
An effective description of the roots of

multivariates mod pk and the related Igusa’s

local zeta function

Sayak Chakrabarti1 † and Nitin Saxena2

1Computer Science, Columbia University, New York, 10025, NY, USA.

2CSE, IIT Kanpur, Kanpur, 208016, UP, India.

Contributing authors: sayaksc@gmail.com; nitin@cse.iitk.ac.in;

† Part of this work appears in the author’s Master thesis at IIT Kanpur (e-link at
[8]) and ISSAC’23 [10].

Abstract

Finding roots of a multivariate polynomial f(x) , over a prime field Fp , is a fundamental question with a long history

and several practical algorithms are now known. Effective algorithms for describing the roots modulo pk , k ≥ 2 , for any
general multivariate polynomial, were unknown until the present paper. The main obstruction is lifting the singular Fp

roots to Z/pkZ . Such roots may be numerous and behave unpredictably, i.e., they may or may not lift from Z/pjZ to

Z/pj+1Z .

We give the first algorithm to describe the roots of a bivariate polynomial over Z/pkZ in a practical way. Notably,

when the degree of the polynomial is constant, our algorithm runs in deterministic time which is polynomial in p+k . This

is a significant improvement over brute force, which would require exploring p2k possible values. Our method also gives

the first efficient algorithms for the following problems (which were also open): (1) efficiently representing all the (possibly

infinitely-many) p -adic roots, and (2) computing the underlying Igusa’s local zeta function. We also obtain a new, effective

method to prove the rationality of this zeta function.

Keywords: polynomial, prime-power, bivariate, p-adic, root-finding, root-counting, deterministic,

Igusa, zeta function, tree

Contents

1 Introduction 2

2 Evolution of effective degree during lifting steps 8

3 Structure of f via rank of local roots of val-mult= d1 10

4 The algorithm: Proof of Theorem 1.1 13

5 Computing p -adic roots: Proof of Corollary 1.2 16

6 Computing Igusa’s local zeta function: Proof of Corollary 1.3 20

7 Generalization to n -variates: Proof of Theorem 1.4 23

8 Conclusion and future work 26

A Preliminaries 29

1 Introduction

Roots of polynomials in fields and rings have played an important role in mathematics and computer
science for decades, with applications in a variety of topics. The roots of univariate polynomials
modulo prime powers are relatively easy to find as we can find the roots in finite fields using
factorization [7, 1, 2, 41, 53], after which we can efficiently lift the roots to modulo higher powers of
p using the recent developments from [51, 3, 22]. However, even though we can factorizemultivariate
polynomials [36, 37], their roots usually do not correspond to a factor. Eg. even the irreducible
polynomial y − x has numerous roots! Such polynomials pose problems in root-finding as they
have exponentially many roots in the base/prime field itself, and we can not quickly guess which
root will lift to mod p2 . In our paper, we resolve this issue by giving an efficient algorithm to find
roots modulo pk for any prime p and k (given in unary); assuming that the degree d of the
polynomial and the number n of the variables, are both small.

Prime field Fp and p -adic integers Zp are unique factorization domains, and polynomials
(above them) behave in an expected way. There are some algorithms to factorize polynomials in
Zp [14, 6, 28]. However, the properties in rings of characteristic as prime powers, which can be
seen as a world between Fp and Zp , are still a mystery to us. There has been extensive work in
this since the famous Hensel’s lifting [31, 58, 59], where factors of polynomials are lifted from Fp

to Z/pkZ . Several variants of Hensel’s lifting are available in various topics in algebra & number
theory; but they fail when the polynomial does not factorize into coprime factors. This, when
interpreted in terms of roots, means that it is difficult to lift singular roots. (Eg., f = x3

1−px2
2 , or

f = x3
1−p , modulo p2 . Here, it is unclear how to even test the existence of roots; as the only Fp -

root here, x1 ≡ 0 mod p , starts behaving unpredictably when ‘lifted’ modp2 .) There have been
partially successful attempts to tackle this, and achieve factorization of univariate polynomials
mod pk [22, 57, 54, 11]. Factorization mod pk has only been solved until k ≤ 4 . Due to this,
we can not use factorization, in any way, when finding roots mod pk . Furthermore, due to the
availability of ‘exponentially’ many factors, as well as roots, in these rings, its (data) structure has
been of interest in mathematics and computer science. Eg. [17, 48, 29] analyze root-sets mod pk ,
while [21, 12, 43, 23, 52] count the number of roots for a given polynomial. However, most of the
works are restricted to univariate polynomials, as we did not have practical algorithms to find

2

even one root of bivariate polynomials mod pk . This paper gives the first algorithm to find all the
roots of an n -variate degree- d polynomial, over Z/pkZ resp. Zp , efficiently (for small n, d and
varying p, k).

Let us take a famous example as our algorithm’s special-case— a hyperelliptic curve, given by
the equation y2 + u(x)y + v(x) = 0 . Rational roots of (hyper)elliptic curves have been widely
studied with several papers in this area [56, 49, 45, 25, 39, 55, 47]. Our algorithm can find all
(Z/pkZ)-roots (resp. p -adic) of not only these, but general curves (that may have singularities).
Even a single singular point forces us to explore its pk−1 possible lifts.

Root finding and counting have interesting applications in complexity theory too. We know
that finding a solution to a system of constant-degree polynomials in any ring is NP -complete.
Our algorithm solves a special case: where we want a common solution of low-variate, low-degree
polynomials. Furthermore, root counting is a very hard problem. [24] showed that counting the
number of roots of a multivariate polynomial of degrees as small as 3 is #P -complete, while
[26] showed that modular root counting, over Fq , is NP -hard for prime modulus other than the
characteristic of the field. [61] also showed that the problem of computing Igusa’s local zeta function
is NP -complete even for p = d = 2 which can be shown from the arithmetization of SAT .

There has been extensive work on computing related zeta functions. [40, 44, 30, 13] compute
the zeta function which encodes the size of a variety in finite fields, in time polynomial in the
characteristic p . Improving this, say to poly(log p) , is a central open question. Our paper focuses
on the regime of poly(p) -time too, as the case of prime-power seems harder than finite fields (for
instance, it has no known formulation of the famous Riemann Hypothesis).

In this paper, we are interested in another zeta function called the Igusa’s local zeta function
(Igusa’s LZF), used to encode the number of roots of a polynomial modulo prime powers [33, 34].
Formally, for a polynomial f(x) ∈ Zp[x] , the Igusa’s local zeta function is defined as

Zf,p(s) :=

∫
Zn
p

|f(x)|sp · |dx|, (1)

for s ∈ C , where the real part of s is positive. Igusa first proved that his LZF converges to a
rational function. [18] gave another proof for the rationality of this function. We give an alternate,
more constructive proof by computing the Poincaré series; which can be seen as a generating
function for point-counting. The Poincaré series for a polynomial f and a prime p is defined as
Pf,p(t) :=

∑∞
i=0 Ni(f) · (p−nt)i, where t ∈ C , |t| < 1 and Ni(f) refers to the number of roots

of f mod pi . Choosing t = p−s , we denote Pf,p(p
−s) =

∑∞
i=0 Ni(f) · (p−np−s)i . [35] showed a

connection between Poincaré series and Igusa’s LZF given as:

Pf,p(p
−s) =

1− p−s · Zf,p(s)

1− p−s
.

Notice that proving rationality of Poincaré series P (p−s) in ps implies the rationality of Igusa’s
LZF in ps and vice versa. We use this relation to show that Poincaré series is indeed a rational
function by counting roots modulo pk .

Despite the rationality being proved, explicit computation of this zeta function has remained
a challenge. Root counting helps in computing this using the Poincaré series [23, 61, 19], but has
been restricted to univariates. Giving the first algorithm, we compute Igusa’s local-zeta function
for bivariates; thus, giving a new proof of its rationality as well.

3

Based on this, we provide a simple extension of the algorithms to compute and count the roots
n -variates as well, thereby proving the rationality of Igusa’s local-zeta function for multivariates.

1.1 Previous work

There have been several works on finding roots of polynomials in rings. [51] gave an approach
for finding roots of univariate polynomials modulo prime-powers in randomized polynomial time,
which was greatly improved by [3, 50]. We are aware of only one work studying roots of bivariate
polynomials modpk [52], where they count the total number of roots if the given polynomial
f(x, y) can be written as f1(x)+f2(y) , i.e., variable ‘separated’. On the other hand, our algorithm
does not require such assumptions.

Roots modulo pk can be seen as an intermediate world between roots in Fp and roots in Zp .
There have been papers to find roots of system of polynomials in certain finite fields [32, 46, 5, 38].
However, for finding Zp roots, certain upper bounds given by N have been shown in [4, 15] which
state that the existence of a solution mod pN implies a Zp -root. Among the improved results,

[15] showed N ≤ (nd)O(n32n) . [23] showed N ≤ d(∆+1) , where ∆ is the discriminant-valuation;
but it is only for univariate polynomials. We prove stronger structural results for the p -adic roots
of bivariate polynomials, as discussed in Section 5. Building on the work of [23], we give a better
bound and a much more efficient algorithm to find all the roots of an n -variate in Zp as well.

Clearly, the literature suggests that roots behave “nicely” in Fp and Zp ; but the properties
in Z/pkZ are quite different for ‘small’ k ≥ 2 . [20, 60] have extensively explored the behavior
of polynomials in these intermediate rings. In our paper, we essentially generalize the approach of
[3] (see Algorithm 3) to non-trivially reduce root finding modulo pk to the problem of solving a
univariate multi-polynomial system.

Computation of Igusa’s local zeta function, and its rationality via the Poincaré series, have also
been an important question in computational number theory. [33, 34] proved the rationality of the
Poincaré series, while [18] proved the same for a system of polynomials. [23] gave the first algorithm
to compute Igusa’s local zeta function of univariates in (deterministic) poly-time. In this paper, by
describing the p -adic roots of multivariates, we give the first algorithm to compute Igusa’s local
zeta function practically, as well as re-prove the rationality of the Poincaré series.

1.2 Our results: Find roots in Z/pkZ , Zp , and compute the Poincaré
series

Our results give a new constructive understanding of the roots modulo p -power of multivariate
systems. We use a new data-structure in the form of a tree, to view these roots with increasing
exponent of the modulus. This tree data-structure, essentially, performs desingularization of roots—
segregating them until they are non-singular —and lift to the required exponent of the prime.

Furthermore, we devise a new data-structure called representative roots to represent the
exponentially many (resp. infinitely many p -adic) roots compactly. Our main ideas come from
n = 2 .
Theorem 1.1 (Bivariates). Given f ∈ (Z/pkZ)[x1 , x2] of degree d , we can decide if a root of
f(x1, x2) exists, in deterministic poly((k+ d+ p)d) time. If roots do exist, we can find and count
all the roots (outputting them in a compact data structure).

4

Based on Theorem 1.1, we give the following two corollaries, both of which were open problems.
In a way, we bridge the gap between rings of the form Z/pkZ and Zp by giving better bounds
than existing works.
Corollary 1.2 (p -adic). Given f ∈ Z[x1, x2] of degree d and the absolute value of its coeffi-
cients bounded above by M > 0 , we can find all the p -adic-roots of f (in Zp) in deterministic
poly((logM + d+ p)d) time (i.e., output their k digits in a compact data structure).
Corollary 1.3 (Local-zeta fn.). Given f ∈ Z[x1, x2] of degree d and the absolute value of its
coefficients bounded above by M > 0 , we can compute the Poincaré series P (t) =: A(t)/B(t)
associated with f and a prime p , in deterministic poly((logM + d+ p)d) time.

The algorithm for computing p -adic roots, and the proof of Corollary 1.2 is described in Section
5. Based on this proof and simple power series computations similar to that of [23], we can compute
the Igusa’s zeta function for bivariates. This has been briefly described in Section 6.

There are major dissimilarities between roots of univariate and bivariate polynomials. How-
ever, n -variate polynomials, for ‘small’ n ≥ 2 , behave in a similar manner in our proof. Thus,
after describing root-finding of bivariates (Theorem 1.1), we sketch its generalization to n -variates
in Section 7. Essentially, we reduce bivariate root finding to that of a system of univariates;
whereas, for n -variates (n ≥ 3), we reduce the problem to (n − 1) -variate root-finding. Thus,
the generalization follows in an inductive fashion.
Theorem 1.4 (n -variates). Given a system of polynomials {fi(x1, . . . , xn) ∈ Z[x] | ∀i ∈ [m]}
of degrees ≤ d and the absolute value of its coefficients bounded above by M > 0 . We can find
all its common (Z/pkZ) -roots, resp. its p -adic-roots, resp. its Poincaré series, in deterministic

poly((m logM + d+ p)(2d(n−1))n−1

) time.

1.3 Difficulty of the problem

It is easy to lift a non-singular Fp -root, i.e., root of f mod p at which some first-order derivative
of f is nonzero, to any Z/pkZ (see Theorem 2.1 and Corollary 2.3). In contrast, this paper is a
significant advancement in the case when Fp -roots are singular. It can be viewed as a reduction
to non-singular roots, of a ‘higher’ dimension variety: which gets created while using the process
of lifting (eg. extend a root (x1, x2) of f mod pj to mod pj+1 by perturbation). In our method,
the dependence on p cannot be improved, as bivariates can have Ω(p) singular roots at each step
of lifting.

Practicalities. Though our algorithm is slow for large degree bivariates or large primes, it is the
first idea that works, for small degree d and prime p , much better than the brute-force algorithm.
Our general algorithm is doubly-exponential in n (= number of variables), but, unsurprisingly the
complexity is expected to be ‘bad’ in n as the problem of counting F2 -roots (say, for a system
with d = 2) is already NP-hard and even #P -hard [24, 61, 26].

1.4 Proof overview: Algorithms 1 & 2

Let us see the high-level idea in our main theorem, Theorem 1.1.

If (a1, a2) is a root of f(x1, x2) mod p , then we transform the polynomial to another polynomial
given by f(a1 + px1, a2 + px2) . In order to find Fp -roots of this polynomial in the next step, we
remove the ‘extra’ p -powers by dividing by pv ; where v := vp(f(a1 + px1, a2 + px2)) is the val-
multiplicity and vp(·) is the p -valuation. We define this step, of transforming the coordinates and
subsequent division by the p -power, as the lifting step or lifting of roots. The polynomial will be

5

modified at each step such that its Fp -root returns a coordinate of the final (p -adic resp. Z/pkZ)
root. Notice that if (a1, a2) is an Fp -root of f(x1, x2) , and after lifting, the polynomial becomes

f̃(x1, x2) := p−vf(a1+px1, a2+px2) which has an Fp -root (b1, b2) , then (a1+pb1, a2+pb2) is a
root of f(x1, x2) mod pv+1 . The univariate case of this lifting technique was developed in [3, 21].

However, it might happen that root (a1, a2) in the lifting process does not lift to higher powers
of p ; but some other root does lift, as illustrated by the following example.
Example 1.5. Consider f(x1, x2) := x3

1 − x3
2 + 3x2 − 3x1 + 5 and p := 5 . (1, 1) and (2, 2)

are its Fp -roots. Starting with the root (1, 1) , the process of lifting given by the transformation
(x1, x2) 7→ (1+5x1, 1+5x2) and division by 5 , yields the polynomial 25x3

1−25x3
2+15x2

1−15x2
2+1

which does not have F5 -roots. Although, restarting with the root as (2, 2) yields the polynomial
25x3

1 − 25x3
2 + 30x2

1 − 30x2
2 + 9x1 − 9x2 + 1 after lifting. (1, 0) is now its F5 -root!

Thus, we iteratively loop over all the possible roots at each step, by fixing one variable, say x1 ,
with p -many possibilities, and finding the possible d -many (or p -many) values of x2 .

Val-multiplicity vs valuation. For a polynomial f(x) , we define the effective polynomial as
(f mod p) , where the coefficients are in Fp (we can assume f mod p is non-constant). Similarly,
the effective degree d1 of f(x) is the degree of (f mod p) , while d ≥ d1 ≥ 1 will be the total
degree of f .

We define a local root of f(x) as a root of the effective polynomial. For a local root a ∈ F2
p , local

valuation is defined as vp(f(a)). Recall: val-multiplicity of local root is defined as vp(f(a+ px)) ,
i.e., the minimum valuation of the coefficients of the polynomial thus formed; we sometimes shorten
it to val-mult(a). Obviously, val-multiplicity is at most the local valuation.

Idea of Algorithm 1: Branching by val-multiplicities. As we have seen in Example 1.5,
different Fp roots in steps of lifting can give rise to different val-multiplicities. Thus, we will view
the algorithm as finding roots along a search tree (Fig.1). Note that there are at most dp local
roots of f in F2

p .

The nodes of the tree contain the polynomials whose roots we are interested in finding from that
point on. The branches arising from a node correspond to each local root a ∈ F2

p . The children
of this node will be the polynomials obtained from lifting by the local root in accordance to the
branch, given by fj+1(x) := p−vfj(a+ px) ; where v := val-mult(a) .

At depth j of the tree, the node contains the polynomial fj(x) that has been obtained by
performing lifting j times on the original polynomial f(x) using a contiguous sequence of local
roots. Suppose we are at a node with fj(x) over Z/pkjZ , and consider the lifting according to root
a with val-multiplicity vj := vp(fj(a+ px)) . The child of this node is fj+1(x) := p−vjfj(a+ px) ,
and we are interested in its roots over the ring Z/p(kj−vj)Z . Thus, our target prime power reduces
as we traverse down in the tree.

Theorem 2.1-(1) shows that the effective degree of the newly lifted polynomial will be at most
the val-multiplicity of the local root considered, which in turn is ≤ d1 (= old effective degree).
So, if val-multiplicity is < d1 , then the new effective degree reduces after lifting. Our algorithm’s
hard case is when a local root (a1, a2) has val-multiplicity d1 (i.e., maximum possible). Then, the
effective polynomial can be written as a “ d1 -form”, which is in the ideal ⟨x1−a1, x2−a2⟩d1 ⊆ Fp[x]
(Lemma 3.1). Next, we branch into a special val-multiplicity = d1 part of the search tree, which
requires a more complicated version of ‘lifting steps’ as we shall see.

To summarize, the degree reduction case of local root is where effective degree reduces (v < d1
suffices, due to Theorem 2.1); while val-multiplicity d1 case is where val-mult v = d1 .

6

.

root = a1

val-mult< d1

val-mult< d1

root = at

val-mult = d1

root = b

p−(id1+v′)f
(
b+ pia′1 + pi+1x

)

root = a′1

p−vf(a1 + px)

val-mult< d′1 < d1

i lifts

Fig. 1: Branching along the search tree.

Naively, the depth of this search tree can be Ω(k) , as very few lifting steps may have degree
reduction. Our second big idea is a way to overcome this basic obstruction (Algorithm 2).

At any given node, we consider the ‘chains’ that are responsible for the contiguous val-
multiplicity d1 branches. We store them in an array (D in Algo.1). This is done in the red part
of the tree in Fig.1. After this is done, the search tree branches into the easier degree-reduction
cases (branches with val-mult.< d1); which is denoted by the green nodes (enclosed by the left
rectangle in Fig.1).

So, in the tree, the lifting can either arise simply from the degree reduction cases, or can be
a more complicated one where we transform the polynomial in Algorithm 2 after which we are
guaranteed to branch into a degree reduction case.

This has been schematically portrayed in Figure 1, where the red node is a more complicated
transformation than the simple lifting of a local root (done in green node).

Tree depth and fanin. The crux of Algorithm 1 lies in our Theorem 2.1 which states that
optimistically the effective degree reduces “most of the time”. The algorithm ends when we either
have exhausted the power of p , denoted by k , or when the effective degree becomes 1 . The latter
case (Theorem 2.1) gives a root and is essentially (p -adic) Hensel lifting on a linear polynomial
[31].

Algorithm 1 ensures that the tree-depth is O(d) , while the more complicated Algorithm 2
ensures that the number of branches at every node is O(k2dp) .

Hensel’s Lifting. Given a non-singular root a of polynomial h(x) , we can lift it to modulo
any p -power (like in Theorem 2.1-(2)), using a variant of p -adic Hensel’s lifting [31]. Since a is
a non-singular root, at least one of the first-order derivatives of h(x) will not vanish. Corollary
2.3 implies that the val-multiplicity is then exactly 1 , and in the next step of lifting, the effective
polynomial will be linear. If this linear polynomial is of the form m1x1 +m2x2 +m0 , then (say)
we can fix x1 to any value in [p] and find the corresponding unique value of x2 to yield a root
by simple lifting. For the next p -adic coordinate, after lifting, these m1,m2 (coefficients of x1

7

resp. x2) will not change; while m0 might change. Thus, from Theorem 2.1-(2), we have the fact
that the effective polynomial continues to stay linear, and we can fix the current-coordinate x1 to
find the corresponding x2 every time; enabling us to lift to modulo any p -power (for arbitrary
fixing of x1 in this example).

Idea of Algorithm 2: Chain of d1 -forms. We create a process of ‘removing’ (or combining)
contiguous val-multiplicity d1 lifts, instead of brute-forcing over them in the search tree. This
removal-process is guided by something called d1 -forms (Lemma 3.1), and will be subdivided into
single and multiple val-multiplicity d1 roots. (1) When multiple val-multiplicity roots exist, we
show in Lemma 3.2 that the polynomial has a special form (namely d1 -power). We traverse these
cases in a contiguous way. (2) Next we traverse over cases where val-multiplicity d1 root is unique.
At the end, we encounter lesser val-multiplicity roots and we can recursively call the root-finding
algorithm. Overall, we find the lengths of these contiguous traversals, as well as the possibilities
of the underlying d1 -powers resp. d1 -nonpowers. This is discussed in the latter-half of Section
3, by considering a dynamic basis-change on the variables x , that guides the search for local
roots well. In this process we reduce the root-finding of bivariate polynomials to that of a system
of univariate polynomials, and employ the idea of [3] to find representative-roots of a univariate
polynomial system. Finally, see Step 15 (Algorithm 1) for the consolidated transformation that we
call contiguous chain of val-multiplicity d1 lifts.

To summarize, in this case of successive val-mult= d1 lifts, we show that the contiguous chains
are few (i.e., polynomial in k, d, p), and every branch appearing from these chains ends in a degree
reduction case. This is depicted in the search tree (Fig.1) as a red node; it ‘jumps’ over all the val-
mult= d1 cases (Sections 3–4) before branching to the green nodes. This bounds the tree-depth to
2d .

Stopping condition, representative roots and root-counting. The algorithm terminates
when either a root gets completely specified mod pk , or when effective degree ≤ 1 (any of its
roots can be Hensel lifted all the way to our required power of p), or when no root exists. In the
third case, the root-set returned is just the emptyset ϕ , while in the first case it is a singleton.

For the second case, roots will be returned in terms of representative roots. Eg. when the lifted
polynomial is zero modulo pℓ , any value in Z/pℓZ is a root, and thus we return ∗1 resp. ∗2 for the
coordinates x1 resp. x2 , which represent the entire Z/pℓZ . The roots returned will be (∗1, ∗2) ,
with the number of possibilities being p2ℓ . This will be termed as our usual representative root.

When the effective degree is 1— as we sketched before, we can fix one variable, say x1 , as
a local root and find the value of x2 (in each p -adic coordinate one by one). Even if only one
variable is present in the linear form, say x2 , the other variable x1 will still be free; so, for any
given value of x1 , denoted by ∗ , we can find the corresponding values of the local roots of x2 ,
thus, yielding a root of the polynomial modulo pℓ . Let us denote this function for determining
x2 from any value of x1 by c(·) , which simply finds each coordinate of x2 using Hensel’s lifting.
Thus, the output can be denoted as (∗, c(∗)) . The number of roots represented in this expression is
pℓ . This type of representative root will be termed as linear-representative. (Note: In the presence
of an offset, eg. (r1 + pℓ1∗, r2 + pℓ2µ(∗)) , this case can contribute more roots, so a more careful
calculation is done in Section 6.)

2 Evolution of effective degree during lifting steps

In this section, we analyze the effective degree at each step and look more closely as to when this
decreases, or remains the same, by looking at the val-multiplicity of the local root during lifting.

8

The proof idea is to analyze the monomials in terms of x1 and x2 , and see how they behave after
the transformation (x1, x2) 7→ (a1 + px1, a2 + px2) followed by division by appropriate power of
p . This can be summed up by the following theorem.
Theorem 2.1 (Degree reduction). For a polynomial f(x1, x2) ∈ (Z/pkZ)[x1, x2] , given an F2

p -
root (a1, a2) of f(x1, x2) , let us denote g(x1, x2) := p−vf(a1 + px1, a2 + px2) , where v :=
vp(f(a1 + px1, a2 + px2)) . Let the previous effective degree be d1 := deg(f(x1, x2) mod p) and
current effective degree be d2 := deg(g(x1, x2) mod p) . Then the following holds:

1. If d1 > 1 , then d2 ≤ v ≤ d1 . (So, d2 = d1 only if v = d1 .)
2. If d1 = 1 , then d2 = 1 .

Proof. We have two cases.

Case 1: d1 > 1 . We have a local root (a1, a2) such that v = vp(f(a1+ px1, a2+ px2)) . Using
Taylor’s expansion (Definition A.1), we can write the polynomial in the form (say over Zp)

f(a1 + px1, a2 + px2) =

d∑
ℓ=0

∑
|i|=ℓ

∂xif(a)

i!
· (px1)

i1(px2)
i2

 , (2)

where d := deg(f) . The terms in Equation 2 need to vanish modulo pv for all ℓ ≤ v . In particular,

pv−|i| | ∂
xif(a)

i! . Suppose v > d1 , then by the above equation f(a1 + x1, a2 + x2) ≡ 0 mod p ,
implying f(x) ≡ 0 mod p , which contradicts with d1 > 1 . Thus, v ≤ d1 .

However, we do have a term which has valuation exactly v (= val-multiplicity of the local
root), and this can be obtained only from monomials where i1 + i2 ≤ v (that too in the effective
polynomial part). So, the highest degree term surviving among these (in g mod p) has degree
d2 ≤ v ≤ d1 .

Remark: The case of d2 = d1 implies that v = d1 . Thus, pv−|i| | ∂
xif(a)

i! for all orders |i| < d1 ;
while, some order- d1 partial-derivative at a has p -valuation exactly 0 .

Case 2: d1 = 1 (Hensel’s Lifting). Write f(x1, x2) =: f1(x1, x2) + p · f2(x1, x2) . We have
the effective polynomial deg(f1(x)) = 1 , and hence it can be written as a linear polynomial
m1x1+m2x2+m0 . Since (a1, a2) is a local root, we transform f to get m1(a1+ px1)+m2(a2+
px2) +m0 + p · f2(a1 + px1, a2 + px2) . Dividing by p , and going modp , we get in the next step
to another linear polynomial: m1x1 +m2x2 +m′

0 . So we end up with d2 = 1 .

Example 2.2. Let us see how the effective degree could reduce. Consider f(x1, x2) = x2
1+x3

2 mod
p . This has degree d1 = 3 . Clearly, (0, 0) is its root modulo p . So, apply the transformation
(x1, x2) 7→ (0 + px1, 0 + px2) , to get g(x1, x2) := p−2f(px1, px2) = x2

1 + px3
2 , which has effective

degree d2 = 2 = v < d1 .

The proof of Theorem 2.1 relies on analyzing the partial derivatives in Taylor’s expansion. Using
this technique, we get a corollary on partial derivatives of f(x) , which motivates the inclusion of
the term ‘multiplicity’ in our new concept of ‘val-multiplicity’.

Corollary 2.3. Local root a of f(x) has val-multiplicity ≥ v , if and only if pv−|i| | ∂
xif(a)

i! , for
all orders |i| < v .

Using Theorem 2.1, we get the idea of effective degree reduction. If root (a1, a2) ∈ F2
p is

such that f(a1 + px1, a2 + px2) ̸≡ 0 mod pd1 , then we can repeat the appropriate transformation

9

(x1, x2) 7→ (a1 + px1, a2 + px2) , until the effective degree reduces to 1 . Once this happens, we
have a compact description of all its roots by Hensel lifting, as we can arbitrarily fix one variable
and uniquely find the p -adic value of the other variable.

However, the problem arises when the root (a1, a2) is such that f(a1 + px1, a2 + px2) ≡ 0 mod
pd1 . In this case, the degree may not reduce, and we might need to lift k/d1 many times. This
is computationally infeasible, the search-tree becomes very deep/large, and takes time exponential
in k/d1 . We tackle this case next.

3 Structure of f via rank of local roots of val-mult=d1

We need to handle the challenge of our local root a of f having val-multiplicity v = d1 . Here,
the effective degree may not reduce in the next step. We first show the structure of such f(x1, x2) .
Lemma 3.1 (d1 -form at a). If a ∈ F2

p is a root of f(x) mod p such that f(a1+px1, a2+px2) ≡
0 mod pd1 , where d1 is the effective degree of f , then f(x) is in the ideal ⟨x1 − a1, x2 − a2⟩d1 ⊂
Fp[x] .

Proof. Recall Taylor’s expansion (Definition A.1) and Corollary 2.3. Write f(x) as f((x1 − a1) +
a1, (x2 − a2) + a2) =

∑∞
ℓ=0 Aℓ , where,

Aℓ :=
∑
|i|=ℓ

∂xif(a)

i!
· (x1 − a1)

i1(x2 − a2)
i2 .

By Corollary 2.3, we know that the At ’s, for t < d1 , vanish modulo p as the root has val-
multiplicity v = d1 . Furthermore, for t > d1 , At ’s vanish modulo p ; as f has effective degree
d1 and this At has derivatives of order > d1 . Thus, all At ’s, apart from Ad1

, vanish modulo p .
So, the polynomial f is of the form

∑
i ci · (x1−a1)

d1−i(x2−a2)
i , which is the required d1 -form

in x− a .

In Lemma 3.1’s situation, if a is unique, then using the structure of f we can easily find the
root (eg. a simple search in F2

p), and lift without getting into multiple val-mult= d1 branching. A
serious obstruction arises when there are several local roots a of val-multiplicity = d1 . We will
now show the extra special structure of such an f(x1, x2) .

Without loss of generality, let 0 be a local root of val-multiplicity = d1 . This means that
f ∈ ⟨x1, x2⟩d1 . If another local root a ̸= 0 exists with val-multiplicity = d1 , then we also have
f(x) ∈ ⟨x1 − a1, x2 − a2⟩d1 . So, f ∈ ⟨x1, x2⟩d1 ∩ ⟨x1 − a1, x2 − a2⟩d1 ⊂ Fp[x] . Then, we show f
to be a perfect-power!
Lemma 3.2 (Two val-mult= d1 roots). For a polynomial f ∈ Fp[x1, x2] of degree d1 , if f
is in the ideal ⟨x1, x2⟩d1 ∩ ⟨x1 − a1, x2 − a2⟩d1 , for some a ̸= 0 ∈ F2

p , then we have f ≡
c · (a2x1 − a1x2)

d1 mod p , where c ∈ F∗
p .

10

Proof. W.l.o.g., assume that a1 ∈ F∗
p . Thus, we have

⟨x1 − a1, x2 − a2⟩d1 = ⟨x1 − a1, a1x2 − a1a2⟩d1

= ⟨x1 − a1, a1x2 − a1a2 − a2(x1 − a1)⟩d1

= ⟨x1 − a1, a1x2 − a2x1⟩d1 .

(3)

Also, ⟨x1, x2⟩d1 = ⟨x1, a1x2− a2x1⟩d1 (as a1 ̸= 0). The intersection of these two ideals modulo
the ideal ⟨a1x2 − a2x1⟩ is: ⟨a1x2 − a2x1⟩+ ⟨x1(x1 − a1)⟩d1 (as x1 and x1 − a1 are coprime mod
a1x2 − a2x1). Since f has effective degree less than 2d1 , we deduce: (a2x1 − a1x2) | f .

The quotient f/(a2x1−a1x2) ∈ ⟨x1, a2x1−a1x2⟩d1−1∩⟨x1−a1, a2x1−a1x2⟩d1−1 . Clearly, degree
of this quotient polynomial is d1−1 . So, we can repeat this process to show that (a2x1−a1x2)

d1 |f ;
which makes the two equal up to a constant multiple.

Essentially, this means f is d1 -th power of a linear polynomial iff rank of the val-mult= d1
roots is two (i.e., multiple such roots). In the case of unique val-mult= d1 root we will call the
polynomial d1 -nonpower-form, while that for multiple val-mult= d1 roots, we call the polynomial
d1 -power.

Branching in d1 -nonpower-form. In this case, find the unique val-multiplicity d1 root, and
do the lifting step. There is no branching required.

Branching in d1 -power. Without loss of generality, the effective polynomial will be of the
form (a2x1−a1x2)

d1 . So, there are p roots (of val-mult= d1), namely, (a1t, a2t) for any t ∈ Fp .
This leads to branching, which we will avoid by inventing a different strategy.

The first observation (Lemma 3.3) is that d1 -nonpower-form can not lead to a d1 -power. Thus,
we deduce that whenever a contiguous chain of d1 -power lifting ends, then every d1 -form in the
subsequent contiguous lifting steps is a d1 -nonpower-form.
Lemma 3.3 (Nonpower to power?). If f is a d1 -nonpower-form having a single val-mult= d1
root a , then its lift p−d1f(a+ px) is not a d1 -power.

Proof. W.l.o.g. we can assume a = 0 . Since the effective polynomial is a d1 -form having (0, 0)
as the root, it is of the form

f(x1, x2) ≡
d1∑
i=0

cix
i
1x

d1−i
2 mod p . (4)

After lifting given by (x1, x2) 7→ (px1, px2) , followed by division by pd1 , this polynomial will
become

d1∑
i=0

cix
i
1x

d1−i
2 + g(x1, x2) ,

for some polynomial g of degree ≤ d1−1 . Suppose this lift is a d1 -power, say (L+m0)
d1 mod p ,

where m0 ∈ Fp and L is a linear form in x1, x2 . Now comparing the degree d1 homogeneous
parts in all these equations, we conclude that f ≡ Ld1 mod p . This contradicts the fact that it
was a d1 -nonpower-form. Therefore, d1 -nonpower-forms can not become d1 -powers in one lifting
step.

11

So we mainly need to study the case: A d1 -power, say Ld1 , is followed by another d1 -power,
say L′d1 , in the next lifting step. Next, we unearth the structure that goes in the formation of L′

after lifting the polynomial Ld1 + ⟨p⟩ . This gives us the optimized bound on the branching of the
red-nodes of the tree (Fig.1).

3.1 Structure of consecutive d1 -powers.

For a d1 -form, the effective polynomial f(x1, x2) mod p will be of the form Ld1 , for some linear
polynomial L (eg. x1+x2+1). Without loss of generality, assume {L, x2, 1} to be of rank= 3 (over
Fp). Let us rewrite f in the basis {L, x2} , instead of {x1, x2} , denoted by f̃(L, x2) (= f(x)).
Since it is an invertible linear transformation, it now suffices to find roots of

f̃ =: Ld1 + p · Ld1−1 · u1(x2) + p · Ld1−2 · u2(x2) + · · ·+ p · ud1(x2) . (5)

Lift d1 -power to d1 -power. Suppose that after lifting given by p−d1 f̃(pL, x2) , the effective
polynomial is again a d1 -power; then it has to be the case that

Ld1 + Ld1−1 · u1(x2) + Ld1−2 · u2(x2)/p+ · · ·+ ud1
(x2)/p

d1−1

≡ (L+ u1(x2)/d1)
d1 mod p ,

(6)

for some univariate polynomials uj ’s, such that Equation 6 is a perfect power of the linear poly-
nomial L+u1(x2)/d1 . Consequently, those local roots a2 for which the above system is satisfied,
transform the previous ‘root’ L to p (L+ u1(a2)/d1) in this lifting step.

Expanding the RHS, we also obtain equations, for j ∈ [d1] , as

uj(x2) ≡ pj−1

(
d1
j

)
· (u1(x2)/d1)

j mod pj . (7)

Note: In the case where p|d1 , the above modulus can be further increased to clear away p -multiples
from the denominator. In this fashion, we create a system of modular equations (in x2) for the
first step of lifting. Moving on, we consider the next lift.

Two consecutive d1 -power liftings. The effective polynomial after the first step was (L+
c(x2))

d1 . Let us look at the polynomials obtained before division by pd1 . It was (pL+pc(x2))
d1 +

⟨pd1+1⟩ . Composing this with another lift of the same kind, the polynomial has to be of the form
(p(pL+ pc(x2))+ p2c̃(x2))

d1 + ⟨p2d1+1⟩ . This implies that we can directly lift L 7→ p2L , divide by
p2d1 , and find the value of c(x2)+c̃(x2) . So, Equation 6 can be replaced by the lift p−2d1 f̃(p2L, x2)
equalling a d1 -power:

Ld1 + Ld1−1 · u1(x2)/p+Ld1−2 · u2(x2)/p
3 + · · ·+ ud1(x2)/p

2d1−1

≡ (L+ u1(x2)/pd1)
d1 mod p . (8)

Furthermore, we can write down the univariate modular equations like Equation 7 to find the
root for x2 that works in the lift.

In this way any i -length contiguous chain of d1 -power liftings, can be directly written as a
system of univariate modular equations like Equation 7. It comes from the constraint that the lift

12

p−id1 f̃(piL, x2) has to equal a d1 -power mod p . Next, this system can be solved by adapting [3]
to get the representative roots for the x2 variable. Of course, on substituting this in x2 , we will
know the final d1 -power L′d1 that the contiguous i lifts yield.

How many consecutive d1 -powers? The length of this chain can be at most k/d1 . So, we go
over all i ≤ ⌊k/d1⌋ . Iterating over them in decreasing order, we find all the possible ways of getting
d1 -powers (before moving to other cases). This ensures that we do not miss any (Z/pkZ) -root of
f in the search-tree.
Example 3.4. Consider the polynomial f(x1, x2) = x2

1 mod pk . The d1 -power contiguous chain
will be of length k/2 ; and each time L = x1 . The corresponding root will be (pk/2 · ∗1, ∗2) .

Notation for x2 representatives. A problem arises when the representative for x2 is ∗2 ,
i.e., x2 can take any p -adic value. Eg. if we lift f = Ld1 + pd1xd1+1

2 (with free x2 = ∗2) then
we get g := Ld1 + xd1+1

2 . The degree of the new polynomial has now increased, which we never
want to happen in our tree branchings. In order to prevent this, we preprocess the representative
root x2 = ∗2 by increasing the precision by one coordinate. In other words, we consider the
representative as a+ p · ∗2 , for a ∈ {0, . . . , p− 1} .

The following lemma shows that the effective degree never grows in lifting steps, in our algorithm.
Lemma 3.5 (Degree invariant). The effective degree in each transformation described for d1 -forms
is always d1 .

Proof. Let us follow the above notation in the basis {L, x2} and start with effective degree d1 .
We now know that every lifting step looks like the map: L 7→ pL and x2 7→ a2 + pi2x2 (for some
i2 ≥ 1 and integer a2), followed by division by pd1 . As we calculated in Theorem 2.1, such a
lifting step yields effective degree ≤ d1 . Since we are in the d1 -form case, this implies that the
effective degree remains d1 always.

Summing up. The structure discovered above gives a natural pseudocode that we describe in
Algorithm 2. The contiguous val-mult= d1 chain will have some d1 -powers, say i1 many, followed
by i3 many d1 -nonpower forms, from which we have i1+ i3 ≤ k/d1 . The d1 -nonpower forms can
not lead to d1 -powers again, due to Lemma 3.3. Also, to get the i1 many d1 -powers, we need to
use the univariate root-finding of [3] and get representatives R1 for x2 (in general L2 , independent
of L1). Going over each i1, i3 ≤ ⌊k/d1⌋ , and each of the representatives R1 , we compute the
intermediate representative-roots R (and could continue with our recursion on the local roots with
subsequent degree-reduction). This algorithm makes sure that, in the tree, we ‘jump’ the cases of
val-mult = d1 (effective degree) quickly, and reach the degree-reduction branchings.

4 The algorithm: Proof of Theorem 1.1

Using the above ideas, we prove Theorem 1.1 by giving the complete algorithm to find roots of a
bivariate polynomial modulo pk .

4.1 Main algorithm for root-finding

Root-Find() in Algorithm 1 takes as input: the polynomial fj(x1, x2) and the number pkj

(k =: k0 initially). Main algorithm starts by calling Root-Find(f(x1, x2), p
k) . If there are valid

roots, it outputs the set of roots R ⊆ (Z/pkZ)2 , otherwise returns ϕ .

13

Remove- d1 -Form() in Algorithm 2 eliminates intermediate lifts where effective degree does
not decrease. It speeds-up the search for roots to higher precision coordinates, by jumping over
contiguous cases of roots of val-multiplicity d1 . Remove- d1 -Form() outputs an array of: A
linear transformation which can be used to jump over the val-multiplicity d1 roots, or a linear-
representative root.

Algorithm 1 Root Finding of fj(x1, x2) mod pkj

1: procedure Root-Find(fj(x1, x2), p
kj)

2: if kj ≤ 0 OR fj(x1, x2) ≡ 0 mod pkj then return (∗1, ∗2)
3: Define d1 := deg(fj mod p) , R := ϕ .
4: if d1 = 1 then
5: return linear-representative (∗, c(∗)) or (c(∗), ∗) , where c(·) is given by Hensel’s

Lifting.

6: for a1 ∈ {0, p− 1} do
7: for a2 such that fj(a1, a2) ≡ 0 mod p and val-mult(a)< d1 do
8: fj+1(x1, x2) := p−vfj(a1 + px1, a2 + px2) , where v := vp(fj(a1 + px1, a2 + px2)) .

9: S := Root-Find(fj+1, p
kj−v) //aka green node in Fig.1

10: R := R ∪ (a+ pS)

11: if val-multiplicity = d1 root exists then
12: D := Remove- d1 -Form(fj , p

kj) //aka red node in Fig.1

13: for (r1 + pi1L1, r2 + pi2L2, i3) ∈ D do
14: Write fj in basis {L1, L2} to get f̃j(L1, L2) := fj(x1, x2) .

15: Lift it to f̃j(L1, L2) := p−i3d1 · f̃j(r1 + pi1L1, r2 + pi2L2) .
16: if kj − i3d1 ≤ 0 then
17: The roots will be (r1 + pi1 · ∗1, r2 + pi2 · ∗2) in (L1, L2) basis.
18: Consider the tuple (r1 + pi1 · ∗1, r2 + pi2 · ∗2) and perform the inverse linear

transformation from (L1, L2) to (x1, x2) on this tuple as a whole. Store this
representative root (with two independent ∗ ’s) in a set S .

19: R := R ∪ S
20: else
21: For f̃j mod pkj−i3d1 , find the val-mult < d1 local roots and then recursively

find all the roots; as done in Steps 6-10. Call this set R̃ .

22: For each root (r̃1, r̃2) ∈ R̃ of f̃j mod pkj−i3d1 : consider (r1 + pi1 r̃1, r2 + pi2 r̃2)
and perform inverse linear transformation from (L1, L2) to (x1, x2) on them.
Store these final roots (mod pkj) in a set S .

23: R := R ∪ S

24: return R

4.2 Remove-d1 -Form() subroutine: Handling contiguous d1 -forms (aka
red nodes in Fig.1)

In Algorithm 1, we do not want the lifting to go on for several recursion steps; since, the time
complexity is exponential in the number of steps (=tree-depth). The favorable case is when the
effective-degree reduces, e.g., when the val-multiplicity of local root is < d1 (from Theorem 2.1).

14

As we will see, the Remove- d1 -Form() subroutine ensures inside the red nodes (whose starting
local root has val-multiplicity = d1) that the effective degree reduces when we go down to its
child. In this section we sketch the pseudocode based on the ideas developed in Section 3.1.

Data structure returned. In order to lift the contiguous d1 -forms, we return an array of
tuples of the form (a1 + pi1L1, a2 + pi2L2, i3) . This gives us information on jumping over the
val-mult = d1 roots by first covering the d1 -powers followed by d1 -nonpowers. This is done in a
basis (L1, L2) of variables possibly different from (x1, x2) . As in Equation 8, we form equations
in terms of L2 and find the roots, such that after lifting according to these (representative) roots,
the effective polynomial will be Ld1

1 . Note that in each lifting according to the fixed part of the
representative root, the linear polynomial will change by only a constant. Therefore, {1, L1, L2}
will also span the same space as that of {1, x1, x2} . So, given a root in (L1, L2) basis, we can
recover the root in (x1, x2) basis uniquely.

With information from this tuple, we can do the following sequence of liftings in ‘one-shot’:
i1 -steps of d1 -powers at first, followed by i3 -steps of d1 -nonpower-forms.

Pseudocode. Summing up, Remove- d1 -Form() ‘jumps’ over the intermediate local roots of
val-multiplicity d1 so that Root-Find() can continue to degree reducing cases (in Steps 6-10 of
Algo.1).

The input is the polynomial and the prime-power, while the output is a tuple of linear
polynomials, denoting intermediate representative-roots (over (Z/pkZ)2).

Algorithm 2 Finding intermediate val-mult= d1 roots in one-shot

1: procedure Remove- d1 -Form(f(x1, x2), p
k)

2: Define d1 := deg(f mod p) , R := ϕ .
3: for i1 ∈ {⌈k/d1⌉, . . . , 0} do
4: R1 := ϕ

5: Find the linear polynomial L such that f ≡ Ld1 mod p . If L is x2 -multiple, then set
L2 := x1 , otherwise set L2 := x2 .

6: Compute the (basis-change) polynomial f̃ such that f̃(L,L2) = f(x1, x2) .

7: Write f̃ as in Equation 8 and form (univariate, modular) equations like Equation 7 in
terms of polynomials in L2 such that i1 -many contiguous d1 -powers exist (Section
3.1).

8: Find the representative-roots, in Z/pi1d1Z , of the system of equations formed in terms
of L2 (as in the previous step) using [3] and store them into R1 .

9: for each representative-root r2 + pi2∗ ∈ R1 do
10: Find linear polynomial L1 obtained in the end, by substituting the representative

in L2 , using the method of Section 3.1. Note: i2 ≥ 1 and L1 has to be of the form
L+ c for some integer c .

11: Write f̃(L,L2) in basis L1, L2 given by g(L1, L2) := f̃(L,L2) .

12: Lift g(L1, L2) := p−i1d1 · g(pi1L1 , r2 + pi2L2)
13: for i3 ∈ { ⌈k/d1⌉ − i1, . . . , 0} do
14: if ∃r′ ∈ (Z/pi3Z)2 s.t. g is a d1 -nonpower-form consecutively i3 -times then
15: In each precision r′ is unique; so it can be searched easily in the space F2

p .

16: R0 := (pi1r′1 + pi1+i3L1 , r2 + pi2r′2 + pi2+i3L2 , i1 + i3)
17: if R0 ̸∈ R then

15

18: R := R ∪ {R0}
19: else
20: break

21: return R

Considering the degree reduction and the val-multiplicity d1 cases, we get the final number of
leaves in the search tree as (fanin)

depth
= O((k2dp)2d) , which gives us the following theorem.

Theorem 4.1 (Correctness of Algorithm 1). Given a polynomial f ∈ Z[x1, x2] of degree d , a
prime p and an integer k . Algorithm 1 using Algorithm 2 as a subroutine, correctly returns all
the roots a ∈ (Z/pkZ)2 of f mod pk , in deterministic poly((k + d+ p)d) time.

5 Computing p -adic roots: Proof of Corollary 1.2

In this section, we provide a bound for k0 in terms of the degree d and the maximum absolute value
M of the coefficients, such that finding a root modulo pk0 would imply finding all representative
(p -adic) Zp -roots of f . Let us assume we are given with the complete factorization of f(x1, x2)
given by f(x1, x2) =:

∏r
i=0 gi(x1, x2)

ei , where gi(x1, x2) ’s are coprime over Zp . Even if f
has some square-full factors (some ei ’s are ≥ 2), we can eliminate them efficiently, by computing
its gcd with the first-order derivatives. This will result in the new polynomial being of the form∏r

i=0 gi(x1, x2) , which we will call the radical polynomial rad(f) . rad(f) has the same set of
roots over Zp as that of f(x1, x2) , while its coefficients can be bounded as follows.
Lemma 5.1 (Bound for p -adic radical). If a polynomial f of degree d has the absolute-value
of its coefficients bounded by M , then its radical polynomial rad(f) has coefficients bounded by
MO(d) .

Proof. We prove this result using Euclid’s algorithm for finding the gcd of f and any one of its
first-order derivative f ′ .

At each step of the Euclid’s gcd algorithm, we have two polynomials qi and qi+1 , where
deg(qi) ≥ deg(qi+1) . There exist unique polynomials q, qi+2 such that

qi = q · qi+1 + qi+2, (9)

such that the remainder has deg(qr+2) < deg(qi+1) and gcd(qi+1, qi) = gcd(qi+2, qi+1) . Using
this, we proceed with the algorithm for gcd on qi+1 and qi+2 .

We show that the coefficients of qi are bounded by MFi , where Fi is the i -th Fibonacci num-
ber. This can be proved using induction where we assume that the coefficients of qj is bounded
by MFj for all j ≤ i+1 . From equation 9, we infer that the quotient, q , will have its coefficients
bounded by that of qi . This quotient multiplied by qi−1 will give the bound for the remain-
der, which thus is bounded by the product of bounds of coefficients of qi and qi+1 , which is
MFi+Fi+1 = MFi+2 . Now, this procedure continues for log d steps, implying that the coefficients
of the gcd of f and its derivative is bounded by MFlog d = MO(d) . Dividing f by this gcd will
give the bounds on the coefficient of rad(f) , which is also MO(d) .

Therefore, without loss of generality we consider f(x1, x2) to be square-free having absolute
value of coefficients ≤ MO(d) , and continue with our algorithm of finding roots over Zp .

16

Representative roots over Z/pkZ vs roots over Zp . The output of the algorithm, in the
base-case, is either the representative root (∗1, ∗2) when the exponent of p required gets achieved
(Step 2 of Algorithm 1), or linear-representative root (∗, c(∗)) (Steps 4-5 of Algorithm 1).

The main objective of this section is to show that there exists a large enough k0 such that for
all k > k0 , if a representative root (∗1, ∗2) is returned modpk , then the fixed part of the root
is already a Zp -root. In the other case, for linear-representative roots, we can simply use Hensel
lifting to lift to Zp -roots (or, to as much precision as we wish).

Discriminant. Let f ′ := ∂x2
f(x1, x2) be the first-order derivative of f , assuming it to be

non-zero without loss of generality. The resultant [16, Chp. 3] of f and f ′ w.r.t. x2 is denoted
by R(x1) := Resx2

(f(x1, x2), f
′(x1, x2)) , which is also one of the discriminants of f . R(x1) is

not identically zero in Zp , as this would imply: f and its derivative have a common factor;
contradicting the radical condition.

The roots of R(x1) given by x̂1 satisfy the condition that the univariate polynomial f(x̂1, x2)
is square-full. Furthermore, given x̂1 , we can easily find the values of x2 (d -many), as it becomes
the univariate root-finding problem over Zp (solved in [3, 21, 23]).

Bound to distinguish Zp roots. The main idea is to find a bound for the exponent of p
such that each root returned using root-finding is either a linear-representative root, or a unique
lift of this root is a Zp root. A similar bound was achieved for univariate polynomials by [23].
However, the complications of lifting multivariate roots did not arise there, as every p -adic root
corresponded to a factor.
Lemma 5.2 (Discriminant of radical). Let f ∈ Z[x1, x2] be of degree d whose coefficients have
absolute value bounded above by M . Let its radical polynomial be g := rad(f) . The Zp -roots of
R(x1) := Resx2

(g, g′) are in one-one correspondence to the representative roots of R(x1) mod pk ,
for any k ≥ k1 := Θ(d6 logM) .

Proof. We have the polynomial f(x1, x2) of degree d . Its radical polynomial g := rad(f) , has
degree ≤ d and coefficients bounded by MO(d) (Lemma 5.1).

The resultant polynomial R(x1) = Resx2
(g, g′) is the determinant of a (2d+1)×(2d+1) matrix

consisting of elements formed from the coefficients of g . Thus, the degree of R(x1) is < 2d2 + d ,
and the absolute-value of the coefficients is < (dMO(d))2d+1 .

Now, we need to find a bound on k1 such that the roots of R(x1) are in one-one correspondence
to those of g(x1, x2) mod pk1 . [23, Thm. 20] showed that the representative roots of a univariate
polynomial modulo pk , for k > d′(∆ + 1) , are in one-one correspondence to the roots of that
polynomial in Zp , where d′ is the degree and ∆ is the p -valuation of its discriminant. In our
case of finding Zp -roots of R(x1) , the degree is 2d2 + d , while the discriminant is at most

((dMO(d))2d+1)2d
′+1 , where d′ = 2d2 + d . Thus, the valuation of discriminant of R is bounded

by O(d4 logp M) . Substituting the values of d′ and ∆ , we have k1 := Θ(d6 logp M) .

Zp -roots. Consider g = rad(f) and k1 = Θ(d6 logM) . Define g2(x2) :=
Resx1

(g(x1, x2) , R(x1)) , with R(x1) = Resx2
(g, g′) . The roots x2 of g2 originate from the values

of the roots x1 of R that make g square full. So, applying [23, Thm. 20] again on this univari-
ate polynomial g2 , it suffices to compute its roots mod pk2 , to compute its distinct p -adic roots;
where k2 is asymptotically logp(p

k1·2d2·d) = O(d9 logM) .

Using the value of k2 thus obtained, we find roots of g(x1, x2) from Root-Find(g, pk2) . Let
(ã1, ã2) be the fixed-part of a root obtained. If R(ã1) ≡ 0 mod pk2 , then the above argument,

17

that defined k2 , ensures that (ã1, ã2) does lift to a Zp -root of R , g2 , g and finally f (in this
case uniquely). However, there might also exist some roots over Zp which do not necessarily arise
from this case, as we shall see now.

Non-root of discriminant. The next case is that of R(ã1) ̸= 0 mod pk2 . Consider the uni-
variate polynomial g(ã1, x2) . We know that its Zp -roots are different mod pk2 and at most d
many; one of which is ã2 . Define g1(x2) := p−v · g(ã1 , ã2 + x2) , where v ≥ 0 is the p -valuation
of g(ã1 , ã2 + x2) as a polynomial over Zp . Note that x2 divides g1 , but x2

2 does not divide g1
(mod p) since the resultant is non-zero. Thus, 0 is a simple-root of g1 and we can potentially
Hensel lift it to p -adics.

To implement this formally, we need to increase the precision so that the extra p -factors can be
removed from g . Note that if we assume p ∤ g(ã1, x2) then v ≤ k2 + (k2 − 1)(d− 1) < d · k2 . Fix
k0 := d · k2 = Θ(d10 logM) . Now consider g̃(x) := p−v · g(ã1 + pk2x1 , ã2 + pk2x2) mod pk0 . By
the argument above, g̃ mod p is linear in x2 (it is easier to see by substituting x1 = 0). Thus, an
extension of this root has to end up in some leaf of Root-Find(g, pk0) algorithm as say (ã′1, ã

′
2) ;

which will Hensel lift to p -adic integral root(s) due to the linear x2 term in the lift.

Since the set of p -adic roots for f and g is the same, we could as well run Root-Find(f, pk0) .
This proves the following lemma.
Lemma 5.3 (pk0 is p -adic). Let f ∈ Z[x1, x2] be of degree d and having absolute-value of
coefficients bounded by M . Each root represented in the leaves of the tree of Root-Find(f, pk0) ,
for k0 := Θ(d10 logM) , lifts to a Zp -root of f(x1, x2) .

We further need the condition that the structure of this tree does not change with k for k ≥ k0 .
In order to show that, we prove the following lemma. Denote R1(x1) := Resx2

(g, ∂x2
(g)) and

R2(x2) := Resx1
(g, ∂x1

(g))
Lemma 5.4 (Fix p -adic tree). If a leaf of the tree given by Lemma 5.3 returns a representative root
with the fixed part (a1, a2) , that is not linear-representative, then R1(a1) = R2(a2) = 0 mod pk .
Moreover, (a1, a2) lifts to a unique root of f over Zp ; and their number does not change as k
grows beyond k0 .

Also, the tree (Fig.1) in our algorithm does not change, and remains isomorphic, for k ≥ k0 ;
except the leaf with the root 0 .

Proof. As argued above, the representative roots which are not linear-representatives, must satisfy
the condition R1(a1) ≡ 0 mod pk0 . Similarly, we can show that R2(a2) ≡ 0 mod pk0 .

Assume that for some large enough k , k ≥ k0 , a new leaf in the tree of Figure 1 appears, with
the root (r1, r2) such that R1(r1) ≡ R2(r2) ≡ 0 mod pk . However, this leads to a contradiction
as the branch corresponding to (r1, r2) should have already been present in the tree at precision
k0 in the representative root.

As argued before, this root rj of Rj mod pk0 always leads to Zp roots of Rj for j = 1, 2 (due
to [23, Thm. 20]), and that of g2, g, f . Thus, the number of representative roots can not decrease
and the number of representative roots which are not linear is fixed once we reach k0 , and hence
(a1, a2) has a unique lift to Zp .

Together with Hensel lifting, it is then clear that, the linear-representative roots can neither
increase in number, nor reduce, as k ≥ k0 grows.

The only possible change is, for k ≥ k0 , if the leaf with fixed root 0 is used to lift to
f(pvx1, p

vx2) mod pk , with k > v ≥ k0 . This may create a new subtree under the old leaf 0 ; as
these types of branches are the only ones that were not explored in Algorithm 1 mod pk0 .

18

The following examples should help illustrate the p -adic machinery more clearly.
Example 5.5. Consider the polynomial f = (x1 − 1)(x2 − 2) mod pk . The first step of our
algorithm has to be x1 = 1 or x2 = 2 . Considering the root a := (1, 3) , the polynomial after
lifting becomes x1(1 + px2) , which is an (effective) linear form. Thus, a linear-representative root
will be returned, which has x2 as the free variable while x1 will stay fixed to 1 . This gives the
leaf r := (1 + pµ(∗), 3 + p∗) , and a computable Zp -function µ(·) , which allows the p -adic lift of
a . In this case, µ = 0 .
Example 5.6. Now, consider f(x1, x2) = (x1 − px2)(x1 − 2px2) mod pk . Lifting the root a :=
(0, 1) gives us (x1 − 1− px2)(x1 − 2− 2px2) , which is not effective linear yet. Choosing the next
lifting-step around the root (1, 0) , the polynomial after lifting becomes (x1−px2)(−1+px1−2p2x2) ,
which is an (effective) linear polynomial. A linear-representative root will be returned, corresponding
to (x1 − px2) , which has x2 as the free variable while x1 depends on it. This gives the leaf
r := (p + p3µ(∗), 1 + p2∗) , and a computable Zp -function µ(·) , which allows the p -adic lift of
a . In this case, µ(w) := w .

Blowing up the root 0 . There may be Zp -roots which can not be ‘noticed’ modulo pk0 ,
because they are indistinguishable from 0 . This is seen in the following example.
Example 5.7. Define the polynomial x3

1 +x3
2 mod pk , for p > 3 and 3|k . A subset of its linear-

representative roots are (pj+pj+1∗ ,−pj+pj+1µ(∗)) , for any j < k/3 and µ(w) := −w . However,
(pk/3∗1 , pk/3∗2) is a non linear-representative root. It can lift to the p -adic root 0 , but it can
also lift to (pk,−pk) ; which our algorithm could not explore due to the precision being only pk .

The following theorem completes the connection, of Algorithm 1, with all p -adic roots of f .
Fundamentally, it scales up the roots by pv -multiple, whenever possible, and creates a new data-
structure for representatives in the leaves of the fixed tree modulo mod pk0 , in Fig.1. It can also
be seen as a way of further blowing-up the leaf of the fixed tree that gives the 0 root.
Theorem 5.8 (High val p -adic roots). We can efficiently ‘expand’ the leaves, of the search tree,
as follows:

(1) Define a set of representative-roots Hv , for v ≥ k0 , s.t. for each root a ∈ Hv , pva lifts
to a p -adic root of f .

(2) We can compute the fixed tree for Hk0
efficiently by Algorithm 1. The other sets Hv , for

v > k0 , lift from the same representatives as in the leaves of Hk0
; so we do not recompute them.

Let (r′1, r
′
2) be a p -adic root of f . Then, ∃v ≥ 0 , ∃ root a ∈ Hv lifting to a′ , for which

(r′1, r
′
2) = pva′ . In this sense, our fixed finite tree covers all (∞ -many) p -adic roots of f .

Proof. Let u be the p -valuation of r′ , i.e., pu||(r′1, r′2) . If u = ∞ , i.e., (r′1, r
′
2) = 0 , then

clearly some leaf in the set Hk0
will satisfy the required statement.

If u < k0 , then r′ ̸= 0 mod pk0 ; so it will be covered in some nonzero leaf of the tree of Lemma
5.4.

Assume ∞ > u ≥ k0 . Now consider the system f(pu · x) = 0 , say over Zp . Write f =:∑
m≤i≤d fi into homogeneous-parts, with m being the least-degree part (fm ̸= 0). Thus, by

homogeneity, the system becomes

0 = f(pu · x)/pum =
∑

m≤i≤d

pu(i−m) · fi(x1, x2) . (10)

If f = fm (i.e., f is homogeneous), then f(pu · x) = 0 iff f(x) = 0 . Thus, Hv , for all v ≥ 0 , is
given by the fixed tree in Lemma 5.4 and we are done.

19

Assume f ̸= fm (i.e., f is inhomogeneous). Then, the above system implies: fm(x1, x2) ≡
0 mod pu . Since fm has bounded coefficients and u ≥ k0 , we compute the fixed tree (Lemma
5.4 for fm mod pk0) efficiently; and all its leaves (except 0) lift to p -adic roots. Each leaf, in
our Algorithm 1 can be viewed as defining a nontrivial p -adic map µ : Zp → Zp s.t. w.l.o.g.,
fm(w, µ(w)) = 0 , where w is a variable. Check whether f(puw , puµ(w)) = 0 . Then, by repeating
this argument (on fm+1 etc.) we can deduce: fi(w, µ(w)) = 0 for all m ≤ i ≤ d . Since, µ is a
p -adic function common to these polynomials, that are all upper bounded by the parameters of
f , we can learn µ by working with each fi just mod pk0 .

Algorithmically, we find this common µ by first invoking Algorithm 1 on fm mod pk0 and then
verifying it for f(pk0w , pk0µ(w)) ≡ 0 mod pk0(d+1) . [Or, we could construct the tree common to
the system {fm, . . . , fd} mod pk0 .]

But this shows an interesting property p -adically that f(pk0w , pk0µ(w)) = 0 iff fi(w, µ(w)) =
0 , for all m ≤ i ≤ d iff f(puw , puµ(w)) = 0 , for all u ≥ 0 . Essentially, the high-valuation roots
arise only from homogeneous polynomial system!

Lemmas 5.3-5.4 and Theorem 5.8 describe the p -adic nature of the tree and the representative
roots, after the threshold bound of k0 . We can continue this tree until the required precision,
which finishes the proof of Corollary 1.2.

6 Computing Igusa’s local zeta function: Proof of Corollary
1.3

We will show how to compute the Poincaré series, by expressing the number of roots of f(x1, x2)
mod pk , for every k , in a special form. In this subsection, for ease of understanding, we provide
this algorithm for bivariates using Section 5. The techniques used generalize to n -variates based
on the machinery of Section 7; thus proving the rationality of the Poincaré series in general.

When we consider f modulo pk , for large enough k ’s, the fixed-part of the representative-
roots will correspond to p -adic roots, while the remaining-part has ‘free’ coordinates, eg. (∗1, ∗2) ,
which get fixed as we increase k . For k = k0 , denote R as the subset of representative-roots
which are not linear-representative roots, while the set L as the set of linear-representative roots.

Recall the bound of k0 = Θ(d10 logM) (Lemma 5.3) to distinguish between Z/pkZ and Zp -
roots: For small values of k , i.e., k < k0 , we can count the number of roots in deterministic time
poly((d + p + logM)d) . For large k ’s, however, we want to prove a special form to sum up the
infinite Poincaré series.

Non linear-representative roots R . Consider a root in R ; its fixed-part, say r , will lift
to Zp -roots of f . Its representative part appears due to the contribution of extra p -powers by
the other derivatives that appear in the Taylor-series around r . Let e be the multiplicity of r :
which can be found as the (largest) e such that f ∈ ⟨x− r⟩e , but f ̸∈ ⟨x− r⟩e+1 .

Now, f can be written as

f =

e∑
i=0

ci(x1, x2) · (x1 − r1)
i(x2 − r2)

e−i . (11)

20

Define v := vp(gcd({ci(r) | i})) . Since r is not a common root of ci ’s, this value (e, v) does not
change as we increase k and make r more precise. Consider the Zp -root r′ that r lifts to. Let
us now consider the ways in which the digits of r′ may be perturbed, and yet it be a root (mod
pk), as we increase k arbitrarily. Let ℓ1 denote the length up to which we want to keep r1 equal
to r′1 and the rest to ∗ (similarly define ℓ2). Consider

f(r′1 + pℓ1x1 , r
′
2 + pℓ2x2) =

e∑
i=0

ci(r
′ + plx) · (r′1 − r1 + pℓ1x1)

i · (r′2 − r2 + pℓ2x2)
e−i . (12)

The valuation of this expression is the minimum of vp(ci(r)) + ℓ1i + ℓ2(e − i) , over all i . If this
is ≥ k then x can take any value in Z/pk−ℓ1Z× Z/pk−ℓ2Z , and extend, by the above equation,
to a root mod pk . This is what should happen as we are not in the linear-representative case.
We need to count these possibilities, which will give us the number of ways the root r could lift
as k increases. For this, we should consider only those possibilities of (ℓ1, ℓ2) that are minimal,
i.e., (ℓ1−1, ℓ2) and (ℓ1, ℓ2−1) should violate the linear-inequality system. This is a system of half-
spaces in the plane, forming an open polygon P with either ≤ e vertices or just one hyperplane.
It can be checked that in all cases the counting function∑

(ℓ1,ℓ2)∈P

p(k−ℓ1) · p(k−ℓ2) (13)

can be rewritten as a sum of pui(k) , i ≤ e , where ui(k) is a linear function in k over Q . Let
us call this sum Nk,r(f) . Importantly, the number of summands here is fixed, and does not grow
with k .

The following example illustrates the notion of this polytope.
Example 6.1. Consider the polynomial f(x1, x2) = x2

1x2 mod pk . Here, for the root (0, 1) , the
value of e is 2 , and accordingly ℓ1 , the precision of x1 required, is = k/2 . However, the value
of e for (1, 0) is 1 and ℓ2 = k . For the root 0 , both variables contribute powers of p , where
they are zero with precision ℓ1, ℓ2 respectively. Then, we must have 2ℓ1 + ℓ2 ≥ k , which gives the
hyperplane in ℓ1, ℓ2 ; summing over all these values we can calculate Eqn.13.

Linear-representative roots L . Consider a linear-representative root r ∈ L , with fixed part
a of length (e1, e2) respectively. Up to linear transformations, we can claim that our algorithm
defines a computable Zp -function µ(·) s.t. for all u ∈ Zp , f(x1+a1+pe1u , x2+a2+pe2µ(u)) =
0 . Using this fact, we write Equation 11 in the ideal form, defining (e, v) as the largest integers s.t.,

f(x1 + a1 , x2 + a2 + pe2µ(0)) ∈ pv · ⟨x1 , x2⟩e + ⟨x1 , x2⟩e+1 , (14)

over Zp[x] .

Note that we have defined (e, v) by fixing u = 0 . The motivation is that if we use some other
u in Zp , we will get the same values (e, v) . To show this, say for some 0 ̸= u ∈ Zp ,

f(x1 + a1 + pe1u , x2 + a2 + pe2µ(u)) ∈ pv
′
· ⟨x1 , x2⟩e

′
+ ⟨x1 , x2⟩e

′+1 .

Then, by Lemma 5.4, e′ = e , because the tree remains isomorphic, even when we make the root
more precise than k ≥ k0 . In the same algorithm, lifting steps cause division by p -powers and
reach the leaf r , so v′ remains v even when we make the root more precise than k ≥ k0 .

21

Fix u ∈ Z/pk−e1Z , and consider the unique p -adic root r′ that the leaf r gives above. We
follow a similar process of counting as done for Equation 12. Varying u , the polytope boundary
P does not change (similar to the argument given after Equation 14); while on the other hand,
fixing (ℓ1 − e1) -digits of u (resp. ℓ1 value), fixes that many in µ(u) (resp. ℓ2 value). Thus, we
get a partial count (slightly different from Equation 13) as:

∑
(ℓ1,ℓ2)∈P ∪{(k−e2)−(ℓ1−e1)≤ (k−ℓ2)}

p(ℓ1−e1) · p(k−e1)−(ℓ1−e1) · p(k−e2)−(ℓ1−e1) . (15)

We call this sum N ′
k,r(f) ; and is written as a sum of pui(k) , i ≤ e , where ui(k) is a linear

function in k over Q .

Blowing-up root 0 . We are left with roots with valuation in the interval [k0, k − 1] , since
these are zero mod pk0 and does not get included in L or R . To account for these, we need to
resort to the set Hk0

, constructed in Theorem 5.8 that ‘blows-up’ the leaf node 0 in the tree of
finding roots modulo pk0 .

Now, from the way Algorithm 1 works, the representatives in Hk0
generate a disjoint set

of (Z/pkZ)-roots, which are in number =
∑

r∈Hk0
Nk0,r . This sum is easy to precompute (by

Theorem 1.1), as it is independent of k . Each of these roots can be multiplied by pe , for e ∈
[k0 . . . k− 1] , to get the ‘high’-valuation roots. Thus, the total number of such roots is = (k−k0) ·∑

r∈Hk0
Nk0,r .

Overall, the above summands account for all the Z/pkZ -roots of f , for k ≥ k0 .

Summing up, the number of roots modulo pk , for k < k0 , can be counted by Theorem
1.1. Fixing k = k0 , we compute the data-structures related to the fixed tree; which has the
linear-representative roots in L , Hk0 , and the remaining representative-roots in R .

Then, the number of roots of f modulo pk , Nk(f) , is given by

Nk(f) =
∑
r∈R

Nk,r(f) +
∑
r∈L

N ′
k,r(f) + (k − k0) ·

∑
r∈Hk0

Nk0,r . (16)

Recall that the number of roots modulo pk due to any representative root r (or a leaf in the fixed
tree in Theorem 5.8) is Nk,r(f) resp. N ′

k,r(f) ; defined separately in Equations 13 and 15.

Now, the Poincaré series is given by (eg. see [23])

P (t) = P0(t) +
∑
r∈R

Pr(t) +
∑
r∈L

Qr(t) +

 ∑
r∈Hk0

Nk0,r

 ·
∑
k≥k0

(k − k0) · (t/p)k , (17)

where P0(t) =
∑

k<k0
Nk(f) · (t/p)k , Pr(t) :=

∑
k≥k0

Nk,r(f) · (t/p)k and Qr(t) :=∑
k≥k0

N ′
k,r(f) · (t/p)k .

The expression of Equation 16 is a sum of pui(k) ’s and ui(k) ’s, i ≤ O(d) , where ui(k) ’s are
linear functions in k over Q . Thus, Equation 17 can be easily expressed in a ‘closed-form formula’
by summing the geometric progression over k ’s, as was done in [23, Lem. 23]. Thus, Pr(t), Qr(t)

22

are rational functions in Q(t) . Therefore, the rational function for the Poincaré series P (t) is
computable as promised in Corollary 1.3.

7 Generalization to n -variates: Proof of Theorem 1.4

In this section, we generalize our approach of root-finding and counting to n -variate polynomial
f(x) using similar techniques as used in bivariates. The key idea is to reduce the problem to
finding roots of (n− 1) -variate polynomial systems. Algorithm 3 contains the simple modification
of the algorithms of [3, 22] to univariate polynomial system-solving. For the case of multivariates,
we first show a modification to Algorithm 1 for solving a system of polynomial equations mod pk .
The next subsection gives an overview of how to extend the single bivariate root-finding algorithm
to that for solving a system of bivariates. Then, using that, we solve 3 -variate systems. The proof
can be straightforwardly generalized to n -variates, for any n ≥ 3 .

7.1 Solving bivariates simultaneously

Suppose we have m polynomials f1(x1, x2), . . . , fm(x1, x2) , each of degree ≤ d . At each step of
lifting, we iterate over all the roots of each polynomial separately, but in parallel, such that the
local roots of each iteration are common to every polynomial. This can be intuitively thought of as
creating trees as in Figure 1 corresponding to each polynomial, whose nodes are ‘isomorphic’, i.e., we
branch corresponding to a root if and only if the root is present in the trees of all the polynomials.
Also, whichever linear transformation we apply on x acts on all the fi ’s simultaneously. We refer
to this data-structure as a parallel search-tree.

We continue growing these trees (and considering only those branches which correspond to a
common root); with effective degree decreasing as we go down, until the stopping conditions are
satisfied. When some polynomial has a representative root (∗1, ∗2) , we proceed to finding roots
of the remaining set of polynomial. However, when linear-representative roots are obtained for
some polynomial, the analysis can be divided into two cases by their rank. When the linear forms
(i.e., given by coefficients of x1 and x2) are of rank 1 or 2 . For rank 2 , we can check for a
unique root by solving simple linear equations; so, they either have one common root, or none.

The difficulty arises when these linear forms are of rank 1 . Again, the isomorphism of the
trees corresponding to each polynomial will be used, but after reducing this problem to solving
simultaneous equations over a fewer number of polynomials.

Rank= 1 linear forms. Suppose we have the polynomials in the form ax1 + bx2 + ci −
phi(x1, x2) , where a, b, ci ∈ {0, . . . , p − 1} , for all i ∈ [m] . If all the ci ’s are not the same, we
obviously do not have a solution; so we terminate this branch. Assume ci = c and write the
polynomials in the basis of L := (ax1 + bx2 + c) and x2 , w.l.o.g assuming a ̸= 0 . (Otherwise, we
can use the basis L, x1). We have the system as

L ≡ pg1(L, x2) mod pk ;

L ≡ pg2(L, x2) mod pk ;

...

L ≡ pgm(L, x2) mod pk ,

(18)

23

where gi ’s can be obtained from hi ’s by using the change of basis. So, we get the local-root here,
namely L must be 0 mod p in the current step (based on any value of x2). Hence we lift L to
pL . This grows the tree further. Performing this transformation and subtracting the first equation
from each of the other equations, we have :

L ≡ g1(pL, x2) mod pk−1 ;

0 ≡ g̃2(pL, x2) mod pk−1 ;

...

0 ≡ g̃m(pL, x2) mod pk−1 ,

(19)

where g̃i = gi(L, x2)− g1(L, x2) , for i ∈ {2, . . . ,m} .
Now, on the (m − 1) -many g̃i ’s, we find the values of x2 that satisfy the equations modp .

For a fixing of x2 from the latter m−1 equations in Equation 19, we uniquely get the value of L
from the first equation (where the effective polynomial is linear in L). Using these values, we lift
both L and x2 , creating a Figure 1-like tree where the branches are such that they satisfy all the
m equations. Finally, at the leaf we get the representatives for x2 too, and halt the algorithm.

Thus, we create the m isomorphic trees for O(d) many lifting steps as before (Figure 1), restrict
the linear condition on the first polynomial and simultaneously solve the next m− 1 polynomials
modulo a smaller power of p and continue with our construction of m−1 isomorphic trees. Using
this subroutine, we can find all the roots of the system of bivariate equations in time complexity
same as that of Theorem 1.1, along with a multiplicative overhead of m for storing this array of
polynomials in each node.

7.2 Solving trivariates polynomial systems

Lifting Step. Given a root a ∈ F3
p and polynomial fj(x) in the j -th step, we find the polynomial

after lifting as fj+1(x) = p−vfj(a + px) , where v = vp(fj(a + px)) is the val-multiplicity of the
root a . Theorem 2.1 can be similarly proved to show that effective degree reduces in all cases
other than when d1 = 1 or v = d1 . We again form a tree similar to Figure 1 with the invariant
that effective degree must reduce along depth.

Val-multiplicity d1 case. As in Algorithm 2, we again ‘jump’ over the val-multiplicity d1
cases directly so that the recursion can continue to degree reduction cases. Lemma 3.1 can be proved
for 3 -variates to show that the polynomial must have the d1 -form ⟨x1 − a1, x2 − a2, x3 − a3⟩d1 ,
where a is a val-multiplicity d1 root. However, when multiple val-multiplicity d1 roots exist,
without loss of generality, given by 0 and a (where a1 ̸= 0), we can modify the proof of Lemma
3.2 to show that the effective polynomial is zero modulo ⟨a1x2 − a2x1, a1x3 − a3x1⟩d1 . The rank
of the nonzero roots, given by ⟨x−a⟩ , can be 1 or 2 (in general, 1, 2, . . . , n− 1 for n -variates).

In the case of rank= 2 val-mult= d1 roots, there will be only one linear polynomial, say f ∈
⟨a1x2− a2x1⟩d1 + ⟨p⟩ . So, the equations will similar Equation 6, except that the polynomials uj ’s
will be in two variables, say x2 and x3 . We will form a bivariate system, and solve it using
the simultaneous bivariate root-finding as discussed above; to find all the representative-roots for
x2, x3 . This new version of Algorithm 2 will take poly((k + d+ p)d) -time; and make the tree this
wider.

24

In the case of rank= 1 val-mult= d1 roots, we will have a multinomial expansion having two
linear forms {a1x2−a2x1, a1x3−a3x1} instead of a single binomial expansion as done in Equation
8. So, now, we have two linear forms L,L′ instead of a single L1 . We need to find the values
of the third variable, say x3 , such that the resulting effective polynomial after lifting is again
in ⟨L,L′⟩d1 . This gives constraints similar to Equation 7. From these, we can use the univariate
Algorithm 3 to solve them.

Finally, the techniques of Section 3.1 can be smoothly generalized to search for the contiguous
d1 -forms in poly((k + d+ p)d) -time. In particular, we will search them in the decreasing order of
the rank of underlying val-mult= d1 roots: rank= 2 , rank= 1 and then rank= 0 in the last.

Conclusion. We can find the roots of f(x) mod pk , for 3 -variates where the only difference
from bivariates is the handling of contiguous val-multiplicity d1 roots (due to the more possibilities
of d1 -forms). The same extension can be performed for n -variate m polynomials, for any constant
n . Thus, Algorithm 1 fits well in the general framework, and finds all the roots.

Time complexity. For a 3 -variate polynomial f , at each step of the tree (Fig.1), there are
O(dp3) branches corresponding to val-mult< d1 roots. For val-mult= d1 roots, there are three
ordered possibilities in the chain: rank= 2 val-mult= d1 root, rank= 1 val-mult= d1 roots, and
rank= 0 (unique) val-mult= d1 roots. Similar to Lemma 3.3, we can show that rank can not
increase after lifting by a val-mult= d1 root.

For rank= 2 , we solve a system of bivariate equations. The number of possible branches of
bivariates is O((k2d+ p2)2d) . Furthermore, the number of possibilities of these special contiguous
chains is O(k3) . Therefore, the total number of leaves of the tree for 3 -variates will be O(((k2d+

p2)2d · k3 + p3)d) , which is bounded by O((k + d+ p)(4d)
2

) .

We claim that the time complexity, for any n , is bounded by O((k + d + p)(2d(n−1))n−1

) . We
prove this using induction by assuming this to be true for (n−1) -variates and derive the complexity
for n -variates.

For n -variates (n ≥ 3), the val-multiplicity d1 roots will have ranks from n − 1 to 0 . For
rank= (n− 1) , we get the maximum upper bound. We will be solving a system of (n− 1) -variate

equations, which will lead to O((k + d + p)(2d(n−2))n−2

) possibilities and representative-roots.
Furthermore, there are kn−1 possibilities for the chain. Thus, one tree size is s1 := O((kn−1(k +

d + p)(2d(n−2))n−2

+ pn)2d) . But we may need to repeat this n − 1 times on each leaf, when we

have a system of n -variates to solve. Thus, the time becomes sn−1
1 = O((k + d+ p)(2d(n−1))n−1

) .

Using this technique for finding all the roots modulo pk for n -variates, we can generalize the
algorithms for finding Zp -roots and computing the Igusa local zeta function for a system of m
polynomials in n -variables as well. For finding roots over Zp , we consider the resultant w.r.t. one
variable at a time, find a bound similar to Lemma 5.2, and proceed with the analysis of roots which
are in Zp or are not roots of the discriminant. At each step, the bounds according to one variable
at a time will be obtained, which get multiplied to give a bound k0 for f(x) such that roots of
f(x) mod pk0 gives us roots which correspond to Zp roots as well. This will be a generalization
of Theorem 5.8 to n -variates. Similarly we can count roots, where the number of possibilities due
to linear-representative roots depends on the rank of the linear forms, and the sum will again be
a rational form.

The complexity of finding Zp points and that of computing Igusa local zeta function will remain

deterministic poly((m logM + p+ d)(2d(n−1))n−1

) -time.

25

8 Conclusion and future work

Root finding of bivariates, and of n -variates for any constant n , gives rise to the following questions
of finding faster algorithms, over a Galois ring.

1. We leave the question of root-finding, for constant d and n , in polylog(p)-time open. Some
progress has been made in [9] using deeper algebraic-geometric methods.

2. Can we use random projections to a line: E.g. can root-finding of f(x1, . . . , xn) be reduced to
root-finding of f(x1,at + b) , with high probability, for a,b ∈ (Z/pkZ)n−1 ? This would give
simpler algorithms for the general n case.

Hilbert’s irreducibility test (over a Galois field) states that a polynomial f(x1, . . . , xn) is
factorizable iff : f(x1, a1t+b1, a2t+b2, . . . , an−1t+bn−1) is factorizable and f(x1, b1, . . . , bn−1)
is square free with high probability, where the probability ranges over constants a and b . A
similar technique might be used to show that f(x1, . . . , xn) has roots if the bivariate polynomial
f(x1, a1t+ b1, a2t+ b2, . . . , an−1t+ bn−1) has roots over a Galois ring. We leave this as an open
problem to analyze and improve the time complexity of Section 7.

Acknowledgments. We thank Ashish Dwivedi for useful discussions on many related prob-
lems in this area. We thank the anonymous reviewers of the conference version, whose feedback
improved our presentation. N.S. thanks the funding support from DST-SERB (CRG/2020/45 +
JCB/2022/57) and N. Rama Rao Chair.

References

[1] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,
46(8):1853–1859, 1967. 2

[2] E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of computation,
24(111):713–735, 1970. 2

[3] J. Berthomieu, G. Lecerf, and G. Quintin. Polynomial root finding over local rings and
application to error correcting codes. Applicable Algebra in Engineering, Communication and
Computing, 24(6):413–443, 2013. 2, 4, 6, 8, 13, 15, 17, 23, 30

[4] B. Birch and K. McCann. A criterion for the p-adic solubility of diophantine equations. The
Quarterly Journal of Mathematics, 18(1):59–63, 1967. 4

[5] A. Björklund, P. Kaski, and R. Williams. Solving systems of polynomial equations over
gf (2) by a parity-counting self-reduction. In 46th International Colloquium on Automata,
Languages, and Programming (ICALP), 2019, Patras, Greece, volume 132 of LIPIcs, pages
26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 4

[6] D. G. Cantor and D. M. Gordon. Factoring polynominals over p-adic fields. In Algorithmic
Number Theory, 4th International Symposium, ANTS-IV, Leiden, Netherlands, volume 1838
of Lecture Notes in Computer Science, pages 185–208. Springer, 2000. 2

[7] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Mathematics of Computation, 36(154):587–592, 1981. 2, 30

[8] S. Chakrabarti. Multivariate polynomials modulo prime powers: their roots, zeta-function and
applications. Master’s thesis, CSE, IIT Kanpur, India, 2022. 1

[9] S. Chakrabarti, A. Dwivedi, and N. Saxena. Solving polynomial systems over non-fields and
applications to modular polynomial factoring. Journal of Symbolic Computations, 125:102314,

26

https://www.cse.iitk.ac.in/users/nitin/theses/chakrabarti-2022.pdf
https://www.cse.iitk.ac.in/users/nitin/theses/chakrabarti-2022.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/HNpk.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/HNpk.pdf

2024. 26
[10] S. Chakrabarti and N. Saxena. An effective description of the roots of bivariates mod pk and

the related Igusa’s local zeta function. In Proceedings of the 2023 International Symposium
on Symbolic and Algebraic Computation, ISSAC’23, page 135–144. Association for Computing
Machinery, 2023. 1

[11] H. Cheng and G. Labahn. Computing all factorizations in zn[x] . In Proceedings of the 2001
International Symposium on Symbolic and Algebraic Computation (ISSAC), Ontario, Canada,
pages 64–71. ACM, 2001. 2

[12] Q. Cheng, S. Gao, J. M. Rojas, and D. Wan. Counting roots for polynomials modulo prime
powers. The Open Book Series, 2(1):191–205, 2019. 2

[13] Q. Cheng, J. M. Rojas, and D. Wan. Computing zeta functions of large polynomial systems
over finite fields. arXiv preprint arXiv:2007.13214, pages 1–10, 2020. 3

[14] A. L. Chistov. Efficient factorization of polynomials over local fields. Doklady Akademii Nauk,
293(5):1073–1077, 1987. 2

[15] A. L. Chistov. An effective algorithm for deciding solvability of a system of polynomial
equations over p -adic integers. Algebra i Analiz, 33(6):162–196, 2021. 4

[16] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms: an introduction to com-
putational algebraic geometry and commutative algebra. Springer Science & Business Media,
2013. 17

[17] B. Dearden and J. Metzger. Roots of polynomials modulo prime powers. European Journal
of Combinatorics, 18(6):601–606, 1997. 2

[18] J. Denef. The rationality of the poincaré series associated to the p-adic points on a variety.
Invent. math, 77(1):1–23, 1984. 3, 4

[19] J. Denef and K. Hoornaert. Newton polyhedra and igusa’s local zeta function. Journal of
number Theory, 89(1):31–64, 2001. 3

[20] A. Dwivedi. Polynomials over composites: Compact root representation via ideals and
algorithmic consequences. PhD thesis, CSE, IIT Kanpur, India, 2023. 4

[21] A. Dwivedi, R. Mittal, and N. Saxena. Counting Basic-Irreducible Factors Mod pk in
Deterministic Poly-Time and p -Adic Applications. In Proceedings of 34th Computational
Complexity Conference (CCC 2019), pages 15:1–15:29. Springer, 2019. 2, 6, 17

[22] A. Dwivedi, R. Mittal, and N. Saxena. Efficiently factoring polynomials modulo p4 . Journal
of Symbolic Computation, 104:805–823, 2021. 2, 23, 30

[23] A. Dwivedi and N. Saxena. Computing igusa’s local zeta function of univariates in deter-
ministic polynomial-time. Open Book Series, 4(1):197–214, 2020. 2, 3, 4, 5, 17, 18,
22

[24] A. Ehrenfeucht and M. Karpinski. The computational complexity of (xor, and)-counting
problems. International Computer Science Inst., 1990. 3, 5

[25] P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields. In
International Algorithmic Number Theory Symposium, pages 313–332. Springer, 2000. 3

[26] P. Gopalan, V. Guruswami, and R. J. Lipton. Algorithms for modular counting of roots of
multivariate polynomials. Algorithmica, 50(4):479–496, 2008. 3, 5

[27] F. Q. Gouvêa. p-adic numbers. In p-adic Numbers. Springer, 1997. 29
[28] J. Guàrdia, E. Nart, and S. Pauli. Single-factor lifting and factorization of polynomials over

local fields. Journal of Symbolic Computation, 47(11):1318–1346, 2012. 2
[29] A. Gulati, S. Chakrabarti, and R. Mittal. On algorithms to find p-ordering. In Conference on

Algorithms and Discrete Applied Mathematics, pages 333–345. Springer, 2021. 2, 30
[30] D. Harvey. Computing zeta functions of arithmetic schemes. Proceedings of the London

Mathematical Society, 111(6):1379–1401, 2015. 3

27

[31] K. Hensel. Eine neue theorie der algebraischen zahlen. Mathematische Zeitschrift, 2(3):433–
452, 1918. 2, 7

[32] M.-D. Huang and Y.-C. Wong. Solvability of systems of polynomial congruences modulo a
large prime. computational complexity, 8(3):227–257, 1999. 4

[33] J.-i. Igusa. Complex powers and asymptotic expansions. i. functions of certain types. Journal
für die reine und angewandte Mathematik, 0268 0269:110–130, 1974. 3, 4

[34] J.-I. Igusa. Some observations on higher degree characters. American Journal of Mathematics,
99(2):393–417, 1977. 3, 4

[35] J.-i. Igusa. An introduction to the theory of local zeta functions, volume 14. American
Mathematical Soc., 2007. 3

[36] E. Kaltofen. A polynomial-time reduction from bivariate to univariate integral polynomial
factorization. In 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982),
pages 57–64. IEEE, 1982. 2

[37] E. Kaltofen. Polynomial-time reductions from multivariate to bi-and univariate integral
polynomial factorization. SIAM Journal on Computing, 14(2):469–489, 1985. 2

[38] N. Kayal. Solvability of a system of bivariate polynomial equations over a finite field. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 551–562. Springer,
2005. 4

[39] K. S. Kedlaya. Counting points on hyperelliptic curves using monsky-washnitzer cohomology.
Journal of the Ramanujan Mathematical Society, 16(4):323–338, 2001. 3

[40] K. S. Kedlaya. Computing zeta functions via p-adic cohomology. In International Algorithmic
Number Theory Symposium, pages 1–17. Springer, 2004. 3

[41] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM
Journal on Computing, 40(6):1767–1802, 2011. 2

[42] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions, volume 58. Springer Science
& Business Media, 2012. 29

[43] L. Kopp, N. Randall, J. Rojas, and Y. Zhu. Randomized polynomial-time root counting in
prime power rings. Mathematics of Computation, 89(321):373–385, 2020. 2

[44] A. G. Lauder. A recursive method for computing zeta functions of varieties. LMS Journal of
Computation and Mathematics, 9:222–269, 2006. 3

[45] F. Lehmann, M. Maurer, V. Müller, and V. Shoup. Counting the number of points on elliptic
curves over finite fields of characteristic greater than three. In International Algorithmic
Number Theory Symposium, pages 60–70. Springer, 1994. 3

[46] D. Lokshtanov, R. Paturi, S. Tamaki, R. Williams, and H. Yu. Beating brute force for systems
of polynomial equations over finite fields. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2190–2202. SIAM, 2017. 4

[47] K. Matsuo, J. Chao, and S. Tsujii. An improved baby step giant step algorithm for point
counting of hyperelliptic curves over finite fields. In International Algorithmic Number Theory
Symposium, pages 461–474. Springer, 2002. 3

[48] D. Maulik. Root sets of polynomials modulo prime powers. Journal of Combinatorial Theory,
Series A, 93(1):125–140, 2001. 2

[49] A. J. Menezes, S. A. Vanstone, and R. J. Zuccherato. Counting points on elliptic curves over
F2m . Mathematics of computation, 60(201):407–420, 1993. 3

[50] V. Neiger, J. Rosenkilde, and É. Schost. Fast computation of the roots of polynomials over
the ring of power series. In Proceedings of the 2017 ACM on International Symposium on
Symbolic and Algebraic Computation, pages 349–356, 2017. 4

[51] P. N. Panayi. Computation of Leopoldt’s P-adic regulator. PhD thesis, University of East
Anglia, Norwich, England, 1995. 2, 4, 30

28

[52] C. Robelle, J. M. Rojas, and Y. Zhu. Sub-linear point counting for variable separated curves
over prime power rings. arXiv preprint arXiv:2102.01626, page 18, 2021. 2, 4

[53] L. Rónyai. Factoring polynomials over finite fields. In 28th Annual Symposium on Foundations
of Computer Science (FOCS 1987), pages 132–137. IEEE, 1987. 2

[54] A. Sălăgean. Factoring polynomials over z4 and over certain galois rings. Finite fields and
their applications, 11(1):56–70, 2005. 2

[55] T. Satoh. On p-adic point counting algorithms for elliptic curves over finite fields. In
International Algorithmic Number Theory Symposium, pages 43–66. Springer, 2002. 3

[56] R. Schoof. Counting points on elliptic curves over finite fields. Journal de théorie des nombres
de Bordeaux, 7(1):219–254, 1995. 3

[57] C. Sircana. Factorization of polynomials over Z/(pn) . In Proceedings of the 2017 ACM on
International Symposium on Symbolic and Algebraic Computation, pages 405–412, 2017. 2

[58] H. Zassenhaus. On hensel factorization, i. Journal of Number Theory, 1(3):291–311, 1969. 2
[59] H. Zassenhaus. A remark on the hensel factorization method. Mathematics of Computation,

32(141):287–292, 1978. 2
[60] Y. Zhu. Trees, point counting beyond fields, and root separation. PhD thesis, Texas A&M

University, USA, 2020. 4
[61] W. Zuniga-Galindo. Computing igusa’s local zeta functions of univariate polynomials, and

linear feedback shift registers. Journal of Integer Sequences, 6:36, 2003. 3, 5

Appendix A Preliminaries

We describe some useful notation and previous works.

We use x to denote the tuple (x1, x2, . . . , xn) . Operations are similarly defined as a + b :=
(a1 + b1, a2 + b2, . . . , an + bn) , and c · a := (c · a1, . . . , c · an) , for a scalar c . Similarly, for
i = (i1, i2, . . . , in) , we have xi = xi1

1 xi2
2 . . . xin

n with degree |i| , and i! := i1!i2! . . . in! .

Based on the Taylor’s expansion of polynomials in univariates, we define multivariate Taylor’s
expansion.
Definition A.1 (Taylor’s expansion/ series). Given a polynomial f(x) of degree d , we can write
it as (over any characteristic)

f(a+ x) =

∞∑
ℓ=0

∑
|i|=ℓ

∂xif(a)

i!
·

n∏
j=1

x
ij
j

 , (A1)

where ∂xif := ∂i1+···+inf

∂x
i1
1 ...∂xin

n

is an order |i| partial derivative.

For a prime p , we can write any integer a as a power series a =: a0 + a1p + a2p
2 + . . . , for

ai ∈ {0, 1, . . . , p−1} . We write ã ∈ Zp , the ring of p -adic integers, as a tuple (a0, a1, a2, . . .) . The
j -th coordinate corresponds to aj , and ã mod pk is defined as the projection upto the (k−1) -th
coordinate, i.e. a0 + a1p + . . . ak−1p

k−1 . Similarly, we define the field of p -adic numbers as the
fraction field of Zp , denoted as Qp . For more literature on p -adic numbers, we direct the reader
to [27, 42].
Definition A.2 (Valuation). For an integer n and a prime p , we define its valuation w.r.t. p ,
denoted vp(n) , as the largest integer v such that pv|n .

29

Definition A.3. A representative of a ring R , denoted by the symbol ∗ , takes all values in the
ring R . Formally, it is the set ∗ := {a|a ∈ R} .

We further define the operations:

• b+ ∗ = {b+ a|a ∈ ∗} for b ∈ R ,
• b∗ = {ba|a ∈ ∗} for b ∈ R .

Using this definition, for β + pℓ∗ ⊆ Z/pkZ for β ∈ Z/pℓZ , ℓ ≤ k , we have

β + pℓ∗ = {β + pℓa|a ∈ Z/pk−ℓZ} (A2)

In a similar fashion, a representative root of a polynomial f(x) ∈ Z/pkZ is denoted by a set
β + pℓ∗ for β ∈ Z/pℓZ , ℓ ≤ k such that for any A ∈ β + pℓ∗ , we have f(A) ≡ 0 mod pk . The
length of this representative root is the number of precision coordinates of the fixed part β , which
is ℓ .

For more properties of representative roots, we direct the reader to [51, 3, 22, 29].

Solving univariates simultaneously. Using this compact notation, we present the standard
Algorithm 3 to find all the roots of a univariate polynomial f(x) ∈ Z/pkZ ; which is due to
[51, 3, 22]. However, as required in this paper, we give a slight modification where we solve a system
of univariates modulo pk . The algorithm starts with the input array (f1, . . . , fr, p, k , . . . , k) . This
can be seen as a slight modification of the Root-Find algorithm ([22, Algorithm 1]) where instead
of looping only over the roots of the polynomial, we loop over the common roots in order to find
a root of all the polynomials in the system.

Algorithm 3 Root finding of f1(x), . . . , fr(x) mod pk

1: procedure Root-Find-BLQ(f1, . . . , fr, p, k1, . . . , kr)
2: if r = 0 then return ∗
3: if ∃i such that fi(x) ≡ 0 mod pki or ki = 0 then
4: return Root-Find-BLQ(f1, . . . , fi−1, fi+1, . . . , fr, p, k1, . . . , ki−1, ki+1, . . . , kr)

5: R := roots of gcd{fi(x) mod p | i ∈ [r]} [Eg. use Cantor-Zassenhaus’ algorithm [7]].
6: if R == ϕ then return ϕ

7: S := ϕ
8: for a ∈ R do
9: f̃i(x) := pvifi(a+ px) ∀i ∈ [r] , where vi = vp(fi(a+ px)) .

10: Ra := Root-Find-BLQ(f1, . . . , fr, p, k − v1, . . . , k − vr)
11: S := S ∪ (a+ pRa)

12: return S

The correctness of Algorithm 3 directly follows from [3, Corollary 4], where they prove the
correctness for a single polynomial. [3, Corollary 4] also states that the number of representative
roots is at most d many when only a single polynomial is considered.
Theorem A.4. Algorithm 3 runs in randomized poly(maxi deg(fi) , log p, k) time and returns at
most d -many representative roots.

30

	Introduction
	Previous work
	Our results: Find roots in , , and compute the Poincaré series
	Difficulty of the problem
	Proof overview: Algorithms 1 & 2

	Evolution of effective degree during lifting steps
	Structure of via rank of local roots of val-mult=
	Structure of consecutive -powers.

	The algorithm: Proof of Theorem 1.1
	Main algorithm for root-finding
	 subroutine: Handling contiguous d1-forms (aka red nodes in Fig.1)

	Computing -adic roots: Proof of Corollary 1.2
	Computing Igusa's local zeta function: Proof of Corollary 1.3
	Generalization to -variates: Proof of Theorem 1.4
	Solving bivariates simultaneously
	Solving trivariates polynomial systems

	Conclusion and future work
	Acknowledgments

	Preliminaries

