
MQuBS: A Short, Round-Optimal Blind Signature with Post-Quantum Security

Dipayan Das
NTT Social Informatics Laboratories

Tokyo, Japan
dipayan.das@ntt.com

Anindya Ganguly, Angshuman Karmakar, Nitin Saxena
Department of CSE, IIT Kanpur

Kanpur, India
{anindyag,angshuman,nitin}@cse.iitk.ac.in

Abstract—The blind signature, proposed by Chaum
[Crypto’82], allows user to obtain a signature on a message
without revealing it to the signer. This ensures the anonymity
of the user while maintaining its security. This cryptographic
primitive is a key to privacy-preserving applications like
e-cash, e-voting, and digital currencies. With the rise of
digital currencies and the demand for online privacy, blind
signatures have grown in importance. However, efficient
blind signatures are only known from the classical number
theoretic assumptions. The advent of quantum computing
threatens such classical assumptions, making post-quantum
(PQ) blind signatures crucial for long-term security.

In this work, we propose MQuBS, a new short, round-
optimal PQ blind signature scheme based on the multivariate
assumptions. This is achieved by carefully adapting Fischlin’s
round-optimal blind signature framework [Crypto’07] in
multivariate settings. We show that it achieves the standard
one-more-unforgeability (in the random oracle model) and
satisfies the blindness property. Additionally, MQuBS has
the smallest signature size among all post-quantum blind
signatures. For instance, at the 128-bit security level, the
scheme by Agrawal et al. [ACM CCS-22] produces a 45KB
signature, and the construction by Beullens et al. [ACM CCS-
23] offers a 22KB signature. In contrast, MQuBS achieves a
significantly smaller signature size of just 5KB.

Index Terms—Anonymity, Blind signature, Post-quantum
cryptography, multivariate cryptography, UOV-signature

1. Introduction

Blind signatures. Blind signature (BS) [1] enable
privacy-preserving protocols where the signer and mes-
sage owner or user are distinct entities. A user hides the
message from the signer during the signing process. The
BS is widely used in digital currency and e-voting [2]–
[4]. It requires an interactive protocol between the user
and signer (Figure 1).

In a BS protocol, a user interacts with a signer via
interactive protocol in multiple rounds to obtain the final
signature. The most efficient and cost-effective ones are
two rounds, which are often called round-optimal. Fur-
thermore, two-round protocols are not vulnerable to attack
during concurrent execution of the signing algorithm [5].
Here, the user first blinds the message and sends it to a
signer for signing, a signer then signs the blinded message
and communicates the result to the user. The user then
unblinds the message and publishes the message and

Blind Signature
Signature Verifier
(msg, sk, vk) (msg, vk)

Signature generation

Signer (sk) User (msg, vk)

st1 ← Blind(msg)

st1

st2 ← Sign(sk, st1)

st2

σ ← Unblind(st2, vk)

σ

return Verify(σ, msg, vk)

Figure 1. A schematic representation of different parties involved and
their interactions in a blind signature protocol.

signature pair to the verifier. Fischlin [6] first proposed
a generic framework for constructing round-optimal blind
signatures.

A BS scheme needs to satisfy the two security proper-
ties, blindness and one-more unforgeability (explained in
§3). In recent years, blind signatures have been studied ex-
tensively, leading to numerous instantiations based on var-
ious hardness assumptions. While the theoretical sound-
ness of these schemes has been demonstrated, achieving
practical efficiency, such as reducing signature and key
size, reducing computation overheads, etc., remains a
primary concern.

PQ blind signatures. Most of the currently existing
BS schemes rely on the hardness of classical assumptions
like integer factorization [7] and elliptic curve discrete log-
arithm problems [8], [9]. However, due to the Shor’s [10]
and Proos-Zalka’s algorithm [11] a large quantum com-
puter can subvert these assumptions. So, we need BS
schemes based on PQ-assumptions for long-term security.

Recently, two new round-optimal BS schemes have
been proposed based on (structured) lattice-based assump-
tions [5], [12], relying on the Fischlin’s framework. Al-
though, both of these schemes suffer from larger signature
and public-key sizes.

The BS constructions based on the multivariate as-

sumptions (for example, unbalanced oil and vinegar
(UOV) problem [13]) can be a good solution to optimize
the signature, public-key, and proof sizes (see Table 1).
Also, the UOV signature scheme has been selected in
the second round of National Institute of Standard and
Technology’s (NIST) ongoing additional digital signatures
for the PQ cryptography standardization process [14].
However, as we will see, it is not so trivial to build a
BS scheme from these assumptions.

Multivariate blind signature. In 2017, Petzoldt
et al. [15] proposed a multivariate BS scheme. Their
construction uses a commitment scheme, a multivariate
trapdoor, and a zero-knowledge proof (ZKP) system. This
ZKP allows users to prove they know a solution to a
system of multivariate quadratic (MQ) equations without
revealing the solution itself. The security of this ap-
proach [15] depends on the commitment scheme’s perfect
binding and hiding properties, as well as the inherent
difficulty of solving multivariate quadratic (MQ) systems,
which is believed to be quantum secure [16]. The com-
mitment scheme in [15] utilizes a collision-resistant hash
function H : {0, 1}∗ → Fm

q . Specifically, the message
msg is committed by using a random vector r ∈ Fm

q as
follows:

b = H(msg)−R(r), (1)

where R : Fm
q → Fm

q is a random quadratic map.
Subsequently, the user requests the signer to sign on the
blind message b. The signer applies a UOV-based signa-
ture algorithm [13] to generate a blind signature s and
sends it to the user. The user constructs a non-interactive
zero-knowledge (NIZK) proof π for the quadratic sys-
tem H(msg) = P(s) + R(r), where P : Fn

q → Fm
q

represents a public polynomial map based on the UOV
scheme [13]. Here, n and m are the number of variables
and the quadratic equations defined over the finite field Fq

respectively. The user reveals this NIZK proof π as the
final signature in the signature unblind phase.

On the one-more unforgeability of [15]: In [17],
Beullens showed that the commitment scheme used in this
BS scheme [15] is non-binding. This immediately breaks
the one-more-unforgeability property of the scheme.1

In the same work, Beullens proposed a potential so-
lution to mitigate the attack by abandoning the use of
random polynomial system R in the commitment phase,
and instead, employing a different commitment scheme
based on AES with a NIZK proof [18]. However, this pro-
posed solution leads to a large signature size, as the final
signature will contain two proofs: one for the MQ problem
and another for the AES-based commitment scheme [18].

As we see, constructing efficient BS from multivariate
assumptions remains a challenge. In this work, we propose
the first round optimal BS from multivariate assumptions,
which achieves both the notion of one-more-unforgeability
and anonymity. The resulting scheme also offers a smaller
signature size than all the post-quantum solutions.

1. In the scheme, the authors achieved a weaker variant of the
one-more-unforgeability, called universal one-more-unforgeable security
(UOMUF). However, this property does not accurately reflect real-world
attack scenarios for blind signatures. For more details, we refer the
readers to [17]

2. Our Contribution

We propose MQuBS, a new multivariate-based BS
scheme, following Fischlin’s round optimal frame-
work [6]. For this, we introduce a new secure binding
commitment scheme based on the multivariate assump-
tions (see Algorithm 1) as a building block for MQuBS.

Our MQuBS needs four cryptographic components.
First, the new commitment scheme. Second, a hash-based
commit-and-prove protocol [19]–[21]. Third, the UOV
signature [13], [22] scheme as an underlying multivariate
signature scheme 2.

Finally, to open the multivariate commitment scheme,
we need a NIZK proof for the MQ problem. There ex-
ist many efficient and optimized NIZK proofs for MQ
problem in the literature [18], [26]–[30]. In our construc-
tion, we use vector obvious linear evaluation in the head
(VOLEitH)-based NIZK for the MQ problem to achieve
smaller proof sizes and good execution time [18], [30].

In Section §5, we show that MQuBS offers anonymity
(or blindness) and one-more-unforgeability in the random
oracle model (ROM).

As claimed before, MQuBS offers a smaller signature
(σ) compared to the previous post-quantum round-optimal
BS schemes. The following Table 1 illustrates our claim3.

TABLE 1. POST-QUANTUM ROUND OPTIMAL BLIND SIGNATURE

Scheme Assumption |σ| (KB)
Agrawal et al. [12] OM-ISIS 45
Beullens et al. [5] MSIS and MLWE 22
Petzoldt et al. [15] UOMUF-MQ 28.5
MQuBS (this work) UOV and gWMQ 5

2.1. MQuBS: A brief overview

Below, we briefly introduce the key components and
fundamental ideas of MQuBS (see Figure 3 for more
details). The key generation algorithm of MQuBS is the
same as the UOV-signature scheme [22]. The signature
algorithm of MQuBS.Sign consists with three independent
algorithms Sign1,Sign2, and Sign3.

Blinding phase S ← U: (β ← Sign1(vk, msg)). In
this phase, the user performs three steps. First, a random
vector is generated, and its hash is concatenated with
the message as part of the message digest computation.
Next, the user runs two commitment schemes: ComMQ

and ComHash.
Fischlin’s suggestions [6]. After computing the mes-

sage digest d = H(msg), it commits the d using a
randomness r1 to blind the message digest. (See Fig:
2). We add extra randomness during the computation of
the message digest. Later it encrypts d, r1 along with a
new randomness r2. In addition, it also adds a proof of

2. It is possible to incorporate any UOV-type signature schemes, like
VDOO [23], Mayo [24], and QR-UOV [25] in MQuBS.

3. The security model used in Petzoldt et al. construction is universal
OMUF. Their construction is designed on the top of Rainbow [31]
scheme, which is broken by [32]. So the parameters proposed in [15] will
change. However, due to the vulnerability in the commitment scheme,
the BS scheme is no longer secure.

Fischlin’s Blind Signature [6]
User U (d← H(msg), vk) Signer S (sk)

β ← Sign1(vk,d)

choose r1, r2, r3
$← {0, 1}2λ

b← Com(d; r1)

ct← Enc(d, r1; r2)

xEnc ← (ct, pk′Enc) //statement

wEnc ← (d, r1, r2) //witness

compute πEnc ← ProofEnc(xEnc, wEnc)

β ← (πEnc,b, ct)

β

ψ ← Sign2(β, sk)

if (VerifyEnc(πEnc, ct))

s← Sign(b, sk)

ψ = s

σ ← Sign3(vk, s)

if
(
VerifySign(s, vk)

)
Ct← Enc(β, ψ; r3)

x← (Ct, pkEnc) // statement

w ← (b, s; r3) // witness

prepares a proof π ← Proof(x,w)

σ ← (Ct, π)

Figure 2. Fischlin’s round-optimal blind signature framework

encryption πEnc. Instead of encryption, we use a hash-
based commitment scheme. Finally, β contains a blind
message, ciphertext, and proof of encryption πEnc.

Computing the message digest. In MQuBS, the user
initially uniformly generates a random vector r

$← Fm
q .

Then, it computes t = H(msg,G(r)), where G : Fm
q →

{0, 1}2λ, (λ is a security parameter) and H : {0, 1}∗ →
Fm
q are collision-resistant hash functions4. These hash

functions can be modelled as random oracles. Beullens
et al. [5]’s lattice-based blind signature scheme used this
trick to avoid one-more-ISIS assumptions. We employ
this trick to achieve the same functionality. Basically it
forces an adversary to fix r before querying the random
oracle. It helps us to achieve the OMUF security of
MQuBS.

ComMQ: New multivariate commitment scheme. The
user runs this scheme to blind the message digest. To build
a secure BS , we propose a new commitment scheme
designed to defend the Beullens’s attack [17]. Our ap-
proach involves generating a random polynomialR during
the signing phase by using the message as a seed for a
pseudorandom generator (PRG) (see Algorithm 1). Our
commitment scheme ComMQ is given below.

ComMQ(msg; r) = E−1
1 (H(msg,G(r))−E2R(r)) (2)

4. For notational purpose we use two hash function G and H, in
practice any one hash function is enough. For example SHA-3 [33].

The random polynomial map R,E1, and E2 are gen-
erated using the message along with a random r ∈ Fm

q .
We present this algorithm in Section §4.2.

Commit-and-prove a random vector and message.
In Figure 2, the user commits the message digest and
randomness using public-key encryption. Lattice-based
BS constructions [5], [12] utilize lattice-based public-
key encryption in an “encryption to the sky” fashion
to achieve this goal. However, multivariate cryptography
faces challenges. Most multivariate public key encryption
schemes have either been broken in a short period [34]–
[37] or result in inefficient constructions [38]. Therefore,
we adopt standard commitment schemes in our scenario.
To establish the OMUF security of MQuBS (see Theorem
4), we must decommit the committed value to retrieve
the message and randomness. This is only feasible for a
commitment scheme modeled as a random oracle. Conse-
quently, hash-based commitment schemes are well-suited
for our construction. The following hash-based commit-
ment scheme commits (r, msg) using a random number
u ∈ {0, 1}2λ.

C = ComHash(r, msg;u) = HCom(r, msg;u) (3)

In addition, the user adds a NIZK proof πCom with the
blind message b and the committed value C; then it
communicates to the signer. The proof πCom includes two
things. The first one is the proof of committed value
C, that is the Equation 3. Here, the statement is the
committed value C, and witness is (r, msg;u). And the
second proof is the well-formedness of b, that is, it should
prove the Equation b = E−1

1 (H(msg,G(r))−E2R(r)).
Observe that, the final signature does not include the

proof, and the user can precompute the proof. Therefore
it does not add to the performance of the blind signa-
ture scheme. At the end of this phase, the user sends
β = (C, πCom,b) to the signer and asks for a signa-
ture. Therefore, user sends |β| = |C| + |πCom| + |b| =
2λ+ |πCom|+m log q-bit elements.

Signing phase U ← S: (ψ ← Sign2(sk, β)) . This
procedure is the same as Fischlin’s proposal [6]. After
receiving β, it first verifies the proof πCom, then it runs the
UOV-signature algorithm [22] to compute the signature s.
It communicates |s| = n log q-bit elements to user.

Unblind the signature V ← U: (σ ← Sign3(sk, ψ)) .
After verifying the validity of the signature, Fischlin [6]
proposed committing to β and ψ using public key en-
cryption and providing a NIZK proof of encryption. The
final signature includes both the proof and the ciphertext.
A key improvement in MQuBS is that we eliminate the
need for public key encryptions in Sign3, as the user in-
stead provides a NIZK proof for opening the commitment
ComMQ.

As per Fischlin’s proposal, the user first checks
whether H(msg,G(r)) = E1P(s) + E2R(r) holds. Once
this verification is done, then it prepares a proof πMQ

for the solution (s, r) of the quadratic equations t =
P̃(x1,x2) = E1P(x1) + E2R(x2). The most efficient
NIZK proof for a solution of multivariate quadratic sys-
tem can be implemented using multi-party-computation-
in-the-head (MPCitH)-based and vector-oblivious-linear-
evaluation-in-the-head (VOLEitH)-based framework [18],
[28]–[30]. The final signature σ contains three items, one
is proof πMQ, a seed to generate emulsifier maps, and a

random quadratic map, and the third component is G(r).
The size of the final signature is 4λ+ |πMQ|-bits, where
4λ equals to the size of a seed and G(r), and |πMQ| is
the proof size of πMQ.

Security. Here, we sketch the security arguments
of our commitment scheme. The main underlying hard-
ness assumption is the generalized whipped multivariate
quadratic problem (gWMQ). It asks to solve a quadratic
system of the form E1R1(x1) − E2R2(x2) = t. We
introduce the generalization of Beullens’s whipped mul-
tivariate quadratic problem (WMQ) [24]. We also show
that MQuBS offers blindness and OMUF.

Security of commitment scheme. Any secure commit-
ment scheme has two properties, one is computationally
hiding and another one is perfectly binding. The computa-
tionally hiding property of our commitment scheme can be
derived from the collision resistance of the cryptographi-
cally secure hash function. However, the perfectly binding
property is not so obvious. The perfectly binding property
of our commitment scheme can be derived from the fact
that finding a collision in the commitment scheme, that
is, that is, Com(msg1,G(rmsg1)) = Com(msg2,G(rmsg2)),
which requires solving a special structure quadratic sys-
tem. The following claim guarantees the perfectly binding
property of our commitment scheme. We formally present
this theorem in Theorem 2, and then we prove the follow-
ing claim. The detailed proof of this claim can be found
in Section §4.1.
Claim 1 (Perfect binding of the commitment scheme).

The commitment scheme presented in Figure 1 is
perfectly binding under the assumptions of gWMQ.

Blindness and One-more-unforgeability of
MQuBS.The blindness of MQuBS depends on the
zero-knowledge property of the NIZK proofs (see
Theorem 3). We present this claim informally, and later
in Theorem 4, we provide a formal statement and proof.
Claim 2 (MQuBS is OMUF.). MQuBS achieves OMUF,

depending on the EUF-CMA of the underlying sig-
nature and the soundness of the NIZK proof system.

We use three lemmas to prove the OMUF property of
MQuBS. The first Lemma 1 tells that the underlying
signature scheme is EUF-CMA. Since we have cho-
sen UOV as an underlying signature, so we follow the
EUF-CMA-security proof of UOV signature [22]. Note
that our version of UOV differs slightly from standard
UOV [13], [22] (see Figure 4). The EUF-CMA-security
of underlying signature relies on the hardness of UOV, and
gWMQ problem. The proof of the statement of Lemma 1
requires reduction from EUF-CMAto EUF-KO-security
of the scheme (key-only-attack). Further, the hardness of
UOV and gWMQ together implies the security against
EUF-KO for the underlying signature. Since similar
proofs for these three lemmas are available in [22], so
we refer [22] for these proofs.

Practicality: efficiency and comparisons. The signa-
ture size of MQuBS is significantly smaller than the exist-
ing post-quantum round-optimal blind signatures [5], [39].
The initial communication from the user U , to the signer
S, consists of |β| = (2λ + |πCom| + m log q) bits. The
second interaction from S to U requires n log q bits. The
size of the final signature is 4λ+ |πMQ|, since it contains

πMQ,G(r) and a seed to generate emulsifier maps and
random quadratic maps. We present the communication
costs of MQuBS in Table 2.

TABLE 2. COMMUNICATION COSTS OF MQuBS

Communication U → S S → U U → V
Sizes (in bits) 2λ+ |πCom|+m log q n log q 4λ+ |πMQ|

Communication cost for 128-bits security level. We
use formulas from Table 2 to compute signature and
public-key size for 128-bit security level. To estimate
the signature size, we calculate the size of πCom, the
signature size of the underlying signature UOV, and the
size of πCom. The proof contains two things, one is the
proof for the hash-based commitment, and the relation
2. According to [21], the proof size of the hash-based
commitment is 33KB. The second component is a linear
relation which requires 15KB. Thus total cost for πCom is
around 47KB. The UOV signature [13], [22] offers a 96-
byte signature size for 128-bit security. According to the
UOV SL-1 parameters (128-bit security) [22], the UOV
public polynomial map has 64 quadratic equations with
160 variables (see Table 6.2). Therefore, a user prepares
a NIZK proof for a quadratic system with n+m variables
and m- homogeneous quadratic equations. Bui [30] offers
the most efficient proof size. Using the technique of [30],
the proof size for our quadratic system is around 4.96KB.
Therefore, the size of blind message β is 48KB, the
signer communicates 96 bytes as a signature on the blind
message, and then the user reveals 5KB as a final signature
size. Since the secret and public keys are the same as the
UOV signature, the secret and public keys for MQuBS
are 48bytes, and 43.576KB respectively.

3. Background

In this section, we define the blind signature scheme
Section §3.1 and its security properties.

Basic Notations. We denote a $← U to signify a is
generated randomly from the set U . Any homogeneous
quadratic map P : Fn

q → Fm
q consisting m quadratic

polynomials is denoted as p1, p2, . . . , pm. We define the
polar form DP : Fn

q × Fn
q → Fm

q of a quadratic map P
as: DP(u,v) = P(u+ v)− P(u)− P(v). Since P is a
homogeneous quadratic map, we assume P(0) = 0. The
notation DPu(v) is employed when u is fixed, essentially
representing the partial derivatives with respect to u. We
write Fq to denote the finite field with q elements, and Fn

q

as a n-dimensional vector with elements from Fq. We also
denote GL(m, q) for the set of invertible m×m matrices
over Fq. Throughout this paper, λ serves as the security
parameter.

3.1. Blind Signature

A round-optimal blind signature scheme, denoted as
BS = (KeyGen,Sign,Verify), requires only two rounds
of interaction between the signer S and the user U to
generate a blind signature. The Sign algorithm has three
sub-algorithms: Sign1, Sign2, and Sign3. Below, we de-
scribe each of these algorithms in detail.

(vk, sk)← KeyGen(1λ): On input the security parameter
λ, it outputs a verification key vk and a secret key sk.
(β, SU) ← Sign1(vk, msg). In the initial phase of the

signing protocol, the user blinds the message and sends
it to the signer. This probabilistic polynomial-time (PPT)
algorithm computes a message state SU and generates a
first message β, which is then sent to the signer.
ψ ← Sign2(sk, β). The signer computes a signature ψ
using its secret key sk on β. It runs the underlying
signature algorithm to do this. Afterward, the signer sends
the signature ψ back to the user as the signature for β.
σ ← Sign3(ψ, SU). The user removes the blindness of the
received signature ψ using SU and derives a signature σ
of the original message msg.
0/1← Verify(vk, msg, σ). The verifier uses its verification
key vk to verify whether σ is a correct signature on the
message msg or not.

Properties. The blind signature algorithm must adhere
to the correctness property. Essentially, this ensures that
if a signature is generated honestly, it should be verified
with a very high probability.
Definition 1 (Correctness). A BS is considered correct if

for any message digest d = H(msg).

Pr

Verify(vk, σ,msg) = 1

∣∣∣∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)

(β, SU)← Sign1(pk, d)

ψ ← Sign2(sk, β)

σ ← Sign3(ψ, SU)

 ≥ 1− negl(λ)

The two security properties of blind signatures are the
blindness (or anonymity) and the one-more-unforgeability.
The blindness ensures that the signer of a message re-
ceives no information about the content of the message to
be signed.
Definition 2 (Anonymity/ Blindness). We call the BS

offers blindness when, for each polynomial-time three-
part stateful adversary A = (A1,A2,A3), there exists
a negligible function negl such that, for any two mes-
sages d0, d1, the following condition holds.

∣∣∣∣∣Pr
A3(σ0, σ1) = b

∣∣∣∣∣
(vk)← A1(λ), b ∈U {0, 1}
(d01, S

0
U)← Sign1(pk, d0)

(d1, S1
U)← Sign1(pk, d1)

db2, d
1−b
2 ← A2(db1, d

1−b
1)

σ0 ← Sign3(d
2
0, S

0
U)

σ1 ← Sign3(d
2
1, S

1
U)

−
1

2

∣∣∣∣∣ < negl(λ)

The one-more unforgeability (OMUF) ensures that if a
malicious user interacts r times with an honest signer and
receives r message-signature pairs, the probability that the
malicious user can produce a r+1 message-signature pairs
without further interaction with the signer is negligible.
Definition 3 (OMUF). The BS is said to have one-

more unforgeable if for every PPT adversary A that
makes at most r queries to the honest signer (where r
upper bounded by poly(λ)) can produce a r+1 blind
message-blind signature pair with negligible probabil-
ity negl. The following probability should be less than
negl(λ).

Pr

[
(di ̸= dj)

r+1
∀i,j=1, i ̸=j

(Verify(vk, σi, di) = 1)r+1
∀i=1∣∣∣∣∣ (sk, vk)← KeyGen(1λ)

{(di, σi)}i∈[r] ← ASign2(sk,·)(vk)

]
< negl(λ)

4. MQuBS: A compact, quantum-secure and
round-optimal blind signature scheme

In this section, we describe the construction of our
blind signature scheme MQuBS in detail. We also describe
the major components of our scheme in this section.

We have presented our scheme in Figure 3. As can
be seen in the Figure 3, for MQuBS, we require some
cryptographic components as ingredients. First we need
two hash functions G : {0, 1}∗ → {0, 1}2λ, H : {0, 1}∗ →
Fm
q and one hash based commitment scheme HCom. Any

cryptographically secure hash function can be deployed
here such as the current NIST standard SHA-3 [33]. Later
in the security proof (see Section §5), we model these
functions as random oracles.

4.1. New Commitment Scheme

We need a secure commitment scheme to hide the
message. We present our commitment scheme ComMQ

in Algorithm 1 below. Later, in Section §5, we will show
that this scheme is perfectly binding and computationally
hiding.

Algorithm 1 ComMQ: Multivariate Commitment Scheme

b← ComMQ(msg; r) = E−1
1 (H(msg,G(r))−E2R(r))

1 : Input: msg
2 : Output: b, (E1,E2,R)

3 : r
$← Fm

q , ρ← G(r)
4 : while (det(E1) ̸= 0 & det(E2) ̸= 0) {

5 : rnd
$← {0, 1}2λ, seed1← Hash(msg|| r||rnd)

6 : seed2← Hash(msg || seed1)
7 : E1 ← XOF(seed1); E2 ← XOF(seed2) }
8 : seed3← Hash(msg || seed2)
9 : R← XOF(seed3)

10 : b← E−1
1 (H(msg,G(r))−E2R(r)) .

11 : return b, (E1,E2,R)

At first, the Algorithm 1 selects an r
$← Fm

q . Then
it computes, G(r). Using r, the message msg, and the
random string rnd it generates Ei’s and R, where Ei ∈
Fm×m
q and R is a random quadratic map from Fm

q to Fm
q .

Each generated Ei must be an invertible matrix; otherwise,
the algorithm changes rnd and recomputes. Following
Beullens [24], we refer to Ei as an emulsifier map. At
the end, the commitment of a message is computed as
b = ComMQ(msg; r) = E−1

1 (H(msg,G(r))−E2R(r)).

4.2. Algorithms of MQuBS

The complete MQuBS algorithm outlined in Figure:
3 includes three primary algorithms: MQuBS.KeyGen,
MQuBS.Sign, and MQuBS.Verify. The MQuBS.Sign con-
sists of three distinct algorithms: Sign1, Sign2, and Sign3.
The user runs Sign1 and Sign3; while the signer executes
the Sign2 algorithm.

Multivariate Blind Signature in the Fischlin’s Framwork
Signature Verifier
(msg, sk, vk) (msg, vk = PUOV)

Signature generation

User (msg, vk) Signer (sk)

β ← Sign1(PUOV , msg) (See Algorithm 3)

r
$← Fm

q ; ρ← G(r)
Generate E1, E2, R from msg, vk, and r

b← ComMQ(msg, r) = E−1
1

(
H(msg,G(r))−E2Rmsg(r)

)
u

$← {0, 1}2λ; C ←HCom(r, msg;u)

xCom ← (E1,E2,R, C,b)
wCom ← (r, msg, u)

Relation1 ← b = ComMQ(msg, r)
∧
C = HCom(r, msg;u)

πCom ← NIZK.Proof1(xCom, wCom,Relation1)

β ← (C, πCom,b)

β

ψ ← Sign2(sk,b) (See Algorithm 4)

if (NIZK.Verify1(xCom, πCom))

compute s← UOV.Sign(b, sk)

set ψ ← s

ψ

σ ← Sign3(PUOV , ψ) (See Algorithm 5)

if (UOV.Verify(ψ, vk))

Define :: P̃(x1,x2) = E1PUOV (x1) +E2R(x2)

x← (msg, ρ,E1,E2,PUOV ,R)
w ← (s, r)

Relation2 ← {(s, r) : H(msg, ρ) = P̃(s, r)}
πMQ ← NIZK.Proof2(x,w,Relation2)

σ ← (πMQ, ρ, P̃)

σ

t← H(msg, ρ)
return NIZK.Verify2(σ, t, vk)

Figure 3. MQuBS Multivariate Blind Signature

4.2.1. Key Generation of MQuBS . The key genera-
tion algorithm MQuBS.KeyGen is shown in Algorithm 2,
which generates a UOV secret and verification key pair.
This algorithm is the same as the key generation algo-
rithm of the UOV signature scheme [22]. The parameters
for MQuBS are (n,m, q, r). Here, n is the number of
variables present in m homogeneous quadratic equations
defined over a finite field Fq, and r is the number of
repetitions required to execute the NIZK proof πMQ for
the solution of a MQ system.

Key Generation: (sk, vk) ← MQuBS.KeyGen(1λ). Let
O is a secret oil subspace for the UOV signature, and
PUOV : Fn

q → Fm
q is a public polynomial map (public

key) so that PUOV (O) = 0. The secret linear subspace O
is the row space of the matrix Õ = [O Im], where the

O
$← Fo×n−o

q . Each polynomial in the public polynomial
map is constructed using the following equation.

(
O⊤ Im

)
Pi

(O
Im

)
= O⊤P

(1)
i O+O⊤P

(2)
i +P

(3)
i = 0

Here, P(1)
i ∈ F(n−m)×(n−m)

q , P
(3)
i ∈ Fm×m

q are upper
triangular matrices and P

(2)
i ∈ F(n−m)×(n−m)

q so that

Pi =

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
.

So, generates P(1)
i , P

(2)
i from seed using a CSPRNG, and

set P(3)
i ← Upper(−O⊤P

(1)
i O−O⊤P

(2)
i).

Algorithm 2 Key Generation of MQuBS

(sk, vk)← MQuBS.KeyGen(1λ)

1 : Input :λ

2 : Output :sk, vk

3 : O
$← Fo×n−o

q

4 : seed
$← {0, 1}2λ

5 : for 1 ≤ i ≤ m
6 : P

(1)
i ← CSPRNG(seed, i)

7 : P
(2)
i ← CSPRNG(seed, i)

8 : P
(3)
i ← Upper(−O⊤P

(1)
i O−O⊤P

(2)
i)

9 : sk← {O}

10 : vk← PUOV =

{
seed,

(
P

(3)
i

)m

i=1

}
11 : return (sk, vk)

4.2.2. Interactive Signing Algorithm of MQuBS : σ ←
MQuBS.Sign(msg, sk, vk). The user blinds the message
using Sign1 (see Algorithm 3) and sends the masked
message to the signer for signing. The signer, utilizing the
Sign2 algorithm (see Algorithm 4), generates a signature
and returns it to the user. After receiving the blinded
message’s signature, the user finalizes the signature for the
original message using the Sign3 algorithm (see Algorithm
5). Then it publishes the signature. Now we describe each
algorithm.

Blind the message: β ← Sign1(msg, vk). Here, the user
has inputs a public key PUOV , and a message msg. Then,
it randomly generates r

$← Fm
q . It further computes, G(r),

and t ← H(msg,G(r)). Additionally, it generates two
emulsifier maps E1,E2 (m ×m invertible matrices over
Fq) and a random quadratic map R : Fm

q → Fm
q from

msg, G(r), and PUOV . To do this, the user computes the
following seeds

• seedE1
← Hash(H(msg)|| G(r)|| PUOV),

• seedE2
← Hash(H(msg)||seedE1

), and
• seedR ← Hash(H(msg) || seedE2

)).

Now using these seeds, it generates E1,E2 and R. It
uses the eXtendable Output Function (XOF) to generate
these outputs. The user changes r, if E1, and E2 are not
invertible. Note that each seed depends on the message
msg, so when the message changes, then E1,E2 and R
also change. Then, it outputs the blind message b ←
E−1

1 (t−E2R(r)). Further, it applies the hash-based com-
mitment scheme to commit r, and msg using a randomly
generated 2λ-bit string u, that is, Equation 3. Later it pro-
vides a NIZK proof πCom for C, and it also adds a proof
for the well-formedness of b = E−1

1 (t−E2R(r)). In the
proof πCom, the statement xCom are (E1,E2,R, C,b), and
witness wCom are r, msg, u1. Finally, the user communi-
cates β = (b, C, πCom) to the signer.
NIZK proof πCom. The algorithm NIZK.Proof1 prepares
the proof and NIZK.Verify1 algorithm verifies the proof
πCom. We use a hash-based commitment scheme that
employs a secure hash function, such as SHA-3 [33], [40].
The user adds a NIZK proof of the commitment. We use
existing hash-based NIZK proof for this purpose. This is

known before our work, so for more details about hash-
based commitment and proof of the commitment we refer
to [19]–[21]. We sketch brief details about these schemes.

Consider the hash function HCom in Equation 3, which
can be computed by an N -gate circuit ϕ, such that
C = HCom(α) = ϕ(α), where α = (msg, r;u). The
multi-party computation (MPC) protocol computes C as
in Equation 3, with each player holding shares of the input
α, and the output C being public.

Now, the user simulates an MPC protocol internally
(i.e., in their head), committing to the state and tran-
scripts of all participating parties. In the NIZK protocol
(in this case, the Signer), the verifier then corrupts a
random subset of the simulated players after observing
their full internal state. The verifier verifies whether the
computation was executed correctly from the viewpoint
of the corrupted players. If this check passes, it convinces
the verifier that the output is correct and that the prover
(in our case, the User) knows the value of α. To ensure
confidence in the verifier, this process is repeated over
multiple rounds. For details understanding we refer the
ZKBoo protocol [19]. The second part of πCom is use same
methodology like this. For the proof size and parameters,
we refer once again to this source.

Communication cost. Therefore, the user needs to send
a 2λ-bit string for C, |πCom| bits for the NIZK proof, and
m log q bits for the blind message. In total, this amounts
to 2λ + |πCom| + m log q bits to communicate with the
signer as the blind message.

Algorithm 3 Sign1: Message blinding

β ← Sign1(PUOV , msg)

1 : Input: vk = PUOV ; msg

2 : Output: β = (b, C, πCom)

3 : Hash: G : {0, 1}∗ → {0, 1}2λ,H : {0, 1}∗ → Fn
q

4 : while (det(E1) ̸= 0 & det(E2) ̸= 0){

5 : r
$← Fm

q , seedE1 ← G(msg||G(r)||PUOV)

6 : seedE2 ← G(msg||seedE1)

7 : E1 ← XOF(seedE1), E2 ← XOF(seedE2)}
8 : t← H(msg,G(r))
9 : seedR ← G(msg||seedE2), R← XOF(seedR)

10 : b← E−1
1 (t−E2R(r))

11 : u
$← {0, 1}λ, C ← H(msg, r, u)

12 : xCom ← C, wCom ← (msg, t, u)

13 : Relation :: b = E−1
1 (t−E2R(r))

∧
C = H(msg, r, u)

14 : πCom ← NIZK.Proof1(xCom, wCom,Relation)

15 : β ← (b, C, πCom)

16 : return β

Blind signature computation: ψ ← Sign2(sk, β). In
this algorithm, the signer (or issuer) receives a blinded
message b, secret key sk, and a NIZK proof πCom along
with a statement xCom. It first verifies πCom using the
verification algorithm NIZK.Verify1. If the verification is
successful, it proceeds to compute a signature s. This is
done by executing the UOV.Sign algorithm on b and sk.
Finally, the signer outputs ψ = s and delivers it to the
user as a signature on the blinded message β.

UOV signature generation: s ← UOV.Sign(sk,b). The
signer wants to compute s = P−1

UOV (b). Initially, the
signer randomly selects vinegar vector v

$← Fn
q and

attempts to solve the subsequent linear system b = Lv(o):

Lv :: b = PUOV (v) +DPUOV v(o).

Note that, PUOV (o) = 0, since o belongs the secret
linear subspace O. The linear system is invertible with
an approximate probability of (1− 1

q). In cases, if it fails,
the signer will re-sample v and reiterate the aforemen-
tioned procedure. This approach mirrors the methodology
employed in UOV signature algorithm [22]. At the end,
signer communicates ψ = s as a signature on the blind
message.

Algorithm 4 Sign2 : Signature computation by Signer

ψ = (s)← Sign2(sk, β)

1 : Input: sk, β

2 : Output: ψ = s

3 : if (NIZK.Verify1(xCom, Com) ̸= 1)

4 : abort

5 : while (det(Lv) ̸= 0){

6 : v
$← Fn

q

7 : Lv :: b = PUOV (v) +DPUOV v(o) }
8 : solve b = Lv(o), s← v + o

9 : return ψ = (s)

Communication cost. The cost for this round is |ψ|,
meaning the signer transmits an n log q-bit string to the
user.

Unblind the signature: σ ← Sign3(PUOV , ψ). The user
first runs UOV.Verify to ensure that the UOV signature s
is correctly generated by the signer.

UOV verification algorithm: 0/1← UOV.Verify(vk, s,b).
It evaluates PUOV (s) and returns 0 if the result doesn’t
match b, otherwise returns 1.

If UOV verification fails, the user aborts the protocol.
Otherwise, it prepares a NIZK proof πMQ for a solution
(s, r) of the following quadratic system.

t = P̃(x1,x2) = E1PUOV (x1) +E2R(x2)

The witness w for πMQ is the solution (s, r)
of the quadratic system P̃ , and statement x is
(t,E1,E2,R,PUOV).

Communication cost. Given that the combined size of
seedE1 and G(r) is 4λ, the signature size is 4λ+ |πMQ|.

NIZK proof for πMQ. An efficient NIZK proof plays
an important role in our constructions. Because the sig-
nature size relies on the proof size. There are various
NIZK proofs are available for the MQ problem [18], [27]–
[30], [41]–[44]. In the below, we present the proof size
for the 128-bit security level. Table 3 reflects that the
VOLEitH-based NIZK proof provides smaller proof sizes,
resulting in a short signature for MQuBS. There are two
such constructions discussed in the literature, both based
on VOLEitH NIZK proofs [18], [30]. In our case, the
only difference is in the parameters: our quadratic system
has n+m variables and m equations. The corresponding

TABLE 3. PROOF SIZE FOR VARIOUS NIZK PROOF FOR MQ

ZKP Five
pass [26]

with
helper [27]

MPCitH
[42]

TCitH
[44]

VOLEitH
[18]

VOLEitH
[30]

Proof
size (KB) 29 14 6.9 4.2 2.6 3.6

proof size is presented in Table 5. For further details on
the NIZK proof and verification algorithm, we refer to
[18].

Algorithm 5 Sign3: Unblind the signature

σ = (seedE1
,G(r), πMQ)← Sign3(vk, ψ)

1 : Input: vk, ψ

2 : Output: E1,E2,R,G(r), πMQ

3 : if (PUOV (s) ̸= b) , abort.

4 : Define P̃(x1,x2) :: E1PUOV (x1) +E2R(x2)

5 : x (statement)← (t,E1,E2,PUOV ,R);
6 : w (witness)← (s, r)

7 : Relation :: t = P̃(s, r) = E1PUOV (s) +E2R(r)
8 : πMQ ← NIZK.Proof2 (x,w,Relation)

9 : return σ = (seedE1 ,G(r), πMQ)

0/1 ← MQuBS.Verify(vk, σ, msg) : Verification
Phase.
The verifier possesses the public key PUOV and the
message msg. Upon receiving the signature σ, the verifier
aims to determine whether it is the correct signature for
the message msg. Initially, the verifier t′ ← H(msg,G(r)).
Further, it expands the emulsifier matrices E1, E2, and the
random quadratic map R from the seeds present in the
signature. After completing these computations, it con-
structs the quadratic system P̃(x1,x2) = E1PUOV (x1)+
E2R(x2) = t′. Finally, it follows verifies the proof πMQ
by running NIZK.Verify2. We use the algorithm of [30] in
this case.

Algorithm 6 MQuBS : Verification algorithm

0/1← MQuBS.Verify(vk, σ, msg)

1 : t′ ← H(msg,G(r))
2 : Construct E1,E2,R from seed

3 : Construct P̃(x1,x2) = E1PUOV (x1) +E2R(x2)

4 : return NIZK.Verify2(πMQ, P̃, t′)

4.2.3. Correctness of MQuBS. We establish the cor-
rectness of our blind signature scheme in the following
theorem.
Theorem 1 (Correctness). For properly executed

MQuBS(n,m, q, r) protocol, if the signature
on message msg is generated as σ. Then
MQuBS.Verify(vk, σ, msg) = 1 holds with probability
1− negl(λ).

Sketch. The correctness of MQuBS relies on the cor-
rectness of the UOV signature algorithm along with two
NIZK proofs: πCom and πMQ. Together, these results
establish the correctness of MQuBS. The proof of this
theorem is presented in Appendix A.

5. Security Analysis

First, we define the UOV problem, which has been
extensively studied and believe to be hard [13], [22]

Definition 4. UOV Problem. [13] Let MQn,m,q be the
family of the random quadratic map; and MQUOV

n,m,q

is the family of UOV-public polynomial map. The
problem asks to distinguish between P ∈MQn,m,q or
P ∈ MQUOV

n,m,q. Suppose D denotes the distinguisher
algorithm for UOV, then the distinguishing advantage
for D is defined as below.

Adv
(n,m,q)
UOV (D) =

∣∣∣∣∣Pr [D(P) = 1 | P ←MQn,m,q]

− Pr
[
D(P) = 1 | P ←MQUOV

n,m,q

] ∣∣∣∣∣
We define P as belonging toMQUOV

n,m,q, such that for a
secret linear subspace O, P(O) = 0. It is widely believed
that, for all probabilistic polynomial time distinguisher D,
the advantage Adv

(n,m,q)
UOV (D) ≤ negl(λ). Now we propose

a new hard problem called gWMQ problem. Beullens
first introduced the WMQ problem for the Mayo digital
signature scheme [24], and the gWMQ problem extends
this to a more generalized form.

Definition 5. Generalized Whipped Multivariate
Quadratic (gWMQ) Problem. Suppose R1, · · ·Rk ∈
MQn,m,q are random polynomial maps, and ERi

ij are
m ×m invertible matrices. Let t ∈ Fm

q be the target
vector. Now the problem asks to find s1, · · · , sk, such
that

k∑
i=1

ERi
ii Ri(si) +

∑
1≤i<j≤k

ERi
ij DRi(si, sj) = t.

In WMQ, Beullens used cross terms for higher values
of k, since the algorithm for solving k-Sum algorithm
is efficient for higher values of k [45]. However, in our
case since k = 2, we do not need those cross terms.
The gWMQ problem asks for a solution (x1,x2) from
the quadratic system t = E1R1(x1) +E2R2(x2) for
a given t, Ei, and Pi. Let’s say A represents the
adversary attempting to solve this problem. Then, the
adversary’s advantage against the problem is defined
as follows.

Adv
(n,m,q)
gWMQ(A) =

∣∣∣∣∣Pr

E1R1(s1) +E2R2(s2) = t

∣∣∣∣∣
R1,R2 ←MQn,m,q(

E1,E2

)
← GL(m, q)

t← Fm
q

(s1, s2)← A(t,R1,R2,
E1,E2)

∣∣∣∣∣

To the best of our knowledge, there is no known crypt-
analysis for Beullens’s WMQ problem [24]. Consequently,
we assume that for any probabilistic polynomial-time ad-
versaryA, the advantage ofA against the gWMQ problem
satisfies Adv

(n,m,q)
gWMQ ≤ negl(λ).

5.1. Security of the commitment scheme

The following proof demonstrates that the security of
the commitment scheme relies on the hardness of the
gWMQ problem. We use the following instance of the
gWMQ problem throughout our work: find a solution
(x1,x2) of a quadratic system t = E1R1(x1)+E2R2(x2)
where E1,E2,R1, and R2 are known.
Theorem 2 (Perfectly binding). The commitment scheme

presented in Algorithm 1 is perfectly binding under the
gWMQ assumptions. Specifically, if an adversary A
has an advantage AdvCOM(A) in the perfectly binding
game, then there exist adversaries B that solve the
gWMQ problem with advantages AdvgWMQ(B), such
that

AdvCOM(A) ≤ AdvgWMQ(B)

Proof: At first, we simplify Equation 2, and rewrite
it as ComMQ = E′

1H(msg1,G(r)) − E′
2R(r), where

E′
1 = E−1

1 , and E′
2 = E−1

1 E2. Let msg1 and msg2
are two different messages for which the adversary A
attempts to find a collision in the commitment. In addition,
the adversary got (R1,E

′
11,E

′
12) for the commitment on

msg1; and (R2,E
′
21,E

′
22) for the commitment on msg2,

along with G(r1), and G(r2).
The goal of A is to find (r1, r2) such that

E′
12R1(r1)−E′

22R2(r2) = E′
11H(msg1,G(r1))−

E′
21H(msg2,G(r2)). (4)

Thus, the right-hand side of the above expression is
known and can be computed by the adversary. There-
fore, the adversary A fixes t ← E′

11H(msg1,G(r1)) −
E′

21H(msg2,G(r2)). Now rewrite Equation 4 in the fol-
lowing manner.

t = E′
12R1(r1)−E′

22R2(r2) (5)

Now, A invokes the adversary B which can break the
gWMQ problem with the advantage AdvgWMQ(B). Then,
A supplies (t,E′

12,R1,E
′
22,R2) to B. The adversary B

computes (r1, r2) and returns it to A. This completes the
proof.

5.2. Security proof for MQuBS

5.2.1. Blindness.
Theorem 3. For an adversary A which can subvert the

blindness of MQuBS with advantage AdvBLND(A),
there exists an adversary B that can distinguish sim-
ulated NIZK proofs from real ones with advantage
AdvNIZK(B), an adversary C that can break multivari-
ate commitment scheme ComMQ defined in Algorithm
1 with advantage AdvComMQ

(C), and an adversary
D that can break hash-based commitment scheme
ComHash with advantage AdvComHash

(D), so that the
following condition holds.

AdvBLND(A) ≤ AdvNIZK(B) + AdvComMQ
(C)

+ AdvComHash
(D)

Proof: Before we proceed, let’s replace two NIZKs
πCom, πMQ and the translated-UOV signature schemes

with their respective simulations. This alteration allows
the adversary to differentiate this scenario with an advan-
tage denoted as AdvNIZK(B). At this moment, the two
proofs πCom, πMQ are become independent from msg and
(s, r). We are assuming that the adversary has access to
values G(r), and H(msg,G(r)). Therefore, it is enough
to show that the committed value C and the RHS of
t = E1PUOV (s)+E2R(r) does not leak any information
about the message msg, and (s, r). Now the adversary
can break the ComHash commitment scheme with the
advantage of AdvComHash

, which implies the adversary A
can learn about the message msg, and (s, r) with the same
advantage.

Now we move to the second part. The Theo-
rem 2 already established that the commitment scheme
ComMQ ensures perfectly hiding. Thus the adversary
can break the commitment ComMQ with the advan-
tage AdvComMQ

. We present a more detailed idea. Now,
the crucial aspect remaining to demonstrate is that
E−1

1 (H(msg, ρ)−E2R(r)) does not disclose any infor-
mation about the message. Essentially, the adversary se-
lects a pair (ρ∗, msg∗) from one interaction and aims to
associate it with the blind message b from a separate
interaction. As previously noted, the signature σ offers
an advantage AdvNIZK(B) for linking an equivalent b∗

to msg∗. Subsequently, the adversary randomly chooses
r∗ and computes R(r∗). Given the randomness of r∗ and
R, R(r∗) remains indistinguishable from a random dis-
tribution. Therefore, the adversary’s ability to distinguish
the blind signature b∗ = E−1

1 (H(msg∗, ρ∗)−E2R(r)) is
determined by the advantage AdvComMQ

(C). This implies
that the adversary can compute any predicate of msg∗ from
b∗ with an advantage of AdvComMQ

.

5.2.2. One More Unforgeability (OMUF). At
first, we define of EUF-CMA, and EUF-KO-
security of the underlying signature scheme
SIG = (KeyGen,Sign,Verify).

Definition 6 (EUF-CMA-security). The underlying sig-
nature scheme SIG is considered EUF-CMA-secure
if any polynomial-time adversary A has only a neg-
ligible advantage in the EUF-CMA game, defined as
follows.
AdvSIG(A) =

Pr

[
Verify(vk, msg∗, σ∗) = 1

msg∗ not queried

∣∣∣∣∣ (sk, vk)← KeyGen(1λ)

(σ, msg∗)← ASign(sk,·)(vk)

]

The notation ASign(sk,·)(vk) signifies that the adversary
A has access to the signing oracle OSign(sk, ·). Also, the
adversary does not query on the message msg∗.

Definition 7 (EUF-KO-security). A signature scheme SIG
is EUF-KO-secure if any polynomial-time adversary
A has a negligible advantage in the EUF-KO game.
It is defined as follows.

AdvKO(A) =

Pr

[
Verify(vk, msg∗, σ∗) = 1

∣∣∣∣∣ (sk, vk)← KeyGen(1λ)

(σ, msg∗)← A(vk)

]

A key difference between the EUF-CMA game and
EUF-KO is that the adversary in EUF-KO does not
have access to the signing oracle.

Signing Phase: Translated-UOV
1 : Ingredients. Three hash functions, and a XOF

2 : G : {0, 1}∗ → {0, 1}2λ,H : {0, 1}∗ → Fm
q

3 : K : {0, 1}∗ → {0, 1}2λ, and a XOF
4 : Inputs. msg ∈ {0, 1}∗, sk = (O),

5 : vk = PUOV , r
$← Fm

q .

6 : Computes ρ = G(r), t← H(msg,G(r)).
7 : seedE1 ← K(msg||G(r)), seedE2 ← K(msg||seedE1),

8 : seedR ← K(msg||seedE2), E1 ← XOF(seedE1)

9 : E2 ← XOF(seedE2), R← XOF(seedR)

10 : b← E−1
1 (t−E2R(r)), s← P−1

UOV (b)

11 : σ = (s, ρ, seedE1 , seedE2 , seedR)

Figure 4. Translated-UOV Signature

We used UOV as the underlying signature scheme
[13], [22]. The existential unforgeability (EUF-CMA) in
the random oracle model of the UOV signature scheme
has been studied extensively in the literature [39], [41],
[46], [47]. Note that, we have modified the UOV signature
to employ it in the blind signature settings. We call this
modified signature as translated-UOV, and we denote the
signature scheme as tran-UOV(q,n,m), where (q, n,m)
is the algorithm’s parameter. We detail the signature al-
gorithm in Figure: 4, and the verification algorithm in
Figure: 5. The key generation algorithm of tran-UOV is
the same as the key generation algorithm of the UOV-
signature scheme [22].

Lemma 1 demonstrates that tran-UOV(q, n,m) is
EUF-CMA-secure. The security of tran-UOV relies on
the hardness of the UOV problem and the gWMQ prob-
lem. We use a similar proof style like the UOV-signature
scheme [22]. Several UOV-based signature schemes [23]–
[25] follow this approach.

Lemma 1 (EUF-CMA-security of tran-UOV). The trans-
lated UOV-signature scheme is one-more-unforgeable
under the UOV and gWMQ assumptions when G
and H are modeled as random oracles. Basically for
an adversary A in the signature forgery game that
makes upto qh random oracle queries and qs signing
oracle queries, and has advantages AdvSIG(A), then
there exists an adversary B that distinguishes UOV
public key with advantage AdvUOV (B) and an ad-
versary C that solve the gWMQ with the advantage
AdvgWMQ(C) in time t+(1+ qs+ qh) · poly(q, n,m)
so that,

AdvSIG(A) ≤AdvUOV (B) + qh · AdvgWMQ(C)+
qs(qh + qs)

22λ
+

1

qm

To prove Lemma 1, we need two more lemmas.
Lemma 2 gives a reduction from the EUF-CMA-security
of tran-UOV to its EUF-KO-security. Further, we require
Lemma 3. It presents a reduction from UOV and gWMQ
problem to the EUF-KO-security of tran-UOV signature
scheme. Combining these two lemmas, we establish the
claim of Lemma 1.

Verification Phase: Translated-UOV
1 : Ingredients: Three hash functions, and a XOF

2 : G : {0, 1}∗ → {0, 1}2λ,H : {0, 1}∗ → Fm
q ,

3 : K : {0, 1}∗ → {0, 1}2λ, and a XOF
4 : Inputs. r, msg, σ, vk = PUOV

5 : Computes ρ = G(r), t← H(msg,G(r))
6 : If ρ does not match, then abort.
7 : If any seed is not matching, then abort.
8 : Compute ttemp ← E1PUOV (s) +E2R(r)
9 : Return 1, if ttemp = t, else 0.

Figure 5. Verification of the translated-UOV Signature

Lemma 2 (EUF-CMA to EUF-KO security). For a PPT
adversary A which runs against the EUF-CMA se-
curity game of the translated-UOV signature scheme
with parameter (n,m, q) in the random oracle model
and it makes qs signing oracle and qh random oracle
queries. Then there exists an adversary B against the
EUF-KO security of the translated-UOV signature,
which runs in time t + O(qs + qh)poly(n,m, q) so
that the following conditions will hold.

AdvSIG(A) ≤ AdvKO(B) +
qs(qs + qh)

22λ

Lemma 3 (UOV and gWMQ to EUF-KO-security). Let
A be a EUF-KO adversary that runs in time t against
the tran-UOV(q,n,m) signature in the ROM and it
makes q queries to the random oracle. Then there
exists an adversaries B against the UOVn,m,q problem
and C against the gWMQn,m,q problem, that runs in
time t+O(1+qh) poly(q, n,m) so that, the following
condition hold.

AdvKO(A) ≤ AdvUOV (B)+(1+qh)AdvgWMQ(C)+
1

qm

The proof of three lemmas can be found in [22]. The
EUF-CMA-security proof of many UOV-based signature
schemes [23], [25] [24]follows the same approach. We
understood that the three lemmas collectively prove the
underlying signature is EUF-CMA-secure in the ROM
when G, K, and H are implemented using cryptograph-
ically secure hash functions like SHA-2 or SHA-3 [33].
Therefore, we can say that MQuBS is OMUF, since the
basic signature scheme is EUF-CMA secure and the
soundness and zero-knowledge property of NIZK proofs.
Theorem 4. The EUF-CMA security of the underly-

ing signature scheme and the soundness of NIZK
proofs jointly implies the one-more unforgeability of
MQuBS. In particular, for any adversary A that makes
at most qRO oracle queries in the OMUF game, there
exist adversaries B and C such that B challenges the
soundness of the NIZK and C targets the unforgeability
of the basic signature scheme. The advantage of A
in breaking the one-more unforgeability of the blind
signature scheme is bounded by:

AdvMQuBS(A) ≤ (qRO + 1)AdvSND(B) + AdvSIG(C).

where,

-AdvMQuBS(A) is the advantage of an adversary A in
breaking the one-more unforgeability of MQuBS.
- AdvSND(B) is the advantage of a adversary B in
breaking the soundness of the NIZK proof system.
- AdvSIG(C) is the advantage of a adversary C in break-
ing the unforgeability of the basic signature scheme.

Proof: We use a hash list ListCom in the reduction
phase. When A queries for a signature, we verify the
NIZK proof πCom first. Then we look into the list ListCom
and find the values (msg, r). The verification of the proof
πCom ensures two things, one is the well-formedness of
b and another is the proof of the commitment scheme.
The adversary can bluff with the advantage AdvSND(B).
So, we can assume that the relation in the proof πCom
is correct. Now, we query the signing oracle from the
unforgeability game with the message (msg, r) and receive
the corresponding signature (ρ, s).

The adversary manages to generate (qRO + 1) signed
messages (msgi, ρi, πMQi

) for i = 1, . . . , qRO + 1. We
can verify whether each message was included in any
of the earlier at most qRO signing queries. There must
be at least one signed message, (msg∗, ρ∗, π∗

MQ), for
which msg∗ is not previously queried. Using a NIZK
extractor, we can extract a witness (s∗, r∗) for the relation
E1P(s∗) + E2R∗(r∗) = H(ρ∗, msg∗). This gives us a
forged signature (ρ, s) for the message (msg, r), which
was not part of any previous queries in the unforgeability
game for the underlying signature.

5.3. Algebraic Cryptanalysis

In this section, we describe possible algebraic attacks
against MQuBS.

5.3.1. Attack on the ComMQ. We proved the security
of our commitment scheme relies on the gWMQ prob-
lem. To find a collision in our commitment scheme, an
attacker tries to solve Equation 5 which is an instance
of gWMQ problem. To our best knowledge, there is no
better algorithm known for the WMQ problem [24].

Since the quadratic mappings are generated randomly,
and the inversion of any random quadratic map is chal-
lenging, therefore computing (r1, r2) is presumed to be as
hard as solving the MQ problem. To find (r1, r2) using
the MQ-solving algorithm, the attacker will perform the
following steps.

The attacker starts by selecting a random m-tuple
radv, followed by the computation of R1(radv). The only
remaining unknown in the Equation 5 is R2(r2). Con-
sequently, the adversary must tackle the MQ problem to
ascertain r2.

The alternative method to find a solution (r1, r2) is
to use an algorithm that solves the k-SUM problem. It’s
worth noting that t represents the sum of two functions
with independent inputs. The adversary simplifies the task
of finding a pre-image of the quadratic map to an instance
of the k-sum problem.

Initially, the attacker constructs two lists, List1 and
List

2
. Here, these lists has the evaluations of E′

12R1(x),
and E′

22R2(x) respectively. Subsequently, the adversary
searches for one value in each list to ensure that their sum
equals t. This task can be done in O(qm) time using the
Wagner k-tree algorithm [45].

5.3.2. Beullens’s [17] attack is not applicable. Since in
our case, we have random polynomials, so the Equation 5
remains quadratic. Therefore, Beullens’s polar form at-
tack [17] can not convert the quadratic system to a linear
system.

5.3.3. Direct Attack. The most fundamental attack on
UOV and many other multivariate cryptosystems is the di-
rect attack. Here, the attacker picks a message msg∗ and a
salt G(r), computes their hash value t, and then focuses on
uncovering a preimage s, r for t using quadratic system-
solving techniques under the quadratic system P̃ . At first,
the attacker converts the underdetermined system to a
system with m′ = m−1 equations in n′ = m−1 variables
using the approach developed by Thomae and Wolf [48].
Then it runs the hybrid WiedemannXL algorithm [49]
to find a solution for the quadratic system. The time
complexity of this algorithm is as follows.

min
k
qk · 3

(
n′ − k + dn′−k,m

dn′−k,m

)2

·
(
n′ − k + 2

2

)
(2r2 + r)

and represents the expenditure associated with the direct
assault on UOV. Here, dN,M denotes the operational de-
gree of XL, which is defined as the smallest d > 0 such
that the coefficient of td in the power series expansion of

(1− t2)M

(1− t)N+1

is non-positive.

5.3.4. Min-Rank Attack. The attacker can use a min-
rank algorithm to find the secret of the quadratic map P̃ .
In our case, the secret oil space of the quadratic map P̃
is Õ = {(s, r) : s, r ∈ Fm

q }. The dimension of the secret
oil space Õ is 2m.

In the MinRank attack, the adversary aims to find a lin-
ear combination Q of the public polynomials represented
by matrices P1, · · · , Pm in a quadratic system P , such
that the rank of Q does not exceed a specified threshold
r. Mathematically, this can be expressed as:

Q =

m∑
i=1

ci · Pi

where ci are the coefficients chosen by the adversary,
and the objective is to minimize rank(Q) subject to
rank(Q) ≤ r. Various methods have been developed
to address the MinRank problem, ranging from linear
algebraic techniques to specialized algorithms such as the
Kipnis-Shamir method and Minors Modeling [50], [51].

5.3.5. Intersection Attack. The intersection attack builds
upon the principles underlying the Kipnis-Shamir method
and integrates a system-solving strategy akin to the recon-
ciliation attack [52]. This attack is used to find k vectors
within the secret oil space Õ, defined as the collection
of vectors u in Fn

q satisfying P̃(u) = 0m. By solving
a system of quadratic equations, the attack endeavours to
locate a vector common to the intersections of MiO for k
different matrices Mi. Successful execution of the attack
relies on the existence of a non-empty intersection, which
occurs when n < 2k−1

k−1 m. The primary computational
effort involves solving a random system of equations with

M =
(
k+1
2

)
m −

(
k
2

)
equations in N = kn − (2k − 1)m

variables. In the context of UOV with k = 3, the certainty
of finding a non-trivial intersection is not guaranteed, thus
the effectiveness of the attack may vary. However, analysis
suggests that for these parameters, the intersection is non-
trivial with a probability of 1/(q − 1). Consequently, the
attack may need to be repeated approximately q− 1 = 15
times on average, rendering it more cost-effective than a
single attack employing k = 2.

6. Parameter Selection

The security of MQuBS fundamentally relies on sev-
eral key aspects. First, solving the quadratic system should
be hard. Our scheme employs two quadratic systems:
a random quadratic system R and the UOV quadratic
system. This leads to two critical observations.

1. Finding a solution in the m variables and m con-
straints random quadratic system should be difficult.

2. Inverting the UOV map should be computationally
hard, or equivalently, retrieving an oil vector in the secret
oil space should be hard.

6.1. Communication Cost

We now recall the communication cost for each round
of interaction. Table 2 summarizes the communication
costs incurred during each round of interaction between
the user, signer, and verifier. The size of β, which is the
output of the Sign1 algorithm, is 2λ+m log q+|πCom|. The
signer sends an m log q-bit string to the user as the blind
signature, and the final signature size is |σ| = 4λ+|πMQ|.

NIZK proof size for πCom. As per the security level
λ, we pick parameters from [19] for a hash-based NIZK
proof to build πCom. Note that, this proof size will not be
added with the final signature.

Size of πMQ, NIZK Proof for the MQ problem: The
proof πMQ is included in the final signature. To minimize
the signature size, we need a small size NIZK proof. For
this purpose, we employ VOLEitH-based constructions.
We compute the proof size using the formula presented in
the Subsection 5.3 of [30]. Unlike the standard case where
the number of variables equals the number of equations,
in our scenario, there are n+m variables and m equations
present in the quadratic system. This increases the proof
size by nr log q + |π| bits over the proof size |π| given
in [30]. 5 The term nr log q arises because each iteration
of the proof πMQ involves an additional n variables, with
r being the total number of rounds repeated to boost the
soundness error.

6.2. Parameters Selection

We follow the security level (SL) definitions provided
by the National Institute of Standards and Technology
(NIST) [53]. First, we set the parameters for the underly-
ing signature scheme based on the security parameter λ.
After configuring the UOV parameters and constructing
the quadratic system P̃ , we then design the parameters
for the NIZK proof πMQ.

5. The |π| denote the proof size of [30].

TABLE 4. UOV- PARAMETERS ACCORDING TO [22]

UOV NIST
SL n m q

|σUOV |
(B)

|sk|
(B)

|vk|
(KB)

uov-Ip 1 112 44 256 128 48 43.576
uov-Is 1 160 64 16 96 48 66.576
uov-III 3 184 72 256 200 48 189.232
uov-V 5 244 99 256 260 48 446.992

TABLE 5. PROOF SIZE (KB) FOR OUR CASE

NIST
SL

Parameters
(n,m, q) Table 6.2

MQDSS [41]
(KB)

with
Helper

(KB) [27]

MPCitH
(KB) [28]

TCitH
(KB) [44]

VOLEitH
(KB) [30]

1 (112,44,256) 85.184 22.262 9.061 5.9 5.455
1 (160,64,16) 81.664 21.212 8.261 5.369 4.968
3 (184,72,256) 198.816 74.288 19.897 13.529 12.535
5 (244,96,256) 367.488 170.944 35.053 24.5371 22.784

Parameters for UOV-signature. Based on the security
parameter λ, we first configure the parameters for the
underlying UOV signature scheme as outlined in the UOV
specifications document [22]. Table 6.2 presents the pa-
rameters for UOV across different security levels: 128-bit
(SL-1), 192-bit (SL-3), and 256-bit (SL-5). Specifically,
λ determines the values of q, n, and m, which represent
the field size, the number of variables, and the number of
homogeneous quadratic equations needed to construct the
UOV public key PUOV , respectively.

Suppose λ = 128 bit, then as per uov-Is of the Table
6.2, n = 160, m = 64, and q = 16. For 128-bit security
level, the size of πCom is 47KB. Hence the size of blind
message is 2 ∗ 128 + 64 ∗ log 16 + |πCom|-bits. This leads
to the size of a blind message β is 47.288KB. Based on
the parameters uov-Is in Table 6.2, the size of ψ is 96
bytes. To determine the total size of the final signature σ,
we must also calculate the size of πMQ.

Parameters for NIZK proof πMQ. Now we turn our
attention to the NIZK. The homogeneous multivariate
quadratic system P̃ has (n+m) variables and m equations
and defined over Fq. Since PUOV has n variables and R
has m variables. The user prepared a NIZK proof πMQ

which involves the quadratic system P̃ . The parameters for
πMQ are underlying field size, number of variables, num-
ber of constraints, and the number of repetition to achieve
the soundness property of the NIZK. Earlier, we fixed
field size, number of variables, number of constraints.
According to the security level number of repetition r.

The NIZK proof πMQ for our multivariate blind
signature can be implemented using several techniques,
including Sakumoto et al.’s five-round NIZK [26], Beul-
lens’s helper approach [27], the MPCitH framework [28],
the TCitH paradigm [44], and the VOLEitH technique
[30]. To compute the proof size of πMQ, we follow the
formulas presented in each of these references. The table
5 illustrates the proof size for various security levels.

6.3. Size of the Keys and Signature

Keys sizes for MQuBS. In the MQuBS.KeyGen al-
gorithm (see Algorithm 2), we noted that the UOV key
generation algorithm is used to produce the public and
secret keys. As a result, the key sizes are determined
entirely by the UOV signature algorithm. Thus, Table 6.2
also reflects the key sizes for MQuBS. Table 6 shows the

TABLE 6. KEY AND SIGNATURE SIZES FOR MQuBS AT VARIOUS
SECURITY LEVELS.

NIST
SL

|sk|
(B)

|vk|
(B)

U → S
(B)

S → U
(B)

|σ|
(KB)

MQuBS.SL-1p 48 43.576 352 896 5.5
MQuBS.SL-1s 48 66.576 256 640 5
MQuBS.SL-3 48 189.232 576 1472 12.65
MQuBS.SL-5 48 446.992 768 1952 23

key and signature sizes of the MQuBS blind signature
algorithm for different security levels.

Size of MQuBS final signature σ. The final signature
has a seed, G(r), and a NIZK proof πMQ. Therefore, the
signature size is 4λ + |πMQ|. According to Table 5, the
most efficient NIZK proof has a proof size of 4.968KB
for our parameters. Hence, the size of the final signature
according to the formula 4λ + |πMQ| is 5KB (approxi-
mately) for SL-1.

7. Conclusion

In this work, we investigated multivariate PQ
BS schemes. Currently, the most efficient PQ blind sig-
natures are based on the lattice assumption. There is very
little exploration for other quantum hard problems in the
context of designing BS. So, we decided to use multi-
variate assumptions. We are the first to adapt Fischlin’s
framework in multivariate settings. Our construction used
the well-studied UOV signature as the underlying signa-
ture. The UOV signature is also submitted in the NIST ad-
ditional round PQ-signature standardization process [14].
We established that it offers blindness, and one-more
unforgeable. We also introduced the gWMQ problem. The
security of our construction relies on the hardness of UOV
and the gWMQ problem.

MQuBS used an efficient and shorter NIZK proof for
a solution to the MQ problem. This eliminated one of the
major shortcomings of the lattice-based blind signatures.
We gave a shorter signature size of 5KB for a 128-bit PQ
security level. We compared our results with the state-
of-the-art round-optimal post-quantum blind signatures.
The lattice-based blind signature proposed by Agrawal
et al. [12] offered a 45KB signature scheme, while an
upgraded version proposed by Beullens et al. [5] offered
a 22KB signature size. This concludes that our design
MQuBS offers the shortest signature among PQ round-
optimal blind signatures.

Acknowledgments

N.S. thanks the funding support from DST-SERB
(CRG/2020/45 + JCB/2022/57) and N. Rama Rao Chair.
A.G. is supported by a TCS research fellowship. A part
of this work was done while D.D. visited IIT Kanpur.

References

[1] D. Chaum, “Blind signatures for untraceable payments,” in Ad-
vances in Cryptology: Proceedings of Crypto 82. Springer, 1983,
pp. 199–203.

[2] D. Chaum and T. P. Pedersen, “Wallet databases with observers,”
in Annual international cryptology conference. Springer, 1992,
pp. 89–105.

[3] S. Brands, “Untraceable off-line cash in wallet with observers,” in
Advances in Cryptology—CRYPTO’93: 13th Annual International
Cryptology Conference Santa Barbara, California, USA August
22–26, 1993 Proceedings 13. Springer, 1994, pp. 302–318.

[4] A. Szepieniec and B. Preneel, “New techniques for electronic
voting,” in USENIX Journal of Election Technology and Systems
(JETS), 2015.

[5] W. Beullens, V. Lyubashevsky, N. K. Nguyen, and G. Seiler,
“Lattice-based blind signatures: Short, efficient, and round-
optimal,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, 2023, pp. 16–29.

[6] M. Fischlin, “Round-optimal composable blind signatures in the
common reference string model,” in Annual International Cryptol-
ogy Conference. Springer, 2006, pp. 60–77.

[7] F. Denis, F. Jacobs, and C. Wood, “RFC 9474 RSA Blind signa-
tures,” 2023.

[8] G. Fuchsbauer and M. Wolf, “Concurrently secure blind schnorr
signatures,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2024, pp.
124–160.

[9] G. Fuchsbauer, A. Plouviez, and Y. Seurin, “Blind schnorr sig-
natures and signed elgamal encryption in the algebraic group
model,” in Advances in Cryptology–EUROCRYPT 2020: 39th An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part II 30. Springer, 2020, pp. 63–95.

[10] P. W. Shor, “Algorithms for quantum computation: discrete loga-
rithms and factoring,” in Proceedings 35th annual symposium on
foundations of computer science. Ieee, 1994, pp. 124–134.

[11] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algo-
rithm for elliptic curves,” arXiv preprint quant-ph/0301141, 2003.

[12] S. Agrawal, E. Kirshanova, D. Stehlé, and A. Yadav, “Practical,
round-optimal lattice-based blind signatures,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 39–53.

[13] A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced oil and vinegar
signature schemes,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999, pp.
206–222.

[14] National Institute of Standards and Technology (NIST),
“NIST announces second round of post-quantum cryptography
digital signature standardization,” 2024, accessed: October
24, 2024. [Online]. Available: https://csrc.nist.gov/news/2024/
pqc-digital-signature-second-round-announcement

[15] A. Petzoldt, A. Szepieniec, and M. S. E. Mohamed, “A prac-
tical multivariate blind signature scheme,” in Financial Cryp-
tography and Data Security: 21st International Conference, FC
2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers 21.
Springer, 2017, pp. 437–454.

[16] D. S. Johnson and M. R. Garey, Computers and Intractability: A
Guide to the Theory of NP-completeness. WH Freeman, 1979.

[17] W. Beullens, “Multivariate Blind Signatures Revisited,” Cryptology
ePrint Archive, Paper 2024/720, 2024.

[18] C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher,
C. Rechberger, L. Roy, and P. Scholl, “One Tree to Rule Them All:
Optimizing GGM Trees and OWFs for Post-Quantum Signatures,”
Cryptology ePrint Archive, Paper 2024/490, 2024.

[19] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo: Faster Zero-
Knowledge for boolean circuits,” in 25th usenix security sympo-
sium (usenix security 16), 2016, pp. 1069–1083.

[20] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher,
C. Rechberger, D. Slamanig, and G. Zaverucha, “Post-quantum
zero-knowledge and signatures from symmetric-key primitives,” in
Proceedings of the 2017 acm sigsac conference on computer and
communications security, 2017, pp. 1825–1842.

[21] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijn-
eveld, and P. Schwabe, “The sphincs+ signature framework,” in
Proceedings of the 2019 ACM SIGSAC conference on computer
and communications security, 2019, pp. 2129–2146.

[22] W. Beullens, M.-S. Chen, J. Ding, B. Gong, M. J. Kannwischer,
J. Patarin, B.-Y. Peng, D. Schmidt, C.-J. Shih, C. Tao, and
B.-Y. Yang, “UOV: Unbalanced Oil and Vinegar Algorithm
Specifications and Supporting Documentation Version 1.0,”
2018. [Online]. Available: https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf

[23] A. Ganguly, A. Karmakar, and N. Saxena, “VDOO: A short, fast,
post-quantum multivariate digital signature scheme,” in Interna-
tional Conference on Cryptology in India. Springer, 2023, pp.
197–222.

[24] W. Beullens, “MAYO: practical post-quantum signatures from
Oil-and-Vinegar maps,” in Selected Areas in Cryptography: 28th
International Conference, Revised Selected Papers, 2022, pp. 355–
376.

[25] H. Furue, Y. Ikematsu, F. Hoshino, Y. Kiyomura, T. Saito, and
T. Takagi, “QR-UOV,” 2023.

[26] K. Sakumoto, T. Shirai, and H. Hiwatari, “Public-key identification
schemes based on multivariate quadratic polynomials,” in Advances
in Cryptology–CRYPTO 2011: 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Springer, 2011,
pp. 706–723.

[27] W. Beullens, “Sigma protocols for MQ, PKP and SIS, and fishy
signature schemes,” Cryptology ePrint Archive, Paper 2019/490,
2019.

[28] T. Feneuil and M. Rivain, “MQOM: MQ on my mind-algorithm
specifications and supporting documentation. Version 1.0-31 May
2023.”

[29] R. Benadjila, T. Feneuil, and M. Rivain, “MQ on my Mind:
Post-Quantum Signatures from the Non-Structured Multivariate
Quadratic Problem,” Cryptology ePrint Archive, 2023.

[30] D. Bui, “Shorter VOLEitH Signature from Multivariate Quadratic,”
Cryptology ePrint Archive, Paper 2024/465, 2024.

[31] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial
signature scheme,” in International conference on applied cryptog-
raphy and network security. Springer, 2005, pp. 164–175.

[32] W. Beullens, “Breaking rainbow takes a weekend on a laptop,” in
Annual International Cryptology Conference. Springer, 2022, pp.
464–479.

[33] M. J. Dworkin, “SHA-3 standard: Permutation-based hash and
extendable-output functions,” 2015.

[34] D. Cabarcas, D. Smith-Tone, and J. A. Verbel, “Key recovery at-
tack for ZHFE,” in Post-Quantum Cryptography: 8th International
Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28,
2017, Proceedings 8. Springer, 2017, pp. 289–308.

[35] R. Perlner, D. Moody, and D. Smith-Tone, “Key recovery attack
on the cubic abc simple matrix multivariate encryption scheme,” in
23rd International Workshop, Selected Areas in Cryptography (SAC
2016); 08/10/2016-08/12/2016; St. John’s, Newfoundland, Canada.
Springer, 2017, pp. 542–558.

[36] M. Øygarden, P. Felke, H. Raddum, and C. Cid, “Cryptanaly-
sis of the multivariate encryption scheme eflash,” in Topics in
Cryptology–CT-RSA 2020: The Cryptographers’ Track at the RSA
Conference 2020, San Francisco, CA, USA, February 24–28, 2020,
Proceedings. Springer, 2020, pp. 85–105.

[37] P. Briaud, J.-P. Tillich, and J. Verbel, “A polynomial time key-
recovery attack on the sidon cryptosystem,” in International Con-
ference on Selected Areas in Cryptography. Springer, 2021, pp.
419–438.

[38] D. Smith-Tone, “2F-A new method for constructing efficient mul-
tivariate encryption schemes,” in International Conference on Post-
Quantum Cryptography. Springer, 2022, pp. 185–201.

[39] H. Kosuge and K. Xagawa, “Probabilistic Hash-and-Sign with
Retry in the Quantum Random Oracle Model,” Cryptology ePrint
Archive, Paper 2022/1359, 2022.

[40] S.-j. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey,
S. Paul, and L. E. Bassham, “Third-round report of the SHA-
3 cryptographic hash algorithm competition,” NIST Interagency
Report, vol. 7896, p. 121, 2012.

https://csrc.nist.gov/news/2024/pqc-digital-signature-second-round-announcement
https://csrc.nist.gov/news/2024/pqc-digital-signature-second-round-announcement
https://eprint.iacr.org/2024/720
https://eprint.iacr.org/2024/490
https://eprint.iacr.org/2024/490
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://eprint.iacr.org/2019/490
https://eprint.iacr.org/2019/490
https://eprint.iacr.org/2024/465
https://eprint.iacr.org/2022/1359
https://eprint.iacr.org/2022/1359

[41] K. Sakumoto, T. Shirai, and H. Hiwatari, “On provable security
of UOV and HFE signature schemes against chosen-message at-
tack,” in Post-Quantum Cryptography: 4th International Workshop,
PQCrypto 2011. Springer, 2011, pp. 68–82.

[42] T. Feneuil, “Post-quantum signatures from secure multiparty com-
putation,” Ph.D. dissertation, Sorbonne Université, 2023.

[43] C. Baum, L. Braun, C. D. de Saint Guilhem, M. Klooß, E. Orsini,
L. Roy, and P. Scholl, “Publicly verifiable zero-knowledge and
post-quantum signatures from VOLE-in-the-head,” in Annual In-
ternational Cryptology Conference, 2023, pp. 581–615.

[44] T. Feneuil and M. Rivain, “Threshold Computation in the
Head: Improved Framework for Post-Quantum Signatures and
Zero-Knowledge Arguments,” Cryptology ePrint Archive, Paper
2023/1573, 2023.

[45] D. Wagner, “A generalized birthday problem,” in Annual Interna-
tional Cryptology Conference. Springer, 2002, pp. 288–304.

[46] S. Chatterjee, M. P. L. Das, and T. Pandit, “Revisiting the security
of salted uov signature,” in International Conference on Cryptology
in India. Springer, 2022, pp. 697–719.

[47] B. Cogliati, P.-A. Fouque, L. Goubin, and B. Minaud, “New Secu-
rity Proofs and Techniques for Hash-and-Sign with Retry Signature
Schemes,” Cryptology ePrint Archive, Paper 2024/609, 2024.

[48] E. Thomae and C. Wolf, “Solving underdetermined systems of mul-
tivariate quadratic equations revisited,” in International workshop
on public key cryptography. Springer, 2012, pp. 156–171.

[49] L. Bettale, J.-C. Faugere, and L. Perret, “Hybrid approach for
solving multivariate systems over finite fields,” Journal of Mathe-
matical Cryptology, vol. 3, no. 3, pp. 177–197, 2009.

[50] A. Kipnis and A. Shamir, “Cryptanalysis of the Oil and Vinegar
signature scheme,” in Annual international cryptology conference.
Springer, 1998, pp. 257–266.

[51] M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-
Tone, J.-P. Tillich, and J. Verbel, “Improvements of algebraic
attacks for solving the rank decoding and minrank problems,” in
Advances in Cryptology–ASIACRYPT 2020, 2020, pp. 507–536.

[52] W. Beullens, “Improved cryptanalysis of UOV and Rainbow,” in
Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2021, pp. 348–373.

[53] L. Chen, D. Moody, and Y. Liu, “NIST post-quantum cryptography
standardization,” Transition, vol. 800, p. 131A, 2017.

Appendix A.
Security Proofs

Proof of Theorem 1: The Correctness of MQuBS

Theorem. For properly executed MQuBS(n,m, q, r) pro-
tocol, if the signature on message msg is generated as σ.
Then MQuBS.Verify(vk, σ, msg) = 1 holds with probabil-
ity 1− negl(λ).

Proof: Suppose the probability of correctness for
MQuBS is denoted by PrMQuBS, which is defined as the
following probability:

Pr

[
MQuBS.Verify(vk, σ,msg) = 1

∣∣∣∣∣(sk, pk)← MQuBS.KeyGen(1λ)

σ ← MQuBS.Sign(msg, sk, vk)

]
.

Now the correctness of UOV signature algorithm is
denoted by PrUOV , and defined as following.

Pr

[
UOV.Verify(PUOV , s

, msg) = 1

∣∣∣∣∣ (O,PUOV)← UOV.KeyGen(1λ)

s← UOV.Sign(msg,O,PUOV)

]
.

Similarly, the correctness of NIZK proofs is defined as
follows.

Pr

[
NIZK.Verify(x, π) = 1

(x,w) ∈ Relation

∣∣∣∣∣ st← SetUp(1λ)

π ← NIZK.Proof(x,w,Relation, st)

]

We denote PrπCom
= Pr[NIZK.Verify1(xCom, πCom) =

1| given that the proofπCom is generated correctly],
and PrπMQ

= Pr[NIZK.Verify2(x, πMQ) =
1| given that the proof πMQ is generated correctly]
respectively. Since the correctness of the UOV signature,
πCom, and πMQ are independent of each other, the
correctness of MQuBS can be expressed as follows.

PrMQuBS = PrUOV × PrπCom
× PrπMQ

First, the signer verifies the NIZK proof πCom for the
hash-based commitment scheme, as the correctness of the
NIZK proof guarantees its validity. If the proof is correct,
the signer proceeds to compute the signature. The correct-
ness of the NIZK proof πCom is PrπCom

= 1− negl1(λ).
In the second step, we show that, at the end of the

interactive process, the user obtains s as a pre-image of b
under the map PUOV . The correctness of UOV signature
ensures that PUOV (s) = b holds. Therefore, we can say
that, user has a solution (s, r) of the system P̃(x1,x2) =
t, that is t = P̃(s, r) = E1PUOV (s) + E2R(r). Hence,
correctness of the UOV signature algorithm is PrUOV =
1− negl2(λ).

In the third part, we use the correctness of the πMQ

protocol (see [30]). An honest prover (in our case, the
user) provides a NIZK proof πMQ for a quadratic system.
This correctness of the NIZK proof πMQ ensures that a
proof generated by an honest user who knows a solution to
the public system P̃ will be verified by an honest verifier
with probability PrπMQ

= 1− negl3(λ).
Now, combine all values to compute the correct-

ness of MQuBS. Finally, PrMQuBS = (1− negl1(λ)) ×
(1− negl2(λ)) × (1− negl3(λ)) = (1 − negl4(λ)). Here,
negl4(λ) = poly(negl1(λ), negl2(λ), negl3(λ), basically it
consumes all negligible values. Therefore, combining all
the probabilities, we can claim that the verifier of MQuBS
blind signature will correctly verify the signature with
overwhelming probability.

https://eprint.iacr.org/2023/1573
https://eprint.iacr.org/2023/1573
https://eprint.iacr.org/2023/1573
https://eprint.iacr.org/2024/609
https://eprint.iacr.org/2024/609
https://eprint.iacr.org/2024/609

	Introduction
	Our Contribution
	MQuBS: A brief overview

	Background
	Blind Signature

	MQuBS: A compact, quantum-secure and round-optimal blind signature scheme
	New Commitment Scheme
	Algorithms of MQuBS
	Key Generation of MQuBS
	Interactive Signing Algorithm of MQuBS: MQuBS.Sign(msg,sk,vk)
	Correctness of MQuBS

	Security Analysis
	Security of the commitment scheme
	Security proof for MQuBS
	Blindness
	One More Unforgeability (OMUF)

	Algebraic Cryptanalysis
	Attack on the ComMQ
	Beullens's cryptoeprint:2024/720 attack is not applicable
	Direct Attack
	Min-Rank Attack
	Intersection Attack

	Parameter Selection
	Communication Cost
	Parameters Selection
	Size of the Keys and Signature

	Conclusion
	References
	Appendix A: Security Proofs

