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Igusa’s local zeta function Z f,p(s) is the generating function that counts the number of integral roots,
Nk( f ), of f (x) mod pk , for all k. It is a famous result, in analytic number theory, that Z f,p is a rational
function in Q(ps). We give an elementary proof of this fact for a univariate polynomial f . Our proof is
constructive as it gives a closed-form expression for the number of roots Nk( f ).

Our proof, when combined with the recent root-counting algorithm of Dwivedi, Mittal and Saxena
(Computational Complexity Conference, 2019), yields the first deterministic poly(| f |, log p)-time algo-
rithm to compute Z f,p(s). Previously, an algorithm was known only in the case when f completely splits
over Qp; it required the rational roots to use the concept of generating function of a tree (Zúñiga-Galindo,
J. Int. Seq., 2003).

1. Introduction

Over the years, the study of zeta functions has played a foundational role in the development of math-
ematics. They have applications in diverse science disciplines; in particular, machine learning [72],
cryptography [2; 3], quantum cryptography [45], statistics [72; 47], theoretical physics [31; 53], string
theory [51], quantum field theory [27; 31] and biology [57; 77]. Basically, a zeta function counts some
mathematical objects. Often zeta functions show special analytic, or algebraic properties, the study of
which can reveal striking information about the encoded object.

A classic example is the famous Riemann zeta function [54] (also known as the Euler–Riemann zeta
function) which encodes the density and distribution of prime numbers [16; 64]. Later many local (i.e.,
associated to a specific prime p) zeta functions were studied; e.g., the Hasse–Weil zeta function [73; 74],
which encodes the count of zeros of a system of polynomial equations over finite fields (of a specific
characteristic p). The study of this function led to the development of modern algebraic geometry (see
[19; 30]).

In this paper we are interested in a different local zeta function known as Igusa’s local zeta function.
It encodes the count of roots modulo prime powers of a given polynomial defined over a local field.
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Formally, Igusa’s local zeta function Z f,p(s), attached to a polynomial over p-adic integers

f (x) ∈ Zp[x1, . . . , xn]

is defined as
Z f,p(s) :=

∫
Zn

p

| f (x)|sp · |dx|,

where s ∈ C with Re(s) > 0, | · |p denotes the absolute value over p-adic numbers Qp, and |dx| denotes
the Haar measure on Qn

p normalized so that Zn
p has measure 1.

Weil [75; 76] defined these zeta functions inspired by those of Riemann. Later they were studied
extensively by Igusa [34; 35; 36]. Using the method of resolution of singularities, Igusa proved that
Z f,p(s) converges to a rational function. Later the convergence was proved by Denef [20] via a different
method (namely, p-adic cell decomposition). The Igusa zeta function is closely related to Poincaré
series P(t), attached to f and p, defined as

P(t) :=
∞∑

i=0

Ni ( f ) · (p−nt)i ,

where t ∈ C with |t |< 1, and Ni ( f ) is the count on roots of f mod pi (also N0( f ) := 1). In fact, it has
been shown in [33] that

P(t)=
1− t · Z f,p(s)

1− t

with t =: p−s. So rationality of Z f,p(s) implies rationality of P(t) and vice versa; thus proving a
conjecture of [52] that P(t) is a rational function. This relation makes the local zeta function interesting
in arithmetic geometry (see [33; 21; 50; 44] for more on the Igusa zeta function).

Many researchers have tried to calculate the expression for the Igusa zeta function for various poly-
nomial families [17; 56; 66; 1; 22; 48; 65; 32; 58; 79; 81] and this has led to the development of
various methodologies; for example, the stationary phase formula (SPF), the Newton polygon method,
resolution of singularities, etc. These methods have been fruitful in various other situations [23; 82;
83; 59; 39; 40; 84; 68; 61; 85]. However, not much has been said about their algorithmic aspect
except in the case of resolution of singularities [6; 9; 8; 67]. These algorithms are impractical [7].
Indeed, the computation of the Igusa zeta function for a general multivariate polynomial seems to be an
intractable problem since root-counting of a multivariate polynomial over a finite field is known to be
#P-hard [28; 26].

In this paper, we focus on the computation of the Igusa zeta function when the associated polynomial is
univariate. The Igusa zeta function for a univariate polynomial f is connected to root-counting of f mod-
ulo prime powers pk, which is itself an interesting problem. It has applications in factoring [13; 14; 10],
coding theory [4; 60], elliptic curve cryptography [43], arithmetic algebraic geometry [80; 22; 21], and
the study of root sets [62; 15; 5; 18; 49]. After a long series of work [70; 71; 38; 60; 4; 63; 12; 42; 25],
this problem was recently resolved in [24].
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In the case of univariate polynomials one naturally expects an elementary proof of convergence, as
well as an efficient algorithm to compute the Igusa zeta function. Our main result is:

We give the first deterministic polynomial time algorithm to compute the rational function form
of the Igusa zeta function associated to a given univariate polynomial f ∈ Z[x] and prime p.

To the best of our knowledge, this result was previously achieved only for the restricted class of
univariate polynomials using methods that were sophisticated and nonexplicit. For example, Zúñiga-
Galindo [80] achieved this for univariate polynomials which completely split over Q (with the factoriza-
tion given in the input), using the stationary phase formula (see Section 1.2). The methods to compute
the Igusa zeta function for a multivariate, e.g., Denef [20], continue to be impractical in the case of
univariate polynomials. On the other hand, our approach is elementary, uses explicit methods, and
completely solves the problem.

1.1. Our results. We will compute the Igusa zeta function Z f,p(s) by finding the related Poincaré series
P(t)=: A(t)/B(t).

Theorem 1. We are given a univariate integral polynomial f (x) ∈ Z[x] of degree d, with coefficients of
magnitude bounded by C ∈N, and a prime p. Then, we compute the Poincaré series P(t)= A(t)/B(t),
associated with f and p, in deterministic poly(d, log C + log p)-time.

The degree of the integral polynomial A(t) is Õ(d2 log C) and that of B(t) is O(d).

Remarks. (1) Our method gives an elementary proof of rationality of Z f,p(s) as a function of t = p−s.

(2) Previously, Zúñiga-Galindo [80] gave a deterministic polynomial time algorithm to compute Z f,p(s),
if f completely splits over Q and the roots are provided. Our Theorem 1 works for any input f ∈ Z[x]
(see Section 1.2 for further discussion).

(3) Cheng et al. [12] could compute Z f,p(s) in deterministic polynomial time, in the special case where
the degree of A(t), B(t) is constant.

(4) Dwivedi et al. [24], using [80], remarked that Z f,p(s) could be computed in deterministic polynomial
time, in the special case when f completely splits over Qp without the roots being provided in the input.
The detailed proof of this claim was not given and the convergence relied on the old method of [80].

We achieve the rational form of Z f,p(s) by getting an explicit formula for the number of zeros Nk( f ),
of f mod pk, which sheds new light on the properties of the function Nk(·). Eventually, it gives an
elementary proof of the rationality of the Poincaré series

∑
∞

i=0 Ni ( f ) · (p−1t)i.

Corollary 2. Let k be large enough, namely, k ≥ k0 := O(d2(log C + log d)). Then, we give a closed
form expression for Nk( f ) (in Theorem 21).

Interestingly, if f has nonzero discriminant, then Nk( f ) is constant (independent of k) for all k ≥ k0.

1.2. Further remarks and comparison. To the best of our knowledge, there have been very few results
on the complexity of computing Igusa’s zeta function for univariate polynomials [80; 12]. Other very
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specialized algorithms are for bivariate polynomials (e.g., hyperelliptic curves) [11], and for the polyno-
mial xq

− a [65]. In a recent related work [78, Appendix A], a different proof of rationality of Igusa’s
zeta function for univariate polynomials based on tree based algorithm of [42] is given.

An old proof technique called the stationary phase formula is the standard method used in the literature
to compute Igusa’s zeta function for various families of polynomials. Our work, on the other hand, uses
elementary techniques and a tree-based root-counting algorithm [24] to compute some fixed parameters
(independent of k) involved in our formula of Nk( f ), for all k ≥ k0.

It is to be noted that just efficiently computing Nk( f ), for “several” k, is not enough to compute the
rational form of Z f,p(s); neither does it imply the rationality of Z f,p(s) directly.

Our algorithm is deterministic and works for general f ∈ Zp[x] (provided f has computable repre-
sentation). For earlier methods to work for f ∈ Zp[x] they may need factoring over p-adics Zp or Qp

(for example [80]), but deterministic algorithms there are unknown. See [13; 14; 10] for randomized
factoring algorithms.

1.3. Proof idea. We will compute the rational form of Igusa’s zeta function via computing the rational
form of corresponding Poincaré series

P(t) :=
∞∑

i=0

Ni ( f ) · (p−1t)i.

In addition, our method proves that the Poincaré series is a rational function of t , in the case of univariate
polynomial f (x), via first principles; instead of using advanced tools like the stationary phase method
or Newton polygon method or resolution of singularity.

To compute the rational form of Poincaré series, the idea is to compute the coefficient sequence

{N0( f ), . . . , Nk( f ), . . .}

in a closed form. That is to say, we wish to get an explicit formula for Nk( f ), the number of roots
of f mod pk, only in terms of k; with the hope that this will help in getting a rational function for the
Poincaré series P(t).

Indeed in Theorem 21, we show that such a formula exists for each Nk( f ) for sufficiently large k. We
achieve this by establishing a connection among roots of f mod pk and Zp-roots of f ∈ Zp[x]. Let f
have n distinct Zp-roots α1, . . . , αn . An important concept we define is that of “neighborhood” of an
αi mod pk (Definition 18); these are basically roots of f mod pk “associated” to αi . In Lemma 15, we
show that each root α of f mod pk is associated to a unique Zp-root αi of f : α closely approximates αi

but is quite far from other α j s, for all j ∈ [n], j 6= i . So, the root-set of f mod pk can be partitioned
into n subsets Sk,i , i ∈ [n], where neighborhood Sk,i is the set of those roots of f mod pk which are
associated to Zp-root αi .

Let the multiplicity of root αi be ei ; then f (x)=: (x −αi )
ei fi (x) over Zp, where fi (αi ) 6= 0. We call

fi the αi -free part of f . Then, for α to be a root of f mod pk we must have

f (α)= (α−αi )
ei · fi (α)≡ 0 mod pk.
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Lemma 16 says that fi possesses equal valuation νi , for all roots of f mod pk associated to αi , i.e,
ones in Sk,i . That is, the maximum power of p dividing fi (α) is the same as that for fi (β), as long as
α, β ∈ Sk,i . Note that vp((α−αi )

ei · fi (α))≥ k if and only if vp((α−αi ))≥ (k− νi )/ei .
Eventually, these two lemmas together give us the size of the neighborhood, |Sk,i | = pk−d(k−νi )/ei e.

Moreover, the neighborhoods disjointly cover all the roots of f mod pk. Hence, Nk( f ) =
∑n

i=1|Sk,i |.
This is a formula for Nk( f ), when k is large. But still the two parameters νi and ei are unknown as,
unlike in [80], we are not provided the factorization of f over Zp (nor could we find it in deterministic
polynomial time).

To compute νi , ei , we use the help of the root-counting algorithm of [24], which gives us the value of
Nk( f ), and the underlying root-set structure that it developed. We show that each representative root αi

of f mod pk is indeed the neighborhood Sk,i (Theorem 19), shedding new light on the root-set mod
prime powers.

Now we can get two equations, for the two unknowns νi , ei , by calling the algorithm of [24] twice:
first for k = ki and second for k = ki + ei , where ki is such that (ki − νi )/ei is an integer (e.g., we
can try all ki in the range [k0, . . . , k0+ deg( f )]). So, we can efficiently compute νi , ei for a particular
representative root αi , i ∈ [n]. So, this calculation also reveals some new parameters of representative
roots which were not mentioned in earlier related works [4; 24].

2. Preliminaries

2.1. Root-set of a univariate polynomial mod prime powers. We recall a structural property (and related
objects) of the root-set of univariate polynomials in the ring Z/〈pk

〉 [24; 25].

Proposition 3. The root-set of an integral univariate polynomial f , over the ring of integers modulo
prime powers, is the disjoint union of at most deg( f ) many efficiently representable subsets.

We call these efficiently representable subsets representative roots, as defined and named in [25, Sec-
tion 2]. This property of root-sets in Z/〈pk

〉 is indeed a generalization of the property of root-sets over
a field: there are at most deg( f ) many roots of f (x) in a field.

To present representative roots formally, we first reiterate some notation from [25, Section 2].

Representatives. An abbreviation ∗ will be used to denote all of the underlying ring R. So for the ring
R=Z/〈pk

〉, ∗ denotes all the pk distinct elements. Perceiving any element of R in base-p representation,
like x0+ px1+ · · ·+ pk−1xk−1 where xi ∈ {0, . . . , p− 1} for all i ∈ {0, . . . , k− 1}, the set

a := a0+ pa1+ · · ·+ pl−1al−1+ pl
∗

“represents” the set of all the elements of R which are congruent to a0+ pa1+ · · · + pl−1al−1 mod pl.
Throughout the paper we call such sets representatives and we denote them using bold small letters,
like a, b etc.

Let us denote the length of a representative a by |a|, so if a := a0+ pa1+ · · ·+ pl−1al−1+ pl
∗ then

its length is |a| = l. Now we formally define representative roots of a univariate polynomial in Z/〈pk
〉.
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Definition 4 (representative roots). A set

a = a0+ pa1+ · · ·+ pl−1al−1+ pl
∗

is called a representative root of f (x) modulo pk if each α ∈ a is a root of f (x) mod pk, but, not all
β ∈ b := a0+ pa1+ · · ·+ pl−2al−2+ pl−1

∗ are roots of f (x) mod pk.

It was first observed in [4] that there are at most deg( f )-many representative roots and they gave an
efficient randomized algorithm to compute all these representative roots (for a simple exposition of the
algorithm, see [25, Section B]).

We need a deterministic algorithm for our purpose (in Section 3.4) to count, if not find, the repre-
sentative roots (as well as count the roots in each representative root). So we use the deterministic
polynomial time algorithm of [24] which returns all these representative roots implicitly in the form of
a data-structure they call maximal split ideals (MSI). The two explicit parameters, length and degree of
an MSI immediately gives the count on the number of representative roots (as well as roots) encoded
by them, which suffices for our purpose. A similar idea to use triangular ideals for encoding roots first
appeared in [12], to count roots deterministically, but for “small” k.

We now define MSI from [24, Section 2].

Definition 5 ([24, Section 2], maximal split ideals). A triangular ideal

I = 〈h0(x0), . . . , hl(x0, . . . , xl)〉,

where 0 ≤ l ≤ k − 1 and each hi (x0, . . . , xi ) ∈ Fp[x0, . . . , xi ], is called a maximal split ideal of f (x)
mod pk if

(1) the number of common zeros of h0, . . . , hl in Fp
l+1 is

∏l
i=0 degxi

(hi ), where degxi
denotes the

individual degree wrt xi , and

(2) for every common zero (a0, . . . , al) ∈ Fp
l+1 of h0, . . . , hl , f (x) vanishes identically modulo pk

with the substitution x→ a0+ pa1+· · ·+ plal+ pl+1x but not with x→ a0+· · ·+ pl−1al−1+ pl x .

For an MSI I given by its generators h0(x0), . . . , hl(x0, . . . , xl) we define its length to be l + 1 and
degree, denoted as deg(I ), to be the number of common zeros of its generators, which is

∏l
i=0 degxi

(hi )

by definition.
Essentially, I is encoding some representative roots of f mod pk in the form of common roots of its

generators. Indeed, condition (2) of the definition is similar to that of representative roots. If (a0, . . . , al)

is a common zero of the generators then by condition (2), a0+ pa1+ · · ·+ plal + pl+1
∗ follows all the

conditions to be a representative root. Then, it is apparent that:

Lemma 6 ([24, Lemmas 6 and 8]). The length of an MSI I is the length of each representative root
encoded by it and the degree of I is the count on these representative roots. Thus, we get the count on
the roots of f mod pk encoded by I as

∏l
i=0 degxi

(hi )× pk−l−1.

We state the result of [24] which returns all the representative roots, in MSI form, in deterministic
polynomial time.
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Theorem 7 (compute Nk( f ) [24]). In deterministic poly(| f |, k log p)-time one gets the maximal split
ideals which collectively contain exactly the representative roots of a univariate polynomial f (x) ∈ Z[x]
modulo prime power pk.

Using Lemma 6 we can count them, and all roots of f mod pk, in deterministic polynomial time.

2.2. Some definitions and notation related to f . We are given an integral univariate polynomial f (x)
in Z[x] of degree d with coefficients of magnitude at most C ∈ N, and a prime p. Then, f can also
be thought of as an element of Zp[x] (as Z ⊆ Zp), where Zp is the ring of integers of p-adic rational
numbers Qp. In such a field Qp (called a nonarchimedean local field) there exists a valuation function
vp :Qp→ Z∪ {∞}. Formally, the valuation vp(a) of a ∈ Zp (Zp is a UFD) is defined to be the highest
power of p dividing a, when a 6= 0, and ∞ when a = 0. This definition extends to the rationals Qp

naturally as vp(a/b) := vp(a)− vp(b), where b 6= 0 and a, b ∈ Zp (see [41]).
Now we define the factors of f in Zp[x] as follows (note: we do not require f to be monic).

Definition 8. Let the p-adic integral factorization of f into coprime irreducible factors be

f (x) =:
∏
i∈[n]

(x −αi )
ei ·

m∏
j=1

g j (x)t j ,

where each αi is a Zp-root of f with multiplicity ei . Each g j (x) ∈ Zp[x] has multiplicity t j ; it is
irreducible over Zp and has no Zp-root.

For example, over Z2, f = 2x2
+ 3x + 1= (x + 1) · (2x + 1) has n = m = 1.

Definition 9. For each i ∈ [n], we define fi (x) ∈ Zp[x], called the αi -free part of f , as fi (x) :=
f (x)/(x −αi )

ei. We denote the valuation vp( fi (αi )) as νi , for all i ∈ [n].

The radical of a univariate polynomial h(x) over a field F is defined to be the univariate polynomial,
denoted by rad(h), which is the product of coprime irreducible factors of h. This gives rise to the
following definition.

Definition 10. Define rad( f ) :=
(∏n

i=1(x−αi )
)
·
(∏m

j=1 g j (x)
)
. Analogously, the radical of fi , for each

i ∈ [n], is defined as rad( fi ) := rad( f )/(x −αi ).

The discriminant of a polynomial h(x) ∈ F[x] is defined as D(h) := h2m−1
m ·

∏
1≤i< j≤m(ri − r j )

2,
where F is a field, the ri ’s are the roots of h(x) over the algebraic closure F, the degree of h is m,
and hm is its leading coefficient.

The discriminant D(h) is an element of F. It is clear by the definition that all the roots of h are distinct
if and only if D(h) 6= 0; i.e., the discriminant of the radical is nonzero.

Definition 11. We denote by 1 the valuation with respect to p of the discriminant of the radical of f ,
i.e, 1 := vp(D(rad( f ))).

We see that 1 must be finite, since roots of rad( f ) are distinct. The following fact is easily established
by the definition of discriminant and the fact that α1, . . . , αn are also roots of rad( f ).
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Fact 12. For i 6= j ∈ [n], we have vp(αi −α j )≤1/2<∞.

For our algorithm, 1 will be crucial in informing us about the behavior of the roots of f mod pk.

Properties of discriminants.

(1) Over Zp, if u(x) |w(x) then D(u) | D(w) and vp(D(u))≤ vp(D(w)).

(2) The discriminant of a linear polynomial is defined to be 1.

(3) If w(x)= (x − a) · u(x) then by the definition of discriminant, it is clear that D(w)= D(u) · u(a)2.

(4) The discriminant D(h) of a degree-l univariate polynomial h(x) := hl x l
+ · · · + h1x + h0, over

Zp, is also a multivariate polynomial over Zp in the coefficients h0, . . . , hl (see [46, Chapter 1]).
Moreover, it is computable in time polynomial in the size of a given h (e.g., using the determinant
of a Sylvester matrix [69, Chapter 11, Section 2]).

3. Proof of main results

3.1. Interplay of Z p-roots and (Z/〈 pk〉)-roots. In this section we will establish a connection between
(Z/〈pk

〉)-roots and Zp-roots of the given f , when k is sufficiently large, i.e, k > d1 (see Section 2.2 for
the related notation).

Recall that α1, . . . , αn are the distinct Zp-roots of f (Definition 8). The following claim establishes a
notion of “closeness” of any α ∈ Zp to an α j . Later we will apply this to a representative root α.

Claim 13 (close to a root). For some j ∈ [n], α ∈ Zp, if vp(α − α j ) > 1/2, then vp(α − αi ) =

vp(α j −αi )≤1/2, for all i 6= j, i ∈ [n].

Proof. The valuation vp(α−αi ) is equal to vp(α−α j+α j−αi ). Since vp(α−α j )>1/2 and vp(α j−αi )≤

1/2 (by Fact 12), we deduce vp(α−αi )= min{vp(α−α j ), vp(α j −αi )} = vp(α j −αi )≤1/2. �

The following lemma says that an irreducible cannot take values with ever-increasing valuation.

Lemma 14 (valuation of an irreducible). Let h(x) ∈ Zp[x] be a polynomial with no Zp-root, and dis-
criminant D(h) 6= 0. Then, for any α ∈ Zp, vp(h(α))≤ vp(D(h)).

Proof. We give the proof by contradiction, i.e, we show that if vp(h(α)) > vp(D(h)), then h(x) has a
root in Zp.

Define vp(D(h)) =: d(h). Let α ∈ Zp such that h(α) ≡ 0 mod pδ, for δ > d(h). Then we write
h(x)= (x −α) · h1(x) + pδ · h2(x). The two things to note here are:

(1). D(h) ≡ D(h mod pδ) mod pδ by discriminants’ property (4) in Section 2.2. Also, D(h) 6= 0 is
given.

(2). Let h′(x) be the first derivative of h(x) and let i := vp(h′(α)). Then, we claim that δ > d(h)≥ 2i .

Consider h′(x) = h1(x) + (x − α)h′1(x) + pδh′2(x). So, h′(α) ≡ h1(α) mod pδ. By property (3)
(Section 2.2) of discriminants, D(h) ≡ D((x − α) · h1(x)) ≡ D(h1) · h1(α)

2
≡ D(h1) · h′(α)2 mod pδ.

Then, since D(h) 6= 0 mod pδ, we deduce 2i ≤ d(h) < δ.
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Now, we show that the root α of h mod pδ lifts to roots of h mod pδ+ j, for all j ∈ Z+. This is due to
Hensel’s lemma (see [69, Chapter 15]); for completeness we give the proof.

By Taylor expansion, we have h(α+ pδ−i x)= h(α)+ h′(α) · pδ−i x + h′′(α) · p2(δ−i)x2/2! + · · · .
Note that there exists a unique solution x0≡ (−h(α)/h′(α)pδ−i ) mod p: h(α+ pδ−i x0)≡ 0 mod pδ+1.

This follows from the Taylor expansion and since 2(δ− i) > δ.
So, α− pδ−i (h(α)/h′(α)pδ−i ) mod pδ+1 is a lift, of α mod pδ. By similar reasoning, it can be lifted

further to arbitrarily high powers pδ+ j. This proves h(x) has a Zp-root, which is a contradiction. �

The following lemma is perhaps the most important one. It associates every root α of f (x) mod pk

to a unique Zp-root of f . Recall the notation from Section 2.2.

Lemma 15 (unique association). Let k > d(1+ 1) and α ∈ Zp be a root of f (x) mod pk. There exists a
unique αi such that vp(α−αi ) > 1+ 1 and thus, vp(α−αi ) > vp(αi −α j ), for all j 6= i, j ∈ [n].

Proof. Let us first prove that there exists some i ∈ [n], given α, such that vp(α−αi ) > 1+ 1. For the
sake of contradiction, assume that vp(α−αi )≤1+ 1 for all i ∈ [n]. Then, by Definition 8, vp( f (α))=∑n

i=1 ei · vp(α−αi )+
∑m

j=1 t j · vp(g j (α))≤ (1+ 1) ·
∑n

i=1 ei +
∑m

j=1 t j · vp(g j (α)).
Since g j has no Zp-root, for all j ∈ [m], by Lemma 14, vp(g j (α)) ≤ vp(D(g j )). By the properties

given in Section 2.2 we get vp(D(g j ))≤ vp(D(rad( f )))=1, proving that vp(g j (α))≤1.
Going back, vp( f (α))≤ (1+1)·

(∑n
i=1 ei+

∑m
j=1 t j

)
≤ d(1+1)<k. It implies that f (α) 6≡0 mod pk ,

which contradicts the hypothesis that α is a root of f mod pk.
Thus, there exists i ∈ [n] such that vp(α−αi ) >1+1. The uniqueness of i follows from Claim 13. �

Having seen that every root α of f mod pk is associated (or close) to a unique Zp-root αi , the following
lemma tells us that the valuation of the αi -free part of f (resp. factors of f with no Zp-root) is the same
on any α close to αi . This unique valuation is important in getting an expression for Nk( f ).

Lemma 16 (unique valuation). Fix i ∈ [n]. Fix α ∈ Zp such that vp(α−αi ) > 1. Recall g j (x), fi from
Section 2.2. Then,

(1) vp(g j (α))= vp(g j (αi )), for all j ∈ [m],

(2) vp( fi (α))= vp( fi (αi )).

In other words, the valuation with respect to p of fi = f (x)/(x −αi )
ei, on x 7→ α, is fixed uniquely

to νi := vp( fi (αi )), for any “close” approximation α ∈ Zp of αi .

Proof. Since g j | rad( fi ) and rad( fi ) | rad( f ), we have by the properties of discriminants (Section 2.2)
that vp(g j (αi ))≤ vp(rad( fi )(αi ))≤1, for all j ∈ [m].

Since vp(α − αi ) > 1, we deduce vp(g j (α)− g j (αi )) > 1. Furthermore, vp(g j (αi )) ≤ 1 implies
vp(g j (α))= vp(g j (αi )). This proves the first part.

By Claim 13, vp(α− αu) = vp(αi − αu), for all u 6= i, u ∈ [n]. Also, by the first part, vp(gw(α)) =
vp(gw(αi )), for allw∈[m]. Consequently, vp( fi (α))=

∑n
u=1,u 6=i eu ·vp(αi−αu)+

∑m
w=1 tw·vp(gw(αi ))=

vp( fi (αi )). This proves the second part. �
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3.2. Representative roots versus neighborhoods. We now connect the Zp-roots of f to the represen-
tative roots (defined in Section 2.1) of f mod pk. Later we characterize each representative root as a
“neighborhood” in Theorem 19.

Lemma 17 (perturb a root). Let k > d(1+1) and let α be a root of f (x) mod pk with l := vp(αi −α) >

1+ 1, for some i ∈ [n] (as in Lemma 15). Then, every β ∈ α+ pl
∗ is also a root of f (x) mod pk.

Proof. Since f (α) ≡ 0 mod pk, we have vp( f (α)) ≥ k. Using Lemma 16 we have vp( fi (α)) =

vp( fi (αi ))= νi . Thus, vp( f (α))= vp(αi −α) · ei + vp( fi (α))= vp(αi −α) · ei + νi ≥ k.
Similarly, vp( f (β)) = vp(αi − β) · ei + vp( fi (β)) = vp(αi − β) · ei + νi ≥ vp(αi − α) · ei + νi . The

last inequality follows from vp(αi −β)≥ l = vp(αi −α).
From the above two paragraphs we get vp( f (β))≥ k. Hence, f (β)≡ 0 mod pk. �

Now we define a notion of “neighborhood” of a Zp-root of f .

Definition 18 (neighborhood). For i ∈ [n], k > d(1+1), we define the neighborhood Sk,i of αi mod pk

to be the set of all those roots of f mod pk which are close to the Zp-root αi of f . Formally,

Sk,i := {α ∈ Z/〈pk
〉 | vp(α−αi ) > 1+ 1, f (α)≡ 0 mod pk

}.

The notion of representative root was first given in [25]. Below we discover its new properties which
will lead us to an understanding of length of a representative root, which in turn will give us the size of
a neighborhood contributing to Nk( f ).

Theorem 19 (representative root is a neighborhood). Let k > d(1+ 1) and let

a := a0+ pa1+ p2a2+ · · ·+ pl−1al−1+ pl
∗

be a representative root of f (x) mod pk. Define the Zp-root reduction αi := αi mod pk, for all i ∈ [n].
Fix an i ∈ [n], then:

(1) The length of a is large. Formally, l >1+ 1.

(2) If αi ∈ a, then α j 6∈ a for all j 6= i, j ∈ [n]. (This means, using Lemma 15, a has a uniquely
associated Zp-root.)

(3) If a contains αi then it also contains the respective neighborhood. In fact, if αi ∈ a, then Sk,i = a.

Proof. (1) Consider α := a0+ pa1+ · · ·+ pl−1al−1. By Lemma 15, there exists a unique s ∈ [n] such
that vp(α−αs) > 1+ 1. Suppose l ≤1+ 1. Then, vp(α+ p1+1

−αs)=1+ 1. As, α′ := (α+ p1+1)

is also in a, it again has to be close to a unique αt , with s 6= t ∈ [n] such that vp(α
′
− αt) > 1+ 1. In

other words, αs + p1+1
≡ α+ p1+1

≡ αt mod p1+2. Thus, vp(αs −αt)=1+ 1>1/2, contradicting
Fact 12. This proves l >1+ 1.

(2) Consider distinct αi , α j ∈ a. Then, by the definition of a, we have vp(αi −α j )≥ l >1+ 1>1/2,
contradicting Fact 12. Thus, there is a unique i .
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(3) Suppose there exists a neighborhood element β 6∈ a, satisfying the conditions vp(αi − β) > 1+ 1
and f (β) ≡ 0 mod pk. Let j be the index of the first coordinate where β and a differ; so, j < l since
β 6∈ a. Clearly, j >1+1; otherwise, since αi ∈ a and β 6∈ a, we deduce vp(αi −β)= j ≤1+1, which
is a contradiction.

By vp(αi − β) = j > 1 + 1 and Lemma 17, we get that every element in β + p j
∗ is a root of

f (x) mod pk, and consequently each element in a0+ pa1+ p2a2+ · · · + p j−1a j−1+ p j
∗ is a root of

f (x) mod pk , which contradicts that a is a representative root (because j < l; see Definition 4). Thus,
β ∈ a, implying Sk,i ⊆ a.

Conversely, consider α ∈ a. Then, as before, vp(αi−α)≥ l >1+1, implying α ∈ Sk,i . So, Sk,i ⊇ a. �

Next, we get the expression for the length of a representative root.

Theorem 20. For k > d(1+ 1), the representative roots of f (x) mod pk are in a one-to-one correspon-
dence with Zp-roots of f . Moreover, the length of the representative root a, corresponding to αi , is
li,k := d(k− νi )/eie.

Proof. By Proposition 3, every root of f mod pk is in exactly one of the representative roots. So
each reduced Zp-root αi := αi mod pk is in a unique representative root. Thus, by parts (2) and (3) of
Theorem 19, we get the one-to-one correspondence as claimed.

Consider a p-adic integer α with vp(α−αi )=: lα >1. We have the following equivalences:

α ∈ a⇐⇒ vp( f (α))≥ k⇐⇒ vp((α−αi )
ei · fi (α))≥ k⇐⇒ ei lα + νi ≥ k (by Lemma 16)

⇐⇒ lα ≥ d(k− νi )/eie = li,k .

Write the representative root corresponding to αi as a =: a0 + pa1 + p2a2 + · · · + pl−1al−1 + pl
∗.

Clearly, l = min{lα | α ∈ a} ≥ li,k . Note that if l > li,k then by the equivalences we could reduce the
length l of the representative root a, which is a contradiction. Thus, l = li,k . �

3.3. Formula for Nk( f ) — Proof of Corollary 2. For large enough k, the previous section gives us an
easy way to count the roots. In fact, we have the following simple formula for Nk( f ).

Theorem 21 (roots mod pk). For k > d(1+ 1), Nk( f ) =
∑

i∈[n] pk−d(k−νi )/ei e, where clearly νi , ei

and n (as in Section 2.2) are independent of k.

Proof. Fix i ∈ [n] and k > d(1+ 1). By Theorem 20 we get that in the unique representative root a,
corresponding to αi mod pk, the (k − d(k − νi )/eie)-many higher-precision coordinates could be set
arbitrarily from [0, . . . , p− 1] (while the rest, the lower-precision ones, are fixed). That gives us the
count via contribution for each i ∈ [n]. Moreover, the sum over neighborhoods, for each i ∈ [n], gives
us exactly Nk( f ).

Also, note that if n = 0 then the count Nk( f ) is equal to 0. �

Proof of Corollary 2. Theorem 21 gives a closed form expression for Nk( f ), when

k ≥ k0 := d(1+ 1)+ 1≤ d(2d − 1)(logp C + logp d)+ 1.
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For the other part, note the discriminant D( f ) is not equal to 0 if and only if f is squarefree. In the
squarefree case ei = 1, for all i ∈ [n]. By Theorem 21, Nk( f )=

∑
i∈[n] pνi , which is independent of k. �

3.4. Computing Poincaré series — Proof of Theorem 1. Building upon the ideas of the previous sec-
tions, we will show how to deterministically compute Poincaré series P(t)=

∑
∞

k=0 Nk( f )(p−1t)k asso-
ciated to the input f (x) efficiently, thereby proving Theorem 1. Before that, we need some notation:

Set k0 := d(1+ 1)+ 1 so we know by Theorem 21 that for k ≥ k0, Nk( f )=
∑n

i=1 Nk,i ( f ), where
Nk,i ( f ) := pk−d(k−νi )/ei e. For each i ∈ [n], define ki to be the least integer such that ki ≥ k0 and (ki−νi )/ei

is an integer. Then, Poincaré series P(t) can be partitioned into finite and infinite sums as

P(t)= P0(t)+
n∑

i=1

Pi (t),

where

Pi (t) :=
∞∑

k=ki

Nk,i ( f ) · (p−1t)k and P0(t) :=
( k0−1∑

k=0

Nk( f ) · (p−1t)k
)
+

n∑
i=1

ki−1∑
k=k0

Nk,i ( f ) · (p−1t)k .

We now compute the multiplicity ei by viewing it as the step that increments the length of the repre-
sentative root associated to αi as k keeps growing above k0.

Lemma 22 (compute ei ). We can compute the number of Zp-roots n of f as well as ki , νi and ei , for
each i ∈ [n], in deterministic poly(d, log C + log p)-time.

Proof. By Theorem 7, we get all representative roots of f mod pk implicitly in the form of maximal split
ideals (for brevity, we call these split ideals). By Lemma 6, the length of a split ideal is also the length of
all representative roots represented by it and the degree is the number of representative roots represented
by it. Since, by Theorem 20, n is also the number of representative roots of f mod pk for k ≥ k0, we
run the algorithm of Theorem 7 for k = k0 and sum up the degree of all split ideals obtained, to get n.

Suppose the split ideal I we find contains a representative root a of f mod pk corresponding to αi ,
with ki as defined before. How do we compute ki ? By Theorem 20, the length of a, when k = ki , is
li,ki = (ki − νi )/ei . Now, for all k = ki + 1, ki + 2, . . . , ki + ei , the length li,k remains equal to li,ki + 1,
while for the next k = ki + ei + 1, li,k increments by one.

So we run the algorithm of Theorem 7 for several k ≥ k0. When we find the length incrementing by
one, namely, at the two values k = ki + 1 and k = k ′i := ki + 1+ ei , then we have found ei (and ki ). From
the equation, ki − νi = ei · li,ki , we also find νi .

Suppose the split ideal I we find contains two representative roots a and b mod pk, corresponding to
Zp-roots αi and α j respectively, such that ei 6= e j (without loss of generality, say, ei < e j ). In this case,
even if a and b have the same length, when k = ki , they will evolve to different length representative roots
when we go to a “higher-precision” arithmetic mod pki+1+ei (by the formula in Theorem 20). So a, b
must lie in different length split ideals, say, Ia and Ib respectively.

Now, for another representative root c in Ia , say corresponding to αs , we have ei = es and hence
νi = νs . By computing ei and νi as before, now using the length of I and Ia , we compute es and νs
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(and ks) for every c in Ia . Since, by Lemma 6, the degree of Ia is the number of such representative roots
in Ia , we can compute n; moreover, we get ki , νi , ei for all i ∈ [n].

Clearly, we need to run the algorithm of Theorem 7 at most 2 maxi∈[n]{ei } = O(d) times, to study the
evolution of split ideals (implicitly, that of the underlying representative roots). Also 1 is the logarithm
(to base p) of the determinant of a Sylvester matrix which gives 1= O(d · (logp C + logp d)). So, the
algorithm runs in polynomial time as claimed. �

Now we prove that the infinite sums Pi (t) are formally equal to rational functions of t = p−s.

Lemma 23 (infinite sums are rational). For each i ∈ [n], the series Pi (t) is a rational function of t as

Pi (t)=
tki · (p− t (p− 1)− tei )

p(ki−νi )/ei · (1− t) · (p− tei )
.

Proof. Recall that Pi (t)=
∑
∞

k=ki
Nk,i ( f ) · (p−1t)k. For simplicity write T := p−1t and define an integer

δi := ki − (ki − νi )/ei . Now Pi can be rewritten using residues mod ei as

Pi (t)=
ki+ei−1∑

l=ki

∞∑
k=0

Nl+kei ,i ( f ) · T l+kei .

For simplicity take l = ki and consider the sum,
∑
∞

k=0 Nki+kei ,i ( f ) · T ki+kei. We find that Nki ,i ( f )= pδi ,
Nki+ei ,i ( f ) = pδi+ei−1, Nki+2ei ,i ( f ) = pδi+2(ei−1), and so on. Hence,

∑
∞

k=0 Nki+kei ,i ( f ) · T ki+kei =

pδi T ki · [1+ pei−1T ei + (pei−1T ei )2+ · · · ] = pδi · T ki /(1− pei−1T ei ). So

Pi (t)=
pδi T ki

1− pei−1T ei
+

pδi T ki+1

1− pei−1T ei
+

pδi+1T ki+2

1− pei−1T ei
+ · · ·+

pδi+ei−2T ki+ei−1

1− pei−1T ei

=
pδi T ki

1− pei−1T ei
+

pδi T ki+1

1− pei−1T ei
· (1+ pT + (pT )2+ · · ·+ (pT )ei−2)

=
pδi T ki

1− pei−1T ei
·

(
1+ T ·

1− (pT )ei−1

1− pT

)
.

Putting T = t/p and δi = ki − (ki − νi )/ei we get

Pi (t)=
tki (p− t (p− 1)− tei )

p(ki−νi )/ei (1− t)(p− tei )
. �

Now we are in a position to prove our main theorem.

Proof of Theorem 1. Recall P(t)= P0(t)+
∑n

i=1 Pi (t). We first compute P0(t), which is the sum of two
polynomials in t , namely,

Q1(t) :=
k0−1∑
j=0

N j ( f )(p−1t) j and Q2(t)=
n∑

i=1

ki−1∑
l=k0

Nl,i ( f )(p−1t)l,

both of degree O(d1). By a standard determinant or Sylvester matrix calculation one shows d1 ≤
O(d2

· (logp C + logp d)).
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We can compute the polynomial Q1(t) in deterministic poly(d, log C+ log p)-time by calling the root-
counting algorithm of [24] (Theorem 7) k0− 1 times, getting each N j ( f ), for j = 1, . . . , k0− 1 (note:
N0( f ) := 1).

Polynomial Q2(t) is a sum of n ≤ d polynomials, each with ki − k0 ≤ d many simple terms. Us-
ing Lemma 22, we can compute each νi , ei , hence, Nl,i ( f ). So, computation of Q2 again takes time
poly(d, log C + log p).

Lemma 23 gives us the rational form expression for Pi (t), for each i ∈ [n]. So, using Lemma 22 we
can compute the Poincaré series

P(t)= P0(t)+
n∑

i=1

tki (p− t (p− 1)− tei )

p(ki−νi )/ei (1− t)(p− tei )

in deterministic poly(d, log C + log p)-time.
By inspecting the above expression, the degree of the denominator B(t) is 1+

∑n
i=1 ei = O(d). The

degree of the numerator A(t) is ≤ k0+ 2d ≤ O(d2
· (logp C + logp d)). �

4. Conclusion and open questions

We presented the first complete solution to the problem of computing Igusa’s local zeta function for any
given integral univariate polynomial and a prime p. Indeed, our methods work for given f ∈ Zp[x] (with
f having computable representation) as our proof for integral f goes via considering its factorization
over Zp (Section 2.2).

We also found an explicit closed-form expression for Nk( f ) and efficiently computed the explicit
parameters involved therein, which could be used to compute Greenberg’s constants associated with
a univariate f and a prime p. Greenberg’s constants appear in a classical theorem of Greenberg [29,
Theorem 1] which is a generalization of Hensel’s lemma to several n-variate polynomials. We hope that
our methods for the one variable case could be generalized to compute Greenberg’s constants for the n
variable case to give an effective version of Greenberg’s theorem.

We also hope that our methods extend computing Igusa’s local zeta function from characteristic
zero (Zp) to positive characteristic (Fp[[T ]]) at least if some standard restrictions are imposed on the
characteristic, for example, p is “large enough”. This is supported by the fact that the root counting
algorithm of [24] also extends to F[[T ]] for a field F.

The following important open questions need to be addressed:

(1) A natural question to study is whether we could generalize our method to compute Igusa’s local
zeta function for n-variate integral polynomials (say, n = 2?). Note that for growing n this problem
is at least #P-hard [26].

(2) A related problem is of counting roots of n-variate polynomials mod prime power pk. We know an
efficient quantum algorithm mod p for n = 2 due to Kedlaya [37]. Kedlaya further asks, if we can
reduce the problem of counting points mod pk to counting points mod p for fixed k and n = 2. This
question has affirmative answer known only for variable-separated curves due to Robelle et al. [55].
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(3) Following up the problem of point counting on curves for constant k, we ask another important
related open question — how to find a single point on curves mod pk efficiently. It has an application
in factoring a univariate f (x) mod pk [25]. Can we efficiently reduce finding a single point mod
pk to finding a single point mod p, even for fixed k and n = 2?
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[62] Wacław Sierpiński, Remarques sur les racines d’une congruence, Annales Polonici Mathematici 1 (1955), no. 1, 89–90.

[63] Carlo Sircana, Factorization of polynomials over Z/(pn), Proceedings of the 2017 ACM on International Symposium on
Symbolic and Algebraic Computation, ACM, 2017, pp. 405–412.

[64] Edward Charles Titchmarsh and DR Heath-Brown, The theory of the Riemann zeta-function, Oxford University Press,
1986.

https://www.math.tamu.edu/~rojas/curve.pdf


214 ASHISH DWIVEDI AND NITIN SAXENA

[65] John Jaime Rodrıguez Vega, The Igusa local zeta function for xq
− a, Lecturas Matemáticas 26 (2005), no. 2, 173–176.

[66] Willem Veys, Zeta functions for curves and log canonical models, Proceedings of the London Mathematical Society 74
(1997), no. 2, 360–378.

[67] Orlando Villamayor, Constructiveness of Hironaka’s resolution, Annales scientifiques de l’École Normale Supérieure,
vol. 22, 1989, pp. 1–32.

[68] Christopher Voll, Functional equations for zeta functions of groups and rings, Annals of mathematics (2010), 1181–1218.

[69] Joachim Von Zur Gathen and Jürgen Gerhard, Modern computer algebra, Cambridge university press, 2013.

[70] Joachim von zur Gathen and Silke Hartlieb, Factorization of polynomials modulo small prime powers, tech. report, Pader-
born Univ, 1996.

[71] Joachim von zur Gathen and Silke Hartlieb, Factoring modular polynomials, Journal of Symbolic Computation 26 (1998),
no. 5, 583–606, (Conference version in ISSAC’96).

[72] Sumio Watanabe, Algebraic geometry and statistical learning theory, vol. 25, Cambridge University Press, 2009.

[73] André Weil, Variétés abéliennes et courbes algébriques, Paris: Hermann, 1948.

[74] André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc 55 (1949), no. 5, 497–508.

[75] André Weil, Sur certains groupes d’opérateurs unitaires, Acta mathematica 111 (1964), no. 143-211, 14.

[76] André Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta mathematica 113 (1965), 1–87.

[77] Keith R Willison, An intracellular calcium frequency code model extended to the Riemann zeta function, arXiv:1903.07394
(2019).

[78] Yuyu Zhu, Trees, point counting beyond fields, and root separation, Ph.D. thesis, Texas A&M University, 2020.

[79] WA Zúñiga-Galindo, Igusa’s local zeta functions of semiquasihomogeneous polynomials, Transactions of the American
Mathematical Society 353 (2001), no. 8, 3193–3207.

[80] WA Zúñiga-Galindo, Computing Igusa’s local zeta functions of univariate polynomials, and linear feedback shift registers,
Journal of Integer Sequences 6 (2003), no. 2, 3.

[81] WA Zúñiga-Galindo, Local zeta functions and Newton polyhedra, Nagoya Mathematical Journal 172 (2003), 31–58.

[82] WA Zúñiga-Galindo, Pseudo-differential equations connected with p-adic forms and local zeta functions, Bulletin of the
Australian Mathematical Society 70 (2004), no. 1, 73–86.

[83] WA Zúñiga-Galindo, Decay of solutions of wave-type pseudo-differential equations over p-adic fields, Publications of the
Research Institute for Mathematical Sciences 42 (2006), no. 2, 461–479.

[84] WA Zúñiga-Galindo, Local zeta functions supported on analytic submanifolds and Newton polyhedra, International Math-
ematics Research Notices 2009 (2009), no. 15, 2855–2898.

[85] WA Zúñiga-Galindo, Local zeta functions and fundamental solutions for pseudo-differential operators over p-adic fields,
p-adic Numbers, Ultrametric Analysis, and Applications 3 (2011), no. 4, 344–358.

Received 22 Feb 2020. Revised 24 Feb 2020.

ASHISH DWIVEDI: ashish@cse.iitk.ac.in
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India

NITIN SAXENA: nitin@cse.iitk.ac.in
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India

msp

https://www.arXiv:1903.07394
mailto:ashish@cse.iitk.ac.in
mailto:nitin@cse.iitk.ac.in
http://msp.org


VOLUME EDITORS

Stephen D. Galbraith
Mathematics Department
University of Auckland

New Zealand

https://orcid.org/0000-0001-7114-8377

The cover image is based on an illustration from the article “Supersingular
curves with small noninteger endomorphisms”, by Jonathan Love and Dan
Boneh (see p. 9).

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/4
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-07-1 (print), 978-1-935107-08-8 (electronic)

First published 2020.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/4
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org


THE OPEN BOOK SERIES 4
Fourteenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier international forum
for research in computational and algorithmic number theory. ANTS is devoted to algorithmic aspects of number
theory, including elementary, algebraic, and analytic number theory, the geometry of numbers, arithmetic algebraic
geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the fourteenth ANTS meeting, which took place 29 June to 4 July 2020 via video
conference, the plans for holding it at the University of Auckland, New Zealand, having been disrupted by the
COVID-19 pandemic. The volume contains revised and edited versions of 24 refereed papers and one invited paper
presented at the conference.

TABLE OF CONTENTS

1Commitment schemes and diophantine equations — José Felipe Voloch

7Supersingular curves with small noninteger endomorphisms — Jonathan Love and Dan Boneh

23Cubic post-critically finite polynomials defined over Q — Jacqueline Anderson, Michelle Manes and Bella Tobin

39Faster computation of isogenies of large prime degree — Daniel J. Bernstein, Luca De Feo, Antonin Leroux and Benjamin
Smith

57On the security of the multivariate ring learning with errors problem — Carl Bootland, Wouter Castryck and Frederik
Vercauteren

73Two-cover descent on plane quartics with rational bitangents — Nils Bruin and Daniel Lewis

91Abelian surfaces with fixed 3-torsion — Frank Calegari, Shiva Chidambaram and David P. Roberts

109Lifting low-gonal curves for use in Tuitman’s algorithm — Wouter Castryck and Floris Vermeulen

127Simultaneous diagonalization of incomplete matrices and applications — Jean-Sébastien Coron, Luca Notarnicola and
Gabor Wiese

143Hypergeometric L-functions in average polynomial time — Edgar Costa, Kiran S. Kedlaya and David Roe

161Genus 3 hyperelliptic curves with CM via Shimura reciprocity — Bogdan Adrian Dina and Sorina Ionica

179A canonical form for positive definite matrices — Mathieu Dutour Sikirić, Anna Haensch, John Voight and Wessel P.J. van
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Kostić
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