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Abstract. We present a randomised algorithm to compute the local zeta function of a
smooth, projective surface of fixed degree over Q, at any large prime p of good reduction.
Specifically, the runtime of our algorithm is polynomial in log p, resolving a conjecture of
Couveignes-Edixhoven. The main ingredient is an analytic, mixed characteristic method to
identify vanishing cycles uniformly, employing the convergence bound of the Puiseux series,
and the Picard-Lefschetz formula for the monodromy action on it.
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1. Introduction

1.1. Main result. Let X ⊂ PN be a smooth, projective, geometrically integral (properties
we abbreviate to nice) surface of (fixed) degree D over a finite field Fq, described by a
system of homogeneous polynomial equations f1, . . . , fm each of degree ≤ d. We assume X
is obtained via good reduction of a nice surface X over a number field K at a prime p ⊂ OK .
We further assume the coefficients of the equations defining X have Weil height bounded by
H ∈ R>0. The zeta function of X is

Z(X/Fq, T ) := exp

(
∞∑
j=1

#X(Fqj)
T j

j

)
.

Fix a prime ℓ coprime to q. From the Weil conjectures for X, we know that

Z(X/Fq, T ) =
P1(X/Fq, T )P3(X/Fq, T )

(1− T )P2(X/Fq, T )(1− q2T )
,

where Pi(X/Fq, T ) := det
(
1− TF ⋆

q | Hi(X,Qℓ)
)
is the (reversed) characteristic polynomial

of the geometric Frobenius acting on the ith ℓ – adic étale cohomology group of X. In [CE11,
Epilogue], the existence of an algorithm that computes the point count #X(Fq) in time
polynomial in log q is conjectured. We prove this conjecture by exhibiting an algorithm that
computes the action of Frobenius on the étale cohomology groups with torsion coefficients
Hi(X,Z/ℓZ), for primes ℓ = O(log q), from which the zeta function of X, and thereby
its point-count can be recovered by a Chinese-remainder process. Our main result is the
following.

Theorem 1.1. There exists an algorithm, that, on input X as above, outputs Z(X/Fq, T )
in time bounded by a polynomial in log q.

Remark. This theorem is restated in more detail as Theorem 4.2 in Section 4.2 and proved
therein. We further note that we consider the degree D of the surface X , the embedding
dimension N and the number of equations m defining X to be fixed. The runtime of our
algorithm is polynomial in (log q ·H), where q is the size of the finite field and H is a bound
for the heights of the coefficients of the polynomials defining X .

1.2. Motivation. Our work is fundamentally motivated by the following paraphrase of a
question of Serre [Ser16, Preface].

Question (Serre). Is there an algorithm that, given a Z – scheme X of finite type, computes
the point count of its reduction #X(Fp) at any prime p in time polynomial in log p?

In particular, this work solves the above question in the case dimX = 2, when X is nice,
at large enough primes of good reduction. In their monograph on computing the coefficients
of the Ramanujan τ – function, Couveignes and Edixhoven [CE11, Epilogue] propose the
existence of a strategy to count points on surfaces over finite fields, using the theory of
Lefschetz pencils and dévissage; techniques which were used in Deligne’s celebrated proof
[Del74] of the Weil conjectures. If realised, this would be an extension of polynomial-time
counting methods from the dimension-one case of curves (and the conceptually similar case
of abelian varieties) [Sch85, Pil90] to varieties of a higher dimension.

An important motivation for these algorithms is computational evidence for conjectures
in the Langlands program [Gel84], a vast philosophy encompassing several areas of modern
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mathematics including number theory, representation theory and algebraic geometry. An
object of study in part of the program, is the L – function of a variety X/Q, a conglomeration
of the zeta functions at all the local factors. The Langlands-Rapoport conjecture [LR87], in
particular, gives the mod – p point-counts of Shimura varieties 1 a certain group-theoretic
description.

Another angle of motivation is diophantine geometry, i.e., counting or classifying ratio-
nal points on a variety X/Q. One approach towards this is computing the Brauer-Manin
obstruction [CTS21] (essentially measuring the failure of local-global principles) for specific
varieties. This is defined using the Brauer group H2(X ,Gm) of the variety in question, which
is the étale cohomology in degree two, with coefficients in the multiplicative sheaf. With a
view towards the diophantine setting, it would be prudent to have algorithms for the scenario
over a finite field, with constant torsion-coefficients to begin with.

1.3. Potential applications in computing. A fundamental aspect of our work is the
explicitisation of the étale cohomology of a surface, which should be viewed as an arithmetic
or discrete analogue of the usual topological or Betti cohomology over the complex numbers.
The latter notions do not translate easily to the setting over a finite field, and thus required
the revolution of the Grothendieck school, thereby putting the Weil conjectures in proper
context.

Our work lays the stepping stones toward solving a foundational problem for topological
computation in the discrete setting, i.e., over finite fields. In particular, we, for the first
time, make explicit (and give algorithms to compute) the étale cohomology groups with
constant torsion coefficients Hi(X,Z/ℓZ) of a nice surface X. This generalises to being able
to compute with cohomology in degrees one and two, for varieties of higher dimension as
well [RSV24, KV].

The progenitor of point-counting algorithms, Schoof’s algorithm [Sch85] for elliptic curves,
paved the way for elliptic curve cryptography, which is ubiquitous today. In particular, it
is necessary to run a point-counting algorithm to select a curve suitable for cryptosystems.
It is conceivable that our algorithms may come of use in efficiently designing cryptosystems
around surfaces as well. Further, Brauer groups, mentioned earlier, arise naturally in the
context of class field theory and homogeneous spaces, for which a general framework has
been proposed with regard to applications to cryptography [Cou06].

1.4. Prior work & special cases. As mentioned earlier, the first advance in point-counting
over finite fields came with Schoof’s algorithm for elliptic curves. This was generalised to
curves of higher genus and abelian varieties by Pila [Pil90]. The cohomology groups in higher
degree, however, have only recently been shown to be computable [MO15, PTvL15].

In Roy-Saxena-Venkatesh [RSV24], a randomised algorithm was given to compute the
factor P1(X/Fq, T ) for a nice variety X of fixed degree, in time polynomial in log q. Levrat
has sketched a strategy to compute the full zeta function for surfaces [Lev22, IV.3.5, VI.4]
(see also [Lev23, §5]) based on the description of Couveignes-Edixhoven, but its runtime is
exponential.

When the characteristic p of the base field is fixed, the point-counting problem is essentially
solved by Lauder-Wan [LW06] for varieties and Harvey [Har15] for general arithmetic schemes

1algebraic varieties equipped with rich arithmetic data
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by means of p – adic algorithms. As opposed to using étale cohomology, they feature p –
adic trace formulas. These algorithms, however, have a runtime exponential in log p.

1.5. Obstructions in the prior techniques. The main difficulty in counting points on
surfaces in polynomial time so far, has been the lack of a concise representation of the étale
cohomology groups Hi(X,Z/ℓZ), particularly for i = 2, on which the induced Frobenius
action may be computed. In the approach of Levrat [Lev23], one reduces the computation
of the group H2(X,Z/ℓZ) to the computation of H1(V,Z/ℓZ), where V is a curve of genus
polynomial in ℓ. While algorithms are known to compute the first cohomology of curves
[HI98, Cou09], their runtime is exponential in its genus. Thus for a prime ℓ of size O(log q),
which is required for the intended Chinese remainder process, the above strategy ends up
giving an exponential-time algorithm.

In terms of quantum algorithms, it is conceivable that the approach of Levrat would yield
a polynomial-time quantum algorithm for surfaces of fixed degree, by running Kedlaya’s
quantum algorithm [Ked06] to compute the zeta function of curves, which is poly-time in
the genus. However, this does not address the explicitisation of the étale cohomology groups.

Another approach would be to work directly with the Brauer group of X, whose ℓ – torsion
the group H2(X,µℓ) captures. Elements in the Brauer group are, a priori, equivalence classes
of Azumaya algebras; but it is not clear how one may obtain bounds to represent them, along
with their group law and the equivalence relation they are subjected to.

1.6. Proof ideas. Our algorithm studies the étale cohomology of a surface by using the for-
malism of monodromy of vanishing cycles arising from a Lefschetz pencil. More specifically,
we fibre the given surface X as a Lefschetz pencil of hyperplane sections, and then blow it up
at the axis, yielding a morphism to P1. The cohomology of the blowup X̃ , is understood us-
ing the sequence (2.5) coming from the Galois cohomology of the tame fundamental group of
the line with the critical locus (i.e., the finite set Z ⊂ P1 where the fibres are nodal) removed.
A serious bottleneck is the consistent representation of the cospecialisation morphisms from
the cohomology of the critical fibres at all singular points to the cohomology of the generic
fibre. In particular, one needs to be able to compute the pairings of vanishing cycles ⟨δzi , δzj⟩
for zi, zj ∈ Z arising in the Picard-Lefschetz formulas (2.4) for the monodromy action on the
cohomology of the generic fibre.

Our solution is to first compute the ℓ – division polynomial system (the zero dimensional
ideal whose roots are the distinct ℓ – torsion points) for the torsion in the Jacobian of the
generic fibre, and view the choice of a cospecialisation morphism at a singular point z as
picking a Puiseux series expansion around z. Working in characteristic zero, we identify the
vanishing cycle δz at z using an auxiliary smooth point uz within the radii of convergence
of the Puiseux expansions around z combined with numerical/diophantine approximation
methods in a technique we call ‘re-centering’. Specifically, we compute the vanishing cycle
as an element in the cohomology of the fibre at uz.

However, one still seeks a common, consistent representation for all the vanishing cycles at
different singular points to compute the pairings between them. This is resolved by choosing
the smooth points uj for the distinct zj ∈ Z all congruent modulo p to the same finite field
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element u. This enables us to recover all the vanishing cycles in the cohomology of the fibre
at u via moving to positive characteristic. Below is a high-level overview of the algorithm.

• Fibre the surface as a Lefschetz pencil. Denote by Z ⊂ P1 the subset parametrising
the critical fibres and U = P1 \ Z, the smooth ones.

• Compute the ℓ – division polynomial of the Jacobian of the generic fibre of the pencil
as in Algorithm 2.

• For all but one singular z ∈ Z express the elements of Pic0(Xη)[ℓ] using the above
ℓ – division polynomial system as Puiseux series around z, by making a choice of a
cospecialisation. This is done in Algorithm 4.

• Compute the vanishing cycle as an element of Pic0(Xuz)[ℓ] for smooth uz chosen
within the radii of convergence of the Puiseux expansions around z via specialisation
(Algorithm 5) using convergence properties and the Picard-Lefschetz formulas, as in
Algorithm 6.

• Assume for each z ∈ Z, the associated smooth point uz ≡ u mod p for an arbitrarily
chosen smooth finite field value u. Then, the vanishing cycles at the distinct singular
points are all identified in Pic0(Xu)[ℓ] via reduction to positive characteristic, as in
Algorithm 7.

• Specialise the sequence (2.5) to u, compute the cohomology groups and the action of
Frobenius on them. This is done in Algorithms 8 and 9.

1.7. Leitfaden. Section 2 delineates the cohomological preliminaries that form the funda-
mental basis of our algorithms. Section 3 develops subroutines including Weil pairings and
Puiseux expansions for vanishing cycles, which are used in our main algorithms of Section 4.
Complexity analyses of all algorithms are provided in Section 5. The appendices in order
include material on recovering the zeta function, background on height theory, a recap of
certain results of Igusa, and a known algorithm for computing equations of Jacobians due
to Anderson.

2. Cohomological preliminaries

The aim of this section is to compile standard background material on the cohomology
of the various varieties that will be required for the algorithm. We present cohomology
computations when explicitly known, and point to the existence of algorithms in the curve
case: smooth, nodal, and for a smooth curve over the rational function field.

2.1. Cohomology of a surface. In this subsection, we briefly recall cohomology compu-
tations for surfaces. A standard reference is [Mil80, V.3]. Let k be a field and let X be
a surface over the algebraic closure k. Following [RSV24, Algorithm 3], one may fibre X
as a Lefschetz pencil π : X̃ → P1 of hyperplane sections over the projective line, where X̃
is the surface obtained by blowing up X at the axis Υ of the pencil. Denote Z ⊂ P1 the
finite critical locus, whose corresponding fibres have exactly one node (with #Z = r) and let
U = P1 \ Z be the locus of smooth fibres. Write F := R1π⋆µℓ for the constructible derived
push-forward sheaf on P1. We note that the restriction F|U is a locally constant sheaf (or
local system) on U . Let η → P1 be a geometric generic point and let g denote the genus of
the generic fibre Xη, viewed as a curve over the function field of the projective line. Firstly,
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one recalls [Mil98, Lemma 33.2]

(2.1) Hi(X̃,Qℓ) ≃

{
Hi(X,Qℓ), i ̸= 2;

H2(X,Qℓ)⊕ H0(Υ ∩X,Qℓ)(−1), i = 2

so it suffices to compute the zeta function of X̃ (see Appendix A). In Algorithm 1, we detail
a method to compute equations for the blowup.

Algorithm 1 Blowup of a surface at a point

• Input: A nice surface X ⊂ PN presented as homogeneous forms f1, . . . , fm and a
point P ∈ X. Assume without loss, P = [0 : 0 : . . . : 1].

• Output: A surface X̃ that is the blowup of X at P and a morphism π : X̃ → X

1: Consider the projection φP : PN \ P → PN−1 from P .
2: The blowup X̃ of X at P is given by the closure in X×PN−1 of the graph of φP restricted

to X \ P .
3: Use the Segre embedding to obtain equations for X̃.
4: The morphism π : X̃ → X is obtained by projection to the first factor.

Henceforth, without loss of generality, we may assume X may be fibred as π : X → P1 as
a Lefschetz pencil of hyperplane sections. From the Léray spectral sequence

Hi(P1, Rjπ⋆µℓ) ⇒ Hi+j(X,µℓ),

one has

(2.2) Hi(X,µℓ) ≃



µℓ, i = 0;

H0(P1,F), i = 1;

H1(P1,F)⊕ ⟨γE⟩ ⊕ ⟨γF ⟩, i = 2;

H2(P1,F), i = 3;

µ∨
ℓ , i = 4;

0, i > 4.

Here γE and γF are certain cycle classes on X (viewed in H2 via the cycle class map) corre-
sponding to the class of a section of π and the class of a smooth fibre of π respectively. One
needs to work more to make the above groups explicit.

Recall the theory of vanishing cycles on a surface [RSV24, 3.1, 3.2]. For each z ∈ Z,
one obtains a mod – ℓ vanishing cycle δz at z as the generator of the kernel of the map

Pic0(Xz)[ℓ] → Pic0(X̃z)[ℓ] induced by the normalisation X̃z → Xz. Using a cospecialisation
map2

(2.3) ϕzj : Fzj ↪→ Fη

for each zj ∈ Z, one obtains the subspace generated by all the vanishing cycles δzj in Fη. The
geometric étale fundamental group π1(U, η) acts on Fη, factoring through the tame quotient

2which depends on the choice of an embedding of the strict henselisation ÔP1,z ↪→ k(η), see Section 3.2
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πt
1(U, η), via the Picard-Lefschetz formulas. In particular, πt

1(U, η) is generated topologically
by #Z = r elements σj satisfying the relation

∏
j σj = 1. We have for γ ∈ Fη

(2.4) σj(γ) = γ − ϵj · ⟨γ, δzj⟩ · δzj ,

where ⟨·, ·⟩ denotes the Weil pairing on Pic0(Xη)[ℓ] and for a uniformising parameter θj at zj,

one has σj(θ
1/ℓ
j ) = ϵj · θ1/ℓj . Further, σj is understood as the canonical topological generator

for the tame inertia I tzj at zj (after having made consistent choices for primitive roots of

unity).
One sees immediately that the monodromy 3 is symplectic, i.e., the representation

ρ : πt
1(U, η) −→ GL(2g,Fℓ)

has image in Sp(2g,Fℓ), the group of symplectic transformations of the vector space F2g
ℓ .

Next, one recalls the following complex, [Mil80, Theorem 3.23] coming from the Galois
cohomology of πt

1(U, η)

(2.5) Fη
α−→ (Z/ℓZ)r β−→ Fη

with, for any γ ∈ Fη

α(γ) = (⟨γ, δz1⟩, . . . , ⟨γ, δzr⟩)

and for any r – tuple (a1, . . . , ar) ∈ (Z/ℓZ)r

β(a1, . . . , ar) = a1 · δz1 + a2 · σ1(δz2) + . . .+ ar ·

(
r−1∏
j=1

σj

)
(δzr).

The cohomology groups of the above complex are related to the cohomology of X, i.e.,

(2.6) Hi(X,Z/ℓZ) ≃


ker(α), i = 1;

(ker(β)/im(α))⊕ < γE > ⊕ < γF >, i = 2;

coker(β), i = 3.

In particular, we have that H1(P1,F) ≃ ker(β)/im(α). If the situation is over a finite
field, it is sufficient to compute the action of the Frobenius F ⋆

q on H1(P1,F) as it acts as
‘multiplication by q’ on < γE > and < γF >.

This simplification of the concerned cohomology groups lends itself to the following rough
computation strategy.

• Make the cospecialisation maps Fzj ↪→ Fη explicit.
• Identify the δzj as elements of Fη consistently.
• Compute pairings in Fη.

This is carried out in Sections 3 and 4, using the method of Puiseux series and lifting to
characteristic zero (which is where our situation arises).

3action of the étale fundamental group on Fη
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2.2. Cohomology of a smooth fibre. Let Xu be a smooth fibre of the Lefschetz pencil
π : X → P1 at a point u ∈ U . The objective of this subsection is to state how to compute
and efficiently represent the ℓ – torsion in the Jacobian of Xu, i.e., the group Pic0(Xu)[ℓ] ≃
(Z/ℓZ)2g. Algorithms for this procedure are known, see e.g., [HI98] and [Pil90]. The two are
markedly different, in that the former works with the Jacobian by means of divisor arithmetic
whereas the latter requires an explicit embedding of the Jacobian including equations and
addition law. We use both for different applications.

Remark. Over a finite field, knowing the zeta function of Xu, an algorithm of Couveignes
[Cou09, Theorem 1] also computes Pic0(Xu)[ℓ], but any (known) algorithm that computes
Z(Xu/FQ, T ) in time poly(logQ) also computes the ℓ – torsion in the Jacobian for small
primes ℓ first as a subroutine.

Theorem 2.1 (Arithmetic on Jacobians via divisors). Given a curve C of genus g over an
effective field k, and a divisor E on C of degree d, there exists an algorithm that computes
a basis for the Riemann-Roch space L(E) in time

poly(g · d).
Moreover, arithmetic on Pic0(C) can be performed in polynomial time.

Proof. Apply [HI94] or [LGS20] for computing Riemann-Roch spaces. Divisor arithmetic on
the Jacobian can be done using [KM04, KM07]. □

Theorem 2.2 (Huang-Ierardi). Let C ⊂ PN be a smooth, projective curve of genus g over
an effective field k and let ℓ be a prime coprime to the characteristic of k. There exists an
algorithm to compute Pic0(C)[ℓ] via divisor representatives in time poly(ℓ). If k = Fq is a
finite field, the complexity is polynomial in log q as well.

Proof. See [HI98, §5]. □

Theorem 2.3 (Pila). Let C ⊂ PN be a smooth, projective curve of genus g over an effective
field k and let ℓ be a prime coprime to the characteristic of k. Assume Pic0(C) = Jac(C)
is provided as an abelian variety via homogeneous polynomial equations in PM along with
addition law. Then, there exists an algorithm to compute the points representing Pic0(C)[ℓ]
in PM in time polynomial in ℓ. If k = Fq is a finite field, the complexity is polynomial in
log q as well.

Proof. See [Pil90, §2, §3]. □

2.3. Cohomology of a nodal fibre. Let Xz be a nodal curve, obtained as a critical fibre
of the Lefschetz pencil in the previous subsection. The objective of this subsection is to state
how we may represent and compute the cohomology H1(Xz, µℓ) ≃ Pic0(Xz)[ℓ] ≃ (Z/ℓZ)2g−1

concisely. Let X̃z → Xz be the normalisation of this nodal curve. Let Pz ∈ Xz denote its

singularity and let Dz = Qz +Rz denote the exceptional divisor on X̃z, where Qz, Rz ∈ X̃z.

It is possible to describe Pic0(Xz) in terms of Pic0(X̃z) and Dz. First, write

DivDz(X̃z) := Div(X̃z \ {Qz, Rz})

and let k(X̃z) denote the function field of X̃z. For f ∈ k(X̃z)
∗, we say

f ≡ 1 mod Dz if vQz(1− f) ≥ 1 and vRz(1− f) ≥ 1.
8



Define

(2.7) Pic0Dz
(X̃z) := Div0Dz

(X̃z)/⟨{div(f) | f ≡ 1 mod Dz}⟩.

Then, it is possible to show [Ser12, Chapter V]4 that Pic0(Xz) ≃ Pic0Dz
(X̃z). In particular,

we have

(2.8) Pic0(Xz)[ℓ] ≃ Pic0Dz
(X̃z)[ℓ].

The upshot is that we may also represent the elements (and group law) of the LHS in
the isomorphism 2.8, using effective Riemann-Roch algorithms on the normalisation. In
particular, one can isolate the subspace generated by the vanishing cycle at z, namely ⟨δz⟩ ⊂
Pic0(Xz)[ℓ], as the kernel of the natural induced map

Pic0Dz
(X̃z)[ℓ] −→ Pic0(X̃z)[ℓ].

Remark. We may compute the elements of Pic0(Xz)[ℓ] via specialisation to z of the ideal
(ℓ)Iη computing the ℓ – torsion in the generic fibre using Algorithm 2. By a result of Igusa

[Igu56a, Theorem 3], we know that the k – roots of this specialisation contain the ℓ2g−1

torsion elements of the generalised Jacobian Pic0(Xz)[ℓ]. The other roots correspond to
singularities of the completion of the generalised Jacobian Pic0(Xz) by Theorem C.3.

It requires more work to completely identify the vanishing cycle δz (upto sign), this is done
in Section 3 using the Picard-Lefschetz formulas (2.4).

2.4. Cohomology of the generic fibre. As a result of the Lefschetz fibration π : X → P1,
we may think of the surface X as defining a relative curve over k(t), the function field of
the projective line. We refer to this notion as the ‘generic fibre’ of the pencil, Xη. Scheme-
theoretically, this corresponds to the fibre of π over a geometric generic point η → P1. The
stalk Fη ≃ Pic0(Xη)[ℓ] corresponds to the ℓ – torsion in the Jacobian of this relative curve
of genus g. 5

The main objective of this subsection is to describe a zero-dimensional radical ideal (ℓ)Iη

over k(t)6, whose k(t) – roots correspond exactly to elements of Fη. First, we bound the
degree of this system. We know that Fη ≃ (Z/ℓZ)2g as an abelian group, so the system has

ℓ2g – many k(t) – roots. It remains to bound the degree of the system in t, i.e., the degree of
the polynomials in t occurring as coefficients of the above system. First, we note by [RSV24,
§4.2]

(2.9) #Z ≤ DN+1 and g ≤ D2 − 2D + 1.

Next, denote by κ the minimal Galois extension of k(t) that all the elements of Fη can be

defined over. We know that the extension κ/k(t) has its Galois group as a subgroup of

Sp(2g,Fℓ), so in particular, its degree is bounded above by ℓ4g
2
. Further, we see that the

system (ℓ)Iη when viewed as a one–dimensional scheme over k corresponds (after normalisa-
tion) to a curve V obtained by normalising the function field of U in κ. In particular, the
(minimal) étale cover V → U trivialises the locally constant sheaf F|U to a constant sheaf

4see also [Lev22, Lemma 2.3.8]
5The genus of any smooth fibre over u ∈ U will also be g.
6i.e., one-dimensional over k
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G on V . More specifically, V is a cover of P1 of degree bounded by ℓ4g
2
, tamely ramified at

Z. Therefore, the product

#Z · ℓ4g2 ≤ DN+1ℓ4(D+1)4

which is polynomial in ℓ, serves as an upper bound for the genus gV of V 7; and hence, also
for the complexity of the system (ℓ)Iη in the variable t.

Remark. Mascot [Mas23, Algorithm 2.2] also proposes an algorithm to compute ℓ – division
polynomials for the Jacobian of a curve over Q(t), based on (p′, t) – adically lifting torsion
points for a small, auxiliary prime p′. It is however mentioned [Mas23, Remark 4.3] that
parts of his algorithm are not rigorous.

Algorithm 2 Computing the ℓ – division ideal of Pic0(Xη)

• Input: A Lefschetz pencil π : X → P1.
• Output: A radical ideal (ℓ)Iη over k(t) whose k(t) – roots correspond to the ℓ –
torsion points of Pic0(Xη).

1: Compute equations for Pic0(Xη) = Jac(Xη) using Theorem D.1, realising it as a subva-
riety of PM .

2: Compute the multiplication by ℓ – map as a morphism on Pic0(Xη) by Theorem D.1.
3: Compute the equations for the pre-image of the identity element of the Jacobian.
4: Return the ideal (ℓ)Iη so obtained.

Remark. Algorithm 2 also provides an algorithm to compute the ℓ – division ideal corre-
sponding to Pic0(Xu) for a smooth u ∈ U by simply specialising (ℓ)Iη to u.

3. Essential subroutines

The objective of this section is to collect procedures essential to our main algorithm of
computing the cohomology groups of a surface. Specifically, we recall pairing algorithms,
review Puiseux series, cospecialisation at singular points, and specialisation to smooth points
with the final motive of gathering all the vanishing cycles in the cohomology of a smooth
fibre over a finite field.

3.1. Pairing. The objective of this subsection is to define the Weil pairing on the ℓ – torsion
points on the Jacobian of a curve and delineate an efficient algorithm to compute it.

Definition 3.1. Let C be a smooth projective curve over an algebraically closed field k, let
J be its Jacobian and let ℓ be a prime number. The mod – ℓ Weil pairing on J is a map

J [ℓ]× J [ℓ] −→ µℓ

given by

(D1, D2) 7→ ⟨D1, D2⟩.
Let ℓ ·D1 = div(f) and ℓ ·D2 = div(g) for f, g ∈ k(C)∗. Then, ⟨D1, D2⟩ = f(D2)

g(D1)
.

7by the Riemann-Hurwitz formula
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Theorem 3.2. There exists an algorithm, that, on input a smooth, projective curve C over
Fq, a prime number ℓ coprime to q, two ℓ – torsion divisors D1, D2 ∈ Pic0(C)[ℓ], computes
the Weil pairing ⟨D1, D2⟩ in time

poly(log q · ℓ).
Proof. See [CF+12, §16.1] or [Cou09, Lemma 10]. □

Algorithm 3 Computing the Weil pairing

• Input: A smooth projective curve C over Fq and two divisors D1, D2 ∈ Pic0(C)[ℓ].

• Output: The value ⟨D1, D2⟩ ∈ µℓ(Fq).

1: Find f, g ∈ k(C)∗ such that div(f) = ℓ · D1 and div(g) = ℓ · D2 using an effective
Riemann-Roch algorithm from Theorem 2.1.

2: Evaluate f(D2)
g(D1)

using [Cou09, Lemma 10].

3: Return the value of f(D2)
g(D1)

.

Remark. While the algorithm from [Cou09] runs with stated complexity over a finite field,
it works over a number field as well, with similar dependence on ℓ. We note that for a curve
C over a number field K, the ℓ – torsion is defined over an extension K ′ of K of degree a
polynomial in ℓ as Gal(K ′/K) ⊂ GL(2g,Fℓ), where g is the genus of C. The height of the
ℓ – torsion elements is bounded, by Theorem B.4. Additionally, we note that there are also
pairing algorithms running in time polynomial in ℓ that work directly with an embedding of
the Jacobian of the curve. See [LR10, LR15].

3.2. Cospecialisation at a singular fibre. In this subsection, we indicate how to make
the cospecialisation maps (2.3) from the cohomology of a special fibre to that of the generic
fibre, explicit.

Let π : X → P1 be a Lefschetz pencil of hyperplane sections on a nice surface over a number
field K. We fix an embedding K ↪→ C at the outset. Denote by Z ⊂ P1 the finite subset
parametrising the critical (nodal) fibres and write U = P1 \ Z. Denote by F := R1π⋆µℓ,
the first derived pushforward sheaf on P1 and let η → P1 be a geometric generic point. Let

z ∈ Z. Consider the strictly Henselian ring ÔP1,z. By [Mil98, Proposition 4.10], it can be
understood as the elements of

K[[t− z]] ∩K(t),

i.e., those power series in t − z which are algebraic over K(t). Let Kz denote a separable

closure of the field of fractions of ÔP1,z. After [Mil98, §20], we know that the choice of a
cospecialisation map

ϕz : Fz ↪→ Fη

depends on an embedding Kz ↪→ K(t). We begin with the following.

Definition 3.3 (Puiseux series). Let K be a field. A formal Puiseux series f(t) over K in
the variable t is an expression of the form

f(t) =
∞∑

j≥M

ajt
j/n

11



for some M ∈ Z, n ∈ Z>0 and aj ∈ K. The field of formal Puiseux series is denoted K⟨⟨t⟩⟩.
In particular, we have

K⟨⟨t⟩⟩ =
∞⋃
n=1

K((t1/n)),

where K((t)) is the field of formal Laurent series in t with coefficients in K. It is a classical
result that if K is algebraically closed of characteristic zero, then K⟨⟨t⟩⟩ is the algebraic
closure of K((t)).

We notice that the field K⟨⟨t− z⟩⟩ of Puiseux series in t− z, contains both Kz and a copy

of K(t), so we seek to fix the stated embedding therein. We are only concerned with the
finite field extension K of K(t) that all the points of Pic0(Xη)[ℓ] are defined over. It is the
splitting field of the ℓ – division ideal (ℓ)I of Pic0(Xη) computed in Section 2.4. We observe

(3.1) [K : K(t)] ≤ #GL(2g,Fℓ),

where g is the genus of Xη. Therefore, we may write K = K(t) (τ ), where τ is a primitive
element for K/K(t). By (3.1), we may assume τ has a minimal polynomial µ(x) with
coefficients in K(t), of degree bounded by a polynomial in ℓ. The height of the coefficients
can also be assumed to be bounded by a polynomial in ℓ by Appendix B. In order to fix an
embedding K ↪→ K⟨⟨t− z⟩⟩, we simply pick a Puiseux series expansion λz of τ in t− z, as
a root of µ(x). This is made possible using the following classical theorem-algorithm due to
Newton and Puiseux.

Theorem 3.4 (Newton-Puiseux). Let µ(x, t) = 0 be a curve in C2. Let dx be the degree of
µ in the variable x. Then, around any u ∈ C, there exist dx many Puiseux expansions

xi(t) =
∞∑

j≥M

αi,j(t− u)j/N

satisfying µ(xi, t) = 0. Each xi(t) converges for values of t in an open neighbourhood of
u. Moreover, given a positive integer m, there exists an algorithm that outputs the first m
coefficients of all the expansions of xi in time

poly(dx ·m).

Proof. For the existence, see [Wal04, Theorem 2.1]. The algorithm with stated complexity
is from [Wal00, Theorem 1]. □

Remark. We see that if λ(t) =
∑

j αjt
j/M is an algebraic Puiseux series as a solution of

µ(x, t) = 0, so are its conjugates
∑

j αjζ
ij
M t

j/M , for ζM a primitive M th – root of unity and
0 ≤ i < M . We note that there is no ambiguity in the function defined by a Puiseux
series, as the function t1/M refers locally to a unique branch of the M th – root function, and
the other branches are given as conjugates by ζ iM . Specifically, for w a nonzero complex
number written as w = (r, ψ) in polar form, where r ∈ R>0 and 0 ≤ ψ < 2π, we have
w1/M = (r1/M , ψ/M).

So, for each z ∈ Z, we use Theorem 3.4 to write τ as a Puiseux series in t − z, after
making a choice of the series expansion to use. Essentially, this identifies τ with a root of
µ(x) over K⟨⟨t− z⟩⟩.

12



This choice of embedding K ↪→ K⟨⟨t−z⟩⟩ determines completely the cospecialisation map
ϕz : Fz ↪→ Fη. Following work of Igusa (Theorem C.5) we know that the elements of Fz can
be identified as those solutions of the ℓ – torsion ideal (ℓ)Iη of Pic

0(Xη) as a zero-dimensional
ideal over K(t), which are in fact rational over K((t− z)). The other elements of Fη can be
represented using polynomial expressions in τ , which has in turn been identified with the
Puiseux series λz using our embedding. We sum up our efforts in Algorithm 4.

Algorithm 4 Computing a cospecialisation map at a singular point

• Input: A singular fibre Xz of the Lefschetz pencil π : X → P1 for a fixed z ∈ Z.
• Output: The elements of Pic0(Xη)[ℓ] represented as K(t) – rational points in a
projective space PM using convergent Puiseux series around z.

1: Compute the ℓ – division ideal (ℓ)Iη of Pic0(Xη) using Algorithm 2.

2: Represent the ℓ2g solutions of (ℓ)Iη over K(t) using a primitive element τ and a zero-
dimensional system solving algorithm such as [Rou99]. In particular, an element γ of
Pic0(Xη)[ℓ] is represented as a point in PM with its coordinates being polynomials in τ
with coefficients from a poly(ℓ) – degree extension of K. This identifies each γ uniquely
by Lemma 3.5.

3: Expand τ as a Puiseux series λz around z using the algorithm from Theorem 3.4. Simi-
larly polynomial functions in τ also have convergent Puiseux series representations.

4: Return a representation of each γ as a tuple

[X
(γ)
0 (t) : . . . : X

(γ)
M (t)],

where X
(γ)
i (t) are Puiseux series in t− z.

Remark. By Theorem 3.4, all the Puiseux expansions X
(γ)
i (t) converge for all t in a neigh-

bourhood of z. In other words, they all converge for |t − z| < εz, where εz ∈ R>0 is the

minimum of the radii of convergence of all the X
(γ)
i (t).

Lemma 3.5. It suffices to specify

poly(ℓ)

coefficients of the Puiseux expansion of each γ ∈ Fη around z ∈ Z, in order to identify it
uniquely. Further, the Weil height of each coefficient is bounded by a polynomial in ℓ.

Proof. The first statement follows from [Wal00, pg 3].( See also [HS83, Theorem 4.5]). The
bound for the height of the coefficients is provided by [Wal00, Theorem 1]. □

Remark. We ‘store’ an algebraic number α, by a pair consisting of its minimal polynomial
and a floating point approximation, to distinguish α from its conjugates.

We conclude this subsection with the following.

Lemma 3.6 (Radius of convergence). There exists a polynomial Ψ(x) ∈ Z[x], with coeffi-
cients and degree independent of ℓ, such that the common radius of convergence εz satisfies

εz >
1

exp (Ψ(ℓ))
.

13



Proof. Denote by (
X

(γ)
i (t)

)
γ∈Fη

the system of Puiseux expansions one obtains for the elements of Fη around z. In particular,
they are Laurent series in t = (t− z)1/M for some M bounded by a polynomial in ℓ. Write

X
(γ)
i (t) =

∑
j

α
(γ)
i,j t

j.

It converges on a disc |t| < εz where

1

εz
= lim sup

j→∞
|α(γ)

i,j |
1
j .

Applying [HM17, Corollary 4.6] 8, we see that

|α(γ)
i,j | ≤ exp (Ψ(ℓ) · j) ,

where Ψ(x) is a polynomial with coefficients and degree independent of j and ℓ. Taking the
limit gives the result.

□

3.3. Specialisation to a smooth fibre. Consider the setup of Section 3.2. Let z ∈ Z.
In this subsection, we indicate how we may specialise elements of Fη realised as Puiseux
expansions around z using Algorithm 4, to elements of Pic0(Xuz)[ℓ] for a ‘nearby’ smooth
fibre Xuz . We recall the following.

Lemma 3.7. Let u ∈ U . Then, any cospecialisation map

ϕu : Fu → Fη

is an isomorphism. Its inverse ϕ−1
u associates a divisor in Fη to the intersection with Xu of

its closure in X .

Proof. The first statement follows from the fact that F|U is a locally constant sheaf on U .
See [Mil80] for more details. □

Now, consider again the splitting field K of (ℓ)Iη. Under the natural embedding K(t) ↪→
K((t− u)), we know that the elements of Pic0(Xη)[ℓ] are rational over K((t− u)) as the ℓ –
torsion of the generic fibre is unramified at u. We show the following next.

Lemma 3.8. The specialisation ϕ−1
u : Fη → Fu is unique and does not depend on a K(t) –

linear embedding K(t) ↪→ K((t− u)).

Proof. Consider the Jacobian Jη = Pic0(Xη) of Xη. It is an abelian variety defined over K(t),
and can be thought of as being defined over K((t − u)) in a natural way. Specialising Jη

to u gives the Jacobian Ju of Xu by [Igu56a]. Then, by a generalisation of Hensel’s lemma
[Cho02, Corollary pg 546], we know each ℓ – torsion point ρj of Ju lifts uniquely to an ℓ –
torsion point ωj of Jη and ρj is the specialisation at u of ωj. □

8see also Theorem 2.3 of loc. cit.
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Lemma 3.9. The specialisation ϕ−1
u preserves the Weil pairing, i.e., for any γ1, γ2 ∈ Fη, we

have
⟨γ1, γ2⟩ = ⟨ϕ−1

u (γ1), ϕ
−1
u (γ2)⟩,

where the pairing on the left is the Weil pairing on Pic0(Xη)[ℓ] and the one on the right is
the Weil pairing on Pic0(Xu)[ℓ].

Proof. Clear from the definition of specialisation. □

Lemma 3.10. Let γ ∈ Fη, and assume we have computed

γ = [X
(γ)
0 (t) : . . . : X

(γ)
M (t)]

as a tuple of Puiseux series around z ∈ Z (truncated upto poly(ℓ) coefficients so that any
two γ1 ̸= γ2 in Fη can be distinguished), with respect to the cospecialisation ϕz. Then, for
any uz ∈ U with |z−uz| < εz/2, the tuple representing γ converges at uz to the specialisation
ϕ−1
uz
(γ) ∈ Pic0(Xuz)[ℓ] of γ at uz.

Proof. It follows from the convergence properties of the associated Puiseux series (see [Wal04,
2.2] for more details) that at uz, γ converges to a root of the zero-dimensional ideal (ℓ)Iuz , or
in other words, an ℓ torsion point γuz ∈ Pic0(Xuz)[ℓ]. Now, as uz is a smooth specialisation
for the ideal (ℓ)Iη, we may, by Lemma 3.8, uniquely Hensel-lift this point γuz to a set of
expansions

ϕuz(γuz) = [Y0(t) : . . . YM(t)]

where Yi(t) ∈ K((t − uz)) converge in neighbourhood W of uz. The uniqueness of the lift

(i.e., cospecialisation) of γuz implies that the tuples [X
(γ)
i (t)] and [Yi(t)] represent the same

analytic germs 9 on W ∩ {u ∈ C | |z − u| < εz/2}. This proves the claim.
□

We intend to use the above lemma to make the specialisation explicit. It remains to prove
poly(ℓ) – bounds to separate roots of (ℓ)Iuz and derive the level of precision to determine
which root it is that the associated expansions of γ converge to. We deal with the first item
initially, using a classical result from diophantine approximation.

Lemma 3.11. Let υ1 and υ2 be algebraic numbers occurring as roots of a polynomial f(x) ∈
K[x] of degree d and height h. Then

|υ1 − υ2| ≥ Γ(d,h) :=

√
3

(d+ 1)(2d+1)/2 · hd−1
.

Proof. See [Bug04, Corollary A.2]. □

In our context, h and d are both bounded by polynomials in ℓ. This is because for a
smooth u ∈ U of bounded height, the ℓ – division system (ℓ)Iu associated to Pic0(Xu) has
degree polynomial in ℓ, and the algebraic numbers occurring as coefficients also have height
bounded by a polynomial in ℓ (by Theorem B.4). Hence, we may write

Γ(ℓ) :=
1

exp(Φ(ℓ))
≤ Γ(d,h)

where Φ(x) ∈ Z[x] is a polynomial with coefficients and degree independent of ℓ.

9being solutions of (ℓ)Iη, which are all distinct and ℓ2g in number
15



Lemma 3.12 (Convergence-testing). Let Λ1(t) =
∑

j αjt
j/ℓ be an algebraic Puiseux series

in t occurring in a tuple representing γ ∈ Fη in the context of Lemma 3.10, around z = 0

wlog. Write Λ2(t) =
∑

j ζ
j
ℓαjt

j/ℓ for its conjugate and let u be an algebraic number of height
bounded by a polynomial in ℓ, with

|u|1/ℓ < 1

2 · exp((Ψ(ℓ))

such that both Λ1(t) and Λ2(t) converge at u to distinct, conjugate algebraic numbers υ1
and υ2 respectively. Then, it requires at most poly(ℓ) precision to distinguish υ1 from υ2,
i.e., to determine which series converges to which number.

Proof. Write t := t1/ℓ, so we regard Λ and Λ′ as power series in t. We show firstly, that with
poly(ℓ) terms, we can approximate Λ and Λ′ at u to within Γ(ℓ)/4 of υ1 and υ2 respectively.

Denote by λ
(m)
1 (t) and λ

(m)
2 (t) the mth partial sums of Λ1(t) and Λ2(t) respectively. Then,

applying Lemma 3.6

|Λ1(u)− λ
(m)
1 (u)| =

∑
j>m

|αj| · (|u|1/ℓ)j ≤
∑
j>m

(exp(Ψ(ℓ)) · u)j ≤
∑
j>m

1

2j
,

which can clearly be made less than Γ(ℓ)/4 for a value of m polynomial in ℓ. So, we have

|υ1 − λ
(m)
1 (u)| < Γ(ℓ)/4 and |υ2 − λ

(m)
2 (u)| < Γ(ℓ)/4

for m ∈ Z>0 bounded by a polynomial in ℓ. By Lemma 3.11, these truncations specify υ1
and υ2 uniquely and unambiguously as |υ1 − υ2| > Γ(ℓ).

□

Combining Lemmas 3.10, 3.11 and 3.12, we have shown the following.

Theorem 3.13 (Approximation). Let γ ∈ Fη and let z ∈ Z. Assume we have computed γ as

a tuple [X
(γ)
0 : . . . : X

(γ)
M (t)] of Puiseux expansions truncated upto poly(ℓ) coefficients. Then,

for uz of height bounded by poly(ℓ) such that |z−uz| < εz/2, it is possible to determine with

poly(ℓ) space, time and precision complexity,

the unique specialisation γuz = ϕ−1
uz
(γ) as the tuple [x0 : . . . : xM ] that [X

(γ)
0 (t) : . . . : X

(γ)
M (t)]

converges to at uz.

□
The next task is to make the specialisation map from Lemma 3.8 explicit. Let z ∈ Z. In

Algorithm 4, we obtained a representation of Fη as Puiseux series around z, with the common
minimal radius of convergence εz. In Algorithm 5, we indicate how to compute, for γ ∈ Fη

obtained via Puiseux series expansions around z; the specialisation ϕ−1
uz
(γ) ∈ Pic0(Xuz)[ℓ] for

uz ∈ U such that |z − uz| < εz.

3.4. Computing the vanishing cycle. The goal of this subsection is to compute the
vanishing cycle δz for z ∈ Z, as an element in Pic0(Xuz) via specialisation, for a suitably
chosen uz. We accomplish this by use of the Picard-Lefschetz formulas (2.4).

Remark. The vanishing cycle δz depends on the chosen cospecialisation ϕz : Fz ↪→ Fη.
Hence, it would be more accurate to write ϕz(δz) ∈ Fη for the vanishing cycle, but we abuse
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Algorithm 5 Re-centering

• Input: An element γ ∈ Fη represented by a tuple [Xγ
0 (t) : . . . : X

(γ)
M (t)] of Puiseux

series around z as a K – rational point in PM (via Algorithm 4), and a smooth point
u ∈ U with |u− z| < εz.

• Output: The specialisation ϕ−1
uz
(γ) ∈ Pic0(Xuz)[ℓ].

1: Specialise the ideal (ℓ)Iη at uz to obtain the ℓ – division ideal (ℓ)Iuz for Pic0(Xz) by
Appendix C.

2: Compute the ℓ2g distinct ℓ – torsion elements Pic0(Xuz)[ℓ] via a zero-dimensional system
solving algorithm ([Rou99]) applied to (ℓ)Iuz .

3: The input tuple [X
(γ)
0 (t) : . . . : X

(γ)
M (t)] actually converges at uz to a point [x0 : . . . : xM ] ∈

Pic0(Xuz). Determine the point as a tuple of algebraic numbers by using Theorem 3.13
and matching with the points computed in Step 2.

notation by referring to it as just δz. This is because the cospecialisations ϕz have already
been chosen or determined, as will be seen below.

As stated in Section 3.2, for z ∈ Z, the vanishing cycle δz ∈ Fη is determined uniquely upto
sign by the Picard-Lefschetz formulas after picking a K(t) – embedding K ↪→ K⟨⟨t − z⟩⟩.
Firstly, write Z = {z1, . . . , zr} as an ordered set of distinct points for r ∈ Z>0. We make
certain preliminary simplifications following the discussion before [Mil80, Theorem 3.23].

Choose ζs := exp(2πi/s) as a generator of µs(K) for each s so that ζl = ζssl. Let I
t
zj
denote

the tame inertia group at zj and let σj be its generator. We need to choose embeddings

I tzj ↪→ Gal(K(t)/K(t)) in such a way that the σj together generate the tame fundamental

group π1(U, η) and
∏r

j=1 σj = 1. This implies that we are freely permitted to choose the
embeddings for 1 ≤ j ≤ r − 1 but the embedding for j = r is decided by the others, so that

σr =
r−1∏
j=1

σ−1
r−j ∈ πt

1(U, η).

Further, for all 1 ≤ j ≤ r, the canonical generator σj of the inertia I tzj acts as

σj (t− zj)
1/s = ζs (t− zj)

1/s .

What this means for us, is that the cospecialisation maps ϕzj : Fzj ↪→ Fη are determined
by arbitrary embeddings for 1 ≤ j ≤ r − 1, but once these choices have been made, the last
cospecialisation ϕzr : Fzr ↪→ Fη is completely determined by the previously made choices.
With these simplifications, the Picard-Lefschetz formula (2.4) becomes

(3.2) σj(γ) = γ − ⟨γ, δzj⟩δzj
for γ ∈ Fη and 1 ≤ j ≤ r. We now give a method, such that given zj ∈ Z for 1 ≤ j ≤ r− 1,
and uj ∈ U with |zj − uj| < εzj , we compute ϕ−1

uj
(δzj) as an element of Pic0(Xuj

)[ℓ].

Theorem 3.14. Algorithm 6 uniquely determines the vanishing cycle at each z ∈ Z \ {zr},
upto sign.
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Algorithm 6 Computing the vanishing cycle

• Input: A singular point z ∈ Z \ {zr} and a smooth point uz such that |z− uz| < εz.
• Output: An element δz ∈ Fη unique upto sign, that is the vanishing cycle at z with
respect to the cospecialisation ϕz of Algorithm 4, specialised to an element of Fuz .
In other words, the element ϕ−1

uz
(δz) ∈ Pic0(Xuz)[ℓ] is returned.

1: Obtain a representation of Fη as Puiseux series around z using Algorithm 4.

2: Choose γ = [X
(γ)
0 (t) : . . . : X

(γ)
M (t)] ∈ Fη \ϕz(Fz). This reduces to choosing a γ for which

at least one of the Puiseux series X
(γ)
j (t) is ramified at z, i.e., is a true Puiseux series

and not in fact a Laurent series.
3: Writing

X
(γ)
i (t) =

∑
j

α
(γ)
i,j (t− z)j/ℓ

evaluate
σz(γ) = [X

(σz(γ))
0 (t) : . . . : X

(σz(γ))
M (t)]

where
X

(σz(γ))
i (t) =

∑
j

α
(γ)
i,j ζ

j
ℓ (t− z)j/ℓ.

4: Compute the element ϕ−1
uz
(σz(γ)) ∈ Pic0(Xuz)[ℓ] using the specialisation of Algorithm 5.

5: Compute ϕ−1
uz
(γ) using Algorithm 5.

6: Compute
δ := ϕ−1

uz
(σz(γ))− ϕ−1

uz
(γ)

using the explicit group law on Pic0(Xuz) (using Theorem D.1).
7: Use the inverse of the abstract Abel map of Appendix D (Algorithm 10) to represent the
ℓ – torsion points ϕ−1

uz
(γ) and δ as divisors on Xuz .

8: Use the divisorial representation in Step 7 to compute the Weil pairing

a := ⟨ϕ−1
uz
(γ), δ⟩ ∈ Z/ℓZ

on Pic0(Xuz)[ℓ] using Algorithm 3.
9: Applying (3.3), compute

ϕ−1
uz
(δz) = ±(

√
−a−1) · δ ∈ Pic0(Xuz)[ℓ]

via the explicit addition law (Theorem D.1), and make an arbitrary choice of sign.
10: Return ϕ−1

uz
(δz).

Proof. Let γ ∈ Fη \ ϕz(Fz). By Section 3.2, we know that after a choice of embedding, we
may write

γ = [X
(γ)
0 (t) : . . . : X

(γ)
M (t)]

as a tuple of Puiseux series around z, representing a K(t) – rational point of Pic0(Xη). By
Theorem C.5, we know that the image ϕz(Fz) is all rational over K((t− z)), so in order to
choose γ from outside Fz, it suffices to ensure one associated Puiseux expansion ramifies at z.
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Having chosen compatible generators ζs for µs(K), we may identify the inertia I tz at z as

I tz ≃
∏

ℓ′ prime

Zℓ′ .

Our choice of topological generator σz sends (t − z)1/ℓ to ζℓ(t − z)1/ℓ, and acts termwise
on the Puiseux expansions associated to γ. In this way, the action of σz is realised as an
automorphism of Fη, that precisely fixes ϕz(Fz). In particular, since γ ̸∈ ϕz(Fz), we have
σz(γ) ̸= γ. Therefore, by the Picard-Lefschetz formula (3.2), we know ⟨γ, δz⟩ ≠ 0.

For a uz such that |z − uz| < εz, we know that the Puiseux series X
(γ)
i (t) all converge

at t = uz. Further, by Section 3.3, Algorithm 5 computes the unique (and distinct) special-
isations ϕ−1

uz
(σz(γ)) and ϕ

−1
uz
(γ) of γ to the ℓ – torsion of Pic(Xuz). Set

δ := ϕ−1
uz
(σz(γ))− ϕ−1

uz
(γ) = ϕ−1

uz
(σz(γ)− γ),

and a := ⟨ϕ−1
uz
(γ), δ⟩. Note that a priori, a ∈ µℓ(K), but we have then taken its discrete

logarithm with respect to the generator ζℓ. It remains to show the following.

Lemma 3.15. The vanishing cycle δz at z can be computed as

(3.3) δz = ±ϕuz

(
(
√
−a−1) · δ

)
Proof. First, we see that a ̸= 0 as an element of Z/ℓZ. Indeed,

a = ⟨ϕ−1
uz
(γ), δ⟩ = ⟨ϕ−1

uz
(γ), ϕ−1

uz
(σz(γ)− γ)⟩ = ⟨γ, σz(γ)− γ⟩ = ⟨γ, σz(γ)⟩ ≠ 0.

Further, we know by the Picard-Lefschetz formulas, or Appendix C, Theorem C.4 that
ϕuz(δ) = σz(γ)− γ ∈ < δz > ⊂ Fη. Therefore, writing

c · ϕuz(δ) = δz

for some c ∈ (Z/ℓZ)∗, we see

σz(γ)− γ = −⟨γ, δz⟩δz = −c · (⟨γ, c · ϕuz(δ)⟩) · ϕuz(δ) = −c2 · (⟨γ, ϕuz(δ)⟩) · ϕuz(δ) = ϕuz(δ).

Equating coefficients, we have

a = ⟨ϕ−1
uz
, δ⟩ = ⟨γ, ϕuz(δ)⟩ = −c−2.

Therefore, we see

c = ±
√
−a−1.

□

Thus, the specialised vanishing cycle ϕ−1
uz
(δz) ∈ Pic0(Xuz)[ℓ] is computed. This completes

the proof of Theorem 3.14.
□

Remark. We check that −a is indeed a square in Z/ℓZ as

−a = −⟨γ, ϕuz(δ)⟩ = −⟨γ, σz(γ)⟩ = −⟨γ,−(⟨γ, δz⟩) · δz⟩ = (⟨γ, δz⟩)2.
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We emphasise again that the cospecialisations ϕzj : Fzj → Fη have only been made explicit
for 1 ≤ j ≤ r − 1, as arbitrary choices were allowed for the associated embeddings I tzj ↪→
Gal

(
K(t)/K(t)

)
. However, the final embedding I tzr ↪→ Gal

(
K(t)/K(t)

)
is completely

determined by the previous ones, via the relation
∏r

j=1 σj = 1 in πt
1(U, η). Hence, an explicit

representation of the last vanishing cycle δzr and its specialisation is postponed to Section 3.5,
Algorithm 7.

3.5. Gathering the vanishing cycles. The goal of this subsection is to demonstrate how
to collect vanishing cycles at all the distinct z ∈ Z = {z1, . . . , zr}, inside Fη under a common
representation. In the previous subsection, given a point z ∈ Z \ {zr}, we worked with a
uz ∈ U that lay within the common radius of convergence εz of the concerned Puiseux series
around z. While this approach helped us to compute ϕ−1

uz
(δz) as an element of Pic0(Xuz)[ℓ],

given another z′ ̸= z in Z, it is not necessary that z′ would lie within εz of z. Further, we
are yet to compute the last vanishing cycle δzr as well. To address both these issues, we give
a strategy that involves moving to characteristic p > 0, and working with the prime ideal p
given in our input. We begin with the following.

Lemma 3.16. Let X be the reduction of X modulo the input prime ideal p, and let Fq =
OK/p. Let u ∈ U(Fq). Then for each z ∈ Z, there exists uz ∈ U with |z − uz| < εz and
height h(uz) < poly(ℓ · log q) such that uz ≡ u mod p. Moreover, uz can be computed and
effectively represented with space and time complexity

poly(ℓ · log q).

Proof. By Lemma 3.6, we know that εz > 1/exp (Ψ(ℓ)), for some polynomial Ψ(x) ∈ Z[x],
with coefficients independent of ℓ. Consider the localisation R := (OK)(p) of OK at the prime
ideal p. We know that R is dense in C so the reduction map on the restriction

S := R ∩ (z − εz, z + εz) → Fq

is still surjective. It remains to show that we can compute a pre-image of u in S, of bounded
height, in polynomial time. Without loss, we show how this is done, for z = 0, from which
the general case follows. First, lift the finite field element u to a u ∈ K of bounded height,
that maps to u under the mod– p reduction map. Then, simply chose ι ∈ Z>0 such that

u′ :=
u

qι + 1
with |u′| < 1

exp(Ψ(ℓ))
.

Clearly, ι can be chosen to be at most poly(ℓ · log q). Then, one checks that u′ maps to u
modulo p and |u′| < ε0. This u

′ is our candidate around z = 0.
□

Proposition 3.17 (Reduction to positive characteristic). Let u ∈ U(FQ). For each z ∈
Z \ {zr}, choose uz ∈ U such that |z − uz| < εz and uz ≡ u mod p. There exists an
algorithm that computes the reduction isomorphism

ϱuz : Pic
0(Xuz)[ℓ] → Pic0(Xu)[ℓ]

in time

poly(ℓ · log q).
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Proof. For each uz, denote by Kuz the minimal field extension of K that the points of
Pic0(Xuz)[ℓ] are all defined over. It is the splitting field of the ideal (ℓ)Iuz . We know that
Gal(Kuz/K) ⊆ GL(2g,Fℓ), so the degree [Kuz : K] is bounded by a polynomial in ℓ. Denote
by K the compositum of the fields Kuz for all z ∈ Z. It follows that [K : K] is also bounded
by a polynomial in ℓ. Since p is a prime of good reduction for X and hence also, for each
Xuz , we have that p is unramified over the extension K/K. Write K = K(ϖ) for a primitive
elementϖ ∈ K and let f be the minimal polynomial ofϖ. Assume p splits over this extension
as

p =
∏
j

pj

for distinct primes pj ⊂ OK. If f is the reduction of f modulo p, it splits as

f =
∏
j

f j.

Now, lifting f j arbitrarily to a polynomial fj overK, we have that pj =< p, fj(ϖ) >. Choose

a prime ideal p1|p in this manner, by factoring f over a finite field.10

Having chosen a prime p1 lying above p, we can now make the promised map ϱuz explicit
and consistent across the different uz. For a tuple ω = [x0 : . . . : xM ] ∈ Pic0(Xuz)[ℓ], its
image ϱuz(ω) is given by the tuple [x0 : . . . : xM ] where xj = xj mod p1.

□

We observe next the following, to provide a complete picture of the situation, when re-
ducing to positive characteristic.

Lemma 3.18. Consider now the positive-characteristic Lefschetz pencil π : X → P1
Fq
. Let

ξ → P1
Fq

be the geometric generic point, and Xξ the corresponding generic fibre. Then, the

diagram of isomorphisms for z ∈ Z \ {zr}

Pic0(Xη)[ℓ] Pic0(Xuz)[ℓ]

Pic0(Xξ)[ℓ] Pic0(Xu)[ℓ]

ϕ−1
uz

ϱη ϱuz

φ−1
u

commutes, where ϱη is the mod – p1 reduction map on the generic fibres and φ−1
u is the

specialisation to u.

Proof. The fact that the maps are isomorphisms follows from the proper-smooth base change
theorem. The commutativity of the diagram follows from the construction of the reduction
maps. □

Theorem 3.19. Algorithm 7 collects the images of all the vanishing cycles δz ∈ Fη consis-
tently in Pic0(Xu)[ℓ].

10which can be done in randomised polynomial time
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Algorithm 7 Collecting all the vanishing cycles δz for each z ∈ Z.

• Input: A smooth point u ∈ U(FQ).
• Output: For each zj ∈ Z, the elements ϱuj

(ϕ−1
uj
(δzj)) ∈ Pic0(Xu)[ℓ].

1: For each zj ∈ Z \ {zr}, choose uj ≡ u mod p such that |zj − uj| < εj/2, where εj is
the minimum radius of convergence of all Puiseux expansions associated to Fη around
zj using Lemma 3.16.

2: Compute ϕ−1
uj
(δzj) as an element of Pic0(Xuj

)[ℓ] using Algorithm 6.

3: Obtain the reduction ϱuj

(
ϕ−1
uj
(δzj)

)
∈ Pic0(Xu)[ℓ] using Proposition 3.17 to compute

the reduction maps
ϱuj

: Pic0(Xuj
)[ℓ] → Pic0(Xu)[ℓ].

4: Return
δzj := ϱuj

(ϕ−1
uj
(δzj))

for 1 ≤ j ≤ r − 1.
5: It remains to compute the last vanishing cycle δzr . Our strategy is to mimic Step 9 of

Algorithm 6. Pick an element ϑ ∈ Pic0(Xu)[ℓ] randomly.
6: Compute σr(ϑ) using the fact that σr =

∏r−1
j=1 σ

−1
r−j, where σ

−1
j acts on ϑ as

(3.4) σ−1
j (ϑ) = ϑ+ ⟨ϑ, δzj⟩δzj .

Perform arithmetic on Pic0(Xu)[ℓ] using the explicit addition law (Theorem D.1), and
compute pairings using divisorial notation (after inverting the abstract Abel map using
Algorithm 10) via Algorithm 3.

7: If σr(ϑ) = ϑ return to Step 5 and choose another ϑ. Otherwise, compute ν := σr(ϑ)−ϑ ̸=
0 and b := ⟨ϑ, ν⟩.

8: Compute
δzr = ±(

√
−b−1) · ν ∈ Pic0(Xu)[ℓ],

and make a choice of sign.
9: Return δzr .

Proof. The correctness of Steps 1-4 of Algorithm 7 is guaranteed by the commutativity of the
diagram in Lemma 3.18. We address now the correctness of the computation of the image
of the final vanishing cycle δzr . Let σr be a generator of the local inertia I tzr . We note firstly

that the embeddings I tzj ↪→ Gal
(
K(t)/K(t)

)
must be in such a way that the σj all together

topologically generate the tame fundamental group πt
1(U, η) and satisfy

∏r
j=1 σj = 1.

This allows us freedom to choose the initial cospecialisations ϕzj for 1 ≤ j ≤ r − 1
arbitrarily as we have done so. We bypass computation of the last cospecialisation as we
already have a description of the action of σr, in terms of the other σj. This then boils
down to being able to compute pairings with the other δzj for 1 ≤ j ≤ r− 1, which we have

consistently obtained in Pic0(Xu)[ℓ].

In Step 5, an arbitrary element ϑ ∈ Pic0(Xu)[ℓ] is unfixed by σr with probability 1− 1/ℓ.
This can be tested, as the computation of the action of σr is at our disposal. Having chosen
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ϑ unfixed by σr, the exact computation of the image of δzr (up to sign) follows, in the same
manner as in the proof of Theorem 3.14 (and Lemma 3.15).

□

4. Computing cohomology

4.1. Passage to positive characteristic. Continuing with the notations of the previous
section, we observe the following.

Theorem 4.1. Consider the sequence

(4.1) Pic0(Xu)[ℓ]
α−→ (Z/ℓZ)r β−→ Pic0(Xu)[ℓ]

with, for any γ ∈ Pic0(Xu)[ℓ]

α(γ) = (⟨γ, δz1⟩, . . . , ⟨γ, δzr⟩)
and for any r – tuple (a1, . . . , ar) ∈ (Z/ℓZ)r

β(a1, . . . , ar) = a1 · δz1 + a2 · σ1(δz2) + . . .+ ar ·

(
r−1∏
j=1

σj

)
(δzr).

Then, the cohomology groups are

(4.2) Hi(X,Z/ℓZ) ≃


ker(α), i = 1;(
ker(β)/im(α)

)
⊕ < γE > ⊕ < γF >, i = 2;

coker(β), i = 3.

Proof. This follows from the results in Section 2.1, the proper-smooth base change theorem
and the fact that pairings are invariant under specialisation. □

4.2. Algorithms. In this subsection, we state and prove our main result.

Theorem 4.2 (Main theorem). Let X ⊂ PN be a nice surface of fixed degree D over a
finite field Fq, obtained via good reduction from a nice surface X defined over a number field
K at a prime p ⊂ OK. Further, assume the coefficients of the equations defining X have
Weil–height bounded by H ∈ R>0 and write ∆ = [K : Q]. Then, there exists a randomised
algorithm that outputs

• on input a prime number ℓ coprime to q, the étale cohomology groups Hi(X,Z/ℓZ)
for 0 ≤ i ≤ 4 along with the Frobenius action in time

poly(ℓ ·H ·∆)

• the zeta function Z(X/Fq, T ), and the point-count #X(Fq) in time

poly(log q ·H ·∆).

Proof. Using Theorem 4.1, we see that Algorithm 8 outputs the first cohomology and Al-
gorithm 9 outputs the second and third cohomology groups (all with Galois actions). The
Galois action on the zeroth and fourth cohomology groups is computed trivially. The run-
time of the algorithms as stated is proved in Section 5. The zeta-function and point count
are recovered from the cohomology groups by Appendix A. □
11may need to take an extension FQ/Fq to ensure a smooth fibre actually exists
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Algorithm 8 Computing H1(X,Z/ℓZ)
• Input: A smooth projective surface X ⊂ PN of degree D over a number field K
presented as a system of homogeneous polynomials of degree ≤ d, a prime ideal
p ⊂ OK of good reduction and a prime number ℓ coprime to p and of size O(log q),
where q = #(OK/p). Call X the reduction of X modulo the ideal p.

• Pre-processing: Fibre X as a Lefschetz pencil π : X → P1. Let Z ⊂ P1 parametrise
the singular fibres and U = P1\Z the smooth ones. Embed the Jacobian of the generic

fibre Xη into PM obtaining the ℓ – torsion Pic0(Xη)[ℓ] as the K(t) – roots of the ideal
(ℓ)Iη using Algorithm 2. Pick a u ∈ U(FQ)

11 which is a smooth fibre of the reduced
pencil π : X → P1

Fq
.

• Output: H1(X,Z/ℓZ) presented as an Fℓ – vector space with basis and Gal(Fq/FQ)
– action.

1: For each z ∈ Z, compute the images δz ∈ Pic0(Xu)[ℓ] of the vanishing cycle δz using
Algorithm 7.

2: Recall the sequence (4.1). This involves arithmetic over Pic0(Xu)[ℓ] which can be per-
formed using the explicit addition law on Pic0(Xu) provided by Appendix D, Theo-
rem D.1.

3: Compute the map α as follows. For each γ ∈ Pic0(Xu)[ℓ] and each δz, compute their
inverse images of the abstract Abel map to obtain divisorial representations. Then
compute the Weil pairings ⟨γ, δz⟩ using Algorithm 3.

4: A priori the output of a pairing is an element in µℓ(FQ), which can then be identified
with an element in Z/ℓZ by taking the discrete logarithm with respect to the modulo p1
generator ζℓ as the image of ζℓ under the reduction map.

5: Determine the γ ∈ Pic0(Xu)[ℓ] which lie in ker(α) by obtaining the images of the corre-
sponding divisor representatives via the abstract Abel map.

6: Choose a basis of ker(α) as an Fℓ – vector space and determine the action of the FQ –
Frobenius on it as an Fℓ – matrixM1, by evaluating it on the coordinates and expressing
the result in terms of the basis chosen.

7: Compute the characteristic polynomial of M1 and return it. This is in fact

det
(
1− TF ⋆

Q | H1(X,Z/ℓZ)
)
.

5. Complexity analyses

In this section, we prove the upper bounds for the complexities stated of the subroutines
used in the earlier sections. We do not deduce the exact complexities beyond showing that
they are bounded by polynomial functions of ℓ and log q. We also keep track of the heights
of the algebraic numbers involved in the computations.

5.1. Algorithms of Section 2. Noting that the complexity of Algorithm 1 is independent
of ℓ, we begin with the following.

Lemma 5.1. Algorithm 2 runs in time poly(ℓ).

Proof. Pila [Pil90, §2] shows that the data representing the multiplication by ℓ map is
bounded by a polynomial in ℓ. Further, the coefficients occurring in the ideal (ℓ)Iη have
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Algorithm 9 Computing H2(X,Z/ℓZ) and H3(X,Z/ℓZ)
• Input: A smooth projective surface X ⊂ PN of degree D over a number field K
presented as a system of homogeneous polynomials of degree ≤ d, a prime ideal
p ⊂ OK of good reduction and a prime number ℓ coprime to p and of size O(log q),
where q = #(OK/p). Call X the reduction of X modulo the ideal p.

• Pre-processing: Fibre X as a Lefschetz pencil π : X → P1. Let Z ⊂ P1 parametrise
the singular fibres and U = P1\Z the smooth ones. Embed the Jacobian of the generic

fibre Xη into PM obtaining the ℓ – torsion Pic0(Xη)[ℓ] as the K(t) – roots of the ideal
(ℓ)Iη using Algorithm 2. Pick a u ∈ U(FQ) which is a smooth fibre of the reduced
pencil π : X → P1

Fq
.

• Output: H2(X,Z/ℓZ) and H3(X,Z/ℓZ) presented as Fℓ – vector spaces with bases
and Gal(Fq/FQ) – action.

1: Continuing from Algorithm 8, we work with (4.1). Compute the map β using arithmetic
on Pic0(Xu) on the codomain. The action of each σj is computed using the Picard-
Lefschetz formula (3.2). Pairings as usual are computed by moving to divisorial notation.

2: List the elements of ker(β) by computing which elements map to the neutral element of
Pic0(Xu) under β in Step 1.

3: List the elements of im(α) by computing the pairings(
⟨γ, δz1⟩, . . . , ⟨γ, δzr⟩

)
for each γ ∈ Pic0(Xu)[ℓ] using the abstract Abel map (Algorithm 10) and Algorithm 3.

4: Construct a basis (ωj) for the quotient ker(β)/im(α), and identify a tuple (a1, . . . , ar) ∈
(Z/ℓZ)r with the tuple (

(ζℓ)
a1 , . . . , (ζℓ)

ar
)
,

as elements in Fq.
5: Compute the action of the Frobenius F ⋆

Q as follows

F ⋆
Q(a1, . . . , ar) = Q · (a1, . . . , ar),

where Q = Q mod ℓ. Express F ⋆
Q(ωj) as an Fℓ – linear combination of the basis elements

and thereby compute the action of F ⋆
Q as a matrix M2.

6: Return the characteristic polynomial of the matrix M2. This is in fact

det
(
1− TF ⋆

Q | H1(P1, R1π⋆Z/ℓZ)
)
.

7: List the elements of im(β) ⊆ Pic0(Xu)[ℓ], using the computation of the map β in Step 1.
8: Choose a basis of representatives of coker(β) = Pic0(Xu)[ℓ]/im(β) as an Fℓ – vector

space, and evaluate the Frobenius F ⋆
Q coordinate-wise. Express the result in terms of the

basis chosen, performing zero-tests with knowledge of which elements belong in im(β)
due to Step 7. This obtains the action of F ⋆

Q on coker(β) as an Fℓ – matrix M3.
9: Return the characteristic polynomial of M3. This is in fact

det
(
1− TF ⋆

Q | H3(X,Z/ℓZ)
)
.
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height bounded by a polynomial in ℓ due to Theorem B.4 and the fact that the Faltings
height of the (normalisation of the) curve (ℓ)C over K given by (ℓ)Iη is bounded by a poly-
nomial in ℓ [Jav14, Theorem 6.0.6].

□

5.2. Algorithms of Section 3.

Lemma 5.2. Algorithm 4 runs in time poly(ℓ).

Proof.

• Step 1: The complexity of Algorithm 2 has been shown to be polynomial in ℓ.
• Step 2: Zero-dimensional system solving can be done using a primitive element in
time polynomial in the degree of the system by [Rou99].

• Step 3: Computing the firstm coefficients of a branch can be done in poly(m) time by
Theorem 3.4. It suffices to compute the first poly(ℓ) coefficients to uniquely specify
a branch by Lemma 3.5.

• Step 4: Once a choice of Puiseux series for τ is made, simple arithmetic (addition,
squaring) can be performed using it in polynomial time.

□

Lemma 5.3. Algorithm 5 runs in time poly(ℓ).

Proof.

• Step 1: Specialisation of the ideal (ℓIη to u mearly involves making the substitution
t = u.

• Step 2: The specialised ideal (ℓ)Iu is now zero-dimensional over K and its roots can
be found by a system solver [Rou99]. The Weil height of the ℓ – torsion points is
bounded by a polynomial in ℓ by Theorem B.4.

• Step 3: Convergence to an algebraic number with poly(ℓ) precision is guaranteed by
Theorem 3.13.

□

Lemma 5.4. Algorithm 6 runs in time poly(ℓ).

Proof.

• Step 1: Follows from the complexity of Algorithm 4.
• Step 2: An element γ ∈ Fη \ ϕz(Fz) can be chosen by ensuring that at least one of
the tuple of Puiseux expansions associated to γ is ramified at z, i.e., is in fact belongs
to K⟨⟨t− z⟩⟩ \K((t− z)).

• Step 3: As each Puiseux expansion is specified only upto the first poly(ℓ) coefficients
by Lemma 3.5, one has to simply multiply each (non-constant) coefficient by a power
of ζℓ.

• Steps 4 & 5: The complexity follows from that of Algorithm 5.
• Step 6: The addition of the group law can be performed efficiently by Theorem D.1.
• Step 7: The complexity of computing the abstract Abel map and its inverse (Algo-
rithm 10) is given by Theorem D.1.

• Step 8: Pairings can be computed in polynomial time using a divisorial description
by Algorithm 3.
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• Step 9: Square root over Z/ℓZ can be found in randomised polynomial time.

□

Lemma 5.5. Algorithm 7 runs in time poly(ℓ · log q).

Proof.

• Step 1: For zj ∈ Z, a uj with uj ≡ u mod p and |zj − uj| < εz can be found by
Lemma 3.16 with poly(ℓ) precision.

• Step 2: Follows from the complexity of Algorithm 5.
• Steps 3 & 4: The reduction maps ϱuj

can be computed in time poly(ℓ · log q) by
Proposition 3.17.

• Step 5: If an element ϑ ∈ Pic0(Xu)[ℓ], the probability that it is unfixed by σr is
1− 1/ℓ.

• Step 6: The action of σr can be computed by computing the action of the σ−1
j for

1 ≤ j ≤ r − 1. The action of the product σr =
∏r−1

j σ−1
r−j is computed iteratively

using the formula (3.4).
• Step 7: The complexity is poly(ℓ · log q) following from the complexity of the explicit
addition law on Pic0(Xu)[ℓ] (Theorem‘ D.1), the pairing of Algorithm 3 and the
abstract Abel map of Algorithm 10.

• Step 8: Again, computing a square root over Z/ℓZ can be done in randomised polyno-
mial time. Computing δzr reduces to addition on Pic0(Xu)[ℓ], which is also poly-time.

□

5.3. Algorithms of Section 4.

Lemma 5.6. Algorithm 8 runs in time poly(ℓ · log q).

Proof.

• Step 1: Follows from the complexity of Algorithm 7.
• Step 2: Arithmetic on Pic0(Xu)[ℓ] is poly-time.
• Step 3: The inverse of the abstract Abel map is computed using Algorithm 10, which
runs in polynomial time. Pairings are computed in poly-time by Alorithm 3.

• Step 4: A discrete logarithm can be computed in Z/ℓZ by brute force in poly(ℓ) time.
• Step 5: The complexity of computing α is dominated by that of computing pairings in
Pic0(Xu)[ℓ], which is poly-time. The abstract Abel map (Algorithm 10) is computed
in polynomial time. The elements of ker(α) are at most ℓ2g in number and can be
listed one by one.

• Step 6: The Frobenius FQ is evaluated on an ℓ – torsion point ω ∈ Pic0(Xu)[ℓ]
coordinate-wise via repeated squaring. The output FQ(ω) can be written uniquely
in terms of the chosen basis in poly(ℓ) – time even by a brute force trial-and-error
search using arithmetic on Pic0(Xu)[ℓ].

• Step 7: The matrix M1 representing the linear map FQ on ker(α) is of size at most
2g × 2g with entries in Fℓ. Computing its characteristic polynomial can be done in
polynomial time.

□

Lemma 5.7. Algorithm 9 runs in time poly(ℓ · log q).
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Proof.

• Steps 1 & 2: The kernel of (β) can be computed by writing down its action on each
r – tuple element in (Z/ℓZ)r, and seeing which elements map to the neutral element
in Pic0(Xu)[ℓ]. The map β itself is computed using the Picard-Lefschetz formulas,
which boils down to arithmetic and pairings on Pic0(Xu)[ℓ].

• Step 3: Computation of the map α has been discussed in the previous lemma.
• Step 4: A basis for the quotient ker(β)/im(α) can be constructed by simply taking
the reduction of a basis ker(β) and removing redundant elements. Testing linear
dependence in ker(β)/im(α) reduces to testing zero-ness there, and hence membership
in im(α), which is done in polynomial time by simple list of all its elements.

• Step 5: The action of the Frobenius F ⋆
Q is obtained by coordinate-wise multiplication

by Q := Q mod ℓ on ker(β)/im(α). We choose a basis and compute the action of
F ⋆
Q with respect to this basis as a matrix M2, while testing linear independence as in

Step 4.
• Step 6: This step computes the characteristic polynomial of a matrix whose dimension
is independent of ℓ, and has entries in Fℓ. Clearly this can be done in polynomial
time.

• Step 7: The map β was computed in Step 1. Here, we simply list the elements of its
image, which are at most ℓ2g in number.

• Step 8: A basis for the quotient coker(β) can be chosen simply by picking a basis
of Pic0(Xu)[ℓ] and discarding redundant elements, i.e., those which become linearly
dependent modulo im(β). Zero-tests can be performed in coker(β) using the list of
elements in im(β) computed in Step 7. The Frobenius F⋆

Q is evaluated on a basis
akin to Step 6 of Algorithm 8, coordinate-wise via repeated squaring. The result of
the action of F ⋆

Q on a basis is re-written in terms of the basis using linear dependence

testing in coker(β), which reduces to a question of membership in im(β), which we
know is in polynomial time. Denote by M3 the matrix obtained as a result of F⋆

Q

acting on coker(β) with respect to the basis chosen.
• Step 9: The characteristic polynomial of M3 is returned. Here M3 is a matrix of size
at most 2g × 2g with entries in Fℓ, so this step is accomplished in polynomial time
as well.

□

6. Conclusion

In this article, we have provided an algorithm to compute the number of points on a
nice surface (of fixed degree) in polynomial time, having made its étale cohomology groups
explicit. An area for improvement would be the dependence on the degree of the total
complexity, which is, at the moment, multiply exponential. In another direction, one could
ask if in the realm of quantum algorithms, the dependence on the degree could be made
polynomial.

The immediate next question, with regard to point counting, is that of algorithms for
varieties of a higher dimension, to begin with, threefolds. The techniques described in this
paper (particularly that of Puiseux expansions to realise the cospecialisation maps) use
crucially the fact that the first cohomology is an abelian scheme, i.e., can be described by
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solutions to polynomial equations. This does not continue to hold for the second cohomology,
so it appears that new inputs are needed.
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Appendix A. Recovering zeta

The objective of this section of the appendix is to show how to recover the zeta function
of a smooth, projective surface from the action of Frobenius on its étale cohomology groups.
As usual, let X ⊂ PN be a nice surface of degree D obtained via good reduction from a nice
surface X over a number field K, at a prime p ⊂ OK . Assume we have computed the action
of the Frobenius endomorphism F ⋆

q on the cohomology groups Hi(X,Z/ℓZ) for 0 ≤ i ≤ 4. We
show how to recover the zeta function Z(X/Fq, T ) and the point-count #X(Fq) as follows.

Firstly, denote P̃i(T ) := det
(
1− TF ⋆

q | Hi(X,Z/ℓZ)
)
∈ Fℓ[T ]. Consider the following exact

sequence of étale sheaves on X following [Gab83]

0 −→ Zℓ −→ Zℓ −→ Z/ℓZ −→ 0.

As a result, we obtain the following from the associated long-exact-sequence on cohomology

(A.1) 0 −→ Hi(X,Zℓ)/(ℓ · Hi(X,Zℓ)) −→ Hi(X,Z/ℓZ) −→ Hi+1(X,Zℓ)[ℓ] −→ 0.

Writing

P ′
i (T ) := det

(
1− TF ⋆

q | Hi(X,Zℓ)[ℓ]
)
and P i(T ) := det

(
1− TF ⋆

q | Hi(X,Qℓ)
)
mod ℓ,

we see from (A.1) that

P̃i(T ) = P i(T ) · P ′
i (T ) · P ′

i+1(T ).

In particular if we write Z(X/Fq, T ) = P (T )/Q(T ) for P (T ), Q(T ) ∈ Z[T ], we see that

P (T )

Q(T )
=

4∏
i=0

(P̃i(T ))
(−1)i+1

where P (T ) := P (T ) mod ℓ and Q(T ) := Q(T ) mod ℓ. This implies that the zeta function
can be recovered as an application of the Chinese remainder theorem using the polynomials
P̃i(T ) for finitely many primes ℓ. We now give bounds for the number and size for the primes
required. Write

βi := dimHi(X,Qℓ) = degPi(X/Fq, T )

for the ith ℓ – adic Betti number of X. By [RSV24, §4.2], we know β1 = β3 ≤ 2D2 and
β2 ≤ 2DN+1. As a result of Deligne’s proof [Del74] of the Weil-Riemann hypothesis for X,
we know that the reciprocal roots of Pi(X/Fq, T ) have absolute value q

i/2. This implies that
the coefficients of each polynomial Pi(T ) are bounded above by(

2DN+1

DN+1

)
qD

N+1

.

In particular, it suffices to compute Pi(T ) mod ℓ for all primes ℓ ≤ A log q where A =
9 ·DN+1 + 3. Further, observe that

d

dT
logZ(X/Fq, T ) =

∞∑
j=1

#X(Fqj)T
j−1 =

Q(T )Ṗ (T )− P (T )Q̇(T )

P (T )Q(T )
,

so #X(Fq) can be read off as the constant term of the power-series expansion associated to
the logarithmic derivative of Z(X/Fq, T ).
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Remark. We note that we may need to work over field extensions FQ/Fq (e.g., to ensure the
existence of a smooth fibre of π) and compute the FQ – zeta function. The base zeta function
can be recovered from any two such, via a recipe due to Kedlaya [Ked06, §8].

Appendix B. Height bounds

In this section of the appendix, we recall the theory of heights and state certain height
bounds towards our results in Section 3.5.

Let K/Q be a number field. Denote by MK the set of places of the ring of integers OK

and denote by vp for p ∈ MK the associated p – adic valuation. Let Kp denote the comple-
tion of K and set nvp = [Kp : Qp].

Definition B.1. Let P = [x0 : . . . : xN ] ∈ PN(K) be a point. The Weil height h(P ) is
defined as

h(P ) =
1

[K : Q]

∑
p

nvp ·
(
log(max

j
∥xj∥vp)

)
.

Definition B.2. Let C be a curve over K and let J denote its Jacobian. The Néron-Tate
height, denoted ĥ for a point P ∈ J is defined as follows

(B.1) ĥ(P ) := lim
j→∞

h(2jP )

4j
.

It is clear that the Néron-Tate height vanishes on torsion points. We next recall the
following, that relates the two height functions introduced above, on an abelian variety.

Theorem B.3 (Zarhin-Manin). Let A be a polarised abelian variety over a number field K,
together with an ample, symmetric line bundle Θ. Then, there exist constants c1 and c2,
depending on A and g such that for any P ∈ A(K),

(B.2) ĥ(P )− c1 ≤ h(P ) ≤ ĥ(P ) + c2

with

c1 =

(
22g−1

3
+ 1

)
·hΘ(A)+

(
22g−2 +

67

12

)
·g·log 2 and c2 = (22g−1)·hΘ(A)+(22g+1−1

3
)·g·log 2,

where hΘ(A) is the height of the neutral element 0A of A.

Proof. Apply [ZM72, 3.2] to the divisor 4 ·Θ. □

Theorem B.4 (Height of torsion point). Let C ⊂ PN be a smooth, projective curve of genus
g and degree D over a number field K, and denote by J its Jacobian. Let ℓ be a prime
number, and let P ∈ J [ℓ] be an ℓ – torsion point. Consider the embedding of J into PM

given by Theorem D.1. Then, we have

|h(P )| ≤ C,

where C is a constant that depends only on N , g, D, the height of the coefficients of the
equations defining C, the extension degree, and the logarithm of the discriminant of the
number field K/Q. The dependence is polynomial in the last three items. In particular, the
height of an ℓ – torsion point is bounded by a quantity independent of ℓ.
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Proof. As P is assumed to be torsion, we know ĥ(P ) = 0. We note firstly, that by Theo-
rem D.2, the height of the Jacobian constructed in Theorem D.1 is bounded above by the
height associated to the 4 · Θ – embedding. The result then follows from Theorem B.3,
combined with the results of [PW21, §2] and [Rém10, §1]. □

Remark. Theorem B.4 holds with the base field K replaced by a function field Fq(t) or a
function field over a number field K(t). We merely change the notion of height, in the
former case, one uses a geometric height function, and in the latter case, a height function
that captures both the geometric and arithmetic data, such as Moriwaki’s height function
[Mor00]. The general underlying principle is that the naive height only differs from the
canonical height by a bounded amount (see [Sil83, §4]).

Appendix C. Results of Igusa

In this appendix, we recall certain results of Igusa related to fibre systems of Jacobian
varieties, their embeddings, and specialisation. This is then applied to the context of a
Lefschetz pencil on a surface and the specialisation of the ℓ – torsion in the Jacobian of the
generic fibre. The treatment is based on the works [Igu56a, Igu56b, Igu58].

Let X ⊂ PN be a nice surface over a number field K and let π : X → P1 be a Lefschetz
pencil of hyperplane sections. Denote by Z ⊂ P1 the finite subset parametrising the nodal
fibres and let U = P1 \ Z. Let η → P1 be a geometric generic point and let the genus of the
generic fibre Xη (as a curve over the field K(t)) be g. Write F := R1π⋆µℓ for the derived
pushforward. Consider an embedding of the Jacobian Jη = Pic0(Xη) into a projective space
PM 12.

Theorem C.1. For z ∈ Z, let J̃z be the specialisation of Jη to z, over the specialisation

Xη → Xz. Then, J̃z is the completion of the generalised Jacobian 13 Jz of Xz.

Proof. See [Igu56a, Theorem 3]. □

Theorem C.2. The singular locus of J̃z is J̃z \ Jz. Further, if ω is a K(t) – rational point

of Jη, then the specialisation ωz of ω to z is a smooth point of J̃z.

Proof. See [Igu56b, pg 746, Theorem 1]. □

Now, under the natural inclusionK(t) ↪→ K((t−z)), fix an embeddingK(t) ↪→ K⟨⟨t−z⟩⟩.
As we saw in Section 3.2, this completely determines a cospecialisation map ϕz : Fz ↪→ Fη.
We have the following.

Theorem C.3. Write ς for the 0 – cycle on Jη comprising of its ℓ – torsion Jη[ℓ]. Then the

specialisation of ς to z is the 0 – cycle on J̃z written ς+ ς ′ where ς consists of the ℓ – torsion
of the generalised Jacobian Jz[ℓ] and ς

′ is a positive cycle, each of which is a multiple point

of J̃z arising from the singularities of the curve (ℓ)C ⊂ PM over K corresponding to the ℓ –
division ideal (ℓ)Iη of Jη.

Proof. See [Igu56b, Theorem 2]. □
12using e.g., Chow’s method ([Cho54] or [Igu56a, Appendix]) or Anderson’s method ([And02]) sketched

in Appendix D, both of which involve the Θ – divisor
13also called Rosenlicht variety
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Theorem C.4. Let γ ∈ Fη \ ϕz(Fz). Then σz(γ) and γ specialise to the same point in J̃z.
Further, σz(γ)− γ lies in the space generated by the vanishing cycle at z.

Proof. See the proof of [Igu56b, Theorem 3]. □

Theorem C.5. Now, consider Jη as being defined over K((t− z)). Then, all the points of
ϕz(Fz) are rational over K((t− z)) and the splitting field K of Fη over K((t− z)) satisfies

[K : K((t− z))] = ℓ,

i.e., K is the field obtained by adjoining K((t− z)) with an ℓth – root of t− z.

Proof. See [Igu58, Theorem 2]. □

Appendix D. Abstract Abel map and embeddings of Jacobians

This section of the appendix aims to provide equations for the Jacobian of smooth pro-
jective curves and the generalised Jacobian of a nodal curve. A construction of the Jacobian
of a smooth curve was described by Chow [Cho54], however our treatment follows Anderson
[And02], who provides an ‘elementary’ algebraic construction of the Abel map [And97]. In
[And04], it is shown that the construction matches with an ‘edited’ 4 ·Θ – embedding asso-
ciated to the Θ – divisor on the Jacobian of a curve.

We explain briefly Anderson’s construction of the ‘abstract Abel map’. Let C ⊂ PN be a
smooth, projective curve of genus g over a field K. Let E be a line bundle of degree w ≥ 2g+1
and let D be a line bundle of degree zero. Let u be a basis for H0(C,D−1 ⊗ E) and let v be
a basis for H0(C,D⊗E). Denote by C{0,...,w+1} the w+ 2 – fold power of C with numbering
remembered, and for a section f of a line bundle on C, denote by f (i) the pullback by the
ith projection. Then the abstract Abel map sends D to the w × w matrix with entries

(D.1) abel(D)ij =

∣∣∣∣∣∣∣∣∣∣
v̂(0)
...

v̂(i)
...

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣

...

û(i)
...

û(w+1)

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣

...

v̂(j)
...

v̂(w+1)

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣
û(0)
...

û(j)
...

∣∣∣∣∣∣∣∣∣∣
for 1 ≤ i, j ≤ w, where the leftmost term in the product denotes the determinant of the
w×w matrix obtained by stacking the v(t) as row vectors numbered 0 to w+1 and removing
the rows numbered 0 and i. In particular, the construction maps classes of degree zero line
bundles to w × w matrices with the entry from the ith row and jth column being from the
space

H0

(
C{0,...,w+1},

⊗w+1
s=0

(
E (s)
)⊗4

(E0)⊗2 ⊗ (E (i))
⊗2 ⊗ (E (j))

⊗2 ⊗ (E (w+1))
⊗2

)
.

In summary, the abstract Abel map gives a way to realise any degree zero divisor on C as a
point on its Jacobian, embedded into projective space.

We now sketch below how to obtain the equations for the Jacobian, i.e., the ideal of poly-
nomials vanishing on the image of the abstract Abel map.

(1) Fix an effective divisor E of C with deg(E) ≥ 2g + 1.
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(2) Set w = dimL(E) = deg(E)− g + 1.
(3) Write S = supp(E), A = H0(S,OC) and L = L(2E).

Then, the Jacobian of C is given by the projective algebraic variety J of K – proportionality
classes of Jacobi matrices of type (K, w,A, L). A proof is given in [And02, Theorem 4.4.6].
From [And02, 3.7.3], we see that the complexity of the construction is at worst exp(poly(g)).

In the case K = k(t) is the function field of the projective line, and C is a curve over
K, we want to choose an effective divisor E on C for the embedding so that upon speciali-
sation to a smooth value t = u, the corresponding embedding of the Jacobian of Cu is given
by Eu. This is achieved as follows.

• Choose an effective divisor E of C of degree ≥ 2g + 1 via taking all the zeros of a
rational function λ on C, with k(t) – coefficients. We may assume div(λ) = λ+−λ−,
with λ+ and λ− effective of degree ≥ 2g + 1, and no redundancies between them.
Also assume that the divisor E specialised to any u ∈ P1 contains no singular point
of Xu in its support.

• For a smooth point u, the associated divisor Eu is obtained by specialising λ+ to u.
• The Jacobian of the curve Cu corresponds to the specialisation of the Jacobian of C
at t = u, via the divisor Eu.

Algorithm 10 Abstract Abel map and its inverse on ℓ – torsion

• Input: The generic fibre Xη of a Lefschetz pencil π : X → P1 on a smooth projective
surface X over a number field K, and a degree zero divisor D ∈ Pic0(Xη)[ℓ] repre-
sented using Theorem 2.2.

• Output: The image abel(D) of the map in (D.1) as a point in projective space PM

lying on the Jacobian Jη, satisfying the conditions of the paragraph above.

1: Choose an effective divisor E of Xη of degree w ≥ 2g + 1 via taking all the zeros of a
rational function λ, with K(t) – coefficients on Xη. We may assume div(λ) = λ+ − λ−,
with λ+ and λ− effective of degree ≥ 2g + 1, and no redundancies between them. Also
assume that the divisor E specialised to any u ∈ P1 contains no singular point of Xu in
its support.

2: Compute bases v for H0(Xη, E+D) and u for H0(Xη, E−D) using an effective Riemann-
Roch algorithm via Theorem 2.1.

3: Maintaining w + 2 sets of variables, compute the pullbacks u(i) and v(j) for each i, j ∈
{0, . . . , w+1}. These are merely the same rational functions associated to a specific set
of variables.

4: Compute the map (D.1) using these pullbacks.
5: For any u ∈ P1, the embedding of the Jacobian Pic0(Xu) ↪→ PM is given by the divisor
Eu. If we specialise the input divisor D to u, we get Du ∈ Pic0(Xu)[ℓ].

6: To invert the Abel map on Pic0(Xu)[ℓ], given a point in PM corresponding to an element
of Pic0(Xu)[ℓ], we simply go through all the ℓ2g divisorial representatives of ℓ – torsion as
a result of the algorithm from Theorem 2.2 and check which of them map to our given
point via the divisor Eu and the map (D.1). There will be a unique pre-image as the
Abel map is injective.
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Remark. The only dependence on ℓ in Algorithm 10 is the input divisor D ∈ Pic0(Xη)[ℓ]. By
Theorem 2.2, we know that D can be efficiently represented poly(ℓ) time and the bases for
the Riemann-Roch spaces H0(Xη, E ±D) are computed using Thorem 2.1.

By [Igu56a, Theorem 3] (see also [Igu56b]), we know that the specialisation of the Jacobian
of the generic fibre Xη of a Lefschetz pencil π : X → P1 on a surface X to a singular z ∈ Z
is the completion of the generalised Jacobian of Xz. In summary, we have the following.

Theorem D.1. Let X ⊂ PN be a nice surface of degree D over a number field K and let
π : X → P1 be a Lefschetz pencil of hyperplane sections on X . Let U ⊂ P1 be the subscheme
parametrising the smooth fibres and let Z = P1 \ U parametrise the singular nodal fibres.
Then, there exists an algorithm that computes

(i) the Jacobian Jη of Xη in a projective space PM as a system of homogeneous polynomial
equations,

(ii) an explicitisation of the Abel map Xη ↪→ Jη,
(iii) an explicit addition law on the Jacobian Jη with atlases, in the sense of Pila [Pil90].

This provides a translation between the language of divisor arithmetic on Xη and
points on Jη. Moreover, for any specialisation to u ∈ P1, the group law on Jη

specialises to that on Ju.

Proof. See [And02, §4]. □

Theorem D.2. The embedding described in Theorem D.1 factors through (and corresponds
exactly to, upto linear hull) an ‘edited’ 4 · Θ – embedding, i.e., the complete linear system
associated to the divisor 4 · Θ on the Jacobian, consisting of those theta-functions which
vanish at the origin with order ≤ 1.

Proof. See [And04, §3]. □
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