
Solving polynomial systems over non-fields and applications to

modular polynomial factoring

Sayak Chakrabarti ∗ Ashish Dwivedi † Nitin Saxena ‡

Abstract

We study the problem of solving a system of n-variate m polynomials over the ring of integers
modulo a prime-power pk. The problem over finite fields is well studied in varied parameter
settings. For small characteristic p = 2, Lokshtanov et al. (SODA’17) initiated the study, for
degree d = 2 systems, to improve the brute force complexity of O(2n) to O(20.8765n); which
currently is improved to O(20.6943n) in Dinur (SODA’21). For large p but constant n, Huang
and Wong (FOCS’96) gave a randomized poly(d,m, log p) time algorithm. Note that for growing
n, system-solving is known to be intractable even with p = 2 and degree d = 2.

We devise a randomized poly(d,m, log p)-time algorithm to find a root of a given system of
m integral polynomials of degrees bounded by d, in n variables, modulo a prime power pk; when
n+ k is constant. In a way, we extend the efficient algorithm of Huang and Wong (FOCS’96) for
system-solving over Galois fields (i.e. characteristic p) to that over Galois rings (i.e. characteristic
pk); when k > 1 is constant. The challenge here is to find a lift of singular Fp-roots (exponentially
many); as there is no efficient general way known in algebraic-geometry for resolving singularities.

Our algorithm has application to factoring univariates over Galois rings. Given f ∈ Z[x] and
a prime-power pk (k ≥ 2), finding factors of f mod pk has a curious state-of-the-art. It is solved
for ‘large’ k by p-adic factoring algorithms (von zur Gathen, Hartlieb, ISSAC’96); but unsolved
for ‘small’ k. In particular, no nontrivial factoring method is known for k ≥ 5 (Dwivedi, Mittal,
Saxena, ISSAC’19). One issue is that degree-δ factors of f(x) mod pk could be exponentially
many, as soon as k ≥ 2. We give the first randomized poly(deg(f), log p)-time algorithm to find
a degree-δ factor of f(x) mod pk, when k + δ is constant. Our method has potential application
in algebraic coding theory. Algebraic codes, e.g. algebraic-geometric (AG) and Reed-Solomon
(RS) codes, are well-studied over Galois rings to achieve better bounds on their parameters.

2012 ACM CCS concept: Theory of computation– Algebraic complexity theory; Theory of
computation– Problems, reductions and completeness; Computing methodologies– Algebraic algo-
rithms; Computing methodologies– Hybrid symbolic-numeric methods.
Keywords: polynomial, factors, prime field, powers, algebraic set, efficient, roots, Nullstellensatz.

Contents

1 Introduction 2
1.1 Our results . 5
1.2 Difficulty of the problems & techniques . 6
1.3 Proof overview of Theorem 1 . 7

∗Department of CSE, Indian Institute of Technology, Kanpur, India, Email: sayak@cse.iitk.ac.in
†Department of CSE, Indian Institute of Technology, Kanpur, India, Email: ashish@cse.iitk.ac.in
‡Department of CSE, Indian Institute of Technology, Kanpur, India, Email: nitin@cse.iitk.ac.in

1

2 Hilbert’s Nullstellensatz over Galois rings: Proof of Theorem 1 9
2.1 Main algorithm: Finding roots of a polynomial system 9
2.2 Decomposition into absolutely irreducible components 12
2.3 Recovering a G-root of an ideal in L and T (of Algorithm 1) 13

3 Conclusion and future work 15

A Preliminaries 21

B Algorithms and proofs from Section 2: Details of HNpk 25

C An application: Finding small factors of f mod pk 31
C.1 Factoring over the Galois ring . 31
C.2 Reduce root-finding in non-Galois ring to root-finding in Galois ring 32
C.3 Algorithm: Proof of Theorem 2 & Corollary 3 . 33

1 Introduction

Finding a common root of a system of multivariate polynomial equations (Hilbert’s Nullstellensatz
or HN) is a fundamental problem in algebraic geometry [CLO13]. Over finite fields (characteristic
p), the problem is well-studied and very important in cryptography [Din21a, KPG99, Pat96] even
for p = 2 and systems of degree d = 2.

The problem has been studied mainly in two parameter settings over finite fields. In small
characteristic p = 2, there has been a flurry of work [BFSS13, LPT+17, BKW19, Din21b, BDT21]
to improve the brute force time complexity from O(2n) (for n-variate polynomial equations) to
finally O(20.6943n) by Dinur [Din21b] which even outperforms O(20.792n) complexity for random
system of equations (Bardet et al. [BFSS13]).

For large p but constant n, Huang and Wong [HW99] gave an efficient randomized poly(d,m, log p)
time algorithm to find a common zero of a system of m-many degree-d polynomials in n variables.
The decision version of the problem was derandomized by Kayal [Kay05] in same time complexity.
Note that the problem is NP-complete for unbounded number of variables n, even if p = 2 and
d = 2 [EK90, GGL08].

Extending Huang and Wong [HW99], we study the problem HN for constant n but generalized
over the ring of integers modulo a given prime power pk (k ≥ 2), called Galois rings.

Galois rings are important in the study of algebraic codes [HKC+94]. Efficiently solving
polynomial systems in Galois rings may be fruitful in study of such codes. E.g., univariate root
finding [BLQ13] has application in Guruswami-Sudan type list-decoding in Galois rings.

When k > 1, the classical methods of algebraic-geometry fail; which is why perhaps we are not
aware of many works on it. Starting k = 2, we are unaware of any efficient way to solve HN; and
there is no analogue of the famous theorems like Hilbert’s Nullstellensatz (see [Bro87, GS20] to read
more about the rich machinery).

To understand the difficulty, consider a system with just one polynomial f such that f(y1, . . . , yn) =:
φe mod p, for ramification e > 1 and φ being absolutely irreducible (i.e. irreducible over all extension
fields of Fp). In this case, φ must have exponentially many (in log p) roots and all those are singular
roots of f mod p. So, there is no easy way to determine which root will lift, and which root will not,
to modulo p2 (i.e. they ramify in a complicated way).

2

Example. f(x, y) := (x− y)2 + p mod p2. Thus, f mod p has p roots (=exponential in log p); but,
none of them lifts mod p2. So, f(x, y) has no root mod p2.

Example. Perturb the above example only slightly to f(x, y) := (x − y)2 + px mod p2. Again,
f mod p has p roots. However, now (0, 0) is the unique root that lifts mod p2. So, finding a random
root modulo p and trying to lift it, does not work.

This problem arises due to the existence of singular points (the points which are roots of the
polynomial as well as all of its first order derivatives). Non-singular points can be lifted to modulo
any power of p, in an analog to Hensel’s lifting [Hen18]. However, quite like Hensel lifting fails in
the case of ramification degree e > 1, lifting to higher powers of p fails for singular points. Thus,
the problem of separating out the singular points and converting them to non-singular points in a
different system, ‘desingularization’ or resolution of singularities, has been a well-studied problem. It
asks whether any algebraic variety V has a resolution which is a non-singular variety H such that the
non-singular points of H can be birationally mapped to points of V. It is solved over characteristic
0 fields [Hir64], while it is still open for finite fields [Hau10]. We algorithmically circumvent the
geometric obstruction of singular points and make the first progress towards HNpk :

Let n+ k be constant. Given a system of n-variate m integral polynomials mod pk, of degree at
most d, we find a common root to this system in randomized poly(d,m, log p) time.

We thereby make progress towards another open problem of finding Zp (i.e. p-adic) roots of
a system of polynomial equations. [DS20] showed a bound on k for which roots of univariate
polynomials modulo pk correspond to unique p-adic roots, while [CS22, Chi21] gave bounds for

multivariates of the form k = d2
O(n)

. We find roots modulo pk, while finding roots for ‘large enough’
k (see [Gre66]) can solve the problem of finding p-adic roots.

Application to factoring in Z/⟨pk⟩: Factoring a univariate over finite fields have many efficient
algorithms known [Ber67, CZ81, Kal92, KU11, vzGP01] and have found many applications in
mathematics and computing [FS15, Kal92, LN94, Sud97, vzGP01]. We consider the following
(Galois) ring generalization of this question (k > 1):

Given f ∈ Z[x] and a prime power pk, can we find a non-trivial factor of degree δ < deg(f) in
randomized poly(deg(f), k log p)-time?

Though this problem is studied since the time of Hensel [Hen18] and it finds a section in many
textbooks on elementary number theory [NZM13], yet there is no efficient algorithm known. The
issue arises as f mod pk may possess exponentially many factors (in log p); for e.g., f = x2 mod p2

has a factor (x + pα), for any α ∈ {0, . . . , p − 1}. This happens because the ring Z/⟨pk⟩ is not a
unique factorization domain. The following example illustrates the difficulty of lifting.

Example. Let f = x2 + p2 and (p, k) := (5, 3). The factorization f = x · x mod p lifts to p
factorizations mod p2, as discussed above. But only the factorization f = (x+ 10) · (x+ 15) mod p2

lifts to mod p3.

This example raises the question: How to efficiently determine which factorization (out of
exponentially many) will lift to higher precision?

Hensel’s lemma efficiently guarantees factoring when f mod p has two coprime factors. Thus,
the hard case is to factor f which is power of an irreducible modulo p (as in the example above).
Interestingly, in the hard case, using an extension of Hensel’s lemma [BS86, vzGH98], one can solve
the problem when k is ‘large’ i.e., pk does not divide the discriminant disc(f) of f . In this case,
[CL01, vzGH98] show that irreducible factors of f mod pk correspond to unique p-adic irreducible
factors, which we get via efficient p-adic factoring algorithms [CG00, Chi87, Chi94, GNP12].

3

Thus, the major open question in factoring f mod pk is when k is constant. The main issue with
‘small’ k case is that a p-adic irreducible factor could become reducible modulo pk and so factoring
over p-adics does not help. Below is an example from [vzGH96]:

Example. x2 + 3k is irreducible mod 3k+1 and so over 3-adic field; but it reduces mod 3k.

Currently, the best known methods [DMS21, Săl05] to find non-trivial factors of f mod pk, for
‘small’ k, require k ≤ 4. On the other hand, degree δ = 1 factors (i.e. actual roots) can be computed
efficiently for any k [BLQ13, Pan95]. So, there seems to be a trade-off between the output-degree δ
and input-exponent k. In this paper, we extend the constant k regime, to get ‘low’ degree factors of
f mod pk.

Let k + δ be constant. We give the first randomized poly-time algorithm to find a degree δ factor
of given f(x) mod pk. Thus, we can factorize constant-degree polynomials into irreducibles modpk.

This is the first work to efficiently find a ramified factor (irreducible factors which are not
irreducible modulo p) for any constant k– the difficult case of the problem. We achieve this by
efficiently reducing the problem of finding a constant-degree factor of f mod pk, for constant k, to
that of finding a root of constant-variate system of polynomials modulo pk.

Other applications: Our methods have potential applications in algebraic coding theory. Break-
through result of [HKC+94] showed that many known non-linear codes over finite fields, which
beat every linear code, are analogous to linear codes over the Galois ring Z/4Z. Thus many
algebraic codes, e.g. algebraic-geometric (AG) [HKC+94, Wal99, Wal97] and Reed-Solomon (RS)
[Arm05a, Arm05b] codes, were generalised over Galois rings to achieve better bounds on their
parameters. Root finding of polynomial systems over Galois rings may help in the study of these
generalised algebraic codes. Even, univariate root finding over Galois rings [BLQ13] has application
in Guruswami-Sudan type list decoding algorithm for generalised RS codes.

AG codes and its higher dimensional generalisations (see [TV13]) are defined with respect to an
absolutely irreducible variety, given by a system of polynomials over finite fields (see [HVLP98]).
They are of significant interest as they beat Gilbert-Varshamov (GV) bound [Gop77, TVZ82]. After
[HKC+94], these codes were generalised to various rings, in particular Galois rings [Wal99, Wal97].
These codes are defined with respect to a variety X over those Galois rings such that its associated
variety X′ over base field (Fp) is absolutely irreducible (see [Wal99, Sec.5]). Given an arbitrary
system of polynomials, its variety over Galois ring may not have this property. Our method of
system solving could be useful here as it returns a set of varieties over Galois ring (as ideals) which
collectively contain all the zeros of the system and are absolutely irreducible modulo p.

HN modulo 2k has known applications in program analysis as real world programs perform
modulo 2k operations due to limited register size [ELS+14, MOS05, MOS07]. It also has applications
in verifying equivalence of arithmetic datapaths [TKSG08].

Related works: Previously, only special systems of equations mod pk have been studied— called
Chevalley-Warning and Ax-Katz type theorems [Kat09, MR75, SR14]. These theorems study the
conditions under which they can guarantee that a common root exists. Effective versions of some
variant of Chevalley-Warning theorems help to get efficient quantum algorithms for important
problems like, discrete logarithm and graph isomorphism [IR18].

Related to univariate factoring modulo pk there are problems of univariate root finding and
counting modulo pk. These are of significant interest and finds applications in arithmetic-algebraic
geometry [CS22, DH01, DS20, Zhu20, ZG03], factoring [CG00, Chi87, Chi94], coding theory [BLQ13,
Săl05], and hyper/elliptic curve cryptography [Lau04]. [BLQ13] gave the first efficient randomized

4

algorithm to find and count all the roots of f(x) mod pk. [DMS19] gave the first efficient deterministic
algorithm to count all the roots of f mod pk inspired by the ideals used in [CGRW19, KRRZ20]
to store roots. These algorithms also give better understanding of root-sets modulo pk (i.e. which
subsets of Z/⟨pk⟩ are zero-sets of some polynomial?). Their combinatorial properties are of significant
interest in mathematics [Bha97, CP56, DM97, Mau01, Sie55].

1.1 Our results

The main result given in this paper gives an algorithm to find a common root of a system of
polynomial equations. It can be summarized as the following theorem.

Theorem 1 (HNpk). Given a system of n-variate polynomials f1, . . . , fm ∈ Z[z,x]/⟨pk, φ(z)⟩
of degrees at most d, for a prime p; and an irreducible polynomial φ(z) ∈ Fp[z] defining the
Galois ring G := Z[z]/⟨pk, φ(z)⟩. We can find a common root of the system in G, in randomized
poly(dcnk ,m,deg(φ) log p)-time; where cnk ≤ (nk)O((nk)2).

Remark 1. The following points can be noted about HNpk :

• Theorem 1 is efficient when n+ k is constant. Even if k = 1, HN is NP-hard for growing n.

• Theorem 1 efficiently extends the root-finding of [HW99] from Galois fields to Galois rings of
characteristic pk, for k constant. This extends the univariate results of [BLQ13, DMS19] to
root-finding of constant-variate systems mod pk.

• Theorem 1 resolves the open question asked in [DS20, RRZ21, Zhu20]— Efficiently find a
point on a curve mod pk, for fixed k.

After a long series of efforts [BLQ13, CL01, DMS21, Kli97, KRRZ20, Săl05, Sir17, vzGH96,
vzGH98], efficient modular factoring has remained elusive even for f mod p5. In this direction, our
result advances the state-of-the-art: to efficiently compute a constant-degree factor of f mod pk,
when k is constant. In particular, we can factor a fixed degree univariate polynomial into irreducibles.

Theorem 2 (Factoring). Given a univariate polynomial f ∈ Z[x] and a prime-power pk, in binary,
with k fixed. We can find a constant-degree factor g of f mod pk in randomized poly(deg(f), log p)-
time; or decide that none exists.

The difficult case in factoring f mod pk happens when f mod p has no two coprime factors; as
this forbids the well-known Hensel’s lifting [Hen18]. For example, f ≡ φe mod p for a φ ∈ Z[x]
which is irreducible mod p. For such an f , we call e to be the ramification-degree of f . In fact, our
proof method provides more general factors:

Corollary 3 (Low ramification factors). Given f ∈ Z[x] and prime-power pk, with k constant. We
can find a factor g of f mod pk in randomized poly(deg(f), log p)-time, where the ramification-degree
of g is at most a given constant; or decide that no such factor exists.

Remark 2. We highlight the following points about factoring modular polynomials:

• The brute-force approach takes time pΩ(kδ); which is clearly exponential (in log p), even for
fixed k and fixed ramification-degree δ.

5

• Thus, for constant k, our methods extend the results of [BLQ13, DMS19] from unramified
factors to ramified factors; albeit of ‘low’ ramification-degree.

• Our methods also extend [DMS21], from k = 4 to any fixed k, if the degree of f is fixed.

• Our algorithm is the first step towards factoring polynomials modulo pk for any constant k ≥ 5.

1.2 Difficulty of the problems & techniques

As we have seen, solution to a system of polynomial equations in interesting fields/rings have been
a well-studied problem. However, due to several difficulties to be discussed here, the problem has
remained elusive in Galois rings. Here, we solve HNpk for constant k.

The idea of univariate root-finding of Berthomieu et al. [BLQ13] fails even for a single integral
bivariate f(x0, x1) mod pk, for k = 2. For, in univariate case, [BLQ13] reduces the problem of
finding each p-adic coordinate to finding Fp roots, iterates over all these Fp-roots to lift them. It
could be shown that the number of iterations is bounded by d, the degree of the univariate. This is
not possible anymore with bivariate f(x0, x1) as there could be p (exponentially many) Fp-roots,
and bringing the complexity to log p has been a challenge.

In this work, we resolve the above issue by taking the help of special data-structures in the
form of ideals in Zp. Some points on these ideals are singular points, which might lead to roots too.
However, since we work over p-adics, lifting is not always possible for singular points. We handle
this new singularity by ‘carefully’ modifying the ideals and lifting to Zp-ideals (see Lemma 4). In a
sense, we separate out the singular roots, the roots that do not lift, and modify the ideals such that
they can henceforth be lifted– a method of de-singularization and extracting out the non-singular
roots!

Another difficulty is in getting a good bound on the number of ideals finally used. Dwivedi et
al. [DMS19] bounds the number of ideals by deg(f), for any k, in their work on storing roots of
univariates. On the other hand, we bound the number of ideals by a double exponential in ℓ := nk
(Lemma 6). This forces us to assume ℓ constant, to get a practical algorithm.

The problem of solving these Zp-ideals, described above, poses several difficulties of its own. Espe-
cially, since exhaustively going over all the possible coordinates would make the algorithm exponential
in log p. For tackling this, we use [HW99] to solve for each p-adic coordinate. This however is still
insufficient, as given an Fp-root, we need to lift them to p-adics; which is not always possible for even
non-singular Fp-roots. In order to perform this lift, we move to a birationally equivalent hypersurface
(see Section 2.2), to represent the ideal containing several generator polynomials as having only one
generator polynomial; and then consider the non-singular Fp-roots of this single generator ideal
(which lift by Hensel lifting!). In our proof method, the “project/lift” steps that the desired root takes,
across the three rings, can be depicted simplistically as: (Z/pkZ)n → (Fk

p)n → (Zk
p)n → (Z/pkZ)n,

while the previous attempts have been restricted only up to reductions to Fp.

Example 1. Consider f := x2 + 2 mod 32. Expanding root x =: y0 + 3y1 into the ‘digits’ yi’s, we
get f = (y20 + 2) + 3 · (2y0y1) mod 32. Consider f0 := y20 + 2 and f1 := 2y0y1. A common F3-root of
{f0, f1} is (y0, y1) = (1, 0). But, 1 + 3 · 0 = 1 is not a root of f mod 32.

This happens because we need (y20 + 2)/3 + (2y0y1) ≡ 0 mod 3; which is not satisfied by (1, 0)
as (y20 + 2)/3 ̸≡ 0 mod 3, while 2y0y1 ≡ 0 mod 3. The correct strategy would be to first find 3-adic
y0 ∈ Z3 and then fix y1 = 0 ∈ Z3; this will do the correct division operation by 3; and take care of
the ‘carry-over’ of f0 to f1. These 3-adic yi’s give the correct root x.

6

As an application, we give an algorithm for finding certain factors of a univariate polynomial f(x)
modulo pk. The main difficulty, with factoring f(x) mod pk, is in finding ramified factors when k is
small, i.e., pk | disc(f). In addition, two irreducible factorizations can be very different, unlike the
case of large k. For example, [vzGH96] shows that, f = (x2 + 243)(x2 + 6) mod 36 is an irreducible
factorization; while another irreducible factorization is f = (x+351)(x+135)(x2+243x+249) mod 36.

A connection due to [DMS21] shows: Finding (ramification-) degree-δ factor of f(x) mod pk

reduces to root-finding of E(y) mod ⟨pk, xℓ⟩, for a special E(y) ∈ (Z[x])[y] and ℓ := δk. This
root-finding is still not easy to do; however, [DMS21] could do this if k ≤ 4. Our new technique is to
further reduce root-finding of E(y) mod ⟨pk, xℓ⟩ to root-finding of a system of ℓ-variate polynomials
mod pk (i.e. HNpk).

Practicalities. The most expensive part of the paper is where Algorithm 1 finds absolute-
decomposition (Step 5), or finds Gröbner basis (Step 9). As, we add new variables in each lifting-step,
it is expected: In practice, the ideal will already be absolutely-irreducible and almost in Gröbner
basis; so an implementation may run faster than our worst-case analysis. Basically, our algorithm
is especially fast in finding (p-adic) Zp-roots of an input Zp-ideal Î, if it is prime and Î + ⟨p⟩ is
absolutely irreducible (see Lemma 9).

1.3 Proof overview of Theorem 1

In this section, we describe a method to find roots of a system of polynomials over a Galois ring.
As we will see in Appendix C, this has direct consequence on factoring.

Theorem 1 is proved by giving an algorithm that returns False if the given system of n-variate
polynomials f1(x), . . . , fm(x) ∈ Z[z][x] has no root in Galois ring G := Z[z]/⟨pk, φ(z)⟩, otherwise
outputs a possible root. This is similar to the problem of solving Hilbert’s Nullstellensatz over the
Galois ring G, which asks for a root of a system of polynomial equations in the closure of a finite
field. As we have seen before, there have been several works on this problem in the setting of fields,
but non-fields such as Galois rings have remained open.

Main ideas. The idea of the algorithm, as hinted before, works as a reduction to the problem
of solving a system of polynomials over a base field G/⟨p⟩ = Z[z]/⟨p, φ(z)⟩ ∼= Fp[z]/⟨φ(z)⟩ =: Fq

(where q = pb and b := deg(φ(z))). The crux of this reduction is storing each p-adic coordinate (in
Fq) in a data-structure, which will be special polynomial ideals. As we will see later, this is not
sufficient, and we need to realize these ideals (initially over Fq) as ideals over the unramified p-adic

integer ring Ĝ := Zp[z]/⟨φ(z)⟩. Finally, we find the solution up to k coordinates to find a root of
the system of polynomials over G.

Throughout this algorithm, we will use [HW99] to solve a system of polynomials over finite field

Fq, which requires an additional condition that q must be large enough, i.e. q > d(nk)
Ω((nk)2)

. If q is
smaller, then anyways the brute-force search, for G-roots, can be done in time qnk.

Break into digits. The method of finding roots is performed iteratively on each p-adic
coordinate (or digit). We find (virtual) roots at each step, and using these roots, find those
corresponding to higher coordinates. This method is essentially a reduction from modulo pk to
Fq, and similar techniques have been used before, however restricted only to univariates [BLQ13,
DMS19, DMS21, NRS17]. We generalize this lifting technique to multi-variates. For a root a ∈ Fn

q

(also embedded in Gn) of the system of polynomials modulo p, we transform each of the polynomials
fj(x) to fj(a + px) for j ∈ [m], inspired by the p-adic coordinates. Since we have standard methods
to find roots in Fq, while the same is difficult in Galois rings, we divide-out the ‘excess’ powers of
p, to bring this system back to Fq. These excess powers of p will be given by vj = v(fj(a + px)),

7

which will be termed as val-multiplicity of the root a (Definition 15). The step thus discussed, given
by transforming the polynomial fj(x) to p−1fj(a + px) will be called the lifting step. Point a will
be termed as the local root at that lifting step. We could try a ‘faster’ lift, p−vjfj(a + px) (since
val-multiplicities can be ≥ 1); however this idea fails, if vj ≥ 2, due to some intermediate mod p
arithmetic that our algorithm uses.

The modification to the polynomial during lifting will make sure that the Fq coordinates at
the t-th step of lifting will return the t-th p-adic coordinate. For example, if a is an Fq-root of
fj(x), and after lifting, the polynomial becomes f̃j(x) := p−1fj(a + px) which has an Fq-root b,
then (a1 + pb1, . . . , an + pbn) is a root of fj(x) mod p2. Note that some local roots might not have
liftings while others can; as illustrated by the following example.

Example 2. Consider f(x1, x2) := x31−x32+5 and p := 5. (0, 0) and (1, 1) are its Fp-roots. When we
start the root (0, 0), the lifting step given by the transformation (x1, x2) 7→ (5x1, 5x2) and subsequent
division by 5, yields the polynomial 25x31−25x32+1 which does not have F5-roots. Although, restarting
with the root as (1, 1) yields the polynomial 25x31 − 25x32 + 15x21 − 15x22 + 3x1 − 3x2 + 1 after lifting,
which now has (3, 0) as its F5-root! This anomaly is explained by a curious fact: (0, 0) is a singular
root of f , while (1, 1) is non-singular.

Virtual roots. The algorithm for univariate root finding [BLQ13] implicitly enumerates over
all possible Fq-roots, to check which one lifts. It is not possible for us to enumerate over all roots
as already for curves, Ω(p) roots might exist, and there is no standard way of representing them
‘compactly’. To tackle this problem, we introduce ‘formal’ variables (yi,1, . . . , yi,n) for the roots
corresponding to the i-th lifting step, instead of fixing them to (a1, . . . , an) ∈ Fn

q , and lift to the

next step to form a new polynomial f̃ in terms of this yi. We will denote this tuple (yi,1, . . . , yi,n)
as virtual root. At each step, we need the property of yi that it must be a root modulo p. In order
to track these properties together, we create a (p-adic) ideal Î; which is a novel data-structure
introduced by us that stores all possible roots, but in ‘higher’-precision p-adics. Thus at every step,
we include the polynomials fj(yi) mod p to this ideal, for j ∈ [m]; factorize, and lift again to p-adics.
E.g. this ideal vanishing at a point a ∈ (Z[z]/⟨φ(z)⟩)n implies: the virtual root yi can be realized as
an ‘actual’ root a of fj(x) which makes the quantity exactly zero. A similar idea of storing roots via
ideals, though in a much simpler setting of 0-dimensional ideals, has been employed for univariate
polynomials in [CGRW19, DMS19, DS20]. Our method uses any generalized ideal, and gives the
new idea of lifting multivariates modulo ideals.

Lifting and p-adics. In the first step, we have the system of (p-adic) polynomials fj(x),
j ∈ [m]. If this system has a local root a, then we perform lifting to get the polynomials
f̃j(x) := p−1fj(a + px) and move on to find the roots of f̃j . As previously described, we use the
virtual root y0 = (y0,1, . . . , y0,n) instead of fixing the local root, and then add the polynomials
fj(y0) mod p, j ∈ [m], to the ideal I. The polynomial system after this will be considered modulo
I, however with a slight modification due to the following obstruction.

In this process of forming next-precision polynomials and ideals, we use Ĝ-arithmetic, instead of
Fq in the base, as it handles division by p in a clean way. Operations over Fq would not have allowed
division by p as new terms from the ideal might reappear in later steps when we divide by p.

The necessity for p-adics was also illustrated in Example 1. It is quite possible that a polynomial
r(y) is in the ideal is such that for an Fq-root a of the system it, r(a) is a non-zero multiple of
p over Z. Given an f(x) in the system of polynomial equations, let the polynomial after taking
f(y + px) modulo r(y) be of the form f̃(y + px) + q(y)r(y). Following this, we divide by p and
recursively continue to p−1f̃(y + px) for finding roots. This can lead to an error if p−1q(a)r(a) is

8

non-zero modulo p, in which case we should have continued to find roots of p−1f̃(y + px) + c, where
c is a non-zero constant.

However, if the polynomial r(y) were such that all of its roots were possible to lift to roots in Ĝ,
this problem would have been avoided as the lift â of a to Ĝ would have made r(y) vanish over
p-adics. It turns out that we can indeed modify the ideals such that these lifts exist, and will be
discussed in more details in Section 2.

Growing the p-adic ideal. We develop the idea of formation of p-adic ideals, which will store
the roots of each step of lifting. We will use Î for the Ĝ-ideal, which is a p-adic lifting of I to Zp

and perform our operations over Ĝ. This lifting of the ideal from Fq to the ring Ĝ will be explicitly

described later, but it can be roughly seen as considering the Fq elements as Ĝ elements, with the

trailing coordinates being zero (an integral lift of Fq to Ĝ).
Assuming that we have the p-adic lift of the ideal, Î, we describe a lifting step and the consecutive

growing of the ideal. Let us assume that we have lifted the system of polynomials fj(x), j ∈ [m], for

ℓ-steps, to give the polynomials f̃j(x) ∈ Ĝ[y0, . . . , yℓ−1][x] , and the ideal Î ⊆ Ĝ[y0, . . . , yℓ−1] .
Next, we consider the local virtual root yℓ =: (yℓ,1, . . . , yℓ,n) of the system f̃j(x), j ∈ [m], and

perform lifting to the (ℓ+ 1)-th precision. First, we increase the precision of the root in the ideal by
adding the polynomials fj(yℓ) mod p into Î + ⟨p⟩ (the projection of Î unto Fq), for j ∈ [m], and
redefining Î— thus storing the information about the ℓ-th step and growing the precision of the
roots contained inside Î. Subsequently, we obtain the new (lifted) system of polynomials given by
gj(x) = p−1f̃j(yℓ + px) mod Î, on which we proceed recursively.

Finding a satisfying instance. After iteratively forming a chain of ideals while increasing the
precision of the roots, we check if the system has a solution. The root of the polynomial which was,
say, present at the beginning of the algorithm will be of the form

(a0,1 + a1,1p+ · · ·+ ak−1,1p
k−1 , . . . , a0,n + a1,np+ · · ·+ ak−1,np

k−1) . (1)

Here, j-th coordinate ai,j is in Ĝ, as described earlier. So, this expansion is not unique (eg. we can
subtract any number t from a1,1 and add p · t to a0,1), but depends on the remaining coordinates.
Also, it suffices, for our application, to find values ai,j of the virtual root yi,j only up to the precision
of G (at most k-many coordinates).

2 Hilbert’s Nullstellensatz over Galois rings: Proof of Theorem 1

In this section, we complete the algorithm that finds a common root of a system of polynomials over
a Galois ring. The algorithm stores the roots in special ideals and modifies them such that they
have roots that lift to p-adics; and we describe a method to extract an ‘actual’ root from each of
these ideals returned by the algorithm. Some proofs of this section have been moved to Section B.3.

2.1 Main algorithm: Finding roots of a polynomial system

In order to complete the algorithm, we establish the missing details from Section 1.3. Our main
objective is, given the ideals formed during lifting, we transform them as a set of ‘special’ ideals
where each Fq point can be lifted to Ĝ. As seen in Proposition 3, enabling val-multiplicity of each
root would imply them to be lifted modulo any power of p. This also implies separating out the
non-singular roots should guarantee p-adic roots, which is now the motive of the rest of the section.

Lifting mod irreducible components. As discussed before, given the polynomials fj(x) ∈
Ĝ[y0, . . . ,yℓ−1][x] and the ideal Î ∈ Ĝ[y0, . . . ,yℓ−1] after ℓ steps of lifting, we now increase the

9

precision of the roots in Î to Î
′

given by adding yℓ’s, and lift the system to f̃j(x) := p−1f(yℓ +

px) mod Î
′

for j ∈ [m]. However, due to the motivation of having roots of the ideal that can be
lifted to p-adics, instead of using Î, we use an irreducible component of Î + ⟨p⟩ lifted to p-adics,
denoted as Ĉ, as we will see later on. These irreducible components of ideals can be seen as ‘factors’
of ideals corresponding to the factors of the polynomials generating the ideals. However, followed
by this, we perform decomposition of this ideal into absolutely irreducible components (Definition
12), on which we perform our arithmetic, to redefine f̃j . It will also guarantee val-multiplicity roots

1 (since roots are non-singular), and the roots having lifts to Ĝ (Proposition 3). Now, for the lifting
step, now we will have the polynomial after lifting, denoted by f̃j(x) := p−1fj(y0 + px) mod Ĉ

instead of taking modulo Î; where the ideal arithmetic is over Ĝ.
In case this gives new constraints on previous variables, we backtrack the steps.
Branching out by absolutely irreducible components. Our objective is to obtain non-

singular roots, via the birational hypersurface, as they lift all the way to p-adics. So, we ‘replace’
the ideal I by its absolutely irreducible components. At times, these components might correspond
to individual points (single point ideals from 0-dimensional ideals), when again, each root lifts to Ĝ
(Lemma 8).

Thus, as discussed in the above paragraph (on finding non-singular roots), we decompose the
ideal I = Î+ ⟨p⟩, the projection of Î to Fq, using the decomposition algorithm [HW99, Sec.3.3], and

then lift them again to Ĝ using Lemma 4. The decomposition procedure may give ‘many’ absolutely
irreducible components over Fq, on each of which our HNpk algorithm recurses. This procedure— of
selecting an irreducible component C each time, growing that ideal to next precision, and again loop
over its irreducible components —can be seen as a tree T .

This tree has several nodes which correspond to absolutely irreducible ideals. The depth of the
tree represents the precision of the roots formed until that point. This is also the number of times
the polynomials have been lifted, and thus the ideal has grown. The tree gives branches which
correspond to nodes containing irreducible components of the ideal formed from growing the parent
ideal to the next precision coordinate. We will show in Theorem 5 that these ideals can be used to
recover a G-root of the system of polynomials, and Algorithm 1 returns the leaves L, with the tree
T , thus formed.

Backtracking. Whenever we arrive at a root given by some ideal present in a node of the tree,
it must give a root with a precision equal to the depth of the tree, say ℓ. The path of the tree from
the root to the given node should also give each of the previous coordinates of the root, i.e. all
the previous (ℓ − 1) precision coordinates must be present at the current node, while only some
particular values give a valid root of the ℓ-th coordinate. This implies that the information about
the (ℓ− 1) coordinates in the ideal, before the decomposition, I ∩ Fq[y0, . . . ,yℓ−1] must be equal
to that after decomposition, C ∩ Fq[y0, . . . ,yℓ−1]. If this condition is not satisfied (i.e. a new root
corresponding to the previous coordinates arrives out of the blue), then we backtrack to the earlier
steps of the tree, discarding I and updating it by the new ideal C.

Finding non-singular roots. After setting the virtual roots in order to achieve the required
prime power k, say that we have the ideal Î, birationally mapped to a hypersurface Ĥ, given by a
polynomial ĥ over Ĝ, of dim = r, for 0 ≤ r ≤ dim(I). While, I (= Î + ⟨p⟩) is birationally mapped
to a hypersurface H, given by a polynomial h over Fq. We find a random root of H [HW99, Thm.2.6]
and map it to the 0-th coordinate of roots of Ĥ; this crucial property is proved in Lemma 4. After
which we can lift to find a Ĝ-root using an easy variant of Hensel’s lifting (Proposition 3). This
procedure gives us a Ĝ-root from the Fq-root.

10

Now, the density of non-singular roots on H will be much greater than singular roots (Lemma 7)
if it is absolutely irreducible. Picking a non-singular Fq-root, at random, we can lift it to a G-root.
If H is relatively irreducible (i.e. reduces in some field extension), we add the first-order derivative of
h to the ideal (Lemma 17), as will be explained in Section 2.2. Thus, we lift a root whenever the
hypersurface is absolutely irreducible and satisfiable.

Pseudocode. Using these ideas, and some technicalities on decomposition into absolutely
irreducible components described in Section 2, we sketch our algorithm. Using the system of
polynomials, it returns all the leaves of the tree described in the previous paragraph.

Input: The input consists of a system of n-variate polynomials {f1(x), . . . , fm(x) | fj(x) ∈
Ĝ[y0, . . .yℓ−1][x] } with the required exponent k, and an ideal Î = Îℓ−1 ⊆ Ĝ[y0, . . .yℓ−1]; where
p is prime and φ(z) is an Fp-irreducible polynomial. We also maintain the ideal tree T and keep
updating it along the algorithm.

Output: The algorithm outputs a list L of (absolutely irreducible) ideals, collectively containing
the lift of the common roots of the system fj(x) ≡ 0 mod ⟨pk⟩+ Î, for j ∈ [m].

Initialization: We initialize the ideal as Î := ⟨0⟩, ℓ := 0, and the required exponent as k. A
system of polynomials F := {F1(x), . . . , Fm(x)} where Fj(x) ∈ Ĝ[x]. We pass F to the algorithm
so it starts with HNpk(F1, . . . , Fm, k, ⟨0⟩).

Algorithm 1 Algorithm to find roots of a system of polynomial equations over a Galois ring.

1: procedure HNpk(f1, . . . , fm, k, Î, T)

2: if Zeroset VFq(Î + ⟨p⟩) = ∅ then return {}.
3: if k ≤ 0 then return {Î}.
4: I← ⟨f1(yℓ), . . . , fm(yℓ)⟩+ Î + ⟨p⟩, for (new) virtual root yℓ := (yℓ,1, . . . , yℓ,n).
5: S ← Abs Decomp(I); absolutely irreducible ideals as computed by Algorithm 2.
6: L ← {}
7: for each C ∈ S do
8: if C ∩ Fq[y0, . . . ,yℓ−1] = I ∩ Fq[y0, . . . ,yℓ−1] then

9: Find the special lift Ĉ of C to Ĝ by computing Gröbner basis and lifting, using Lemma

4. /*Ĉ is prime; reduced Gröbner basis w.r.t. y0 < . . . < yk−1.*/

10: Add C as a child of the current node to T .

11: For j ∈ [m], compute f̃j(x) := p−1fj(yℓ + px) mod Ĉ, over Ĝ[y0, . . .yℓ][x].

12: L ← L ∪HNpk(f̃1, . . . , f̃m, k − 1, Ĉ, T). /*Maintain the recursion-tree T .*/
13: else /*Backtrack & repeat steps*/
14: Find min s ≤ ℓ− 1 s.t. C← C ∩ Fq[y0, . . . ,ys] ⊋ I ∩ Fq[y0, . . . ,ys].

15: Find special lift Ĉ of C over Ĝ using Lemma 4.

16: For all j ∈ [m], compute f̃j(x) := p−s−1Fj(y0 + · · ·+ psys + ps+1x) mod Ĉ.

17: L ← L ∪HNpk(f̃1, . . . , f̃m, k + ℓ− 1− s, Ĉ, T). /*Maintain T as before.*/

18: return L. /*Also, return the recursion-tree T whose leaves are ideals in L.*/

Simple invariant. A node in the recursion-tree T either moves from Îℓ−1 to Îℓ, or backtracks to
redefine Îs, s < ℓ. In the former case, k reduces, while in the latter case dim(V(Îs)) reduces. Thus,
in a path, Îs can be redefined at most n times; thus bounding the length of any path in the tree by
≤ k + kn.

11

2.2 Decomposition into absolutely irreducible components

As discussed in Section 1.3, we need the ideal in Algorithm 1 to have a (non-singular) point
that lifts to Ĝ at every lifting step when we modify f̃ . In order to ensure this, we modify the
machinery developed in [HW99] to find the irreducible components of I whose birationally equivalent
hypersurface is absolutely irreducible over Fq. The crux of the decomposition algorithm of [HW99]
is Lemma 17, which will be used to reduce the dimension of the components and iteratively continue
the decomposition algorithm. (See Algorithm 2.)

Decomposing via birationally equivalent hypersurface. First, given the ideal C irreducible
over Fq which consists of several generators, we can construct a birationally equivalent hypersurface
H obtained from random linear shift of variables of C which is given by a single polynomial h. We
will use [HW99] for the construction of this hypersurface. Rational points on H correspond to
roots of C and vice versa. If h is absolutely irreducible, we can lift an Fq-root to Ĝ as will be
proved in Proposition 3-(2). We also show a strong connection between the absolutely irreducible
decomposition over Fq and that over Ĝ (Lemma 4) using a commutative diagram (Figure 1).

We follow the ideas of [HW99, Sec.3.3], and give a brief overview for the sake of clarity. Given
an Fq-ideal C, we find the (finitely many) irreducible components of C. As long as the irreducible
components map to a hypersurface H = V(h) which is not absolutely irreducible, we keep adding
the pullback of a derivative of h, say h∗, into the ideal; since the roots will satisfy this equation as
well (Lemma 17). This procedure reduces the dimension of the ideal C; thus, it continues for only
few steps, and reaches absolutely irreducible components.

Loss of points. The map between a component and its birational equivalent hypersurface
is given as rational functions ψ2 : V(C) → H and ψ1 : H → V(C). (Contravariantly, map ψ1 can
also be seen as a morphism on their function fields: Fq(V(C)) → Fq(H).) Owing to this property
of rationality, some points in C get lost when we perform the composition ψ1 ◦ ψ2. These are
precisely the zeroes of the functions which are in the denominator of ψ1 (since ψ2 is linear, like
the construction idea of primitive element theorem, and no roots will be lost). Let us consider the
polynomial e formed by multiplying the denominators of ψ1. In order to include these points of C
in our search, we consider the polynomial e∗ which is the pullback of e unto C, and include it to
the ideal C. As we will see, again the dimension of the ideal over Fq reduces, implying that this
procedure occurs only few times. Thus, we avoid losing any Fq-point, and simultaneously move to
absolutely irreducible hypersurfaces!

Special lift of ideals and roots. We are forming the ideals by adding fj(yℓ) mod p into I and

then ‘lifting’ the ideal to the p-adic one over Ĝ. The question arises– which Fq-roots lift ‘smoothly’
to p-adics, and which don’t? The latter ones are handled separately (as discussed above).

Lemma 4 (Connection of points via hypersurfaces). Given an Fq-irreducible ideal C (resp. its

birational equivalent hypersurface H), we can lift it to a prime Ĝ-ideal Ĉ (resp. its birational equivalent
hypersurface Ĥ), such that their morphism diagram commutes (Figure 1).

In particular, for a non-singular Fq-root of H (thus a root of C), we can find a Ĝ-root of Ĥ; which
gives a root of Ĉ. This sets up the ‘connection’ between roots of C and Ĉ.

The basic idea in the proof of Lemma 4 is: Given Fq-irreducible ideal C, compute the reduced
Gröbner basis of C, using the block order y0 < . . . < yk−1; and simply see it as a p-adic ideal Ĉ.
This is a Ĝ-irreducible ideal, which is the required special lift of C. (Its localized version B−1Ĉ has a
triangular Gröbner basis; where B is a transcendence basis of variables.) The proof closely follows
Figure 1; and proves its commutativity.

12

Now, the proof of Lemma 4 fails on a ‘small’ set of points given by the roots of e, the product
of denominators of ψ1, as described before. So, we separately include these points, by including
the pullback of e, which is e∗; and continue with our decomposition algorithm. Furthermore, the
root-lifting technique of Lemma 4 uses non-singular points to lift to p-adics, which does not work for
singular points (roots of h which are also roots of all first-order derivatives h′). Thus, again we need
to add the pullback of h′, say h∗, into the ideal, and continue with our decomposition Algorithm 2.
Finally, we can find (non-singular) Fq-roots of a (absolutely irreducible) system using [HW99].

In the end, we have absolutely irreducible ideals, which lift over Ĝ. Note that sometimes the
absolutely irreducible ideals might be single points as well, of the form ⟨y − a⟩. When the ideals
are absolutely irreducible, it is easy to search for a Ĝ-root (see Section 2.3). Based on these ideas,
we give Algorithm 2 in Section B.1 to decompose into absolutely irreducible components, without
losing any G-root.

2.3 Recovering a G-root of an ideal in L and T (of Algorithm 1)
An ideal Î ∈ L has the property that modulo p, i.e. I := Î + ⟨p⟩, it is absolutely irreducible.

If the ideal consists of a single point, from Lemma 8, each Fq-root of I lifts to G where the
trivial lifting is the required root.

If the ideal I has dim > 0 (i.e. the points are ‘dense’ by Theorem 18), then its birationally
equivalent hypersurface H = V(h) is utilized. Let the map ψ2 : VFq(I) → H be defined as
(ℓ1, . . . , ℓn) → (ℓ1, . . . , ℓr, ℓ0), where r ≥ 1 is the dimension of VFq(I) and ℓi’s are random linear

forms (as in Figure 1). Next, consider any lift Ĥ = V(ĥ) of H and compute the unique birational
equivalence ψ̂2 : V(Î)→ Ĥ and its inverse ψ̂1.

In order to find a root of ĥ, we pick a random non-singular Fq-root of h, and lift it to a root of

ĥ (by Lemma 7). Finally, use ψ̂1 : Ĥ → V(Î) to get the G-root of Î (again by Lemma 4), which
becomes the required output.

Let Î0, . . . , Îk−2, Îk−1 = Î be the eventual p-adic ideal definitions, in a path of the recursion tree
T . An important issue is: We need a G-root common to these ideals. Lemma 9 shows that this
condition is satisfied by randomly picking a root of Î. The primality of these ideals togetherwith a
‘common’ triangular Gröbner basis is key in this proof.

Using these ideas, we can formally design Algorithm 3, to recover a G-root (Section B.2).

2.4 Correctness: T has all the G-roots of the input system F
Theorem 5 (Correctness). If an ideal in L returned by Algorithm 1 has Ĝ-root (â0, . . . , âk−1) (given
by Algorithm 3), then the system F := {f1(x), . . . , fm(x)} has G-root (â0 + . . .+ pk−1âk−1 mod pk).
Conversely, if F has G-root a0 + . . .+ pk−1ak−1, then an ideal in L has some Ĝ-root (â0, . . . , âk−1),
such that a0 + . . .+ pk−1ak−1 ≡ â0 + . . .+ pk−1âk−1 mod pk.

Proof. The method of finding G-roots of a system of polynomials goes through three algorithms–
Algorithm 1, 2 and 3. The primary Algorithm 1, as discussed, works recursively over a tree; with the
branches corresponding to absolutely irreducible components of the Fq-ideals (Step 5 of Algorithm 1
as seen in Section 1.3).

Invariant reduces. We first bound the depth of this tree by showing an easy property:
val-multiplicity is at least 1 in every step (Lemma 16 in Section A). Thus, at each step of lifting,
either a new block yℓ is added, or some dim(Iℓ) falls. So, the depth of the tree is ≤ k + kn; and the
number of the variables (that store virtual roots) is ≤ nk. Furthermore, by arguing on the degree
and the dimension of the irreducible components, we deduce:

13

Lemma 6 (Size of tree). The total number of leaves L of the recursion-tree T , described in Section

1.3, is at most d(nk)
O((nk)2)

.

Roots that lift. We use [HW99, Sec.3] as a subroutine in Steps 3, 7, 14 of Algorithm 2 to
obtain the irreducible components of the ideal over Fq. After this, the ideals will be lifted in the
main algorithm (Steps 9, 14 of Algorithm 1) using Lemma 4. However, its proof needs to create a
map from the Fq-ideal (resp. its lift over Ĝ) to a hypersurface. In this process, the map becomes
undefined on ‘few’ roots of H (and hence misses some roots of C in the codomain). This happens
because the map ψ1 : H→ V(C) is a rational function where the denominators might be zero for
some points of H, and (as already discussed in Section 2.2) we consider the polynomial e∗ which
captures these missed ‘images’ in V(C). We continue our procedure on C+⟨e∗⟩ (Step 13 of Algorithm
2). Lemma 6 shows that this reduces the dimension of the birationally equivalent hypersurface each
time.

Apart from these points, some singular points of H might have lifts to Ĝ, but we are unable to
apply Hensel lifting directly. To cover these roots (and their missed ‘images’ in V(Ĉ)), we consider
another ideal where we include the pullback, say h∗, of a suitable first-order derivative of the
polynomial h (that defines H).

Likewise, when the ideal is relatively irreducible, the roots will be shared with h′, the derivative
of the polynomial representing H, and we add its pullback h∗ (Lemma 17) in Step 12 of Algorithm
2. The dimension of the ideal thus formed reduces by exactly one [HW99], and we continue
decomposing the ideal, until it returns an absolutely irreducible ideal. Thus, the while-loop (Steps
4-14 of Algorithm 2) runs for at most nk steps, which is the maximum possible dimension of the
ideal.

Roots captured by L. We want to show that all the roots of f1(x) ≡ · · · ≡ fm(x) ≡ 0 mod pk

are present in L, and vice versa.
First, we show that roots of L always give rise to a root of the system F of polynomial equations

f1(x) ≡ · · · ≡ fm(x) ≡ 0 mod ⟨pk, φ(z)⟩. In order to do this, we show the following two lemmas,
which help in proving that the roots of the system can be constructed from the roots of the projection
of the ideals unto Fq.

Lemma 7 (dim > 0 lift). Given an absolutely irreducible hypersurface H (resp. its lift Ĥ) over Fq of
dim > 0. Its random Fq-root is non-singular with high probability. Thus, we can lift a random root

of H to Ĝ-root of Ĥ.

Lemma 8 (single-point lift). Given an Fq-ideal I (resp. its lift Î) that is radical and is a single

point. We can uniquely lift it to Ĝ-root of Î.

As we see, the lifting slightly changes when the ideal consists of a single point. Now, these
single point ideals correspond to 0-dimensional components over Fq, which are dO(nk)-many. We
can consider the trivial lifts of these single points and check if these finitely many points satisfy the
system F .

Using these two lemmas, we prove the correctness of Algorithm 3, which proves one side of the
claim: L exactly captures the roots of the system F .

Lemma 9 (Correctness of Algorithm 3). Given Ĝ-ideal Îk−1 in a leaf of the tree T , Algorithm 3
finds a generic common Ĝ-root (if one exists) of the preceding ideals {Îℓ | ℓ}.

Using Lemma 9, we are now in a position to show that we can recover some root of the system
F from L.

14

Proposition 1 (Root in L −→ Root of F). Given a root of a leaf in L (using T and Algorithm 3),
we can find a common G-root of the system F of polynomials fj, for j ∈ [m].

Conversely, we can show that every G-root of the system F has its p-adic lift present in some
ideal of L.

Proposition 2 (Root of F −→ Root in L). If the system of polynomials, as described before, has a
root in G, then Algorithm 3 outputs a root for some leaf ideal Îk−1 in L.

Therefore, we have shown that the roots of nodes in L exactly correspond to those of F . Further,
these can be realized by Algorithm 3.

Proof of Theorem 1. As proved in Theorem 5, Algorithm 1 (using Algorithms 2–3) correctly returns
a root (via an absolutely irreducible ideal), if and only if one exists.

Tree T built by Algorithm 1 has size D := d(nk)
O((nk)2)

and each of the ideal in T has at most
nk variables with degree at most D (Lemma 6). At each step, we perform arithmetic with the
reduced Gröbner basis of the ideal, which has polynomials of degree ≤ D and ≤ nk variables, and
requires poly(D)-time Ĝ arithmetic [Dub90]. After these arithmetic operations are performed, we

check for an Fq-root of the ideals using [HW99], which takes randomized poly(m,D(nk)O(nk)

, log q)

time. Thus, the net time complexity is randomized poly(m, dcnk , log pb), where cnk ≤ (nk)O((nk)2)

and q = pb with b := deg(φ).
However, the algorithm uses [HW99] as a blackbox, which requires the additional condition that

q = pb > dcnk . If this condition is not satisfied, i.e. q is small, then we can deterministically find a
root using exhaustive search of qnk ≤ dcnk·nk many iterations. This case has the time complexity as
deterministic poly(m, dc

′
nk , log pb), where c′nk ≤ cnk · nk ≤ (nk)O((nk)2). This proves Theorem 1 in

all cases.

Using this, we show the reduction of factoring to HNpk in Appendix C; finishing Thm.2.

3 Conclusion and future work

In this article, we deal with the problem of finding a common root of a system of polynomial
equations, whose extension to Galois rings has been explored here. We extend the results of [HW99]
to find roots of a system of equations in Galois rings. Furthermore, faster algorithms for polynomial
system solving over Fq will lead to fine-grained improvements in the complexity of HNpk .

We also make progress towards finding factors of univariate polynomials in prime-power rings.
Interest in this problem developed after Hensel [Hen18] gave a method to lift (coprime) factors to
modulo any prime-powers. It is easier to factorize in fields, as seen before, but factorization modulo
small prime powers has been elusive to computer scientists; owing to the fact that these rings are not
integral domains and there can be exponentially many factors. This difficulty has been explained in
[CL01, Sir17, vzGH96, vzGH98, vzGP01]. Overcoming some of these obstructions, we generalize
[DMS21] to find factors of small ramification-degree modulo pk, for large primes p, and small k.

This paper motivates and leaves the following questions open.

1. Test solvability of a system of n-variate polynomials mod pk, for fixed n and arbitrary k
(resp. over the p-adic integers Zp).

2. Count points on curves modulo pk, over classical or quantum computers. (Some progress has
been made in [CS22] recently.)

15

3. Find a ‘large’ ramification-degree factor of f(x) mod p5; and extend it to any constant k.

4. Find a ‘small’ degree factor of f mod pk, for growing p, k.

5. Test irreducibility of f mod pk.

References

[Arm05a] Marc André Armand. Improved list decoding of generalized reed-solomon and alternant
codes over galois rings. IEEE transactions on information theory, 51(2):728–733, 2005.
4

[Arm05b] Marc André Armand. List decoding of generalized reed-solomon codes over commutative
rings. IEEE transactions on information theory, 51(1):411–419, 2005. 4

[BDT21] Charles Bouillaguet, Claire Delaplace, and Monika Trimoska. A simple deterministic
algorithm for systems of quadratic polynomials over F2. Cryptology ePrint Archive,
2021. 2

[Ber67] Elwyn R Berlekamp. Factoring polynomials over finite fields. Bell System Technical
Journal, 46(8):1853–1859, 1967. 3

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On
the complexity of solving quadratic boolean systems. Journal of Complexity, 29(1):53–75,
2013. 2

[Bha97] Manjul Bhargava. P-orderings and polynomial functions on arbitrary subsets of dedekind
rings. Journal fur die Reine und Angewandte Mathematik, 490:101–128, 1997. 5

[BKW19] Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of polynomial
equations over GF(2) by a parity-counting self-reduction. In 46th International Collo-
quium on Automata, Languages, and Programming (ICALP 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019. 2

[BLQ13] Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. Polynomial root find-
ing over local rings and application to error correcting codes. Applicable Algebra in
Engineering, Communication and Computing, 24(6):413–443, 2013. 2, 4, 5, 6, 7, 8

[Bro87] W Dale Brownawell. Bounds for the degrees in the Nullstellensatz. Annals of Mathe-
matics, 126(3):577–591, 1987. 2

[BS86] Zenon Ivanovich Borevich and Igor Rostislavovich Shafarevich. Number theory, volume 20.
Academic press, 1986. 3

[Buc65] Bruno Buchberger. Ein algorithmus zum auffinden der basiselemente des restklassen-
ringes nach einem nulldimensionalen polynomideal. PhD thesis, Universität Innsbruck,
1965. 25, 26

[CG00] David G Cantor and Daniel M Gordon. Factoring polynomials over p-adic fields. In
International Algorithmic Number Theory Symposium, pages 185–208. Springer, 2000.
3, 4

16

https://link.springer.com/article/10.1007/s00200-013-0200-5
https://link.springer.com/article/10.1007/s00200-013-0200-5

[CGRW19] Qi Cheng, Shuhong Gao, J Maurice Rojas, and Daqing Wan. Counting roots for
polynomials modulo prime powers. The Open Book Series (ANTS XIII), 2(1):191–205,
2019. 5, 8

[Chi87] AL Chistov. Efficient factorization of polynomials over local fields. Dokl. Akad. Nauk
SSSR, 293(5):1073–1077, 1987. 3, 4

[Chi94] AL Chistov. Algorithm of polynomial complexity for factoring polynomials over local
fields. Journal of mathematical sciences, 70(4):1912–1933, 1994. 3, 4

[Chi21] Alexander L Chistov. An effective algorithm for deciding solvability of a system of
polynomial equations over p-adic integers. Algebra i Analiz, 33(6):162–196, 2021. 3

[CL01] Howard Cheng and George Labahn. Computing All Factorizations in ZN [x]. In
Proceedings of the International Symposium on Symbolic and Algebraic Computation,
ISSAC’01, pages 64–71, 2001. 3, 5, 15

[CLO13] David Cox, John Little, and Donal OShea. Ideals, varieties, and algorithms: an
introduction to computational algebraic geometry and commutative algebra. Springer
Science & Business Media, 2013. 2, 25

[CP56] M Chojnacka-Pniewska. Sur les congruences aux racines données. In Annales Polonici
Mathematici, volume 3, pages 9–12. Instytut Matematyczny Polskiej Akademii Nauk,
1956. 5

[CS22] Sayak Chakrabarti and Nitin Saxena. An effective description of the roots of multivariates
mod pk and the related Igusa’s local zeta function. 2022. 3, 4, 15

[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, pages 587–592, 1981. 3, 33

[DH01] Jan Denef and Kathleen Hoornaert. Newton polyhedra and Igusa’s local zeta function.
Journal of number Theory, 89(1):31–64, 2001. 4

[Din21a] Itai Dinur. Cryptanalytic applications of the polynomial method for solving multivariate
equation systems over GF(2). In Advances in Cryptology–EUROCRYPT 2021: 40th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I, pages 374–403,
2021. 2

[Din21b] Itai Dinur. Improved algorithms for solving polynomial systems over GF(2) by multi-
ple parity-counting. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2550–2564. SIAM, 2021. 2

[DM97] Bruce Dearden and Jerry Metzger. Roots of polynomials modulo prime powers. European
Journal of Combinatorics, 18(6):601–606, 1997. 5

[DMS19] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Counting Basic-Irreducible Factors Mod
pk in Deterministic Poly-Time and p-Adic Applications. In Amir Shpilka, editor, 34th
Computational Complexity Conference (CCC 2019), volume 137 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 15:1–15:29, 2019. 5, 6, 7, 8, 27, 31

17

https://www.cse.iitk.ac.in/users/nitin/papers/IZF-n-var.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/IZF-n-var.pdf
http://drops.dagstuhl.de/opus/volltexte/2019/10837
http://drops.dagstuhl.de/opus/volltexte/2019/10837

[DMS21] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Efficiently factoring polynomials
modulo p4. Journal of Symbolic Computation, 104:805 – 823, 2021. Preliminary version
appeared in The 44th ACM International Symposium on Symbolic and Algebraic
Computation (ISSAC) 2019. 4, 5, 6, 7, 15, 22, 31, 32

[DS20] Ashish Dwivedi and Nitin Saxena. Computing Igusa’s local zeta function of univariates
in deterministic polynomial-time. 14th Algorithmic Number Theory Symposium (ANTS
XIV), Open Book Series, 4(1):197–214, 2020. 3, 4, 5, 8

[Dub90] Thomas W Dubé. The structure of polynomial ideals and gröbner bases. SIAM Journal
on Computing, 19(4):750–773, 1990. 15

[EK90] Andrzej Ehrenfeucht and Marek Karpinski. The computational complexity of (xor,
and)-counting problems. International Computer Science Inst., 1990. 2

[ELS+14] Matt Elder, Junghee Lim, Tushar Sharma, Tycho Andersen, and Thomas Reps. Abstract
domains of affine relations. ACM Transactions on Programming Languages and Systems
(TOPLAS), 36(4):1–73, 2014. 4

[FS15] Michael A Forbes and Amir Shpilka. Complexity theory column 88: Challenges in
polynomial factorization. ACM SIGACT News, 46(4):32–49, 2015. 3

[GGL08] Parikshit Gopalan, Venkatesan Guruswami, and Richard J Lipton. Algorithms for
modular counting of roots of multivariate polynomials. Algorithmica, 50(4):479–496,
2008. 2

[GNP12] Jordi Guàrdia, Enric Nart, and Sebastian Pauli. Single-factor lifting and factorization of
polynomials over local fields. J. Symb. Comput., 47(11):1318–1346, November 2012. 3

[Gop77] Valerii Denisovich Goppa. Codes associated with divisors. Problemy Peredachi Infor-
matsii, 13(1):33–39, 1977. 4

[Gre66] Marvin J Greenberg. Rational points in henselian discrete valuation rings. Publications
Mathématiques de l’IHÉS, 31:59–64, 1966. 3

[GS20] Abhibhav Garg and Nitin Saxena. Special-case algorithms for blackbox radical member-
ship, Nullstellensatz and transcendence degree. In Proceedings of the 45th International
Symposium on Symbolic and Algebraic Computation, pages 186–193, 2020. 2

[GTZ88] Patrizia Gianni, Barry Trager, and Gail Zacharias. Gröbner bases and primary decom-
position of polynomial ideals. Journal of Symbolic Computation, 6(2-3):149–167, 1988.
27

[Hau10] Herwig Hauser. On the problem of resolution of singularities in positive characteristic
(or: a proof we are still waiting for). Bulletin of the American Mathematical Society,
47(1):1–30, 2010. 3

[Hen18] Kurt Hensel. Eine neue theorie der algebraischen zahlen. Mathematische Zeitschrift,
2(3):433–452, Sep 1918. 3, 5, 15, 22

18

https://doi.org/10.1145/3326229.3326233

[Hir64] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of
characteristic zero: Ii. Annals of Mathematics, pages 205–326, 1964. 3

[HKC+94] A Roger Hammons, P Vijay Kumar, A Robert Calderbank, Neil JA Sloane, and
Patrick Solé. The Z4-linearity of kerdock, preparata, goethals, and related codes. IEEE
Transactions on Information Theory, 40(2):301–319, 1994. 2, 4

[HVLP98] Tom Høholdt, Jacobus H Van Lint, and Ruud Pellikaan. Algebraic geometry codes.
Handbook of coding theory, 1(Part 1):871–961, 1998. 4

[HW99] M-D Huang and Y-C Wong. Solvability of systems of polynomial congruences modulo a
large prime. computational complexity, 8(3):227–257, 1999. Preliminary version appeared
in The IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS)
1996. 2, 5, 6, 7, 10, 12, 13, 14, 15, 22, 24, 25, 26, 27, 28

[IR18] Gábor Ivanyos and Lajos Rónyai. Chevalley-Warning theorem in quantum computing.
ERCIM NEWS, 112:28–29, 2018. 4

[Kal92] Erich Kaltofen. Polynomial factorization 1987–1991. In Latin American Symposium on
Theoretical Informatics, pages 294–313. Springer, 1992. 3

[Kat09] Daniel Katz. Point count divisibility for algebraic sets over Z/pℓZ and other finite
principal rings. Proceedings of the American Mathematical Society, 137(12):4065–4075,
2009. 4

[Kay05] Neeraj Kayal. Solvability of a system of bivariate polynomial equations over a finite
field. In International Colloquium on Automata, Languages, and Programming, pages
551–562. Springer, 2005. 2

[Kli97] Adam Klivans. Factoring polynomials modulo composites. Technical report, Carnegie-
Mellon Univ, Pittsburgh PA, Dept of CS, 1997. 5

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature
schemes. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 206–222. Springer, 1999. 2

[KRRZ20] Leann Kopp, Natalie Randall, J Maurice Rojas, and Yuyu Zhu. Randomized polynomial-
time root counting in prime power rings. Mathematics of Computation, 89(321):373–385,
2020. 5

[KU11] Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM Journal on Computing, 40(6):1767–1802, 2011. 3

[Lau04] Alan GB Lauder. Counting solutions to equations in many variables over finite fields.
Foundations of Computational Mathematics, 4(3):221–267, 2004. 4

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge university press, 1994. 3

19

https://apps.dtic.mil/dtic/tr/fulltext/u2/a327984.pdf

[LPT+17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2190–2202. SIAM, 2017. 2

[Mau01] Davesh Maulik. Root sets of polynomials modulo prime powers. Journal of Combinatorial
Theory, Series A, 93(1):125–140, 2001. 5

[MOS05] Markus Müller-Olm and Helmut Seidl. Analysis of modular arithmetic. In European
Symposium on Programming, pages 46–60. Springer, 2005. 4

[MOS07] Markus Müller-Olm and Helmut Seidl. Analysis of modular arithmetic. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 29(5):29–es, 2007. 4

[MR75] Murray Marshall and Garry Ramage. Zeros of polynomials over finite principal ideal
rings. Proceedings of the American Mathematical Society, 49(1):35–38, 1975. 4

[NRS17] Vincent Neiger, Johan Rosenkilde, and Éric Schost. Fast computation of the roots
of polynomials over the ring of power series. In Proceedings of the 2017 ACM on
International Symposium on Symbolic and Algebraic Computation, pages 349–356, 2017.
7

[NZM13] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An introduction to the
theory of numbers. John Wiley & Sons, 2013. 3

[Pan95] Peter N Panayi. Computation of Leopoldt’s P-adic regulator. PhD thesis, University of
East Anglia, 1995. 4

[Pat96] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of polynomials (ip):
Two new families of asymmetric algorithms. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 33–48. Springer, 1996. 2

[RRZ21] Caleb Robelle, J Maurice Rojas, and Yuyu Zhu. Sub-linear point counting for variable
separated curves over prime power rings. arXiv preprint arXiv:2102.01626, 2021. 5

[Săl05] Ana Sălăgean. Factoring polynomials over Z4 and over certain galois rings. Finite fields
and their applications, 11(1):56–70, 2005. 4, 5

[Sch74] Wolfgang M Schmidt. A lower bound for the number of solutions of equations over
finite fields. Journal of Number Theory, 6(6):448–480, 1974. 24

[Sie55] Wac law Sierpiński. Remarques sur les racines d’une congruence. Annales Polonici
Mathematici, 1(1):89–90, 1955. 5

[Sir17] Carlo Sircana. Factorization of polynomials over Z/(pn). In Proceedings of the 2017
ACM on International Symposium on Symbolic and Algebraic Computation, pages
405–412. ACM, 2017. 5, 15

[SR14] Robert L Surowka and Kenneth W Regan. Polynomials modulo composite num-
bers: Ax-katz type theorems for the structure of their solution sets. arXiv preprint
arXiv:1404.4852, 2014. 4

20

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318088

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound.
Journal of complexity, 13(1):180–193, 1997. 3

[TKSG08] Neal Tew, Priyank Kalla, Namrata Shekhar, and Sivaram Gopalakrishnan. Verification
of arithmetic datapaths using polynomial function models and congruence solving. In
2008 IEEE/ACM International Conference on Computer-Aided Design, pages 122–128.
IEEE, 2008. 4

[TV13] Michael Tsfasman and Serge G Vladut. Algebraic-geometric codes, volume 58. Springer
Science & Business Media, 2013. 4

[TVZ82] Michael A Tsfasman, SG Vlădutx, and Th Zink. Modular curves, shimura curves,
and goppa codes, better than varshamov-gilbert bound. Mathematische Nachrichten,
109(1):21–28, 1982. 4

[vzGH96] Joachim von zur Gathen and Silke Hartlieb. Factorization of polynomials modulo small
prime powers. Technical report, Paderborn Univ, 1996. 4, 5, 7, 15

[vzGH98] Joachim von zur Gathen and Silke Hartlieb. Factoring modular polynomials. Journal of
Symbolic Computation, 26(5):583–606, 1998. (Conference version in ISSAC’96). 3, 5, 15

[vzGP01] Joachim von zur Gathen and Daniel Panario. Factoring polynomials over finite fields:
A survey. Journal of Symbolic Computation, 31(1-2):3–17, 2001. 3, 15

[Wal97] Judy L Walker. The nordstrom-robinson code is algebraic-geometric. IEEE Transactions
on Information Theory, 43(5):1588–1593, 1997. 4

[Wal99] Judy L Walker. Algebraic geometric codes over rings. Journal of pure and applied
Algebra, 144(1):91–110, 1999. 4

[Zas69] Hans Zassenhaus. On hensel factorization, I. Journal of Number Theory, 1(3):291–311,
1969. 22

[Zas78] Hans Zassenhaus. A remark on the hensel factorization method. Mathematics of
Computation, 32(141):287–292, 1978. 22

[ZG03] WA Zuniga-Galindo. Computing Igusa’s local zeta functions of univariate polynomials,
and linear feedback shift registers. Journal of Integer Sequences, 6(2):3, 2003. 4

[Zhu20] Yuyu Zhu. Trees, point counting beyond fields, and root separation. PhD thesis, Texas
A&M University, 2020. 4, 5

A Preliminaries

A.1 Notations

For an n-tuple a = (a1, . . . , an) and b = (b1, . . . , bn) in Fn, we have the following notations:

• ca + db = (ca1 + db1, . . . , can + dbn) for scalars c, d ∈ F,

• |a| = Σiai and a! = a1! · · · an!, where a ∈ Zn.

21

http://wwwmath.uni-paderborn.de/preprints/preprints_data/Gathen/factmodsmall.ps.gz
http://wwwmath.uni-paderborn.de/preprints/preprints_data/Gathen/factmodsmall.ps.gz
https://oaktrust.library.tamu.edu/handle/1969.1/191953

Definition 10 (Taylor expansion/series). For a polynomial f(x) of degree d over any field, we can
express it as

f(a + x) =
∞∑
ℓ=0

∑
|i|=ℓ

∂xif(a)

i!
·

n∏
j=1

x
ij
j

 , (2)

where ∂xif := ∂|i|f

∂x
i1
1 ...∂xin

n

is an order-|i| partial derivative.

We define some terms which have been used frequently throughout the paper.

Definition 11 (Non-singular roots). A root r of a polynomial f(x) ∈ F[x] is called a non-singular
root if some first-order derivative f ′(x) (say ∂xjf) does not vanish at r.

Definition 12 (Absolutely irreducible). Let f(x) ∈ F[x] be a polynomial, where F is a field and F
is its algebraic closure. Then f(x) is absolutely irreducible if it is irreducible over F.

If f(x) is irreducible over F but factorizes in F, we call it relatively irreducible.

We extend this definition to ideals as well. Given an irreducible ideal I over F, using [HW99,
Theorem 2.6], we can map it to a hypersurface H given by the variety of a single polynomial h. If
this polynomial h is absolutely irreducible, we refer to the ideal I as absolutely irreducible.

A.2 Simplifying the factors of f(x) modulo pk

Without loss of generality, we can assume given f ∈ Z[x] to be monic mod pk (i.e. its leading
coefficient is 1). Eg. f = px3 − x2 + 1 can be written as (−x2 + 1)

(
px3/(−x2 + 1) + 1

)
, where the

second factor is clearly a unit mod pk. Thus, for nontrivial factorization we only need to consider
the monic polynomial g := x2 − 1.

The following variant of Hensel’s Lemma simplifies the task even more. It lets us assume
f(x) = φe + pg, where φ, g ∈ Z[x] such that φ is monic, and φ mod p is irreducible. Again, we can
assume: deg(f) = e · deg(φ) > deg(g).
Lemma 13 (Hensel’s lemma for coprime factors [Hen18, Zas69, Zas78]). Let R be a commutative
ring with unity, denote the polynomial ring over it by R[x]. Let I be an ideal of ring R. Given a
polynomial f(x) ∈ R[x], suppose f factorizes as f = gh mod I , such that gu+ hv = 1 mod I (for
some g, h, u, v ∈ R[x]). Then, given any l ∈ N, we can efficiently compute g∗, h∗, u∗, v∗ ∈ R[x], such
that,

f = g∗ · h∗ mod Il .

Here g∗ = g mod I , h∗ = h mod I and g∗u∗ + h∗v∗ = 1 mod Il (i.e. the lift is pseudo-coprime too).
Moreover, g∗ and h∗ are unique up to multiplication by a unit.

Factoring to Root-finding: Interestingly, [DMS21] showed that finding a factor g(x) := φδ − py
of f(x) = φe + ph(x) mod pk, where φ, h ∈ Z[x] with φ irreducible mod p and δ < e, is equivalent
to finding a root of a special polynomial E(y) ∈ Z[x, y] (E as defined in Theorem 14) modulo a
bi-generated ideal ⟨pk, φδk⟩.

Theorem 14 (Reduction [DMS21, Thm.11]). With f, φ, g as above, g is a factor of f modulo pk if
and only if E(y) := f · (φδ(k−1) + φδ(k−2)(py) + · · ·+ φδ(py)k−2 + (py)k−1) ≡ 0 mod ⟨pk, φδk⟩.

22

A.3 Arithmetic on roots modulo pk

As always, define the unramified extension Ĝ := Zp[z]/⟨φ(z)⟩; its Galois ring G := Z[z]/⟨pk, φ(z)⟩,
and its Galois field Fq. For a polynomial f(x1, x2) over Ĝ, we define the effective polynomial as
f(x1, x2) mod p, where the coefficients are in Fq (w.l.o.g. f(x1, x2) mod p is non-constant). Similarly,
the effective degree of f(x1, x2) is the degree of f(x1, x2) mod p.

The term valuation of a, v(a), is defined as the largest integer v ≥ 0 such that pv|a. Now, we
define a local root of f(x1, x2) as a Fq-root of the effective polynomial f(x1, x2) mod p. For a local
root (a1, a2), local valuation is defined as v(f(a1, a2)).
Definition 15 (Val-multiplicity). Val-multiplicity of local root a (viewed as an element of Ĝ) is
defined as v(f(a+px)), i.e., the minimum valuation of the coefficients of the polynomial thus formed.

We now show that a non-singular Fq root can be lifted to the p-adic Ĝ.

Proposition 3 (Hensel’s p-adic lift of roots). Given a polynomial f(x) ∈ Ĝ[x], let a ∈ Fn
q be a

non-singular root of f(x) mod p over Fq. Then, we have the following

1. Consider a as an element of Ĝ too. Val-multiplicity of the root is 1, which implies that the
effective degree becomes 1 after lifting the polynomial by a.

2. We can lift the root a to root â ∈ Ĝn, such that f(â) = 0 over Ĝ.

Proof of Part 1. We can write the polynomial during lifting as

f(a + px) =
d∑

ℓ=0

∑
|i|=ℓ

∂xif(a)

i!
· (px1)i1 . . . (pxn)in

 . (3)

Since the root a is non-singular, ∂xjf(a) ̸= 0 mod p, which implies that the term Σn
j=1(∂xjf(a))

(pxj) is divisible by p, but not by p2. By the above Taylor’s expansion, we can infer that p|f(a+ px)
but p2 ∤ f(a + px), implying that the val-multiplicity of the local-root a is 1.

Now, the terms in the multivariate Taylor’s series with ℓ ≥ 2 are divisible by p2. These terms,
after division by p (owing to the val-multiplicity being 1), will vanish modulo p. Thus, the effective
polynomial only contains linear terms; implying that the effective degree is 1.

Proof of Part 2. Since the effective degree is currently 1, we can consider the polynomial as

f(x) = l1x1 + · · ·+ lnxn +m+ p · g(x) , (4)

where (w.l.o.g.) ln is a nonzero constant modulo p, m, li’s are constants, and g(x) is a polynomial
over Ĝ. Since the effective polynomial is linear, we can fix any value (a1,1, . . . , a1,n−1) to the first
(n−1)-coordinates, and find the unique value of xn; given by a1,n = −(l1a1,1+· · ·+ln−1a1,n−1+m)/ln.
We denote this root by a1, giving the root for two-steps of lifting as a + pa1. The next lifting step
starts with the substitution f(a1 + px), the polynomial will be lifted as:

l1(a1,1 + px1) + · · ·+ln−1(an−1,1 + pxn−1)+

ln(− (l1a1,1 + · · ·+ ln−1a1,n−1 +m)/ln + pxn) +m+ pg(a1 + px) .

In particular, any non-constant monomial from the pg part, will be divisible by p2; while the linear
terms which were initially in the effective polynomial will have valuation exactly p. Thus, the

23

val-multiplicity of the root a1 is 1, and the effective degree remains the same (i.e. 1). The coefficients
of xj ’s in the effective polynomial will again be lj ’s, for j ∈ [n]; the only change being that the
constant m will now change.

We again continue our process of fixing the first n− 1 coordinates to any value, finding the value
of the n-th coordinate, and then lifting; whence the effective polynomial remains a linear of the form
l1x1 + . . . lnxn +m′, for possibly different constants m′ everytime. This process can be continued to
any number of steps, in order to obtain a p-adic root (non-unique) up to any finite precision.

We give the following straightforward property, based on lifting, as described in Section 1.3. It
will be useful later in proving the correctness of Algorithm 1.

Lemma 16 (Val-multiplicity ≥ 1). Given the lifting as defined in Algorithm 1, the val-multiplicity is
at least 1 in each step; i.e. p|fj(yℓ +px) mod Ĉ, where Ĉ is the p-adic lift of an irreducible component
of the ideal I, as described in the algorithm.

Proof. Let us consider the multivariate Taylor’s expansion (Definition 10) of the j-th polynomial
fj(yℓ + px) given by

fj(yℓ + px) = fj(yℓ) + p
∑
i∈[n]

∂xifj(yℓ) · xi + . . . , (5)

where the terms of order-|i| (partial-derivative) are divisible by p|i|.
As we traverse along the depth of the tree, the polynomial fj(yℓ) mod p will be added to I

(Step 4 of Algorithm 1). In Step 5, we consider the absolutely irreducible components of this ideal
projected down to Ĝ/⟨p⟩ = Fq, and loop over them from Step 7 of Algorithm 1. These absolutely

irreducible components are such that they are first the factors of I, after which we lift them to Ĝ.
Thus, for any component Ĉ of Step 9, we have I = Î + ⟨p⟩ ⊆ Ĉ + ⟨p⟩ = C.

Now, when we add fj(yℓ) mod p to I, while introducing a new set of virtual roots yℓ, in Step 4
of Algorithm 1, then Equation 5 modulo I is divisible by p. Therefore, from the previous paragraph,
we get that Equation 5 modulo Ĉ is also divisible by p, implying that the val-multiplicity is ≥ 1,
and after division by p, the polynomial will still have coefficients in Ĝ.

A.4 Commutative algebra preliminaries

Lemma 17 (Singular roots [HW99, Lem.2.1]). If a polynomial h(x) is irreducible over Fq, but
reducible over its algebraic closure Fq, then for any root a ∈ Fn

q of h, we have

h(a) = hxj (a) = 0

over Fq, for any first-order partial-derivative hxj of h.

The following lemma gives an estimate on the number of roots of an absolutely irreducible
polynomial, which has been used in [HW99] to find a root of a system of polynomial equations over
Fq. This is the reason why absolute irreducibility is crucial in this paper.

Theorem 18 (Number of roots [Sch74]). An absolutely irreducible polynomial f(x) (d-degree n-
variate) has number of roots in the range, qn−1 ± ((d− 1)(d− 2)qn−1.5 + 6d2qn−2), over a ‘large’
finite field Fq (namely, q > ω(n3d5)).

24

Gröbner basis. We require some concepts of Gröbner basis in our algorithm to find ‘special’
lifts to Ĝ (in Lemma 4). Modulo multivariate polynomial ideals, the remainder on division is not
always unique. Thus, we modify the ideal by adding some more generators, depending on a given
ordering of variables, such that the remainder modulo the ideal is unique.

For a given ideal I, the S-polynomial of two polynomials g1, g2 in I is defined as

S(g1, g2) =
lcm(LM(g1),LM(g2))

LT(g1)
· g1 −

lcm(LM(g1),LM(g2))

LT(g2)
· g2 , (6)

where LM denotes the leading monomial and LT denotes the leading term.
Buchberger [Buc65] gave the famous algorithm to compute the (reduced) Gröbner basis; by

considering every pair of current generators of the ideal and iteratively adding their S-polynomials;
until the S-polynomials are zero. More properties of Gröbner basis, and their complexity, can be
found in [CLO13].

B Algorithms and proofs from Section 2: Details of HNpk

B.1 Decomposing into absolutely irreducible components

Algorithm 2 Abs Decomp(I), decomposes the Fq-ideal I to absolutely irreducible ideals C ∈ Sabs
in such a way that zeroset VFq(I) remains unchanged, i.e, VFq(I) =

⋃
C∈Sabs

VFq(C).

Input: The algorithm takes as input, a radical ideal I ⊆ Fq[y1, . . . , yn].

Output: The algorithm outputs a set Sabs consisting of absolutely irreducible ideals C, s.t.
V(I) =

⋃
C∈Sabs

V(C).

Algorithm 2 Decomposing I into absolutely irreducible components over Fq.

1: procedure Abs Decomp(I)
2: Define Sabs := {} and Sirr := {}.
3: Decompose I into irreducible components over Fq using [HW99], and store them in Sirr.
4: while Sirr ̸= ∅ do
5: C← Pop(Sirr).
6: if dim(VFq(C)) = 0 then
7: Compute VFq(C) using [HW99] and for each a ∈ VFq(C), update Sabs ← Sabs∪{⟨y−a⟩}.

8: else
9: if C is absolutely irreducible then

10: Sabs ← Sabs ∪ {C}
11: Let dim(VFq(C)) =: r. Using [HW99] compute a birationally equivalent hypersurface

H := VFq(h(l1, . . . , lr, Y)) and the rational maps ψ1 : H → V(C) and ψ2 : V(C) → H.
(l, Y are linear forms in y; also see Figure 1.)

12: Compute C1 := Rad(C + ⟨h∗⟩), where h∗ is pullback of a first-order partial-derivative
h′ ̸= 0.

13: Compute C2 := Rad(C + ⟨e∗⟩), where e∗ is the pullback of e, which is a product of
the denominators that appear– in rational functions ψ1 =: (ψ1,1, . . . , ψ1,n), or in the
localization done in Lemma 4.

25

14: Decompose the ideals C1, C2 into irreducible components over Fq using [HW99], and
push these components into Sirr.

15: return Sabs

B.2 Recovering an actual G-root from L

In this section, we give the algorithm to recover a root from the set of ideals L (and recursion-tree
T) returned by Algorithm 1, which has been described in Section 2.3. We keep applying Algorithm
3 on each ideal of L until we find one whose variety is not null.

Input: Let I := {Î0, . . . , Îk−1 =: Î} be the eventual ideal definitions leading to the leaf Î ∈ L.
Ideal Îℓ ⊆ Ĝ[y0, . . . ,yℓ] is prime, for 0 ≤ ℓ ≤ k − 1, and the required prime-power precision is pk.
Further, Iℓ := Îℓ + ⟨p⟩ is absolutely irreducible.

Output: A ‘generic’ common G-root (a0, . . . ,ak−1) of I, if it exists; ϕ otherwise.

Algorithm 3 Recovering p-adic or G-root common to the ideals I.

1: procedure Roots(I, pk)
2: if VFq(Îk−1 + ⟨p⟩) = ϕ then
3: return ϕ

4: else if Îk−1 contains a single point then
5: return the single point (â0, . . . , âℓ) (Lemma 8).
6: else
7: Compute the birationally equivalent hypersurface H of Îk−1 + ⟨p⟩, over Fq, and the maps

ψ1 : H→ V(Îk−1 + ⟨p⟩) and ψ2 : V(Îk−1 + ⟨p⟩)→ H using [HW99]. (Also, see Fig. 1).

8: Similar to Figure 1, compute the hypersurface Ĥ birational to Îk−1 over Ĝ, and the

mappings ψ̂1 : Ĥ→ V(Îk−1) and ψ̂2 : V(Îk−1)→ Ĥ .

9: Find a random Fq-root a on H using [HW99].

10: Map a to the 0-th coordinate of the corresponding root of Ĥ, using Lemma 4, to get the
approximation a′.

11: Lift a′ to â, using Hensel’s lifting, which is a root of Ĥ modulo pk (Lemma 7).

12: return the pullback of â =: (â0, . . . , âk−1) given by ψ̂1(â).

B.3 Missing proofs of Section 2

Lemma 4 (Connection of points via hypersurfaces). Given an Fq-irreducible ideal C (resp. its

birational equivalent hypersurface H), we can lift it to a prime Ĝ-ideal Ĉ (resp. its birational equivalent
hypersurface Ĥ), such that their morphism diagram commutes (Figure 1).

In particular, for a non-singular Fq-root of H (thus a root of C), we can find a Ĝ-root of Ĥ; which
gives a root of Ĉ. This sets up the ‘connection’ between roots of C and Ĉ.

Proof. We have a prime ideal C given by generators in Fq[y1, . . . , yN]. Let r > 0 be the dimension
of the variety of C. By one of the definitions of dimension, there is a subset B =: {ℓ1 < . . . < ℓr}
of least possible variables in y, such that the function field Fq(C) is a finite extension over the
transcendental field Fq(B). So, we consider its defining maximal ideal B−1C; and compute its
reduced Gröbner basis (using Buchberger’s algorithm [Buc65]); with the graded lexicographical

26

ordering y1 < . . . < yN and variables B localized. Let B′ := y \ B =: {ℓr+1 < . . . < ℓN} be the
remaining variables.

Triangular form. The localization B−1C is a zero-dimensional prime ideal (= maximal ideal).
Thus, by [GTZ88, Prop.5.9], B−1C has exactly N − r generators, the i-th one (r < i ≤ N)
corresponding to a monic minpoly (over Fq(B)) for the variable ℓi in B′ (in particular, having the
leading-monomial an ℓi-power). Thus, the Gröbner basis GB(B−1C) is in a special form, that we
call the triangular form in B′ over B (see [DMS19, Def.4]).

p-adic lift. Compute the reduced Gröbner basis GB(C) too, and divide each generator by its
leading coefficient (in F∗

q) to make the polynomials monic; store them in reduced form where the

coefficients are in {0, . . . , p−1}. Define the p-adic lift Ĉ, of C to Ĝ, by considering the trivial integral
embedding of each generator of C. By Gröbner basis properties and the special generators, this
special lift Ĉ is a prime Ĝ-ideal.

Doing the same thing to GB(B−1C), it is easy to deduce: the Ĝ-ideal thus obtained, called B−1Ĉ,
is a maximal ideal with a triangular (& reduced) Gröbner basis.

Fq-map. By construction, Fq(B)[B′]/C is a field, denoted R, of finite degree over R0 := Fq(B).
We can compute a hypersurface H that is birationally equivalent to the variety of C [HW99, Thm.2.6].
A standard algebraic way to compute it, is to pick a random linear form ℓ0; assume q to be ‘large’
enough fo random sampling. Let h(Y) be the minpoly of the primitive element ℓ0 ∈ R over the
subfield R0. We can store a representation of h in Fq[B][Y] such that it gives an R0-isomorphism ψ1

between the fields, R = R0[B
′]/C ∼= S := R0[Y]/⟨h⟩ ; mapping ℓ0 7→ Y , and other ℓi (i > r) to its

implied image.

p-adic map. Take any p-adic lift ĥ of h; clearly ĥ ∈ Ĝ(B)[Y]. By definition, ĥ(ℓ0) ∈ C = Ĉ+ ⟨p⟩.
Since ℓ0 is a separable Fq-root of ĥ, we can Hensel lift it to a Ĝ-root ℓ′0 ∈ Ĝ(B)[B′] =: R′0[B′] such that

ĥ(ℓ′0) ∈ Ĉ. So, mapping Y 7→ ℓ′0 gives a R′0-homomorphism ψ̂2 : S′ := R′0[Y]/⟨ĥ⟩ −→ R′ = R′0[B
′]/Ĉ;

which is a map between integral domains. Moreover, it remains a nontrivial homomorphism if we
localize the base ring from Zp to Qp; making it a map between fields. Thus, ψ̂2 is an injective
R′0-homomorphism.

Now we know: all the four rings in Figure 1 are domains (& two are fields). So, in case ψ̂2 is
not an isomorphism, it is injective and non-surjective. Let v0 ∈ R′ be an element that is out of the
image, but we know that some lift v0 + pv1 is in the image of ψ̂2 (by traversing the commutative
diagram). Similarly, we have that some lift v1 + pv2, of v1, is in the image of ψ̂2. Combining these
two, we know: v0− p2v2 is in the image of ψ̂2. Doing this ad infinitum, we get v0 in the image of ψ̂2;
contradicting its choice. We conclude: ψ̂2 is an isomorphism, with the inverse map being (say) ψ̂1.

Ĝ(ℓ1, . . . , ℓr)[ℓr+1, . . . , ℓN]/Ĉ Ĝ(ℓ1, . . . , ℓr)[Y]/⟨ĥ⟩

Fq(ℓ1, . . . , ℓr)[ℓr+1, . . . , ℓN]/C Fq(ℓ1, . . . , ℓr)[Y]/⟨h⟩

ψ̂2

ψ1

ψ2

mod pmod p

Figure 1: Commutative Diagram

27

In the above diagram let us start with a non-singular Fq-root a of H := V(h). With high
probability, it will keep the relevant polynomials in ℓ1, . . . , ℓr nonzero mod p; thus it would be
consistent with the localization. It has ‘pullback’ via ψ1, giving a root of C. By the separability of
the Fq-root, a lifts to a root â of Ĥ := V(ĥ); from up there it has ‘pullback’ via ψ̂1, giving a Ĝ-root
of Ĉ too. This connects V(C) with V(Ĉ).

Lemma 6 (Size of tree). The total number of leaves L of the recursion-tree T , described in Section

1.3, is at most d(nk)
O((nk)2)

.

Proof. We build tree T by first passing an ideal I0, in n variables, in Algorithm 2 with generators
of degree at most d0 := d. The set of absolutely irreducible ideals returned by Algorithm 2 forms
the branches in the first level of T . Each of these ideals (branches) at level-1, say I1, of degree d1
(now in 2n variables) recurse in Algorithm 2, and produce more branches (ideals) at level-2. This
process continues till (k − 1)-th level.

The analysis of producing branches from an ideal at level (ℓ− 1) to level ℓ is the same as that
of [HW99]. This will allow us to use their estimates for number of branches and degree of new
generators produced [HW99, Lem.2.7].

Similar to [HW99], we first decompose ideal Iℓ−1 in nℓ variables at Step 3 (Algorithm 2).
However, we add h∗ and e∗ in the ideal at Steps 12-13 and then iterate. The idea of Step 12 is same
as in [HW99] to capture the singular points of V(I) in separate absolutely irreducible ideals by
adding h∗ to the ideal. In [HW99], it was shown that the dimension of variety reduces when we add
h∗.

When we add e∗, we make the ‘free’ variables ℓ1, . . . , ℓr in the hypersurface (in Lemma 4) to
satisfy an equation e(ℓ1, . . . , ℓr) = 0. Therefore, the transcendence degree reduces by 1, and it can
reduce at most dimension-many times. So, complexity wise Step 13 is subsumed in Step 12 as
degree of h∗ and e∗ have similar bound [HW99, Lem.2.7, Thm.2.6].

Applying analysis of [HW99] on ideal I0 at level-0, the number of branches (ideals) produced

are dn
O(n)

0 and the degree of generators at most dn
O(n)

0 =: d1 at level-1. Each such branch (ideal)

further produces (at level-2) d
(2n)O(2n)

1 new branches with degree at most d
(2n)O(2n)

1 . By induction,

the generator-set size, and degree, at level-nk (i.e. the leaves) is ≤ d(nk)O((nk)2)
.

Lemma 7 (dim > 0 lift). Given an absolutely irreducible hypersurface H (resp. its lift Ĥ) over Fq of
dim > 0. Its random Fq-root is non-singular with high probability. Thus, we can lift a random root

of H to Ĝ-root of Ĥ.

Proof. Let the hypersurface H be given by the polynomial ⟨h(Y)⟩ over Fq(ℓ1, . . . , ℓr) as before. Since
it is absolutely irreducible, the variety V(h, h′) has dimension one less than that of V(h), where
h′ ≠ 0 is some first-order derivative of h. Therefore, the probability of a point being a non-singular
root of H, is around (1 − qr−1/qr) = 1 − 1/q (by Theorem 18). Using a random non-singular root,
we can lift it to modulo any p-power (by Proposition 3); thus, we get a Ĝ-root.

Lemma 8 (single-point lift). Given an Fq-ideal I (resp. its lift Î) that is radical and is a single

point. We can uniquely lift it to Ĝ-root of Î.

Proof. Since the ideal has a single point say a; the ideal Î is just of the form ⟨y− â⟩. So, we output
â.

28

Lemma 9 (Correctness of Algorithm 3). Given Ĝ-ideal Îk−1 in a leaf of the tree T , Algorithm 3
finds a generic common Ĝ-root (if one exists) of the preceding ideals {Îℓ | ℓ}.

Proof. Using Lemma 4, we map an Fq-root of ideal I to the 0-th coordinate of some (unknown)

p-adic root of the ideal Î. After this, if the root is random, we can lift to a Ĝ-root using Hensel’s
lifting (Lemma 7). If the root comes from a single point ideal I, then we use Lemma 8. Thus,
Algorithm 3 correctly returns a Ĝ-root of the given ideal Î (as long as, q is ‘large’ enough for
sampling). But what about the other ideals in the path in T leading to Î?

We further need to show that the variety V(Îℓ−1) extends to V(Îℓ) (where Îℓ−1, Îℓ are the
eventual definitions in recursion-tree T). Consider a lift using Lemma 4; say in the Fq-ideal Iℓ−1 the
variables Bℓ−1 are localized giving the triangular form (reduced Gröbner basis) in Fq(Bℓ−1)[B

′
ℓ−1],

where B′
ℓ−1 := ∪i≤ℓ−1yi \ Bℓ−1. Similarly, define Bℓ and B′

ℓ, for Iℓ. Recall the variable order,
blockwise, yℓ−1 < yℓ. By Algorithm 1 (Step 8), Bℓ−1 = Bℓ; and Iℓ−1 ⊆ Iℓ. Thus, the minpoly of
the variables B′

ℓ−1, over Fq(Bℓ), in B−1
ℓ Iℓ; is the same as it was in B−1

ℓ−1Iℓ−1. So, all the variables
∪i≤ℓ−1yi have the same minpoly in the two Gröbner bases; and the triangular form is preserved in
the new ideal B−1

ℓ Iℓ.
Consequently, from Lemma 4 lifting, the generators of B−1

ℓ−1Îℓ−1 are contained inside those of

B−1
ℓ Îℓ. Therefore, the variety of Îℓ−1 extends to that of Îℓ: For any generic root (â0, . . . , âℓ) of Îℓ,

the projection (â0, . . . , âℓ−1) is a root of the predecessor ideal Îℓ−1.
With this induction step done, we can complete the proof for all 0 ≤ ℓ ≤ k − 1. We use a

monomial ordering, that is consistent with all steps, namely: y0,1 < y0,2 < · · · y0,n < · · · yk−1,1 <
yk−1,2 < · · · yk−1,n. Under localization of respective transcendence-basis, we keep the leading term
of the generators of these ideals, to be yi,j-powers; maintaining the triangular form of Gröbner basis.
Thus, a generic root of the leaf Îk−1, is also a generic common root of the ideals {Î0, . . . , Îk−1} that
led to the leaf Îk−1 ∈ T .

Proposition 1 (Root in L −→ Root of F). Given a root of a leaf in L (using T and Algorithm 3),
we can find a common G-root of the system F of polynomials fj, for j ∈ [m].

Proof. We are given a prime ideal, say Îk−1 ∈ L, and the associated latest prime ideals I :=
{Î0, . . . , Îk−1} in the recursion-tree T of Algorithm 1. Let us assume that when the ℓ-th ideal

(Îℓ−1) was defined the last (satisfying Step 8 of Algorithm 1), the j-th polynomial was f
(ℓ)
j (x)

∈ Ĝ[y0, . . .yℓ−1][x] (done at Step 10 of Algorithm 1).
From the p-adic root of I, say (a0, . . . ,ak−1) ∈ Ĝnk by Algorithm 3; we want to show that we

can construct a common G-root of fj(x)’s, j ∈ [m]. We prove this by simply using the lifting-steps,
one precision at a time, that designed the recursion-tree.

p | f (0)j (y0) mod Î0 , (7)

p | f (1)j (y0,y1) mod Î1 ,

...

p | f (k−1)
j (y0,y1, . . . ,yk−1) mod Îk−1 .

Next, we can merge the divisibility properties of the key k lifting-steps (Algorithms 1 & 3),
at the common p-adic point (a0, . . . ,ak−1) of Equation 7. This can be written as the following

29

cascading divisibilities:

p | f (0)j (a0) → p2 | f (0)j (a0 + pa1) (8)

→ p3 | f (0)j (a0 + pa1 + p2a2)

→ . . . → pk | f (0)j (a0 + pa1 + . . .+ pk−1ak−1) ,

which provides the required precision pk; thus giving the G-root (a0 + . . .+ pk−1ak−1) of fj . This
finishes proof.

Proposition 2 (Root of F −→ Root in L). If the system of polynomials, as described before, has a
root in G, then Algorithm 3 outputs a root for some leaf ideal Îk−1 in L.

Proof. Let us assume that the system of polynomials has a G-root, given by a := (a0 + pa1 +
· · · + pk−1ak−1), with ai’s effectively ‘in’ Fq. We use a technique, similar to that in the proof of
Proposition 1, to inductively show that a root up to precision ℓ digits gives a p-adic root of the
ideal grown for ℓ-steps (possibly with backtrackings). We use the same notation as of Proposition 1

for f
(ℓ)
j , Îℓ.

For the base case of induction, let us consider the root a0 of f1(y0), . . . , fm(y0) over Fq. Now,
each of these equations were added to the ideal Î0, on which we performed the decomposition
algorithm to find components Ĉ’s. Since, a0 is a root of Î0+⟨p⟩, it must also be a root of some Ĉ+⟨p⟩;
let us fix this ideal Ĉ. Now, by definition (Algorithm 2 & Lemma 4), Ĉ is prime; and absolutely
irreducible modp. If a0 is a non-singular Fq-root of Ĥ (= hypersurface birationally equivalent to
Ĉ), then it has a lift, say â0, using Hensel’s lifting (Proposition 3). Thus, we get a corresponding
Ĝ-root of Ĉ ∈ T . On the other hand, if a0 is a singular root, or a root whose preimage does not
exist in the hypersurface, then it will be present in some ideal of lesser dimension (eg. in another
branch of recursion-tree T). So, Algorithm 2 will locate a0 as a non-singular root of some other
absolutely irreducible ideal of dimension ≥ 0. Thus, we always get a corresponding Ĝ-root of some
ideal, say D̂, in T .

Now, for our induction hypothesis, assume that the root of the system modulo pℓ, (a0 + · · ·+
pℓ−1aℓ−1), gives a p-adic root, (â0, . . . , âℓ−1), of some Ĉ which is an absolutely irreducible component
of Îℓ−1 such that

t−1∑
i=0

piai ≡
t−1∑
i=0

piâi mod pt, for t ≤ ℓ . (9)

Let us consider the induction step. Consider f
(ℓ)
j (yℓ) = fj(y0 + . . .+ pℓ−1yℓ−1 + pℓyℓ) mod Ĉ,

where Ĉ is the component where the p-adic root (â0, . . . , âℓ−1) can be found. After substituting

the first ℓ variables by (â0, . . . , âℓ−1), f
(ℓ)
j (yℓ) has a root, say âℓ, modulo pℓ+1; simply because—

fj(a0 + . . . + pℓ−1aℓ−1 + pℓx) has the root aℓ modulo pℓ+1, and by the induction hypothesis
(esp. Equation 9). Like we did in the base case, we can consider two broad cases: âℓ is a non-singular
Fq-root, or it is a singular root (or a root whose preimage does not exist in the birationally equivalent
hypersurface of Lemma 4). In the first case, we find a suitably lifted root in Ĉ ∈ T itself. While in
the second case, we find a suitably lifted root in some lower-dimensional D̂ ∈ T (though with the
same {Î0, . . . , Îℓ−1}). Thus, in all cases we ensure that

â0 + . . .+ pℓ−1âℓ−1 + pℓâℓ ≡ (a0 + . . .+ pℓaℓ) mod pℓ+1,

30

for the lifted Ĝ-root of some ideal Îℓ (which gets defined in Step 9 of Algorithm 1, possibly after
many backtrackings); finishing the induction step.

Thus, with ℓ = k − 1, we deduce: a is represented as a Ĝ-root of some ideal Îk−1 in L.

C An application: Finding small factors of f mod pk

In this section we will prove Theorem 2 and Corollary 3 i.e, we show how to efficiently find a ‘low’
ramification-degree factor of f(x) mod pk in randomized polynomial time. We achieve this via first
reducing the problem, in Sections C.1 and C.2, to finding a common zero of a system of multivariate
polynomial equations over a Galois ring of characteristic pk.

Assume the input f ∈ Z[x] to be monic mod pk (leading coefficient 1) as we can always remove the
factors, which are units in the ring (Z/⟨pk⟩)[x], by division. Also assume f ≡ φ(x)e +p ·h(x) mod pk

(i.e, f ≡ φe mod p), where φ ∈ Z[x] is an irreducible polynomial over Fp. Otherwise, using coprime
factorization mod p, we can efficiently find a non-trivial factor of f mod pk using Hensel’s Lemma
13. Let b := deg(φ), with deg(f) = b · e and deg(h) < deg(f).

In this case, finding a ramification-degree δ factor is reduced to finding a root of an E(y) ∈ Z[x, y]
modulo a bi-generated ideal ⟨pk, φ(x)ℓ⟩ (due to [DMS21], Theorem 14) where degy(E) < k and
ℓ = δ ·k. In Section C.1, we will focus on this root-finding job and reduce this to root finding modulo
a simpler ideal ⟨pk, φ(z), (x− z)ℓ⟩. Then in Section C.2, we further reduce this problem to solving a
system of multivariate polynomial equations modulo ⟨pk, φ(z)⟩ (namely, over the Galois ring).

C.1 Factoring over the Galois ring

We have f = φe + ph and prime power pk. Consider the Galois ring G := Z[z]/⟨pk, φ(z)⟩ where
z ∈ G be a root of the polynomial φ(x). Denote the roots of φ(x) in G by zi with z0 := z for
i ∈ {0, . . . , b− 1} (recall b = deg(φ)). Then, we know that zi ≡ zp

i
mod p for all i ∈ {0, . . . , b− 1}.

Let us denote the simpler Galois ring Z/⟨pk⟩ by G0. Following property of G is useful (proved in
[DMS19, Appendix A.1]).

Lemma 19 (Automorphisms of G). The Galois ring G ∼= Z[z]/⟨pk, φ(z)⟩ has exactly deg(φ) = b
many automorphisms ψj, for j ∈ {0, . . . , b − 1}, fixing G0 = Z/⟨pk⟩. Each ψj maps z0 → zj and
fixes only G0 if (j, b) = 1.

By Lemma 13, f in G factors as f =
∏b−1

i=0 fi, where fi(x) = (x−zi)e+phi(x) in G. In particular,
f0 = (x− z)e + ph0(x). We now use Lemma 19 to prove the following two lemmas, for connecting
ramified factors of f in G0[x] to ramified factors of fi’s in G[x].
Notation: We often denote u(x, z) ∈ G[x] by u(z) to highlight the relevant parameter ‘z’.

Lemma 20. If (φδ − py) | f(x) mod pk, for y ∈ G0[x], then for some u(x, z) ∈ G[x], ((x− zi)δ −
pu(zi)) | fi(x) mod ⟨pk, φ(z)⟩, for each i ∈ {0, . . . , b− 1}.

Proof. Let g := φδ − py. Then g | f in G0[x] and so in G[x]. Now (x− z)δ is a factor of g mod p, as
g ≡ φδ mod p, and so there is an u ∈ G[x] such that ((x−z)δ−pu(z)) is a factor of g (Hensel Lemma
13); thus factor of f (since g | f) in G[x]. Applying Lemma 19, we see that gi := ((x− zi)δ − pu(zi))
is a factor of f , for each i ∈ {0, . . . , b− 1}. Now, gi divides only fi mod p (by Hensel Lemma 13);
and this finishes the proof.

Lemma 21. If there exists u ∈ G[x] s.t. ((x − z)δ − pu(z)) | f(x) mod ⟨pk, φ(z)⟩ then we can
compute a y ∈ G0[x] such that (φδ − py) | f(x) mod pk.

31

Proof. Let g0 := (x − z)δ − pu(z), and gi := (x − zi)δ − pu(zi), for all i ∈ [b − 1]. By applying
automorphisms ψi (Lemma 19) on g0, for i ∈ [b− 1], we can easily compute all other gi’s. Also, by
applying automorphisms ψi, for i ∈ [b− 1], we see that each gi divides f(x) in G[x] (since ψi keeps
G0 fixed and f ∈ G0[x]).

Now define g(x, z) :=
∏b−1

i=0 gi in G[x]. We see that all gi’s are coprime, since they are coprime
over the field G/⟨p⟩ (i.e, (x− zi)δ is co-prime to (x− zj)δ for i ̸= j). Hence, g(x, z) | f in G[x].

Applying map ψ1 on g(x, z) we see that g(x, z) remains unchanged over G; as gi’s permute
among each other. But ψ1 keeps G0, and only G0, fixed (Lemma 19); hence g ∈ G0[x] of degree δ · b.
So, we can rewrite g as g =: φδ − py, for a y ∈ G0[x].

The following extension of Reduction Theorem 14 of [DMS21], from G0 to the Galois ring G, is
evident.

Theorem 22 (Extended Reduction [DMS21]). We have ((x− zi)δ − pu(zi)) | fi(x) mod ⟨pk, φ(z)⟩
iff E(u) ≡ 0 mod ⟨pk, φ(z), (x − zi)

ℓ⟩, for all i ∈ {0, . . . , b − 1}; where ℓ := δ · k and E(u) :=
fi(x)[(x− zi)δ(k−1) + (x− zi)δ(k−2)(pu) + . . .+ (pu)k−1].

Thus we now focus on finding a root of E(u) in the ring G[x]/⟨(x− z)ℓ⟩.

C.2 Reduce root-finding in non-Galois ring to root-finding in Galois ring

In this section we show that finding a root of polynomial E(u), in the ring G[x]/⟨(x−z)ℓ⟩, is equivalent
to solving a system of ℓ polynomial equations in ℓ variables of degree same as degy(E) ≤ k − 1 over
Galois ring G. We achieve this by simply eliminating the variable x.

Theorem 23 (Reduction to HN). Given E(u) ∈ (Z[z, x])[u] and the ring G[x]/⟨(x − z)ℓ⟩ where
G = Z[z]/⟨pk, φ(z)⟩ as before. For new variable tuple u = (u0, . . . , uℓ−1) define a polynomial
Enew(u) ∈ (Z[z, x])[u] as Enew(u) := E(u0 + (x− z)u1 + · · ·+ (x− z)ℓ−1uℓ−1).

Let F(u) := {E0, . . . , Eℓ−1} be a system of polynomial equations, where Ei(u) ∈ (Z[z])[u] with
degz(Ei) < deg(φ(z)) and degu(Ei) < k, such that

Enew(u) ≡ E0(u) + E1(u) · (x− z) + · · ·+ Eℓ−1(u) · (x− z)ℓ−1 mod ⟨pk, φ(z), (x− z)ℓ⟩.

Then for a ∈ Gℓ, Enew(a) ≡ 0 mod ⟨pk, φ(z), (x− z)ℓ⟩ iff F(a) ≡ 0 mod ⟨pk, φ(z)⟩.

Proof. Following the definition of Enew(u), we can rewrite Enew(u), for some polynomials Ei(u) ∈
(Z[z])[u] as

Enew(u) = E0(u) + E1(u)(x− z) + · · ·+ Eℓ−1(u)(x− z)ℓ−1 .

Now, Enew(a) ≡ 0 mod ⟨pk, φ(z), (x− z)ℓ⟩
⇐⇒ Enew(a) =: tx(x− z)ℓ, for some tx ∈ G[x] .
⇐⇒ E0(a) + · · ·+ (x− z)ℓ−1Eℓ−1(a) = tx(x− z)ℓ .

Since degree wrt x of LHS is at most ℓ − 1, so (x − z)ℓ can not divide it over G. So Ei(a)
vanishes in G, for each i ∈ {0, . . . , ℓ− 1}. In other words, a is G-root of the system F(u).

Now we prove the other direction. Given that, Ei(a) ≡ 0 mod ⟨pk, φ(z)⟩, for each i ∈ {0, . . . , ℓ−
1}. We easily deduce: Enew(a) ≡ 0 mod ⟨pk, φ(z), (x− z)ℓ⟩ .

Moreover, this reduction is efficient when the parameter k is fixed; because degu(E) < k and so
Enew has at most

(
ℓ+k
ℓ

)
≤ (ℓ+ k)k monomials.

32

C.3 Algorithm: Proof of Theorem 2 & Corollary 3

Input: Given f ∈ Z[x] and a prime-power pk such that f ≡ φe mod p, where φ ∈ Z[x] is irreducible
mod p; and deg(f) = b · e, where b := deg(φ).

Output: A ramification-degree-δ factor g(x) of f(x) mod pk.

Algorithm 4 Factoring f(x) mod pk

1: procedure Factor(f(x), pk)
2: Let g = φδ − p · y, where y = y(x) is an unknown such that g | f mod pk.

3: Consider Galois ring G := Z[z]/⟨pk, φ(z)⟩, where φ(x) splits completely and z is a G-root of
φ(x). (Other roots are conjugates of z, by Lemma 19.)

4: Factorize φ(x) over G/⟨p⟩ into b linear (coprime) factors using [CZ81] and lift to G using

Hensel’s lifting to obtain a coprime factorization f =:
∏b−1

i=0 fi.

5: Over G, let g =:
∏b−1

i=0 gi be a coprime factorizations, such that gi | fi for all i (Lemma 20).

Fix j ∈ {0, . . . , b− 1} and consider gj =: (x− z)δ − pu.

6: Using Theorem 22 reduce to root-finding question of E(u) ≡ 0 mod ⟨pk, φ(z), (x−z)ℓ⟩, where

E(u) := fj · [(x− z)δ(k−1) + (x− z)δ(k−2)(pu) + · · ·+ (pu)k−1].

7: Substituting u→ u0 + (x− z)u1 + · · ·+ (x− z)ℓ−1uℓ−1, compute E0(u), . . . , Eℓ−1(u) ∈ G[u]
such that
E(u) =: E0 + (x− z)E1 + · · ·+ (x− z)ℓ−1Eℓ−1 mod ⟨pk, φ(z), (x− z)ℓ⟩.

8: Find a G-root (a0, . . . , aℓ−1) of the system F := {E0, . . . , Eℓ−1} using Algorithm 1.
9: if no solution exists then return {}, i.e. no such factor g exists.

10: u := a0 + (x− z)a1 + · · ·+ (x− z)ℓ−1aℓ−1 is a solution of E(u) mod ⟨pk, φ(z), (x− z)ℓ⟩ (from

Theorem 23). This gives us the factor gj = (x− z)δ − pu (Theorem 22).

11: Using G-automorphisms (Lemma 21 & Step 4), we can compute g = φδ − py from gj .
12: return g

Remark 3. One can ask for a simpler Nullstellensatz approach: Why do we not reduce root-finding
of E(u) mod ⟨pk, φ(z), (x− z)ℓ⟩ to directly solving a system of equations modulo p, instead of modulo
pk? For e.g., by further substituting ui → ui,0 + pui,1 + . . .+ pk−1ui,k−1, for each i ∈ {0, . . . , ℓ− 1},
ui,j’s in Fp?

The issue is that we need to divide functions of ui,j’s by p; and this only makes sense when we
think of ui,j’s as p-adic. See Example 1 for a more concrete discussion.

Now we prove Theorem 2 in a way that already subsumes Corollary 3.

Proof of Theorem 2. We have f(x) = φ(x)e + ph(x) and prime-power is pk. A factor g of f mod pk

has the form g = φδ − py (ramification-degree δ) where we want to compute y ∈ G0[x] such that
deg(y) < δ deg(φ); to keep g monic.

Now over G, f and g have coprime factorizations as f =
∏b−1

j=0 fj and
∏b−1

j=0 gj . By Lemma 20 if

g | f mod pk then gj | fj over G, for all j. For a fixed i ∈ {0, . . . , b− 1}, let fi =: (x− z)e + phi(x, z)
and gi =: (x− z)δ − pu(x, z) (where u is unknown). Using Lemmas 20 and 21, it is sufficient to find
unknown gi. Computing factorizations of f and φ (using Hensel lifting 13) and getting g from gi
(Lemma 21) takes time poly(deg(f), k log p).

33

Using Theorem 22, finding gi is reduced to finding a root, of E(u) := fi · [(x − z)δ(k−1) +
(x− z)δ(k−2)(pu) + · · ·+ (pu)k−1], in G[x]/⟨(x− z)ℓ⟩, where ℓ := δk. Computing E(u) takes time
poly(deg(f), ℓ, log p).

By Theorem 23, finding a root of E(u) in G[x]/⟨(x−z)ℓ⟩ is reduced to finding G-root of a system of
ℓ-variate ℓ polynomial equations F := {E0(u), . . . , Eℓ−1(u)} of degree at most k−1. Using Theorem
1, we get a solution of F in G. This immediately gives us a root u of E(u) mod ⟨pk, φ(z), (x− z)ℓ⟩;
thus we find the factor gi = (x− z)δ − pu. The time complexity is dominated by time taken to find

a solution of F ; which is poly(deg(F)(ℓk)
O((ℓk)2)

, log p,deg(f)).

Since deg(F) < k and ℓ = δk, so the total time taken is poly(k(δk
2)O((δk2)2)

, log p,deg(f)). Since
δ + k is constant, the time complexity becomes poly(deg(f), log p).

34

	Introduction
	Our results
	Difficulty of the problems & techniques
	Proof overview of Theorem 1

	Hilbert's Nullstellensatz over Galois rings: Proof of Theorem 1
	Main algorithm: Finding roots of a polynomial system
	Decomposition into absolutely irreducible components
	Recovering a -root of an ideal in and (of Algorithm 1)

	Conclusion and future work
	Preliminaries
	Algorithms and proofs from Section 2: Details of
	An application: Finding small factors of
	Factoring over the Galois ring
	Reduce root-finding in non-Galois ring to root-finding in Galois ring
	Algorithm: Proof of Theorem 2 & Corollary 3

