢ can produce d+ 1-many monomials. Over Ry (),

B @ 45y

=0

(33)  dlog(e(g)) =

B has a trivial AXA-circuit of size O(d - size(g)). Also, 9., (B - z1) has a Y A-circuit
of size at most O(d - size(g)). Using waring identity (Lemma 2.10), we get that each
0., (B-21)-(BJA)" 21 has size O(i-d-size(g)), over Ry (z). Summing over i € [dy — 1],
the overall size is at most O(d3 - d - size(g)) = O(d> - size(g)), as dg = dy = d.

For the j-th step, we emphasize that the degree could be larger than d. As-
sume that syntactic degree of denominator and numerator of T; ; (each in Flx, z])
are bounded by D; (it is not d; as seen above; this is to save on the trouble of
mod-computation at each step). Of course, Dy < d < s.

For j > 0, the above summation in (3.3) is over R;(x). However the degree could
be D; (possibly more than d;) of the corresponding A and B. Thus, the overall size
after the power-series expansion would be O(D7 - d - size(g)).

Using Lemma 3.7, we can show that dlog(P; ;) € XAXA /EAYA (similarly for Q; ;),
of size O(D? - s5). Also dlog(Us ;- Vi—j,;) € Y dlog(XA), i.e. sum of action of dlog on
YA (since dlog linearizes product); and it can be computed by the above formulation.
Thus, dlog(T; ;/Tk—; ;) is a sum of 4-many EAXA /EAXA of size at most O(Djz. s5)
and 1-many X AYA of size O(D3d;s;) (from the above power-series computation)
[Note: we summed up the 3 AXA-expressions from dlog(XA) together]. Additionally
the syntactic degree of each denominator and numerator (of the SAXA /EAZA ) is
O(Dj). We rewrite the 4 expressions (each of EAXA /EAXA ) and express it as a
single XAXA /L AYA using waring identity (Lemma 2.11), with the size blowup of
O(D]l2 s?); here the syntatic degree blowsup to O(D;). Finally we add the remaining
SASA circuit (of size O(D?s;) and degree O(dD;)) to get O(s?D}%d). To bound this,
we need to understand the degree bound Dj.

Finally we need to multiply T; ;/Tk—;; € (IIZ A /IIZA) - (EAXA /EAZA) where
each ¥ AYA is a product of two X AXA expression of size s; and syntactic degree
D;; clubbed together owing a blowup of O(D; - 55) Hence multiplying it with % A
YA /L AXA expression obtained from dlog computation above gives size blowup of
Sjt1=1s"" Djo(l) -d.

Computing T; j /Tj—;,; increases the syntactic degree ‘slowly’; which is much less
than the size blowup. As mentioned before, the deg-blowup in dlog-computation is
O(dDj) and in the clearing of four expressions, it is just O(D;). Thus, D41 =
O(dD;) = D; =d°0).

This manuscript is for review purposes only.
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The recursion on the size is sj11 = s; -d®0U). Using d < s we deduce, s; =
(sd)o(j'7]). In particular, s;_1, size after kK — 1 steps is sOkT) | This computation

quantitatively establishes induction hypothesis (4). 0

Hypothesis (5): Invertibility of IIXA-circuits. For invertibility, we want to
emphasise that the dlog compuation plays a crucial role here. In the following lemma
we claim that the action dlog(XAYA) € XAXA /EAXA , is of poly-size.

LEMMA 3.7 (Differentiation). Let f(x,y) € Fly][x] be computed by a ¥ NIA
circuit of size s and degree d. Then, O0y(f) can be computed by a small EAXA circuit
of size O(sd?), over Fly|[z)].

Proof Sketch 3.8. Lemma 3.4 shows that each f. has O(sd) size circuit where
f=>". fey®. Doing this for each e € [0,d] gives a blowup of O(sd?).

Similarly consider the action on IIXA. We know dlog distributes the product
additively, so it suffices to work with dlog(3XA); and earlier in Claim 3.6 we saw that
dlog(XA) € EAXA of poly-size. Assuming these, we simplify

Tij Uiy Vi—j; Pij-Qr—jy
- b
Tr—jj  Vig-Uk—jj Qij-Pr—jj

and its dlog. Thus, using (3.2), U; (j+1) grows to U j - Vi—; ; (and similarly V; (;41)).
This also means: U; (j41)]z,=0 € F\ {0} and thereby proving the hypothesis.

Final time complexity. The above proof actually shows that 77 ;_; is in
Gen(1, so(’”k)) over R_1(x); and that the degree bound on z; (over F[z1, ], keeping
denominator and numerator ‘in place’) is Dj_1 = d°®). We cannot directly use the
identity testing algorithms of the constituent simpler models due to Ri_1(x). More-
over, using hypothesis (2) and Lemma 3.2 we know that T3 ;1 € F(x)[[z1]] and it
suffices to do identity testing on the first term of the powerseries: T3 j—1|s =0 Over
F(x). Note that, hypothesis (5) guarantees that IIXA part remains non-zero on z; = 0
evaluation, however, YAXA /S AYA may be undefined. For this, we keep track of z;
degree of numerator and denominator, which will be polynomially bounded as seen
in the discussion above. We can easily interpolate and cancel the z; power to make
it work. Basically this shows that to test T} ;1 we need to test z{ - X AXA over
F[x] where e > 0 due to positive valuation. Whitebox PIT of ¥ AXA is in poly-time
using Lemma 2.9, and testing z{ is possible using Lemma 2.1 with appropriate de-
gree bound. The proof above is constructive: we calculate U; j+1 (and other terms)
from U; ; explicitly. Gluing everything together we conclude this part can be done in
sOGT) time.

What remains is to test the z; = 0-part of induction hypothesis (3); it could
short-circuit the recursion much before j = k — 1. As we mentioned before, in this
case, we need to do a PIT on X AXA only. At the j-th step, when we substitute
z1 = 0, the size of each T; ; can be at most s; (by definition). We need to do PIT on
a simpler model: Z[kfj] F-(XAZA /EAXA ). We can clear out and express this as
a single YAYXA /EAXA expression; with a size blowup of s;)(k_j) < (5d)CUKk=D)T),
Since this case could short-circuit the recursion, to bound the final time complexity,
we need to consider the j which maximizes the exponent.

LEMMA 3.9. Letk € N, and h(x) := x(k—2x)7". Then, max;cr—1] h(i) = h(k—1).

This manuscript is for review purposes only.
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16 P. DUTTA, P. DWIVEDI AND N. SAXENA

Proof Sketch 3.10. Differentiate to get h'(x) = (k—x)7* —27*+x(k—x)(log 7)7* =
7% - [2%(—log 7) + x(klog 7 — 2) + k]. It vanishes at

L U Y A I S R
=2 log 7 2 log7 log7°

Thus, h is maximized at the integer x = k — 1.

Therefore, max;cp,—_1) gk — N7 = (k- 1)7%~1. Finally, use Lemma 2.9 for the
base-case whitebox PIT. Thus, the final time complexity is sOkT")

Here we also remark that in z; = 0 substitution XAXA /SAYA may be undefined.
However, we keep track of z; degree of numerator and denominator, which will be
polynomially bounded as seen in the discussion above. We can easily interpolate and

cancel the z; power to make it work.

Bit complexity. It is routine to show that the bit-complexity is really what we
claim. Initially, the given circuit has bit-complexity s. The main blowup happens
due to the dlog-computation which is a poly-size blowup. We also remark that while
using Lemma 2.11 (using Lemma 2.10), we may need to go to a field extension of
at most s°(*) (because of the £(i) and correspondingly the constants Ve(2),...,(k)> but
they still are so(k)—bits). Also, Theorem 2.2 and Lemma 2.9 computations blowup
bit-complexity polynomially. This concludes the proof. O

Remark 3.11. 1. The above method does not give whitebox PIT (in poly-
time) for LFIIXTIN as we donot know poly-time whitebox PIT for SAXIIP.
However, the above methods do show that whitebox-PIT for SFITILIIP! poly-
nomially reduces to whitebox-PIT for ¥ A XTI,

2. DiDI-technique can be used to give whitebox PIT for the general bloated
model Gen(k, s).

3. The above proof works when the characteristic is > d. This is because the
nonzeroness remains preserved after derivation wrt z;.

3.1. Algorithm. The whitebox PIT for Theorem 1.1, that is discussed in section
3, appears (below) as Algorithm 3.1.
Words of caution: Throughout the algorithm there are intermediate expressions to
be stored compactly. Think of them as ‘special’ circuits in x, but over the function-
field F(z). Keep track of their degrees wrt z1; and that of the sizes of their fractions
represented in ‘bloated’ circuit form.

4. Blacbox PIT for Depth-4 Circuits. We will give the proof of Theorem 1.3
in this section. Before the details, we will state a few important definitions and lemmas
from [5] to be referenced later.

DEFINITION 4.1 (Transcendence Degree). Polynomials Ty, ...,T,, are called al-
gebraically dependent if there exists a nonzero annihilator A s.t. A(Ty,...,T;n) = 0.
Transcendence degree is the size of the largest subset S C {T1,..., T} that is alge-
braically independent. Then S is called a transcendence basis.

DEFINITION 4.2 (Faithful hom.). A homomorphism ® : Flx] — Fly] is faithful
for T if trdegp(T') = trdegp(®(T)).

The reason for interest in faithful maps is due its usefullness in preserve the
identity as shown in the following fact.

FACT 4.3 (Theorem 2.4 [5]). For any C € Fly1,...,ym), C(T) = 0 <—
C(®(T)) =0.
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Algorithm 3.1 Whitebox PIT Algorithm for SFITIEA-circuits

INPUT: f =T, +...+ T} € SFIIIXA, a whitebox circuit of size s over Fx]
OUTPUT: 0, if f =0, and 1, if non-zero.

1: Let U : F[x] — F[z], be a sparse-PIT map, using [53] (Theorem 2.2). Apply it
on f and check whether U(f) 2 0. If non-zero, output 1

2: Obtain a point a = (ay,...,a,) € F" from Hitting Set H of IIXA such that
Tile=a # 0, for all ¢ € [k]. And define ® : z; — 21 - z; + a;. Check
Yich—1) 0= (®(T0)/2(Tk)) £ 0 mod 20 (dy == s) as follows:

3: Consider each Tj, = 8., (®(T;)/®(Tx)) over Ri(x), where Ry := Flz]/(z{").
Use dlog computation (Claim 3.6), to write each T; 1 in a ‘bloated’ form as (IIX A
JIIZA) - (EAXA JEAZA).

4: for j«—1tok—1do

Reduce the top-fanin at each step using ‘Divide & Derive’ technique. As-

sume that at j-th step, we have to check the identity: Zie[kfj] T; ; z
0 over R;(x), where R; := F[zl]/<zf’> , each T; ; has a (IIX A /IIXEA) - (XAXA
/EAXA ) representation and therein each IIXA|,, - € F\ {0}.

6:  Compute vi_;; := min; val,, (T ;); by reordering it is for ¢ = k — j. To com-
pute vi_; ;, use coefficient extraction (Lemma 3.4) and X AX A -circuit PIT
(Lemma 2.9).

7. ‘Divide’ by Tj_; ; and check whether (Zie[k,_j_l] (Ti5/Th—j,5) + 1) L.

z1=0
Note: this expression is in (EAXA /EAXA ). Use— (1) IIXA|,, =0 € F, and (2)
closure of XAYA under multiplication. Finally, do PIT on this by Lemma 2.9.

8 If it is non-zero, output 1, otherwise ‘Derive’ wrt z; and ‘Induct’

?
on (Zie[kﬂ'q]am(Ti,j/kaj,j)) = 0, over Rjii(x) where Rj;; :=

dj—vi—ji—1
F[Zl]/<zlJ 3»3 >
9:  Again using dlog (Claim 3.6), show that T j41 := 0., (T;,;/Tk—j,;) has small
(IIX A /TIZA) - (EAXA /EAZA )-circuit over Rjiq(x). So call the algorithm
?
on Zie[k—j—l] Tij+1 = 0.
10 j+j+1.
11: end for
12: At the end, j = k — 1. Do PIT (Lemma 2.9) on the single (TIX A /TIZA) - (ZAZA
J/EAZA) circuit, over Ry_1(x). If it is zero, output 0 otherwise output 1.

Here is an important criterion about the jacobian matrix which basically shows
that it preserves algabraic independence.

FACT 4.4 (Jacobian criterion). Let f C Flx] be a finite set of polynomials of
degree at most d, and trdegp(f) < r. If char(F) = 0, or char(F) > d", then trdegp(f) =
I’kﬂ:(m)jm(f).

Jacobian criterion together with faithful maps give a recipe to design a map which
drastically reduces number of variables, if trdeg is small.

LEMMA 4.5 (Lemma 2.7 [5]). Let T € Flx] be be a finite set of polynomials of
degree at most d and trdegp(T) < r, and char(F)=0 or > d". Let V' : Flx] — F[z]
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18 P. DUTTA, P. DWIVEDI AND N. SAXENA

such that rkp(g)Jz(T) = rkp(z,) V' (T (T)). -
Then, the map ® : Flz] — Flz1,t,y], such that x; — (32, y;t7) + ¥'(zy), is a
faithful homomorphism for T.

In the next section we will use these tools to prove Theorem 1.3(b). The proof
and calculations for Theorem 1.3(a) are very similar.

4.1. PIT for SFIIXTIP), We solve the PIT for a more general model than
LFIIXII by solving the following problem.

PROBLEM 4.6. Let {T;|i € [m]} be IISTI®! circuits of (syntactic) degree at most d
and size s. Let the transcendence degree of T;’s, trdegp (11, ..., Tm) = k < s. Further,
C(x1,...,%m) be a circuit of (size + deg) < s’. Design a blackbox-PIT algorithm for
C(Ty,...,Tn).

Trivially, SFITISIIP! is a very special case of the above setting. Let T :=
{T1,...,Tin}. Let Ty := {T1,..., T} be a transcendence basis. For T; = Hj Gijs
we denote the set L(T;) := {gi; | ]}

We want to find an explicit homomorphism ¥ : Flz] — Flx, z1] s.t. U(J(T))
is of a ‘nice’ form. In the image we fix x suitably, to get a composed map ¥’ :
Flz] — Flz1] s.t. rkp(z) Te(T) = rkp(.,) V' (J2(T')). Then, we can extend this map to
O : Flx] — Flz1,y,t] s.t. z; — (Z?:l y;t9) + W' (z;), which is faithful Theorem 4.5.
We show that the map ® can be efficiently constructed using a scaling and shifting
map (¥) which is eventually fixed by the hitting set (H’ defining ¥') of a ¥ A X111
circuit. Overall, ®(f) is a k + 2-variate polynomial for which a trivial hitting set
exists.

Wlog, J.(T) is full rank with respect to the variable set @y = (x1,...,2x). Thus,
by assumption, Jg, (T'x) # 0 (for notation, see section 2). We want to construct a
U s.t. U(Jz, (T)) has an ‘easier’ PIT. We have the following identity [5, Eqn. 3.1],
from the linearity of the determinant, and the simple observation that 0,(T;) =

T; - (Zj 596(91’]‘)/917‘)’ where T; = [[; gi5:

Ty ... T}
g1---9k

(4.1) Juy (T) = > (

g1€L(T1),....9, €L(Tk)

) Jmk(gl,,gk) .

The homomorphism W. To ensure the invertibility of all g € (J, L(T;) we
proceed as in section 3. Consider

=11 II 9=11¢

i€[k] ge L(T;) i€[{]

where g € |J;, L(T;) and £ < k- s. Note that degh < d-k-s and h is computable
by IIXII circuit of size O(s). Theorem 2.4 gives the relevant hitting set H C F"
which contains an evaluation point a = (aq,...,a,) such that h(a) # 0 implying
g(a) # 0, for all g € |J, L(T;). We emphasise that unlike the previous case, here in
the blackbox setting, we do not have individual access of g to verify for the correct
a. Thus, we try out all & € H to see whichever works. If the input polynomial f is
non-zero, then one such a must exist. This search adds a multiplicative blowup of
poly(s), since the size of H is poly(s).
Fix an a = (a1, -+ ,a,) € H and define U : Flx] — Flx, 1] as x; — 21 - ©; + a;.
Denote the ring R[z] where R := F[z]/(2P), and D := k- (d — 1) + 1. Being 1-1, ¥ is
clearly a non-zero preserving map. Moreover,
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CLAM 4.7. Jp, (T;) = 0 <= U(J,, (Tk)) = 0, over R[x].

Proof. As deg(T;) < d, each entry of the matrix can be of degree at most d — 1;
therefore deg(Jz, (Tx)) < k(d —1) = D — 1. Thus, deg, (V(Jg,(Tx))) < D. Hence,
the conclusion. ]

Equation 4.1 implies that

V(S (91,5 98)

(42)  U(Jp (Th) = U(T1---Tj) - > (g1 - gr)

g1EL(T1),...,g €L(T%)

As T; has product fanin s, the top-fanin in the sum in Equation 4.2 can be at most
s*. Then define,

(4.3) F o ) Vo912 96) o Ria).
V(g1 ... 9x)
g1€L(T1),....g1 €L(T})

Well-definability of F. Note that,

Thus, RHS is an element in F[[z,21]] and taking mod 2P it is in R[z]. We remark
that instead of minimally reducing mod 2P, we will work with an F € F[z;, ] such
that F = F over R[x]. Further, we ensure that the degree of z; is polynomially
bounded.

CramM 4.8. Over R[z], ¥(Jg, (Tk)) =0 < F =0.
Proof sketch. This follows from the invertibility of U(Ty ---T}) in Rx]. O

The hitting set H'. By J, (Tx) # 0, and Claims 4.7-4.8, we have F # 0 over
R[z]. We want to find H' C F", s.t. U(J, (Tk))|e=a # 0, for some a« € H' (which
will ensure the rank-preservation). Towards this, we will show (below) that F has
sO0F)_size S AXTIC)-circuit over R[z]. Next, Theorem 2.8 provides the hitting set H’

.. 2
in time s@(0 klogs),

CramM 4.9 (Main size bound). F € Rlx] has ¥ A XV -circuit of size (s3%)°0%),

The proof studies the two parts of Equation 4.3—
1. The numerator ¥(Jy, (g1,...,gx)) has O(3%2Fk!ks)-size ¥ A BT~ _circuit
(see Theorem 4.14), and
2. 1/U(g1---gx), for gi € L(T;) has (s3%)°®)_size ¥ A BMP-circuit; both over
R[x] (see Theorem 4.15).
We need the following two claims to prove the numerator size bound.

CLAIM 4.10. Let g; € L(T;), where T; € TIXTIP! of size atmost s, then the poly-
nomial Ju, (g1, - -, gx) is computable by SFITIFISTIO =1 of size O(k! ks).

Proof Sketch 4.11. Each entry of the matrix has degree at most § — 1. Trivial
expansion gives k! top-fanin where each product (of fanin k) has size ), size(g;). As,
size(T;) < s, trivially each size(g;) < s. Therefore, the total size is k! - )", size(g;) =
O(k'ks).

CLAIM 4.12. Let g € XT1°, then U(g) € XII° of size 3° - size(g) (for n>>6).

Proof Sketch 4.13. Each monomial ¢ of degree ¢, can produce [],(e; + 1)
(>, ei+n)/n)™ < (6/n+1)"-many monomials, by AM-GM inequality as ). e; <
As 6/n — 0, we have (1 +3/n)" — €. As e < 3, the upper bound follows.

<
J.
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LEMMA 4.14 (Numerator size). U(Jg, (g1,...,9x)) is computable by L AXIIO-1]
of size O(3° 28k k!s) =: so.

Proof. Tn Theorem 4.10 we showed that Jg, (g1, ..., gx) € SFITFSTIO 1 of size
O(k'ks). Moreover, for a g € XTI~ we have ¥(g) € ST~ of size at most
39 - size(g), over R[z] due to Theorem 4.12).

Combining these, one concludes that ¥(Jz, (g1, .., gx)) € SFITFSTIO of size
O(3° k'ks). We convert the II-gate to A gate using waring identity (Theorem 2.10)
which blowsup the size by a multiple of 2°=1. Thus, ¥(Jg, (g1, -.,9%)) € SAXIIO-1]
of size O(3° 2¥k k!s). |

In the following lemma, using power series expansion of expressions like 1/(1 —a-
21), we conclude that 1/%(g) has a small SAXTIP)-circuit, which would further imply
the same for 1/U(gy - - - gx).

LEMMA 4.15 (Denominator size). Let g; € L(T;). Then, 1/%(gy---gr) can be
computed by a ¥ AL -circuit of size s1 := (s3°)°%)  over Rz].

Proof. Let g € L(T;) for some i. Assume, ¥(g) = A — z; - B, for some A € F and
B € R[z] of degree §, with size(B) < 3° - s, from Theorem 4.12. Note that, over R[z],

1 1 1 = /BY\ |
(4.4) 9~ AE T - A.§<A> e

As, size(B*) has a trivial AXIP-circuit (over R[]) of size < 3% - s + i; summing over
i € [D — 1], the overall size is at most D - 3% - s + O(D?). As D < k - d, we conclude
that 1/¥(g) has SAXIIN of size poly(s - k- d3?), over R[z]. Multiplying k-many such
products directly gives an upper bound of (s-3%)°®) using Theorem 2.11 (basically,
waring identity). 0

Proof of Theorem 4.9. Combining Lemmas 4.14-4.15, observe that ¥ (Jg, (-)/%(-)
has ¥ A XTI0-circuit of size at most (s; - s2)2 = (s - 3°)°%*), over R[z], using Theo-
rem 2.11. Summing up at most s¥ many terms (by defn. of F), the size still remains
(s5-35)00), d

Degree bound. As, syntactic degree of T; are bounded by d, and ¥ maintain deg,, =
deg, , we must have deg, (V(Jz,(91,.-.,9%)) = deg,(Jz, (91,-..,9%)) < D —1. Note
that, Theorem 4.14 actually works over F[x, z1] and thus there is no additional degree-
blow up (in z1). However, there is some degree blowup in Theorem 4.15, due to
Equation 4.4.

Note that Equation 4.4 shows that over R[x],

1 1 — “1—i_i pi p(x, 21)
\Il(g):<AD>.<ZAD zl-B>:. ql,

=0

where ¢ = AP. We think of p € F[zx, 2] and ¢ € F. Note, deg. (¥(g)) < 6 implies
deg,, (p) <deg, (Bz1)"~') <d-(D—1).

Finally, denote 1/9(g1 - - gx) =: Py,.....9,./Qgn,....qx» Over Rlx]. This is just multi-
plying k-many (p/q)’s; implying a degree blowup by a multiple of k. In particular —
deg, (P(y) <0-k- (D —1) Thus, in Equation 4.3, summing up s*-many terms gives
an expression (over R[x]):

Pghu-’gk) _. P(wvzl)
91E€L(T1),....,gk €L(T})

Q1.0 Q
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Verify that @@ € F. The degree of z; also remains bounded by

deg, (P, Sk < poly(s).
g €L(T) e K] %2 (P i00) 0 < poly(s)

Using the degree bounds, we finally have P € F[x,z] as a ¥ A XIPl-circuit (over
F(21)) of size nO®) (539)0k) = 30(0k) JO(k+0) —; ;.

We want to construct a set H C F™ such that the action P(H’,z1) # 0. Using
[29] (Theorem 2.8), we conclude that it has s@(®logss) — sO(6*klogs) gize hitting set
which is constructible in a similar time. Hence, the construction of ® follows, making
®(f) a k + 2 variate polynomial. Finally, by the obvious degree bounds of y, 21,1t
from the definition of ®, we get the blackbox PIT algorithm with time-complexity
sO(6*klog ). finishing Theorem 1.3(b).

We could also give the final hitting set for the general problem.

Solution to Theorem 4.6. We know that
C(Th...,Tm) =0 < F:= ¢(O(TlaaTm)) =0.

Since, H' can be constructed in §O(8% k log $)_time, it is trivial to find hitting set for
E| g (which is just a k+ 2-variate polynomial with the aformentioned degree bounds).

The final hitting set for F can be constructed in s/©®*) . §O(0% klogs) time, 0

Remark 4.16. 1. As Jacobian Criterion (Theorem 4.4) holds when the char-
acteristic is > d9°€_ it is easy to conclude that our theorem holds for all fields
of char > dF.

2. The above proof gives an efficient reduction from blackbox PIT for X*TI X111
circuits to SAXIIP! circuits. In particular, a poly-time hitting set for SAXIII
circuits would put PIT for LFIIXIIP) in P.

3. Also, DiDI-technique (of Theorem Theorem 1.1) directly gives a blackbox
algorithm, but the complexity is exponentially worse (in terms of k in the
exponent) for its recursive blowups.

4.2. PIT for ZFIIIXA. As we remarked earlier, the proof of Theorem 1.3(a) is
similar to the one we discussed in section 4.1. Here we sketch the proof, stating some
relevant changes. Similar to Theorem 1.3(b), we generalize this theorem and prove
for a much bigger class of polynomials.

PROBLEM 4.17. Let {T;|i € [m]} be IIXA circuits of (syntactic) degree at most
d and size s. Let the transcendence degree of T;’s, trdegg(Ty,...,Tn) =: k < s.
Further, C(x1,...,2m) be a circuit of size + degree < s'. Design a blackboz-PIT
algorithm for C(T1,...,Ty).

It is trivial to see that LI¥/IIXA is a very special case of the above settings. We will
use the same idea (& notation) as in Theorem 1.3(b), using the Jacobian technique.
The main idea is to come up with ¥ map, and correspondingly the hitting set H'. If
g € L(T;), then size(g) < O(dn). The D (and hence R[z]) remains as before. Claims
4.7-4.8 hold similarly. We will construct the hitting set H’ by showing that F has a
small AXA circuit over R[z].

Note that, Theorem 4.10 remains the same for XAXA (implying the same size
blowup). However, Theorem 4.12, the size blowup is O(d size(g)), because each mono-
mial 2¢ can only produce d+ 1 many monomials. Therefore, similar to Theorem 4.15,
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one can show that U(Jy, (91,-..,9%)) € ZAZA, of size O(2¥k!kds). Similarly, the size
in Theorem 4.14 can be replaced by s?). Therefore, we get (similar to Theorem 4.9):

CLAIM 4.18. F € R[x] has X AXA -circuit of size sOF).

Next, the degree bound also remains the same. Following the same footsteps,
it is not hard to see that while degree bound on z; remains poly(ksd). Therefore,
P € Flz, 2] has S AXA -circuit of size sO*).

We want to construct a set H' C F"™ such that the action P(H',z) # 0. By
Theorem 2.9, we conclude that it has sO* 18108 5) size hitting set which is constructible
in a similar time. Hence, the construction of map ® and the theorem follows (from
z1-degree bound).

Solution to Theorem 4.17. We know that
c(Ty,...,Tn) =0 < E:=9(C(Ty,...,Tyn)) =0.

Since, H' can be constructed in s@*1°81085) time it is trivial to find hitting set for
E|p (which is just a k+2-variate polynomial with the aforementioned degree bounds).
The final hitting set for E can be constructed in s’O*) . sO(kloglogs) tipe. n]

5. Conclusion. This work introduces the powerful DiDI-technique and solves
three open problems in PIT for depth-4 circuits, namely SFITISIIP] (blackbox) and
SEITIYA (both whitebox and blackbox). Here are some immediate questions of in-
terest which require rigorous investigation.

1. Can the exponent in Theorem 1.1 be improved to O(k)? Currently, it is
exponential in k.
2. Can we improve Theorem 1.3(b) to s?U°81°85) (like in Theorem 1.3(a))?
Can we design a polynomial-time PIT for L*TIXIINI?
4. Design a polynomial time PIT for ¥ A XTI circuits (i.e. unbounded top-
fanin)?
5. Can we solve PIT for SFIIIXAR efficiently (polynomial /quasipolynomial-
time)?
6. Can we design an efficient PIT for rational functions of the form 3 (1/3 A X)
or X (1/X1) (for unbounded top-fanin)?

@
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