
DETERMINISTIC IDENTITY TESTING PARADIGMS FOR1

BOUNDED TOP-FANIN DEPTH-4 CIRCUITS∗2

PRANJAL DUTTA† , PRATEEK DWIVEDI‡ , AND NITIN SAXENA§3

Abstract. Polynomial Identity Testing (PIT) is a fundamental computational problem. The4
famous depth-4 reduction result by Agrawal and Vinay (FOCS 2008) has made PIT for depth-45
circuits an enticing pursuit. A restricted depth-4 circuit computing a n-variate degree-d polynomial6
of the form

∑k
i=1

∏
j gij , where deg gij ≤ δ is called Σ[k]ΠΣΠ[δ] circuit. On further restricting gij7

to be sum of univariates we obtain Σ[k]ΠΣ∧ circuits. The largely open, special-cases of Σ[k]ΠΣΠ[δ]8
for constant k and δ, and Σ[k]ΠΣ∧ have been a source of many great ideas in the last two decades.9
For eg. depth-3 ideas of Dvir and Shpilka (STOC 2005), Kayal and Saxena (CCC 2006), and Saxena10
and Seshadhri (FOCS 2010 and STOC 2011). Further, depth-4 ideas of Beecken, Mittmann and11
Saxena (ICALP 2011), Saha, Saxena and Saptharishi (Comput.Compl. 2013), Forbes (FOCS 2015),12
and Kumar and Saraf (CCC 2016). Additionally, geometric Sylvester-Gallai ideas of Kayal and13
Saraf (FOCS 2009), Shpilka (STOC 2019), and Peleg and Shpilka (CCC 2020, STOC 2021). Very14
recently, a subexponential-time blackbox PIT algorithm for constant-depth circuits was obtained via15
lower bound breakthrough of Limaye, Srinivasan, Tavenas (FOCS 2021). We solve two of the basic16
underlying open problems in this work.17

We give the first polynomial-time PIT for Σ[k]ΠΣ∧. We also give the first quasipolynomial18
time blackbox PIT for both Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ]. A key technical ingredient in all the three19
algorithms is how the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.20
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1. Introduction: PIT & beyond. Algebraic circuits are natural algebraic23

analog of boolean circuits, with the logical operations being replaced by + and ×24

operations over the underlying field. The study of algebraic circuits comprise the large25

study of algebraic complexity, mainly pioneered (and formalized) by Valiant [93]. A26

central problem in algebraic complexity is an algorithmic design problem, known as27

Polynomial Identity Testing (PIT): given an algebraic circuit C over a field F and input28

variables x1, . . . , xn, determine whether C computes the identically zero polynomial.29

PIT has found numerous applications and connections to other algorithmic problems.30

Among the examples are algorithms for finding perfect matchings in graphs [63, 67,31

27], primality testing [4], polynomial factoring [56, 22], polynomial equivalence [24],32

reconstruction algorithms [52, 89, 48] and the existence of algebraic natural proofs33

[16, 57]. Moreover, efficient design of PIT algorithms is intrinsically connected to34

proving strong lower bounds [43, 1, 46, 26, 33, 17, 23]. Interestingly, PIT also emerges35

in many fundamental results in complexity theory such as IP = PSPACE [88, 64], the36

PCP theorem [10, 11], and the overarching Geometric Complexity Theory (GCT)37

program towards P 6= NP [69, 68, 36, 45].38

There are broadly two settings in which the PIT question can be framed. In39

the whitebox setup, we are allowed to look inside the wirings of the circuit, while in40

the blackbox setting we can only evaluate the circuit at some points from the given41
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2 P. DUTTA, P. DWIVEDI AND N. SAXENA

domain. There is a very simple randomized algorithm for this problem - evaluate42

the polynomial at a random point from a large enough domain. With very high43

probability, a nonzero polynomial will have a nonzero evaluation; this is famously44

known as the Polynomial Identity Lemma [71, 18, 95, 87]. It has been a long standing45

open question to derandomize this algorithm.46

For many years, blackbox identity tests were only known for depth-2 circuits which47

compute sparse polynomials [13, 53]. In a surprising result, Agrawal and Vinay [7]48

showed that a complete derandomization of blackbox identity testing for just depth-49

4 algebraic circuits (ΣΠΣΠ) already implies a near complete derandomization for50

the general PIT problem. More recent depth reduction results [54, 40], and the51

bootstrapping phenomenon [2, 58, 38, 9] show that even PIT for very restricted classes52

of depth-4 circuits (even depth-3) would have very interesting consequences for PIT53

of general circuits. These results make the identity testing regime for depth-4 circuits,54

a very meaningful pursuit.55

Three PITs in one-shot. Following the same spirit, here we solve three important56

(and open) PIT questions. We give the first deterministic polynomial-time whitebox57

PIT algorithm for the bounded sum of product of sum of univariates circuits [76, Open58

Prob. 2]. Further, we give a quasipolynomial-time blackbox algorithm for the same59

class of circuits. These circuits are denoted by Σ[k]ΠΣ∧ and compute polynomials of60

the form Σi∈[k]Πj (gij1(x1) + · · ·+ gijn(xn)).61

Whitebox and Blackbox PIT for the Σ[k]ΠΣ∧ circuits is in polynomial62

and quasi-polynomial time respectively.63

A similar technique also gives a quasi-polynomial time blackbox PIT algorithm for64

the bounded sum of product of bounded degree sparse polynomials circuits. They are65

denoted by Σ[k]ΠΣΠ[δ] (where k and δ are constants).66

Blackbox PIT for the Σ[k]ΠΣΠ[δ] circuits is in quasi-polynomial time.67

Σ[k]ΠΣΠ[δ] circuits compute polynomials which are of the form Σi∈[k]Πjgij(x), where68

deg(gij) ≤ δ. Even δ = 2 was a challenging open problem [59, Open Problem 2].69

1.1. Main results: An analytic detour to three PITs. Though some at-70

tempts have been made to solve PIT for Σ[k]ΠΣ∧, an efficient PIT for k ≥ 3 even in71

the whitebox settings remains open, see [76, Open Prob. 2]. Our first result addresses72

this problem and designs a polynomial time algorithm (Algorithm 3.1). In our pursuit73

we discover an analytic and non-ideal based new technique which we refer as DiDI.74

Throughout the paper, we will work with F = Q, though all the results hold for field75

of large characteristic.76

Theorem 1.1 (Whitebox Σ[k]ΠΣ∧ PIT). There is a deterministic, whitebox77

sO(k 7k)-time PIT algorithm for Σ[k]ΠΣ∧ circuits of size s, over F[x].78

Remark 1.2.79

1. Case k ≤ 2 can be solved by invoking [76, Theorem 5.2]; but k ≥ 3 was open.80

2. Our technique necessarily blows up the exponent exponentially in k. In par-81

ticular, it would be interesting to design an efficient time algorithm when82

k = Θ(log s).83

3. It is not clear if the current technique gives PIT for Σ[k]ΠΣ∧[2] circuits,84

i.e. sum of bivariate polynomials computed and fed into the top product gate.85

Next, we go to the blackbox setting and address two models of interest, namely—86

Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ], where k, δ are constants. Our work builds on previous ideas87

for unbounded top fanin (1) Jacobian [5], (2) the known blackbox PIT for Σ∧Σ∧88

and Σ∧ΣΠ[δ] [41, 29] while maneuvering with an analytic approach via power-series,89

This manuscript is for review purposes only.



BOUNDED DEPTH-4 IDENTITY TESTING PARADIGMS 3

which unexpectedly reduces the top Π-gate to a ∧-gate.90

Theorem 1.3 (Blackbox depth-4 PIT).91

1. There is a sO(k log log s) time blackbox PIT algorithm for Σ[k]ΠΣ∧ circuits of92

size s, over F[x].93

2. There is a sO(δ2 k log s) time blackbox PIT algorithm for Σ[k]ΠΣΠ[δ] circuits94

of size s, over F[x].95

Remark 1.4.96

1. Theorem 1.3 (b) has a better dependence on k, but worse on s, than Theo-97

rem 1.1. Our results are quasipoly-time even up to k, δ = poly(log s).98

2. Theorem 1.3 (a) is better than Theorem 1.3 (b), because Σ∧Σ∧ has a faster99

algorithm than Σ∧ΣΠ[δ].100

3. Even for Σ[3]ΠΣ∧ and Σ[3]ΠΣΠ[3] models, we leave the poly-time blackbox101

question open.102

1.2. Prior works on related models. In the last two decades, there has been a103

surge of results on identity testing for restricted classes of bounded depth algebraic cir-104

cuits (e.g. ‘locally’ bounded independence, bounded read/occur, bounded variables).105

There have been numerous results on PIT for depth-3 circuits with bounded top fanin106

(known as Σ[k]ΠΣ-circuits). Divir and Shpilka [25] gave the first quasipolynomial-time107

deterministic whitebox algorithm for k = O(1), using rank based methods, which fi-108

nally lead Karnin and Shpilka [49] to design algorithm of same complexity in the109

blackbox setting. Kayal and Saxena [51] gave the first polynomial-time algorithm110

of the same. Later, a series of works in [84, 85, 86, 5] generalized the model and111

gave nO(k)-time algorithm when the algebraic rank of the product polynomials are112

bounded.113

There has also been some progress on PIT for restricted classes of depth-4 circuits.114

A quasipolynomial-time blackbox PIT algorithm for multilinear Σ[k]ΠΣΠ-circuits was115

designed in [47], which was further improved to a nO(k2)-time deterministic algorithm116

in [80]. A quasipolynomial blackbox PIT was given in [12, 59] when algebraic rank117

of the irreducible factors in each multiplication gate as well as the bottom fanin118

are bounded. Further interesting restrictions like sum of product of fewer variables,119

and more structural restrictions have been exploited, see [32, 6, 29, 66, 60]. Some120

progress has also been made for bounded top-fanin and bottom-fanin depth-4 circuits121

via incidence geometry [39, 90, 73]. In fact, very recently, [74] gave a polynomial-time122

blackbox PIT for Σ[3]ΠΣΠ[2]-circuits.123

The authors recently generalised their novel DiDI-technique to solve ’border PIT’124

of depth-4 circuits [20]. Specifically, they give a sO(k·7k·log logs) time and sO(δ2·k·7k·log s)125

time blackbox PIT algorithm for Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ] respectively. By definition,126

border classes capture exact complexity classes, hence border PIT results seeminly127

subsumes the results we present in this paper. However, the whitebox PIT algorithm128

here is much more efficient than their quasi-poly time blackbox algorithm. Further,129

the time complexity of blackbox PIT algorithms has a better dependence on k and130

δ compared to their exponential dependence. Lastly, the proofs in this paper are131

simpler as we don’t have to deal with an infinitesimally close approximation of poly-132

nomials in border complexity classes. Very recently, Dutta and Saxena [21] showed an133

exponential-gap fanin-hierarchy theorem for bounded depth-3 circuits which is also134

based on a finer generalization of the DiDI-technique.135

In a breakthrought result by Limaye, Srinivasan and Tavenas [62] the first super-136

polynomial lower bound for constant depth circuits was obtained. Their lower bound137
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4 P. DUTTA, P. DWIVEDI AND N. SAXENA

Model Time Ref.

Σ[k]Π[d]Σ poly(n, dk) [85]

Multilinear Σ[k]ΠΣΠ poly(nO(k2)) [80, 5]

ΣΠΣΠ of bounded trdeg poly(strdeg) [12]

Σ(k)ΠΣΠ[d] of bounded local trdeg QP(n) [60]

Σ[3]ΠΣΠ[2] poly(n, d) [74]

Σ[k]ΠΣ∧ sO(k·7k·log log s) [20]

Σ[k]ΠΣΠ[δ] sO(δ2·k·7k·log s) [20]

ΣΠΣΠ SUBEXP(n) [62]

Whitebox Σ[k]ΠΣ∧ sO(k 7k) This work.

Σ[k]ΠΣ∧ sO(k log log s) This work.

Σ[k]ΠΣΠ[δ] sO(δ2 k log s) This work.

Table 1
Time complexity comparison of PIT algorithms related to ΣΠΣΠ circuits

result, together with the ‘hardness vs randomness’ tradeoff result of [17] gives the138

first deterministic blackbox PIT algorithm for general depth-4 circuits which runs in139

sO(nε) for all real ε > 0. Their result is the first subexponential time PIT algorithm for140

depth-4 circuits. Moreover, compared to their algorithm, our quasipoly time blackbox141

and polynomial time whitebox algorithms are significantly faster.142

Limitations of known techniques. People have studied depth-4 PIT only with143

extra restrictions, mostly due to the limited applicability of the existing techniques as144

they were tailor-made for the specific models and do not generalize. E.g. the previous145

methods handle δ = 1 (i.e. linear polynomials at the bottom) or k = 2 (via factoring,146

[76]). While k = 2 to 3, or δ = 1 to 2 (i.e. ‘linear’ to ‘quadratic’) already demands a147

qualitatively different approach.148

Whitebox Σ[k]ΠΣ∧ model generalizes the famous bounded top fanin depth-3 cir-149

cuits Σ[k]ΠΣ of [51]; but their Chinese Remaindering (CR) method, loses applicability150

and thus fails to solve even a slightly more general model. The blackbox setting in-151

volved similar ‘certifying path’ ideas in [85] which could be thought of as general152

CR. It comes up with an ideal I such that f 6= 0 mod I and finally preserves it un-153

der a constant-variate linear map. The preservation gets harder (for both Σ[k]ΠΣ∧154

and Σ[k]ΠΣΠ[δ]) due to the increased non-linearity of the ideal I generators. Intu-155

itively, larger δ via ideal-based routes, brings us to the Gröbner basis method (which156

is doubly-exponential-time in n) [94]. We know that ideals even with 3-generators157

(analogously k = 4) already capture the whole ideal-membership problem [79].158

The algebraic-geometric approach to tackle Σ[k]ΠΣΠ[δ] has been explored in159

[12, 39, 66, 37]. The families which satisfy a certain Sylvester–Gallai configuration160

(called SG-circuits) is the harder case which is conjectured to have constant tran-161

scendence degree [39, Conj. 1]. Non-SG circuits is the case where the nonzeroness-162

certifying-path question reduces to radical-ideal non-membership questions [35]. This163

is really a variety question where one could use algebraic-geometry tools to design a164
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poly-time blackbox PIT. In fact, very recently, Guo [37] gave a sδ
k

-time PIT by con-165

structing explicit variety evasive subspace families. Unfortunately, this is not the case166

in the ideal non-membership; this scenario makes it much harder to solve Σ[k]ΠΣΠ[δ].167

From this viewpoint, radical-ideal-membership explains well why the intuitive Σ[k]ΠΣ168

methods do not extend to Σ[k]ΠΣΠ[δ].169

Interestingly, Forbes [29] found a quasipolynomial-time PIT for Σ∧ΣΠ[δ] using170

shifted-partial derivative techniques; but it naively fails when one replaces the ∧-gate171

by Π (because the ‘measure’ becomes too large). The duality trick of [81] completely172

solves whitebox PIT for Σ∧Σ∧, by transforming it to a read-once oblivious ABP173

(ROABP); but it is inapplicable to our models with the top Π-gate (due to large174

waring rank and ROABP-width). A priori, our models are incomparable to ROABP,175

and thus the famous PIT algorithms for ROABP [32, 31, 41] are not expected to help176

either.177

Similarly, a naive application of the Jacobian and certifying path technique from178

[5] fails for our models because it is difficult to come up with a faithful map for179

constant-variate reduction. Kumar and Saraf [59] crucially used that the computed180

polynomial has low individual degree (such that [26] can be invoked), while in [60] they181

exploits the low algebraic rank of the polynomials computed below the top Π-gate.182

Neither of them hold in general for our models. Very recently, Peleg and Shpilka [74]183

gave a poly-time blackbox PIT for Σ[3]ΠΣΠ[2], via incidence geometry (e.g. Edelstein-184

Kelly theorem involving ‘quadratic’ polynomials), by solving [39, Conj. 1] for k =185

3, δ = 2. The method seems very strenuous to generalize even to ‘cubic’ polynomials186

(δ = 3 = k).187

PIT for other models. Blackbox PIT algorithms for many restricted models188

are known. Egs. ROABP related models [75, 44, 3, 41, 42, 31, 8], log-variate circuits189

[30, 14], and non-commutative models [34, 61].190

1.3. Techniques and motivation. Both the proofs are analytic as they use191

logarithmic derivative, and its power-series expansion which greatly transform the192

respective models. Where the nature of the first proof is inductive, the second is193

a more direct one-shot proof. In both the cases, we essentially reduce to the well-194

understood wedge models, that have unbounded top fanin, yet for which PITs are195

known. This reduction is unforeseeable and quite ‘power’ful.196

The analytic tool that we use, appears in algebra and complexity theory through197

the formal power series ring R[[x1, . . . , xn]] (in short R[[x]]), see [70, 92, 22]. The198

advantages of the ring R[[x]] are many and they usually emerge because of the inverse199

identity: (1 − x1)−1 =
∑
i≥0 x

i
1, which does not make sense in R[x], but is valid in200

R[[x]]. Other analytic tools used are inspired from Wronskian (linear dependence)201

[55, Theorem 7] [50], Jacobian (algebraic dependence) [12, 5, 72], and logarithmic202

derivative operator dlog z1(f) = (∂z1 f)/f .203

We will be work with the division operator (e.g. R(z1), over a certain ring R).204

However, the divisions do not come for free as they require invertibility with respect205

to z1 throughout (again landing us in R[[z1]]. For circuit classes C,D we define class206

C/D := {f/g | f ∈ C,D 3 g 6= 0}.207

Similarly C · D to denotes the class taking respective products.208

1.3.1. The DiDI-technique. In Theorem 1.1 we introduce a novel technique for209

designing PIT algorithms which comprises of inductively applying two fundamental210

operations on the input circuits to reduce it to a more tractable model. Suppose211
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6 P. DUTTA, P. DWIVEDI AND N. SAXENA

we want to test
∑
i∈[k] Ti

?
= 0 where each Ti is computable by ΠΣ∧. The idea is212

to DI vide it by Tk to obtain 1 +
∑
i∈[k−1] Ti/Tk and then Derivative to reduce the213

fanin to k − 1 and obtain
∑
i∈[k−1] Ti. Naturally, these operations pushes us to work214

with the fractional ring (e.g. R(z1), over a certain ring R), further it also distorts215

the model as Ti’s are no longer computable by simple ΠΣ∧ circuits. However, with216

careful analytically analysis we establish that the non-zeroness is preserved in the217

reduced model. The process is then repeated until we reach k = 1, while maintaining218

the invariants which help us in preserving the non-zeroness till the end. We finish the219

proof by showing that the identity testing of reduced model can be done using known220

PIT algorithms.221

1.3.2. Jacobian hits again. In Theorem 1.3 we exploit the prowess of the Ja-222

cobian polynomial first introduced in [12] and later explored in [5] to unify known223

PIT algorithms and design new ones. Suppose we want to test
∑
i∈[k] Ti

?
= 0, where224

Ti ∈ ΠΣΠ[δ] (respec. ΠΣ∧). We associate the Jacobian J(T1, . . . , Tr) to captures225

the algebraic independence of T1, . . . , Tr assuming this to be a transcendence basis226

of the Ti’s. We design a variable reducing linear map Φ which preserves the alge-227

braic independece of T1, . . . , Tr and show that for any C: C(T1, . . . , Tk) = 0 ⇐⇒228

C(Φ(T1), . . . ,Φ(Tk)) = 0. Such a map is called ‘faithful’ [5]. The map Φ ultimately229

provides a hitting set for T1 + . . .+ Tk , as we reduce to a PIT of a polynomial over230

‘few’ (roughly equal to k) variables, yielding a QP-time algorithm.231

2. Preliminaries. Before proving the results, we describe some of the assump-232

tions and notations used throughout the paper. x denotes (x1, . . . , xn). [n] denotes233

{1, . . . , n}.234

2.1. Notations and Definitions.235

• Logarithmic derivative. Over a ring R and a variable y, the logarithmic236

derivative dlogy : R[y] → R(y) is defined as dlogy(f) := ∂y f/f ; here ∂y237

denotes the partial derivative with respect to variable y. One important238

property of dlog is that it is additive over a product as239

dlogy(f · g) =
∂y(f · g)

f · g
=

(f · ∂yg + g · ∂yf)

f · g
= dlogy(f) + dlogy(g).240

We refer this effect as linearization of product.241

• Circuit size. Sparsity sp(·) refers to the number of nonzero monomials. In242

this paper, it is a parameter of the circuit size. In particular, size(g1 · · · gs) =243 ∑
i∈[s] (sp(gi) + deg(gi)), for gi ∈ Σ∧ (respectively ΣΠ[δ]). In whitebox set-244

tings, we also include the bit-complexity of the circuit (i.e. bit complexity of245

the constants used in the wires) in the size parameter. Some of the com-246

plexity parameters of a circuit are depth (number of layers), syntactic degree247

(the maximum degree polynomial computed by any node), fanin (maximum248

number of inputs to a node).249

• Hitting set. A set of points H ⊆ Fn is called a hitting-set for a class C250

of n-variate polynomials if for any nonzero polynomial f ∈ C, there exists a251

point in H where f evaluates to a nonzero value. A T (n)-time hitting-set252

would mean that the hitting-set can be generated in time T (n), for input size253

n.254

• Valuation. Valuation is a map valy : R[y] → Z≥0, over a ring R, such that255

valy(·) is defined to be the maximum power of y dividing the element. It can be256
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easily extended to fraction field R(y), by defining valy(p/q) := valy(p)−valy(q);257

where it can be negative.258

• Field. We denote the underlying field as F and assume that it is of character-259

istic 0. All our results hold for other fields (eg. Qp,Fp) of large characteristic260

(see Remarks in Section 3-4).261

• Jacobian. The Jacobian of a set of polynomials f = {f1, . . . , fm} in F[x] is262

defined to be the matrix Jx(f) :=
(
∂xj (fi)

)
m×n. Let S ⊆ x = {x1, . . . , xn}263

and |S| = m. Then, polynomial JS(f) denotes the minor (i.e. determinant264

of the submatrix) of Jx(f), formed by the columns corresponding to the265

variables in S.266

2.2. Basics of Algebraic Complexity Theory. For detailed discussion on the267

basics of Algebraic Complexity Theory we will encourage readers to refer [91, 82, 65,268

83, 78]. Here we will formally state a few of the PIT results and properties of circuits269

for the later reference.270

Trivial PIT Algorithm. The simplest PIT algorithm for any circuit in general271

is due to Polynomial Identity Lemma [71, 18, 95, 87]. When the number of variables272

is small, say O(1), then this algorithm is very efficient.273

Lemma 2.1 (Trivial PIT). For a class of n-variate, individual degree < d poly-274

nomial f ∈ F[x] there exists a deterministic PIT algorithm which runs in time O(dn).275

Sparse Polynomial. Sparse PIT is testing the identity of polynomials with276

bounded number of monomials. There have been a lot of work on sparse-PIT, in-277

terested readers can refer [13, 53] and references therein. For the proof of poly-time278

hitting set of Sparse PIT see [82, Thm. 2.1].279

Theorem 2.2 (Sparse-PIT map [53]). Let p(x) ∈ F[x] with individual degree at280

most d and sparsity at most m. Then, there exists 1 ≤ r ≤ (mn log d)2, such that281

p(y, yd, . . . , yd
n−1

) 6= 0,mod yr − 1.282

If p is computable by a size-s ΣΠ circuit, then there is a deterministic algorithm to283

test its identity which runs in time poly(s,m).284

Indeed if identity of sparse polynomial can be tested efficiently, product of sparse285

polynomial can be tested efficiently. We formalise this in the following:286

Lemma 2.3 ([77] Lemma 2.3). For a class of n-variate, degree d polynomial287

f ∈ F[x] computable by ΠΣΠ of size s, there is a deterministic PIT algorithm which288

runs in time poly(s, d).289

A set H ⊆ Fn is called a Hitting Set for a class polynomial C ⊆ F[x], if for all290

g ∈ C291

g 6= 0 ⇐⇒ ∃α ∈ H : g(α) 6= 0.292

In literature, PIT has a close association with Hitting set as the two notions are293

provably equivalent (refer Lemma 3.2.9 and 3.2.10 [28]). Note that the set H works294

for every polynomial of the class. Instead of a PIT algorithm occasionally we will use295

such a set.296

Lemma 2.4 (Hitting Set of ΠΣ∧). For a class of n-variate, degree d polynomial297

f ∈ F[x] computable by ΠΣΠ of size s, there is an explicit Hitting Set of size poly(s, d).298
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Algebraic Branching Program (ABP). An ABP is a layered directed acyclic299

graph with q + 1 many layers of vertices V0, . . . , Vq with a source a and a sink b such300

that all the edges in the graph only go from a to V0, Vi−1 to Vi for any i ∈ [q], and301

Vq to b. The edges have univariate polynomials as their weights. The ABP is said to302

compute the polynomial303

f(x) =
∑

p∈paths(a,b)

∏
e∈p

W (e) ,304

where W (e) is the weight of the edge e. The ABP has width-w if |Vi| ≤ w, ∀i ∈305

{0, . . . , q}. In an equivalent definition, polynomials computed by ABP are of the306

form AT (
∏
i∈[q] Di)B, where A,B ∈ Fw×1[x], and Di ∈ Fw×w[x], where entries are307

univariate polynomials. We encourage interested readers to refer [91, 65] for more308

detailed discussion.309

Definition 2.5 (Read-once oblivious ABP (ROABP)). An ABP is called a read-310

once oblivious ABP (ROABP) if the edge weights are univariate polynomials in dis-311

tinct variables across layers. Formally, there is a permutation π on the set [q] such312

that the entries in the i-th matrix Di are univariate polynomials over the variable313

xπ(i), i.e., they come from the polynomial ring F[xπ(i)].314

A polynomial f(x) is said to be computed by width-w ROABPs in any order,315

if for every permutation σ of the variables, there exists a width-w ROABP in the316

variable order σ that computes the polynomial f(x). In whitebox setting, identity317

testing of any-order ROABP completely solved.318

Theorem 2.6 (Theorem 2.4 [75]). For n-variate polynomials computed by size-s319

ROABP, a hitting set of size O(s5 + s · n4) can be constructed.320

There have been quite a few results on blackbox PIT for ROABPs as well [32, 31,321

41]. The current best known algorithm works in quasipolynomial time.322

Theorem 2.7 (Theorem 4.9 [41]). For n-variate, individual-degree-d polynomi-323

als computed by width-w ROABPs in any order, a hitting set of size (ndw)O(log logw)324

can be constructed.325

Depth-4 Circuits. A polynomial f(x) ∈ F[x] is computable by Σ∧ΣΠ[δ] circuits326

if f(x) =
∑
i∈[s] fi(x)ei where deg fi ≤ δ. The first nontrivial PIT algorithm for this327

model was designed in [29].328

Theorem 2.8 (Proposition 4.18 [29]). There is a poly(n, d, δ log s)-explicit hit-329

ting set of size (nd)O(δ log s) for the class of n-variate, degree-(≤ d) polynomials f(x),330

computed by Σ∧ΣΠ[δ]-circuit of size s.331

Similarly, Σ∧Σ∧ circuits compute polynomials of the form f(x) =
∑
i∈[s] f

ei
i332

where fi is a sum of univariate polynomials. Using duality trick [81] and PIT results333

from [75, 41], one can design efficient PIT algorithm for Σ∧Σ∧ circuits.334

Lemma 2.9 (PIT for Σ∧Σ∧-circuits). Let P ∈ Σ∧Σ∧ of size s. Then, there335

exists a poly(s) (respectively sO(log log s)) time whitebox (respectively blackbox) PIT for336

the same.337

Proof sketch. We show that any g(x)e = (g1(x1)+ . . .+gn(xn))e, where deg(gi) ≤
s can be written as

∑
j hj1(x1) · · ·hjn(xn), for some hj` ∈ F[x`] of degree at most es.

Define, G := (y + g1) · · · (y + gn) − yn. In its e-th power, notice that the leading-
coefficient is coefye(n−1)(Ge) = ge. So, interpolate on e(n − 1) + 1 many points (y =

This manuscript is for review purposes only.



BOUNDED DEPTH-4 IDENTITY TESTING PARADIGMS 9

βi ∈ F) to get

coefye(n−1)(Ge) =

e(n−1)+1∑
i=1

αiG
e(βi) .

Now, expand Ge(βi) = ((βi + g1) · · · (βi + gn)−βni )e, by binomial expansion (without338

expanding the inner n-fold product). The top-fanin can be atmost s · (e+ 1) · (e(n−339

1) + 1) = O(se2n). The individual degrees of the intermediate univariates can be at340

most es. Thus, it can be computed by an ROABP (of any order) of size at most341

O(s2e3n).342

Now, if f =
∑
j∈[s] f

ej
j is computed by a Σ∧Σ∧ circuit of size s, then clearly,343

f can also be computed by an ROABP (of any order) of size at most O(s6). So,344

the whitebox PIT follows from Theorem 2.6, while the blackbox PIT follows from345

Theorem Theorem 2.7.346

Further, Σ∧Σ∧ can be shown to be closed under multiplication i.e., product of347

two polynomials, each computable by a Σ∧Σ∧ circuit, is computable by a single348

Σ∧Σ∧ circuit. To prove that we will need an efficient way to write a product of a few349

powers as a sum of powers, using simple interpolation. For an algebraic proof, see350

[15, Proposition 4.3].351

Lemma 2.10 (Waring Identity for a monomial). Let M = xb11 · · ·x
bk
k , where

1 ≤ b1 ≤ . . . ≤ bk, and roots of unity Z(i) := {z ∈ C : zbi+1 = 1}. Then,

M =
∑

ε(i)∈Z(i):i=2,··· ,k

γε(2),...,ε(k) · (x1 + ε(2)x2 + . . .+ ε(k)xk)
d
,

where d := deg(M) = b1+ . . .+bk, and γε(2),...,ε(k) are scalars (rk(M) :=
∏k
i=2 (bi+1)352

many).353

Remark. We actually need not work with F = C. We can go to a small extension (at354

most dk), for a monomial of degree d, to make sure that ε(i) exists.355

Using the above lemma we prove the closure result.356

Lemma 2.11. Let fi(x, y) ∈ F[y][x], of syntactic degree ≤ di, be computed by a357

Σ∧Σ∧ circuit of size si, for i ∈ [k] (wrt x). Then, f1 · · · fk has Σ∧Σ∧ circuit of size358

O((d2 + 1) · · · (dk + 1) · s1 · · · sk).359

Proof. Let fi =
∑
j f

eij
ij ; by assumption eij ≤ di (by assumption). Then using360

Lemma 2.10, f
e1j1
1j1
· · · fekjkkjk

has size at most (d2 + 1) · · · (dk + 1) ·
(∑

i∈[k] size(fiji)
)

,361

for indices j1, . . . , jk. Summing up for all s1 · · · sk many products (atmost) gives the362

upper bound.363

3. Whitebox PIT for Σ[k]ΠΣ∧. We consider a bloated model of computa-364

tion which naturally generalizes ΣΠΣ∧ circuits and works ideally under the DiDI-365

techniques.366

Definition 3.1. We call a circuit C ∈ Gen(k, s), over R(x), for any ring R, with367

parameter k and size-s, if C ∈ Σ[k](ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧). It computes368

f ∈ R(x), if f =
∑k
i=1 Ti, where369

• Ti =: (Ui/Vi) · (Pi/Qi), for Ui, Vi ∈ ΠΣ∧, and Pi, Qi ∈ Σ∧Σ∧,370

• size(Ti) = size(Ui)+size(Vi)+size(Pi)+size(Qi), and size(f) =
∑
i∈[k] size(Ti).371

It is easy to see that all size-s Σ[k]ΠΣ∧ circuit are in Gen(k, s). We will design the372

recursive algorithm on Gen(k, s).373
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10 P. DUTTA, P. DWIVEDI AND N. SAXENA

Proof of Theorem 1.1. Begin with defining Ti,0 := Ti and f0 := f where Ti,0 ∈374

ΠΣ∧;
∑
i Ti,0 = f0, and f0 has size ≤ s. Assume deg(f) < d ≤ s; we keep the375

parameter d separately, to help optimize the complexity later. In every recursive call376

we work with Gen(·, ·) circuits.377

As the input case, define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 := 1. We will378

use the hitting set of product of sparse polynomials (refer section 2.2) to obtain a379

point α = (a1, . . . , an) ∈ Fn such that Ui,0|x=α 6= 0, for all i ∈ [k]. Eventually this380

evaluation point will help in maintaining the invertibility of ΠΣ∧. Consider381

g :=
∏
i∈[k]

Ti,0 =
∏
i∈[k]

Ui,0 =
∏
i∈[`]

∑
j∈[n]

fij(xj) ,382

383

where fij(xj) are univariate polynomials of degree at most d and ` ≤ k · s. Note384

that deg g ≤ d · k · s and g is computable by a ΠΣ∧ circuit of size O(s). Invoke385

Lemma 2.4 to obtain a hitting set H, then evaluate g on every point of H to find386

an element α ∈ H such that g(α) 6= 0. We emphasise that in whitebox setting all387

Ui,0, are readily available for evaluation. Since, the size of the set is poly(s) and388

each evaluation takes poly(s) time, this preliminary step will add poly(s) time to the389

overall time complexity. Moreover, we obtain the α ∈ Fn which possess the required390

property.391

To capture the non-zeroness, consider a 1-1 homomorphism Φ : F[x] −→ F[x, z1]392

such that xi 7→ z1 · xi + ai where ai is the i-th coordinate of α, obtained earlier.393

Invertibility implies that f0 = 0 ⇐⇒ Φ(f0) = 0. Now we proceed with the recursive394

algorithm which first reduces the identity testing from top-fanin k to k − 1. Note:395

k = 1 is trivial.396

First Step: Efficient reduction from k to k−1. By assumption,
∑k
i=1 Ti,0 =397

f0 and Tk,0 6= 0. Apply Φ both sides, then divide and derive:398 ∑
i∈[k]

Ti,0 = f0 ⇐⇒
∑
i∈[k]

Φ(Ti,0) = Φ(f0)399

⇐⇒
∑

i∈[k−1]

Φ(Ti,0)

Φ(Tk,0)
+ 1 =

Φ(f0)

Φ(Tk,0)
400

=⇒
∑

i∈[k−1]

∂z1

(
Φ(Ti,0)

Φ(Tk,0)

)
= ∂z1

(
Φ(f0)

Φ(Tk,0)

)
401

⇐⇒
k−1∑
i=1

Φ(Ti,0)

Φ(Tk,0)
· dlog

(
Φ(Ti,0)

Φ(Tk,0)

)
= ∂z1

(
Φ(f0)

Φ(Tk,0)

)
.(3.1)402

403

Define the following:404

• R1 := F[z1]/〈zd1〉. Note that, (3.1) holds over R1(x).405

• T̃i,1 := Φ(Ti,0)/Φ(Tk,0) · dlog(Φ(Ti,0)/Φ(Tk,0)), ∀ i ∈ [k − 1].406

• f1 := ∂z1(Φ(f0)/Φ(Tk,0)), over R1(x).407

Definability of Ti,1 and f1. It is easy to see that these are well-defined terms.408

Here, we emphasize that we do not exactly compute/store T̃i,1 as a fraction where409

the degree in z1 is < d; instead it is computed as an element in F(z1,x), where z1 is410

a formal variable. Formally, we compute Ti,1 ∈ F(z1,x), such that T̃i,1 = Ti,1, over411
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R1(x). We keep track of the degree of z1 in Ti,1. Thus,
∑
i∈[k−1] Ti,1 = f1, over412

R1(x).413

The ‘iff’ condition. To show that our one step of DiDI has reduced the identity414

testing of Gen(k−1, ·), we need an ⇐⇒ condition. So far equality in (3.1) over R1(x)415

is one-sided. Note that f1 6= 0 implies valz1(f1) < d =: d1. By assumption, Φ(Tk,0) is416

invertible over R1(x). Further, f1 = 0, over R1(x), which implies –417

1. Either, Φ(f0)/Φ(Tk,0) is z1-free. Then Φ(f0)/Φ(Tk,0) ∈ F(x), which further418

implies it is in F, because of the map Φ (z1-free implies x-free, by substituting419

z1 = 0). Also, note that f0, Tk,0 6= 0 implies Φ(f0)/Φ(Tk,0) is a nonzero420

element in F. Thus, it suffices to check whether Φ(f0)|z1=0 = Ψ(f0) is non-421

zero or not.422

2. Or, ∂z1(Φ(f0)/Φ(Tk,0)) = zd11 · p where p ∈ F(z1,x) s.t. valz1(p) ≥ 0. By423

simple power series expansion, one can show that p ∈ F(x)[[z1]].424

Lemma 3.2 (Valuation). Consider f ∈ F(x, y) such that valy(f) ≥ 0. Then,425

f ∈ F(x)[[y]]
⋂

F(x, y).426

Proof Sketch 3.3. Let f = g/h, where g, h ∈ F[x, y]. Now, valy(f) ≥ 0,427

implies valy(g) ≥ valy(h). Let valy(g) = d1 and valy(h) = d2, where d1 ≥ d2 ≥428

0. Write g = yd1 · g̃ and h = yd2 · h̃. Write, h̃ = h0 +h1 y+h2 y
2 + . . .+hd y

d,429

for some d. Note that h0 6= 0. Thus,430

f = yd1−d2 · g̃/(h0 + h1 y + . . .+ hd y
d)431

= yd1−d2 · (g̃/h0) · (1 + (h1/h0) y + . . .+ (hd/h0) yd)−1 ∈ F(x)[[y]] .432433

The last conclusion follows by the inverse identity in the power-series ring.434

Hence, Φ(f0)/Φ(Tk,0) = zd1+1
1 · q where q ∈ F (x)[[z1]], i.e.435

Φ(f0)/Φ(Tk,0) ∈ 〈zd1+1
1 〉F(x)[[z1]] =⇒ valz1(Φ(f0)) ≥ d+ 1,436

a contradiction.437

Conversely, it is obvious that f0 = 0 implies f1 = 0. Thus, we have proved the438

following439 ∑
i∈[k]

Ti,0 6= 0 over F[x] ⇐⇒
∑

i∈[k−1]

Ti,1 6= 0 over R1(x), or , 0 6= Φ(f0)|z1=0 ∈ F .440

Eventually, we show that Ti,1 ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧), over R1(x), with441

polynomial blowup in size (Claim 3.6). So, the above circuit is in Gen(k − 1, ·), over442

R1(x), which we recurse on to finally give the identity testing. The subsequent steps443

will be a bit more tricky:444

Induction step. Assume that we are in the j-th step (j ≥ 1). Our induction445

hypothesis assumes –446

1.
∑
i∈[k−j] Ti,j = fj , over Rj(x), where Rj := F[z1]/〈zdj1 〉, and Ti,j 6= 0.447

2. valz1(Ti,j) ≥ 0,∀i ∈ [k − j].448

3. Non-zero preserving iff condition449

f 6= 0, over F[x] ⇐⇒ fj 6= 0, over Rj(x),450

or

j−1∨
i=0

((fi/Tk−i,i)|z1=0 6= 0, overF(x))451

452
453

This manuscript is for review purposes only.



12 P. DUTTA, P. DWIVEDI AND N. SAXENA

4. Here, Ti,j =: (Ui,j/Vi,j) · (Pi,j/Qi,j), where Ui,j , Vi,j ∈ ΠΣ∧, and Pi,j , Qi,j ∈454

Σ∧Σ∧, each in Rj [x]. Think of them being computed as F(z1,x), with the455

degrees being tracked. Wlog, assume that valz1(Tk−j,j) is the minimal among456

all Ti,j ’s.457

5. Ui,j |z1=0, Vi,j |z1=0 ∈ F\{0}.458

We follow as before without applying homomorphism any further. Note that the459

‘or condition’ in the hypothesis 3 is similar to the j = 0 case except that there is no460

Φ: this is because Φ(f0)|z1=0 6= 0 ⇐⇒ Φ(f0/Tk,0)|z1=0 6= 0. This condition just461

separates the derivative from the constant-term.462

Efficient reduction from k − j to k − j − 1. Let valz1(Ti,j) =: vi,j , for all463

i ∈ [k − j]. Note that464

min
i

valz1(Ti,j) = min
i

valz1(Pi,j/Qi,j) = vk−j,j465

since valz1(Ui,j) = valz1(Vi,j) = 0 (else we reorder). We remark that 0 ≤ vi,j < dj for466

all i’s in j-th step; upper-bound is strict, since otherwise Ti,j = 0 over Rj(x).467

Similar to the first step, we divide with Tk−j,j which has min val and then derive:468 ∑
i∈[k−j]

Ti,j = fj ⇐⇒
∑

i∈[k−j−1]

Ti,j/Tk−j,j + 1 = fj/Tk−j,j469

=⇒
∑

i∈[k−j−1]

∂z1(Ti,j/Tk−j,j) = ∂z1(fj/Tk−j,j)470

⇐⇒
k−j−1∑
i=1

Ti,j/Tk−j,j · dlog(Ti,j/Tk−j,j) = ∂z1(fj/Tk−j,j)(3.2)471

472

Define the following:473

• Rj+1 := F[z1]/〈zdj+1

1 〉, where dj+1 := dj − vk−j,j − 1.474

• T̃i,j+1 := Ti,j/Tk−j,j · dlog(Ti,j/Tk−j,j), ∀ i ∈ [k − j − 1].475

• fj+1 := ∂z1(fj/Tk−j,j), over Rj+1(x).476

We emphasize on the fact again that we do not exactly compute T̃i,j+1 mod z
dj+1

1 ;477

instead it is computed as a fraction in F(z1,x), with formal z1. Formally, we compute478

Ti,j+1 ∈ F(z1,x), such that T̃i,j+1 = Ti,j+1, over Rj+1(x). We keep track of the degree479

of z1 in Ti,j+1. Next, we will show that all the inductive hypotheses assumed hold in480

the jth step as well.481

Hypothesis (1): Definability of Ti,j+1 and fj+1. By the minimal valuation482

assumption, it follows that val(fj) ≥ vk−j,j , and thus T̃i,j+1 and fj+1 are all well-483

defined over Rj+1(x). Note that, (3.2) holds over Rj+1(x) as dj+1 < dj (because,484

whatever identity holds true modz
dj
1 must hold modz

dj+1

1 as well). Hence, we must485

have
∑k−j−1
i=1 T̃i,j+1 = fj+1, over Rj+1(x) thus proving the induction hypothesis (1).486

Hypothesis (2): Positivity of Valuation. Since we divide by the min val, by487

definition we immediately get valz1(Ti,j+1) ≥ 0 proving the hypothesis. Further, we488

claim that min val computation in DiDI is easy. For this, recall from the definition of489

valuation490

min
i

valz1(Pi,j/Qi,j) = min
i

(valz1(Pi,j)− valz1(Pi,j)).491

Therefore, for min val we compute valz1(Pi,j) and valz1(Qi,j) for all i ∈ [k − j].492
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Here is an important lemma which shows that coefficient of ye of a polynomial493

f(x, y) ∈ F[x, y], computed by a Σ∧Σ∧ circuit, can be computed by a small Σ∧Σ∧494

circuit.495

Lemma 3.4 (Coefficient extraction). Let f(x, y) ∈ F[y][x] be computed by a496

Σ∧Σ∧ circuit of size s and degree d. Then, coefye(f) ∈ F[x] can be computed by a497

small Σ∧Σ∧ circuit of size O(sd), over F[x].498

Proof Sketch 3.5. Let, f =
∑
i αi · g

ei
i . Of course, ei ≤ s and degy(f) ≤ d. Thus,499

write f =
∑d
i=0 fi · yi, where fi ∈ F[x]. We can interpolate on d + 1-many distinct500

points y ∈ F and conclude that fi has a Σ∧Σ∧ circuit of size at most O(sd).501

Using Lemma 3.4 we known coefze1 (Pi,j) and coefze1 (Qi,j) are in Σ∧Σ∧ over F [x]. We502

can keep track of z1 degree and thus interpolate to find the minimum e < dj such503

that the computed coefficients are 6= 0, which gives the respective val.504

Hypothesis (3): The ‘iff’ condition. The above (3.2) pioneers to reduce from505

k − j-summands to k − j − 1. But we want a ⇐⇒ condition to efficiently reduce506

the identity testing. If fj+1 6= 0, then valz1(fj+1) < dj+1. Further, fj+1 = 0, over507

Rj+1(x) implies–508

1. Either, fj/Tk−j,j is z1-free. This implies it is in F(x). Now, if indeed f0 6= 0,509

then the computed Ti,j as well as fj must be non-zero over F(z1,x), by510

induction hypothesis (as they are non-zero over Rj(x)). However,511 (
Ti,j
Tk−j,j

) ∣∣∣∣
z1=0

=

(
Ui,j · Vk−j,j
Uk−j,j · Vi,j

) ∣∣∣∣
z1=0

·
(
Pi,j ·Qk−j,j
Pk−j,j ·Qi,j

) ∣∣∣∣
z1=0

512

∈ F ·
(

Σ∧Σ∧
Σ∧Σ∧

)
.513

514

Thus,515

fj
Tk−j,j

∈
∑

F ·
(

Σ∧Σ∧
Σ∧Σ∧

)
∈
(

Σ∧Σ∧
Σ∧Σ∧

)
.516

Here we crucially use that Σ∧Σ∧ is closed under multiplication (Lemma 2.11).517

Thus, this identity testing can be done in poly-time (Lemma 2.9). For, de-518

tailed time-complexity and calculations, see Claim 3.6 and its subsequent519

paragraph.520

2. Or, ∂z1(fj/Tk−j,j) = z
dj+1

1 · p, where p ∈ F(z1,x) s.t. valz1(p) ≥ 0. By a521

simple power series expansion, one concludes that p ∈ F(x)[[z1]] (Lemma 3.2).522

Hence, one concludes that523

fj
Tk−j,j

∈
〈
z
dj+1+1
1

〉
F(x)[[z1]]

=⇒ valz1(fj) ≥ dj ,524

i.e. fj = 0, over Rj(x).525

Conversely, fj = 0, over Rj(x), implies526

valz1(fj) ≥ dj =⇒ valz1

(
∂z1

(
fj

Tk−j,j

))
≥ dj − vk−j,j − 1527

=⇒ fj+1 = 0, over Rj+1(x).528529

Thus, we have proved that
∑
i∈[k−j] Ti,j 6= 0 over Rj(x) iff530 ∑

i∈[k−j−1]

Ti,j+1 6= 0 over Rj+1(x) , or , 0 6=
(

fj
Tk−j,j

) ∣∣∣∣
z1=0

∈ F(x) .531
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Therefore induction hypothesis (3) holds.532

Hypothesis (4): Size analysis. We will show that Ti,j+1 ∈ (ΠΣ∧ /ΠΣ∧) · (Σ∧Σ∧533

/Σ∧Σ∧), over Rj+1(x), with only polynomial blowup in size. Let size(Ti,j) ≤ sj , for534

i ∈ [k − j], and j ∈ [k]. Note that, by assumption, s0 ≤ s.535

Claim 3.6 (Final size). T1,k−1 ∈ (ΠΣ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) of size sO(k7k),536

over Rk−1(x).537

Proof. Steps j = 0 and j > 0 are slightly different because of the Φ. However the538

main idea of using power-series is the same which eventually shows that dlog(Σ∧) ∈539

Σ∧Σ∧ .540

We first deal with j = 0. Let A − z1 · B = Φ(g) ∈ Σ∧, for some A ∈ F and541

B ∈ R1[x]. Note that A 6= 0 because of the map Ψ. Further, size(B) ≤ O(d · size(g)),542

as a single monomial of the form xe can produce d+ 1-many monomials. Over R1(x),543

dlog(Φ(g)) = − ∂z1(B · z1)

A(1− B
A · z1)

= −∂z1(B · z1)

A
·
d1−1∑
i=0

(
B

A

)i
· zi1 .(3.3)544

545

Bi has a trivial ∧Σ∧-circuit of size O(d · size(g)). Also, ∂z1(B · z1) has a Σ∧-circuit546

of size at most O(d · size(g)). Using waring identity (Lemma 2.10), we get that each547

∂z1(B ·z1) · (B/A)i ·zi1 has size O(i ·d · size(g)), over R1(x). Summing over i ∈ [d1−1],548

the overall size is at most O(d21 · d · size(g)) = O(d3 · size(g)), as d0 = d1 = d.549

For the j-th step, we emphasize that the degree could be larger than d. As-550

sume that syntactic degree of denominator and numerator of Ti,j (each in F[x, z])551

are bounded by Dj (it is not dj as seen above; this is to save on the trouble of552

mod-computation at each step). Of course, D0 < d ≤ s.553

For j > 0, the above summation in (3.3) is over Rj(x). However the degree could554

be Dj (possibly more than dj) of the corresponding A and B. Thus, the overall size555

after the power-series expansion would be O(D2
j · d · size(g)).556

Using Lemma 3.7, we can show that dlog(Pi,j) ∈ Σ∧Σ∧/Σ∧Σ∧ (similarly for Qi,j),557

of size O(D2
j · sj). Also dlog(Ui,j ·Vk−j,j) ∈

∑
dlog(Σ∧), i.e. sum of action of dlog on558

Σ∧ (since dlog linearizes product); and it can be computed by the above formulation.559

Thus, dlog(Ti,j/Tk−j,j) is a sum of 4-many Σ∧Σ∧ /Σ∧Σ∧ of size at most O(D2
j sj)560

and 1-many Σ∧Σ∧ of size O(D2
jdjsj) (from the above power-series computation)561

[Note: we summed up the Σ∧Σ∧-expressions from dlog(Σ∧) together]. Additionally562

the syntactic degree of each denominator and numerator (of the Σ∧Σ∧ /Σ∧Σ∧ ) is563

O(Dj). We rewrite the 4 expressions (each of Σ∧Σ∧ /Σ∧Σ∧ ) and express it as a564

single Σ∧Σ∧ /Σ∧Σ∧ using waring identity (Lemma 2.11), with the size blowup of565

O(D12
j s4j ); here the syntatic degree blowsup to O(Dj). Finally we add the remaining566

Σ∧Σ∧ circuit (of size O(D3
j sj) and degree O(dDj)) to get O(s5jD

16
j d). To bound this,567

we need to understand the degree bound Dj .568

Finally we need to multiply Ti,j/Tk−j,j ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) where569

each Σ∧Σ∧ is a product of two Σ∧Σ∧ expression of size sj and syntactic degree570

Dj ; clubbed together owing a blowup of O(Dj · s2j ). Hence multiplying it with Σ∧571

Σ∧ /Σ∧Σ∧ expression obtained from dlog computation above gives size blowup of572

sj+1 = s7 ·DO(1)
j · d.573

Computing Ti,j/Tk−j,j increases the syntactic degree ‘slowly’; which is much less574

than the size blowup. As mentioned before, the deg-blowup in dlog-computation is575

O(dDj) and in the clearing of four expressions, it is just O(Dj). Thus, Dj+1 =576

O(dDj) =⇒ Dj = dO(j).577
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The recursion on the size is sj+1 = s7j · dO(j). Using d ≤ s we deduce, sj =578

(sd)O(j·7j). In particular, sk−1, size after k − 1 steps is sO(k·7k). This computation579

quantitatively establishes induction hypothesis (4).580

Hypothesis (5): Invertibility of ΠΣ∧-circuits. For invertibility, we want to581

emphasise that the dlog compuation plays a crucial role here. In the following lemma582

we claim that the action dlog(Σ∧Σ∧) ∈ Σ∧Σ∧ /Σ∧Σ∧ , is of poly-size.583

Lemma 3.7 (Differentiation). Let f(x, y) ∈ F[y][x] be computed by a Σ∧Σ∧584

circuit of size s and degree d. Then, ∂y(f) can be computed by a small Σ∧Σ∧ circuit585

of size O(sd2), over F[y][x].586

Proof Sketch 3.8. Lemma 3.4 shows that each fe has O(sd) size circuit where587

f =
∑
e fe y

e. Doing this for each e ∈ [0, d] gives a blowup of O(sd2).588

Similarly consider the action on ΠΣ∧. We know dlog distributes the product589

additively, so it suffices to work with dlog(Σ∧); and earlier in Claim 3.6 we saw that590

dlog(Σ∧) ∈ Σ∧Σ∧ of poly-size. Assuming these, we simplify591

Ti,j
Tk−j,j

=
Ui,j · Vk−j,j
Vi,j · Uk−j,j

· Pi,j ·Qk−j,j
Qi,j · Pk−j,j

,592

and its dlog. Thus, using (3.2), Ui,(j+1) grows to Ui,j · Vk−j,j (and similarly Vi,(j+1)).593

This also means: Ui,(j+1)|z1=0 ∈ F \ {0} and thereby proving the hypothesis.594

Final time complexity. The above proof actually shows that T1,k−1 is in595

Gen(1, sO(k·7k)) over Rk−1(x); and that the degree bound on z1 (over F[z1,x], keeping596

denominator and numerator ‘in place’) is Dk−1 = dO(k). We cannot directly use the597

identity testing algorithms of the constituent simpler models due to Rk−1(x). More-598

over, using hypothesis (2) and Lemma 3.2 we know that T1,k−1 ∈ F(x)[[z1]] and it599

suffices to do identity testing on the first term of the powerseries: T1,k−1|z1=0 over600

F(x). Note that, hypothesis (5) guarantees that ΠΣ∧ part remains non-zero on z1 = 0601

evaluation, however, Σ∧Σ∧ /Σ∧Σ∧ may be undefined. For this, we keep track of z1602

degree of numerator and denominator, which will be polynomially bounded as seen603

in the discussion above. We can easily interpolate and cancel the z1 power to make604

it work. Basically this shows that to test T1,k−1 we need to test ze1 · Σ∧Σ∧ over605

F[x] where e ≥ 0 due to positive valuation. Whitebox PIT of Σ∧Σ∧ is in poly-time606

using Lemma 2.9, and testing ze1 is possible using Lemma 2.1 with appropriate de-607

gree bound. The proof above is constructive: we calculate Ui,j+1 (and other terms)608

from Ui,j explicitly. Gluing everything together we conclude this part can be done in609

sO(k7k) time.610

What remains is to test the z1 = 0-part of induction hypothesis (3); it could611

short-circuit the recursion much before j = k − 1. As we mentioned before, in this612

case, we need to do a PIT on Σ∧Σ∧ only. At the j-th step, when we substitute613

z1 = 0, the size of each Ti,j can be at most sj (by definition). We need to do PIT on614

a simpler model:
∑[k−j] F · (Σ∧Σ∧ /Σ∧Σ∧ ). We can clear out and express this as615

a single Σ∧Σ∧ /Σ∧Σ∧ expression; with a size blowup of s
O(k−j)
j ≤ (sd)O(j(k−j)7j).616

Since this case could short-circuit the recursion, to bound the final time complexity,617

we need to consider the j which maximizes the exponent.618

Lemma 3.9. Let k ∈ N, and h(x) := x(k−x)7x. Then, maxi∈[k−1] h(i) = h(k−1).619
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Proof Sketch 3.10. Differentiate to get h′(x) = (k−x)7x−x7x+x(k−x)(log 7)7x =620

7x · [x2(− log 7) + x(k log 7− 2) + k]. It vanishes at621

x =

(
k

2
− 1

log 7

)
+

√(
k

2
− 1

log 7

)2

− k

log 7
.622

Thus, h is maximized at the integer x = k − 1.623

Therefore, maxj∈[k−1] j(k − j)7j = (k − 1)7k−1. Finally, use Lemma 2.9 for the624

base-case whitebox PIT. Thus, the final time complexity is sO(k·7k).625

Here we also remark that in z1 = 0 substitution Σ∧Σ∧ /Σ∧Σ∧ may be undefined.626

However, we keep track of z1 degree of numerator and denominator, which will be627

polynomially bounded as seen in the discussion above. We can easily interpolate and628

cancel the z1 power to make it work.629

Bit complexity. It is routine to show that the bit-complexity is really what we630

claim. Initially, the given circuit has bit-complexity s. The main blowup happens631

due to the dlog-computation which is a poly-size blowup. We also remark that while632

using Lemma 2.11 (using Lemma 2.10), we may need to go to a field extension of633

at most sO(k) (because of the ε(i) and correspondingly the constants γε(2),...,ε(k), but634

they still are sO(k)-bits). Also, Theorem 2.2 and Lemma 2.9 computations blowup635

bit-complexity polynomially. This concludes the proof.636

Remark 3.11. 1. The above method does not give whitebox PIT (in poly-637

time) for Σ[k]ΠΣΠ[δ], as we donot know poly-time whitebox PIT for Σ∧ΣΠ[δ].638

However, the above methods do show that whitebox-PIT for Σ[k]ΠΣΠ[δ] poly-639

nomially reduces to whitebox-PIT for Σ∧ΣΠ[δ].640

2. DiDI-technique can be used to give whitebox PIT for the general bloated641

model Gen(k, s).642

3. The above proof works when the characteristic is ≥ d. This is because the643

nonzeroness remains preserved after derivation wrt z1.644

3.1. Algorithm. The whitebox PIT for Theorem 1.1, that is discussed in section645

3, appears (below) as Algorithm 3.1.646

Words of caution: Throughout the algorithm there are intermediate expressions to647

be stored compactly. Think of them as ‘special’ circuits in x, but over the function-648

field F(z). Keep track of their degrees wrt z1; and that of the sizes of their fractions649

represented in ‘bloated’ circuit form.650

4. Blacbox PIT for Depth-4 Circuits. We will give the proof of Theorem 1.3651

in this section. Before the details, we will state a few important definitions and lemmas652

from [5] to be referenced later.653

Definition 4.1 (Transcendence Degree). Polynomials T1, . . . , Tm are called al-654

gebraically dependent if there exists a nonzero annihilator A s.t. A(T1, . . . , Tm) = 0.655

Transcendence degree is the size of the largest subset S ⊆ {T1, . . . , Tm} that is alge-656

braically independent. Then S is called a transcendence basis.657

Definition 4.2 (Faithful hom.). A homomorphism Φ : F[x] → F[y] is faithful658

for T if trdegF(T ) = trdegF(Φ(T )).659

The reason for interest in faithful maps is due its usefullness in preserve the660

identity as shown in the following fact.661

Fact 4.3 (Theorem 2.4 [5]). For any C ∈ F[y1, . . . , ym], C(T ) = 0 ⇐⇒662

C(Φ(T )) = 0.663
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Algorithm 3.1 Whitebox PIT Algorithm for Σ[k]ΠΣ∧-circuits

INPUT: f = T1 + . . .+Tk ∈ Σ[k]ΠΣ∧, a whitebox circuit of size s over F[x]
OUTPUT: 0, if f ≡ 0, and 1, if non-zero.

1: Let Ψ : F[x] −→ F[z], be a sparse-PIT map, using [53] (Theorem 2.2). Apply it

on f and check whether Ψ(f)
?
= 0. If non-zero, output 1

2: Obtain a point α = (a1, . . . , an) ∈ Fn from Hitting Set H of ΠΣ∧ such that
Ti|x=α 6= 0, for all i ∈ [k]. And define Φ : xi 7→ z1 · xi + ai. Check∑
i∈[k−1] ∂z1(Φ(Ti)/Φ(Tk))

?
= 0 mod zd11 (d1 := s) as follows:

3: Consider each Ti,1 := ∂z1(Φ(Ti)/Φ(Tk)) over R1(x), where R1 := F[z1]/〈zd11 〉.
Use dlog computation (Claim 3.6), to write each Ti,1 in a ‘bloated’ form as (ΠΣ∧
/ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧ ).

4: for j ← 1 to k − 1 do
5: Reduce the top-fanin at each step using ‘Divide & Derive’ technique. As-

sume that at j-th step, we have to check the identity:
∑
i∈[k−j] Ti,j

?
=

0 over Rj(x), where Rj := F[z1]/〈zdj1 〉 , each Ti,j has a (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧
/Σ∧Σ∧ ) representation and therein each ΠΣ∧|z1=0 ∈ F \ {0}.

6: Compute vk−j,j := mini valz1(Ti,j); by reordering it is for i = k − j. To com-
pute vk−j,j , use coefficient extraction (Lemma 3.4) and Σ∧Σ∧ -circuit PIT
(Lemma 2.9).

7: ‘Divide’ by Tk−j,j and check whether
(∑

i∈[k−j−1] (Ti,j/Tk−j,j) + 1
) ∣∣∣∣

z1=0

?
= 0.

Note: this expression is in (Σ∧Σ∧ /Σ∧Σ∧ ). Use— (1) ΠΣ∧|z1=0 ∈ F, and (2)
closure of Σ∧Σ∧ under multiplication. Finally, do PIT on this by Lemma 2.9.

8: If it is non-zero, output 1, otherwise ‘Derive’ wrt z1 and ‘Induct’

on
(∑

i∈[k−j−1] ∂z1(Ti,j/Tk−j,j)
)

?
= 0, over Rj+1(x) where Rj+1 :=

F[z1]/〈zdj−vk−j,j−11 〉.
9: Again using dlog (Claim 3.6), show that Ti,j+1 := ∂z1(Ti,j/Tk−j,j) has small

(ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧ )-circuit over Rj+1(x). So call the algorithm

on
∑
i∈[k−j−1] Ti,j+1

?
= 0.

10: j ← j + 1.
11: end for
12: At the end, j = k− 1. Do PIT (Lemma 2.9) on the single (ΠΣ∧ /ΠΣ∧) · (Σ∧Σ∧

/Σ∧Σ∧ ) circuit, over Rk−1(x). If it is zero, output 0 otherwise output 1.

Here is an important criterion about the jacobian matrix which basically shows664

that it preserves algabraic independence.665

Fact 4.4 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of666

degree at most d, and trdegF(f) ≤ r. If char(F) = 0, or char(F) > dr, then trdegF(f) =667

rkF(x)Jx(f).668

Jacobian criterion together with faithful maps give a recipe to design a map which669

drastically reduces number of variables, if trdeg is small.670

Lemma 4.5 (Lemma 2.7 [5]). Let T ∈ F[x] be be a finite set of polynomials of671

degree at most d and trdegF(T ) ≤ r, and char(F)=0 or > dr. Let Ψ′ : F[x] −→ F[z1]672
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18 P. DUTTA, P. DWIVEDI AND N. SAXENA

such that rkF(x)Jx(T ) = rkF(z1)Ψ
′(Jx(T )).673

Then, the map Φ : F[x] −→ F[z1, t,y], such that xi 7→ (
∑
j yjt

ij) + Ψ′(xi), is a674

faithful homomorphism for T .675

In the next section we will use these tools to prove Theorem 1.3(b). The proof676

and calculations for Theorem 1.3(a) are very similar.677

4.1. PIT for Σ[k]ΠΣΠ[δ]. We solve the PIT for a more general model than678

Σ[k]ΠΣΠ by solving the following problem.679

Problem 4.6. Let {Ti | i ∈ [m]} be ΠΣΠ[δ] circuits of (syntactic) degree at most d680

and size s. Let the transcendence degree of Ti’s, trdegF(T1, . . . , Tm) = k � s. Further,681

C(x1, . . . , xm) be a circuit of (size + deg) < s′. Design a blackbox-PIT algorithm for682

C(T1, . . . , Tm).683

Trivially, Σ[k]ΠΣΠ[δ] is a very special case of the above setting. Let T :=684

{T1, . . . , Tm}. Let T k := {T1, . . . , Tk} be a transcendence basis. For Ti =
∏
j gij ,685

we denote the set L(Ti) := {gij | j}.686

We want to find an explicit homomorphism Ψ : F[x] → F[x, z1] s.t. Ψ(Jx(T ))687

is of a ‘nice’ form. In the image we fix x suitably, to get a composed map Ψ′ :688

F[x] −→ F[z1] s.t. rkF(x)Jx(T ) = rkF(z1)Ψ
′(Jx(T )). Then, we can extend this map to689

Φ : F[x] −→ F[z1,y, t] s.t. xi 7→ (
∑k
j=1 yjt

ij) + Ψ′(xi), which is faithful Theorem 4.5.690

We show that the map Φ can be efficiently constructed using a scaling and shifting691

map (Ψ) which is eventually fixed by the hitting set (H ′ defining Ψ′) of a Σ∧ΣΠ[δ]692

circuit. Overall, Φ(f) is a k + 2-variate polynomial for which a trivial hitting set693

exists.694

Wlog, Jx(T ) is full rank with respect to the variable set xk = (x1, . . . , xk). Thus,695

by assumption, Jxk(T k) 6= 0 (for notation, see section 2). We want to construct a696

Ψ s.t. Ψ(Jxk(T k)) has an ‘easier’ PIT. We have the following identity [5, Eqn. 3.1],697

from the linearity of the determinant, and the simple observation that ∂x(Ti) =698

Ti ·
(∑

j ∂x(gij)/gij

)
, where Ti =

∏
j gij :699

Jxk(T k) =
∑

g1∈L(T1),...,gk∈L(Tk)

(
T1 . . . Tk
g1 . . . gk

)
· Jxk(g1, . . . , gk) .(4.1)700

701

The homomorphism Ψ. To ensure the invertibility of all g ∈
⋃
i L(Ti) we702

proceed as in section 3. Consider703

h :=
∏
i∈[k]

∏
g∈L(Ti)

g =
∏
i∈[`]

g,704

705

where g ∈
⋃
i L(Ti) and ` ≤ k · s. Note that deg h ≤ d · k · s and h is computable706

by ΠΣΠ circuit of size O(s). Theorem 2.4 gives the relevant hitting set H ⊆ Fn707

which contains an evaluation point α = (a1, . . . , an) such that h(α) 6= 0 implying708

g(α) 6= 0, for all g ∈
⋃
i L(Ti). We emphasise that, unlike the previous case, here in709

the blackbox setting, we do not have individual access of g to verify for the correct710

α. Thus, we try out all α ∈ H to see whichever works. If the input polynomial f is711

non-zero, then one such α must exist. This search adds a multiplicative blowup of712

poly(s), since the size of H is poly(s).713

Fix an α = (a1, · · · , an) ∈ H and define Ψ : F[x] → F[x, z1] as xi 7→ z1 · xi + ai.714

Denote the ring R[x] where R := F[z1]/〈zD1 〉, and D := k · (d− 1) + 1. Being 1-1, Ψ is715

clearly a non-zero preserving map. Moreover,716
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Claim 4.7. Jxk(T k) = 0 ⇐⇒ Ψ(Jxk(T k)) = 0, over R[x].717

Proof. As deg(Ti) ≤ d, each entry of the matrix can be of degree at most d − 1;718

therefore deg(Jxk(T k)) ≤ k(d − 1) = D − 1. Thus, degz1(Ψ(Jxk(T k))) < D. Hence,719

the conclusion.720

Equation 4.1 implies that721

Ψ(Jxk(T k)) = Ψ(T1 · · ·Tk) ·
∑

g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk(g1, . . . , gk))

Ψ(g1 . . . gk)
.(4.2)722

723

As Ti has product fanin s, the top-fanin in the sum in Equation 4.2 can be at most724

sk. Then define,725

F̃ :=
∑

g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk(g1, . . . , gk))

Ψ(g1 . . . gk)
, over R[x].(4.3)726

727

Well-definability of F̃ . Note that,728

Ψ(gi) ≡ Ψ1(gi) mod z1 6= 0 =⇒ 1/Ψ(g1 · · · gk) ∈ F[[x, z1]].729

Thus, RHS is an element in F[[x, z1]] and taking mod zD1 it is in R[x]. We remark730

that instead of minimally reducing mod zD1 , we will work with an F ∈ F[z1,x] such731

that F = F̃ over R[x]. Further, we ensure that the degree of z1 is polynomially732

bounded.733

Claim 4.8. Over R[x], Ψ(Jxk(T k)) = 0 ⇐⇒ F = 0.734

Proof sketch. This follows from the invertibility of Ψ(T1 · · ·Tk) in R[x].735

The hitting set H ′. By Jxk(T k) 6= 0, and Claims 4.7-4.8, we have F 6= 0 over736

R[x]. We want to find H ′ ⊆ Fn, s.t. Ψ(Jxk(T k))|x=α 6= 0, for some α ∈ H ′ (which737

will ensure the rank-preservation). Towards this, we will show (below) that F has738

sO(δk)-size Σ∧ΣΠ[δ]-circuit over R[x]. Next, Theorem 2.8 provides the hitting set H ′739

in time sO(δ2k log s).740

Claim 4.9 (Main size bound). F ∈ R[x] has Σ∧ΣΠ[δ]-circuit of size (s3δ)O(k).741

The proof studies the two parts of Equation 4.3—742

1. The numerator Ψ(Jxk(g1, . . . , gk)) has O(3δ2kk!ks)-size Σ∧ΣΠ[δ−1]-circuit743

(see Theorem 4.14), and744

2. 1/Ψ(g1 · · · gk), for gi ∈ L(Ti) has (s3δ)O(k)-size Σ∧ΣΠ[δ]-circuit; both over745

R[x] (see Theorem 4.15).746

We need the following two claims to prove the numerator size bound.747

Claim 4.10. Let gi ∈ L(Ti), where Ti ∈ ΠΣΠ[δ] of size atmost s, then the poly-748

nomial Jxk(g1, . . . , gk) is computable by Σ[k!]Π[k]ΣΠ[δ−1] of size O(k! ks).749

Proof Sketch 4.11. Each entry of the matrix has degree at most δ − 1. Trivial750

expansion gives k! top-fanin where each product (of fanin k) has size
∑
i size(gi). As,751

size(Ti) ≤ s, trivially each size(gi) ≤ s. Therefore, the total size is k! ·
∑
i size(gi) =752

O(k! ks).753

Claim 4.12. Let g ∈ ΣΠδ, then Ψ(g) ∈ ΣΠδ of size 3δ · size(g) (for n� δ).754

Proof Sketch 4.13. Each monomial xe of degree δ, can produce
∏
i(ei + 1) ≤755

((
∑
i ei +n)/n)n ≤ (δ/n+ 1)n-many monomials, by AM-GM inequality as

∑
i ei ≤ δ.756

As δ/n→ 0, we have (1 + δ/n)n → eδ. As e < 3, the upper bound follows.757
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Lemma 4.14 (Numerator size). Ψ(Jxk(g1, . . . , gk)) is computable by Σ∧ΣΠ[δ−1]758

of size O(3δ 2kk k!s) =: s2.759

Proof. In Theorem 4.10 we showed that Jxk(g1, . . . , gk) ∈ Σ[k!]Π[k]ΣΠ[δ−1] of size760

O(k!ks). Moreover, for a g ∈ ΣΠ[δ−1], we have Ψ(g) ∈ ΣΠ[δ−1] of size at most761

3δ · size(g), over R[x] due to Theorem 4.12).762

Combining these, one concludes that Ψ(Jxk(g1, . . . , gk)) ∈ Σ[k!]Π[k]ΣΠ[δ−1], of size763

O(3δ k!ks). We convert the Π-gate to ∧ gate using waring identity (Theorem 2.10)764

which blowsup the size by a multiple of 2k−1. Thus, Ψ(Jxk(g1, . . . , gk)) ∈ Σ∧ΣΠ[δ−1]765

of size O(3δ 2kk k!s).766

In the following lemma, using power series expansion of expressions like 1/(1−a ·767

z1), we conclude that 1/Ψ(g) has a small Σ∧ΣΠ[δ]-circuit, which would further imply768

the same for 1/Ψ(g1 · · · gk).769

Lemma 4.15 (Denominator size). Let gi ∈ L(Ti). Then, 1/Ψ(g1 · · · gk) can be770

computed by a Σ∧ΣΠ[δ]-circuit of size s1 := (s3δ)O(k), over R[x].771

Proof. Let g ∈ L(Ti) for some i. Assume, Ψ(g) = A− z1 ·B, for some A ∈ F and772

B ∈ R[x] of degree δ, with size(B) ≤ 3δ · s, from Theorem 4.12. Note that, over R[x],773

1

Ψ(g)
=

1

A(1− B
A · z1)

=
1

A
·
D−1∑
i=0

(
B

A

)i
· zi1 .(4.4)774

775

As, size(Bi) has a trivial ∧ΣΠ[δ]-circuit (over R[x]) of size ≤ 3δ · s+ i; summing over776

i ∈ [D − 1], the overall size is at most D · 3δ · s+ O(D2). As D < k · d, we conclude777

that 1/Ψ(g) has Σ∧ΣΠ[δ] of size poly(s · k · d3δ), over R[x]. Multiplying k-many such778

products directly gives an upper bound of (s · 3δ)O(k), using Theorem 2.11 (basically,779

waring identity).780

Proof of Theorem 4.9. Combining Lemmas 4.14-4.15, observe that Ψ(Jxk(·)/Ψ(·)781

has Σ∧ΣΠ[δ]-circuit of size at most (s1 · s2)2 = (s · 3δ)O(k), over R[x], using Theo-782

rem 2.11. Summing up at most sk many terms (by defn. of F ), the size still remains783

(s · 3δ)O(k).784

Degree bound. As, syntactic degree of Ti are bounded by d, and Ψ maintain degx =785

degz1 , we must have degz1(Ψ(Jxk(g1, . . . , gk)) = degx(Jxk(g1, . . . , gk)) ≤ D− 1. Note786

that, Theorem 4.14 actually works over F[x, z1] and thus there is no additional degree-787

blow up (in z1). However, there is some degree blowup in Theorem 4.15, due to788

Equation 4.4.789

Note that Equation 4.4 shows that over R[x],790

1

Ψ(g)
=

(
1

AD

)
·

(
D−1∑
i=0

AD−1−izi1 ·Bi
)

=:
p(x, z1)

q
,791

where q = AD. We think of p ∈ F[x, z1] and q ∈ F. Note, degz1(Ψ(g)) ≤ δ implies792

degz1(p) ≤ degz1((B z1)D−1) ≤ δ · (D − 1).793

Finally, denote 1/Ψ(g1 · · · gk) =: Pg1,...,gk/Qg1,...,gk , over R[x]. This is just multi-794

plying k-many (p/q)’s; implying a degree blowup by a multiple of k. In particular –795

degz1(P(·)) ≤ δ · k · (D − 1) Thus, in Equation 4.3, summing up sk-many terms gives796

an expression (over R[x]):797

F =
∑

g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk(g1, . . . , gk)) ·
(
Pg1,...,gk
Qg1,...,gk

)
=:

P (x, z1)

Q
.798
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Verify that Q ∈ F. The degree of z1 also remains bounded by799

max
gi∈L(Ti),i∈[k]

degz1(Pg1,...,gk) + δk ≤ poly(s).800

Using the degree bounds, we finally have P ∈ F[x, z1] as a Σ∧ΣΠ[δ]-circuit (over801

F(z1)) of size nO(δ) (s3δ)O(k) = 3O(δk)sO(k+δ) =: s3.802

We want to construct a set H ′ ⊆ Fn such that the action P (H ′, z1) 6= 0. Using803

[29] (Theorem 2.8), we conclude that it has sO(δ log s3) = sO(δ2k log s) size hitting set804

which is constructible in a similar time. Hence, the construction of Φ follows, making805

Φ(f) a k + 2 variate polynomial. Finally, by the obvious degree bounds of y, z1, t806

from the definition of Φ, we get the blackbox PIT algorithm with time-complexity807

sO(δ2k log s); finishing Theorem 1.3(b).808

We could also give the final hitting set for the general problem.809

Solution to Theorem 4.6. We know that810

C(T1, . . . , Tm) = 0 ⇐⇒ E := Φ(C(T1, . . . , Tm)) = 0.811

Since, H ′ can be constructed in sO(δ2 k log s)-time, it is trivial to find hitting set for812

E|H′ (which is just a k+2-variate polynomial with the aformentioned degree bounds).813

The final hitting set for E can be constructed in s′O(k) · sO(δ2 k log s)-time.814

Remark 4.16. 1. As Jacobian Criterion (Theorem 4.4) holds when the char-815

acteristic is > d trdeg, it is easy to conclude that our theorem holds for all fields816

of char > dk.817

2. The above proof gives an efficient reduction from blackbox PIT for Σ[k]ΠΣΠ[δ]818

circuits to Σ∧ΣΠ[δ] circuits. In particular, a poly-time hitting set for Σ∧ΣΠ[δ]819

circuits would put PIT for Σ[k]ΠΣΠ[δ] in P.820

3. Also, DiDI-technique (of Theorem Theorem 1.1) directly gives a blackbox821

algorithm, but the complexity is exponentially worse (in terms of k in the822

exponent) for its recursive blowups.823

4.2. PIT for Σ[k]ΠΣ∧. As we remarked earlier, the proof of Theorem 1.3(a) is824

similar to the one we discussed in section 4.1. Here we sketch the proof, stating some825

relevant changes. Similar to Theorem 1.3(b), we generalize this theorem and prove826

for a much bigger class of polynomials.827

Problem 4.17. Let {Ti | i ∈ [m]} be ΠΣ∧ circuits of (syntactic) degree at most828

d and size s. Let the transcendence degree of Ti’s, trdegF(T1, . . . , Tm) =: k � s.829

Further, C(x1, . . . , xm) be a circuit of size + degree < s′. Design a blackbox-PIT830

algorithm for C(T1, . . . , Tm).831

It is trivial to see that Σ[k]ΠΣ∧ is a very special case of the above settings. We will832

use the same idea (& notation) as in Theorem 1.3(b), using the Jacobian technique.833

The main idea is to come up with Ψ map, and correspondingly the hitting set H ′. If834

g ∈ L(Ti), then size(g) ≤ O(dn). The D (and hence R[x]) remains as before. Claims835

4.7-4.8 hold similarly. We will construct the hitting set H ′ by showing that F has a836

small Σ∧Σ∧ circuit over R[x].837

Note that, Theorem 4.10 remains the same for Σ∧Σ∧ (implying the same size838

blowup). However, Theorem 4.12, the size blowup is O(d size(g)), because each mono-839

mial xe can only produce d+1 many monomials. Therefore, similar to Theorem 4.15,840
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one can show that Ψ(Jxk(g1, . . . , gk)) ∈ Σ∧Σ∧ , of size O(2kk!kds). Similarly, the size841

in Theorem 4.14 can be replaced by sO(k). Therefore, we get (similar to Theorem 4.9):842

Claim 4.18. F ∈ R[x] has Σ∧Σ∧ -circuit of size sO(k).843

Next, the degree bound also remains the same. Following the same footsteps,844

it is not hard to see that while degree bound on z1 remains poly(ksd). Therefore,845

P ∈ F[x, z1] has Σ∧Σ∧ -circuit of size sO(k).846

We want to construct a set H ′ ⊆ Fn such that the action P (H ′, z1) 6= 0. By847

Theorem 2.9, we conclude that it has sO(k log log s) size hitting set which is constructible848

in a similar time. Hence, the construction of map Φ and the theorem follows (from849

z1-degree bound).850

Solution to Theorem 4.17. We know that851

C(T1, . . . , Tm) = 0 ⇐⇒ E := Φ(C(T1, . . . , Tm)) = 0.852

Since, H ′ can be constructed in sO(k log log s) time, it is trivial to find hitting set for853

E|H′ (which is just a k+2-variate polynomial with the aforementioned degree bounds).854

The final hitting set for E can be constructed in s′O(k) · sO(k log log s) time.855

5. Conclusion. This work introduces the powerful DiDI-technique and solves856

three open problems in PIT for depth-4 circuits, namely Σ[k]ΠΣΠ[δ] (blackbox) and857

Σ[k]ΠΣ∧ (both whitebox and blackbox). Here are some immediate questions of in-858

terest which require rigorous investigation.859

1. Can the exponent in Theorem 1.1 be improved to O(k)? Currently, it is860

exponential in k.861

2. Can we improve Theorem 1.3(b) to sO(log log s) (like in Theorem 1.3(a))?862

3. Can we design a polynomial-time PIT for Σ[k]ΠΣΠ[δ]?863

4. Design a polynomial time PIT for Σ∧ΣΠ[δ] circuits (i.e. unbounded top-864

fanin)?865

5. Can we solve PIT for Σ[k]ΠΣ∧[2] efficiently (polynomial/quasipolynomial-866

time)?867

6. Can we design an efficient PIT for rational functions of the form Σ (1/Σ∧Σ)868

or Σ (1/ΣΠ) (for unbounded top-fanin)?869
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