Algebra & Computation: Elliptic Curves Talk 2: Group Laws, Torsion, Derivations

Jesko Hüttenhain

Spring 2010

We always assume $k = \overline{k}$ to be an algebraically closed field with char $(k) \notin \{2, 3\}$. Let *E* be the elliptic curve over *k* defined by $Y^2 - X^3 - AX - B$.

1 Derivations

We give a quick introduction to modules of differentials. The results are simplified versions of a more general theory which is treated very well and thoroughly in [Eis94]. Your motivation for this section should be that it will be a *very* handy technical asset.

Definition 1.1. If S is a k-algebra, and M an S-module, a k-vectorspace homomorphism $D: S \to M$ is called a k-linear derivation if it satisfies the Leibnitz rule

$$\forall f, g \in S: \ D(fg) = D(f) \cdot g + f \cdot D(g).$$
(1)

We denote by $\operatorname{Der}_k(S, M)$ the S-module of all k-linear derivations from S to M with scalar multiplication defined by $(f \cdot D)(g) := f \cdot D(g)$. We also write $\operatorname{Der}_k(S) := \operatorname{Der}_k(S, S)$.

Fact 1.2. Let $D \in Der_k(S)$.

- 1. $\forall \lambda \in k : D(\lambda) = 0.$
- 2. $\forall f \in S : \forall n \in \mathbb{N} : D(f^n) = n \cdot f^{n-1} \cdot D(f).$

Proof. For the first statement, note that

$$D(1) = D(1 \cdot 1) = D(1) + D(1) \implies D(1) = 0$$

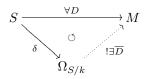
and thus, $D(\lambda) = \lambda \cdot D(1) = 0$. For the second statement, we perform induction on *n*. In the case n = 1, the statement is trivial. Hence,

$$D(f^n) = D(f^{n-1} \cdot f)$$

= $D(f^{n-1}) \cdot f + f^{n-1} \cdot D(f)$
= $(n-1) \cdot f^{n-2} \cdot D(f) \cdot f + f^{n-1} \cdot D(f)$
= $n \cdot f^{n-1} \cdot D(f)$

verifies our claim.

Proposition 1.3. Let S be a k-algebra. Then, there exists an S-module $\Omega_{S/k}$ and a surjective, k-linear derivation $\delta : S \to \Omega_{S/k}$ with the following universal property: For all k-linear derivations $D : S \to M$, there exists a unique homomorphism $\overline{D} : \Omega_{S/k} \to M$ of S-modules such that $D = \overline{D} \circ \delta$.



The module $\Omega_{S/k}$ is called the module of Kähler differentials and δ is called the universal derivation.

Proof. We define

$$\Omega_{S/k} := \bigoplus_{f \in S} \delta_f S \Big/ N$$

where δ_f is a formal variable and N is the submodule generated by

1. $\forall f, g \in S : \delta_{fg} - f\delta_g - g\delta_f$ 2. $\forall a, b \in k : \forall f, g \in S : \delta_{af+bg} - a\delta_f - b\delta_g$

We then set $\delta(f) := \delta_f$. Since we divided out all relations of the form (2), δ is a k-linear map. By dividing out (1), we forced it to satisfy the Leibnitz rule. Thus, δ is actually a derivation. Note that it is also surjective. To check the universal property, let $D: S \to M$ be a derivation.

If $\delta(f) = 0$, then f satisfies one of the relations in (1) or (2), so we also know D(f) = 0. This means $\ker(\delta) \subseteq \ker(D)$ and the statement is just the fundamental theorem on homomorphisms.

Corollary 1.4. As S-modules, $\operatorname{Der}_k(S, M) \cong \operatorname{Hom}_S(\Omega_{S/k}, M)$.

Proposition 1.5. For $S = k[x_1, \ldots, x_n]$, $\text{Der}_k(S)$ is a free S-module with a basis given by the partial derivatives $\partial_i := \partial/\partial x_i$.

Proof. Since S is generated as a k-algebra by the x_i , the module of Kaehler differentials $\Omega_{S/k}$ is generated by the $\delta(x_i)$ as an S-module. Thus, there is an epimorphism $\varphi: S^n \to \Omega_{S/k}$ defined by sending e_i to $\delta(x_i)$.

Let $d_i : \Omega_{S/k} \to S$ be the S-module homomorphism with $d_i \circ \delta = \partial_i$. Then, the map $d := (d_1, \ldots, d_n) : \Omega_{S/k} \to S^n$ is an inverse for φ since

$$d(\varphi(\alpha_1,\ldots,\alpha_n)) = d(\alpha_1\delta(x_1) + \ldots + \alpha_n\delta(x_n)) = (\alpha_1,\ldots,\alpha_n).$$

Thus, we have

$$\operatorname{Der}_k(S) \cong \operatorname{Hom}_S(\Omega_{S/k}, S) \cong \operatorname{Hom}_S(S^n, S) \cong S^n$$

and under these isomorphisms, $\partial_i \mapsto d_i \mapsto d_i \circ \varphi \mapsto e_i$, verifying our claim. \Box

Corollary 1.6. A derivation $D \in Der_k(k[x_1, \ldots, x_n])$ is uniquely defined by the values $D(x_1), \ldots, D(x_n)$.

Fact 1.7. If S is an integral k-algebra, then $D \in \text{Der}_k(S)$ extends naturally to a derivation $Q(S) \to Q(S)$ by $D(1/g) = -1/g^2 \cdot D(g)$. This yields the formula

$$D(f/g) = D(f \cdot 1/g) = \frac{D(f) \cdot g - f \cdot D(g)}{g^2}$$
(2)

which is also called the quotient rule.

Proof. Let us first check that this is well-defined. Assuming that $f_1/g_1 = f_2/g_2$, i.e. $f_1g_2 = f_2g_1$, we calculate

$$D(f_1/g_1) = \frac{D(f_1) \cdot g_1 - f_1 \cdot D(g_1)}{g_1^2} = \frac{D(f_1)}{g_1} - \frac{f_2}{g_2} \cdot \frac{D(g_1)}{g_1}$$
$$= \frac{D(f_1)g_2 - f_2D(g_1)}{g_1g_2}$$
$$= \frac{D(f_1g_2) - f_1D(g_2) - D(f_2g_1) + D(f_2)g_1}{g_1g_2}$$
$$= \frac{D(f_2)g_1 - f_1D(g_2)}{g_1g_2} = \dots = D(f_2/g_2).$$

It is an equally straightforward computation to verify that D remains a k-vectorspace homomorphism satisfying the Leibnitz rule (1). Alternatively, the entire statement follows from the fact that Kähler differentials commute with localization in the sense of [Eis94, Proposition 16.9].

Proposition 1.8. There exists a unique derivation $D \in Der_k(K(E))$ satisfying

$$D(x) = 2y \quad \text{and} \quad D(y) = 3x^2 + A \tag{3}$$

Proof. By 1.7, we have to find a $D \in \text{Der}_k(k[x, y])$ satisfying (3). By 1.6, there exists a unique $D' \in \text{Der}_k(k[X, Y])$ with D(X) = 2Y and $D(Y) = 3X^2 + A$. We denote by $\pi : K[X, Y] \rightarrow k[x, y]$ the canonical projection whose kernel is given by the curve equation, i.e. $\text{ker}(\pi) = (Y^2 - X^3 - AX - B)$. Since

$$D'(Y^{2} - X^{3} - AX - B) = D'(Y^{2}) - D'(X^{3}) - A \cdot D'(X)$$

= $2Y \cdot D'(Y) - (3X^{2} + A) \cdot D'(X)$
= $D'(X) \cdot D'(Y) - D'(Y) \cdot D'(X)$
= 0

we get a unique homomorphism $D: k[x, y] \to k[x, y]$ satisfying $D \circ \pi = \pi \circ D'$. Since D' is a derivation, so is D and it is unique with (3).

Definition 1.9. From now on, we will always write D for the derivation satisfying (3) and call it the **derivation on** E.

Lemma 1.10. If $f \in k[x, y]$ satisfies $D(f) \neq 0$, then $\deg(D(f)) = \deg(f) + 1$. In particular, the inequality $\deg(D(f)) \leq \deg(f) + 1$ always holds.

Proof. Certainly this holds for f = x and f = y by (3). Consequently, it holds for polynomials in x and since any polynomial has a canonical representation $f(x, y) = u(x) + y \cdot v(x)$, the general case follows.

Proposition 1.11. Let $P \in E$ be any point.

- 1. If r is a rational function which is finite at P, then so is D(r).
- 2. If u is a uniformizer at P, then D(u) is finite and nonzero at P.

Proof. For $P \neq \mathcal{O}$, part (1) follows from the quotient rule (2). On the other hand, $r(\mathcal{O}) \neq \infty$ means r = f/g with $\deg(f) \leq \deg(g)$. By the quotient rule, we want to show that

$$\deg(D(f)g - fD(g)) \le \deg(g^2).$$

We distinguish two cases:

Case 1 $(\deg(f) = \deg(g))$. In this case, $D(f) \cdot g$ and $f \cdot D(g)$ have the same leading term. Since we can write both polynomials in a unique normal form, this yields

$$\deg(D(f)g - fD(g)) = \deg(D(f)g) - 1 = \deg(D(f)) + \deg(g) - 1$$

$$\stackrel{(1.10)}{=} \deg(f) + 1 + \deg(g) - 1 = 2\deg(g) = \deg(g^2).$$

Case 2 $(\deg(f) \neq \deg(g))$. In this case, we can also use 1.10 to conclude

$$\begin{split} \deg(D(f)g - fD(g)) &\leq \max\left\{\deg(D(f)) + \deg(g), \ \deg(f) + \deg(D(g))\right\} \\ &\leq \deg(f) + \deg(g) + 1 \leq 2\deg(g) = \deg(g^2). \end{split}$$

We now proceed to prove (2). Since there are only three kinds of uniformizers, we can check each one of them individually. If $P = \mathcal{O}$ then u = x/y and

$$D(x/y) = \frac{D(x)y - xD(y)}{y^2} = \frac{2y^2 - 3x^3 - Ax}{y^2} = \frac{-y^2 - Ax + B}{y^2}$$

evaluates to -1 at \mathcal{O} . If $P = (\omega, 0)$ is a point of order two then u = y and

$$D(y)(P) = (3x^2 + A)(P) = \partial_X(X^3 + AX + B)(\omega) \in k^{\times}$$

since E is nonsingular. The final case is where P is none of the above and the uniformizer is given by $u = x - x(P) \Rightarrow D(u) = 2y$. Since P is not of order two, 2y(P) is finite and nonzero.

Corollary 1.12. Let r be a rational function on E. If $\operatorname{ord}_P(r) = d$ is not a multiple of $\operatorname{char}(k)$, then $\operatorname{ord}_P(D(r)) = d - 1$.

Proof. Let u be a uniformizer at P and $r = u^d r_1$. Then, r_1 is finite and nonzero at P and

$$D(r) = D(u^{d} \cdot r_{1}) = d \cdot u^{d-1} \cdot D(u) \cdot r_{1} + u^{d} \cdot D(r_{1})$$
$$= u^{d-1} \cdot \underbrace{(d \cdot D(u) \cdot r_{1} + u \cdot D(r_{1}))}_{r_{2}}$$

By 1.11, $D(u)(P) \in k^{\times}$ and $r_1(P) \in k^{\times}$ by assumption. Since u(P) = 0 and d is not a multiple of char(k), r_2 is finite and nonzero at P. Thus, $D(r) = u^{d-1}r_2$ means that $\operatorname{ord}_P(D(r)) = d - 1$.

Corollary 1.13. Let r be a rational function on E which has a zero at P and $j < \operatorname{char}(k) \neq 0$ or $j > \operatorname{char}(k) = 0$. Then, $D^j(r)(P) = 0 \Leftrightarrow \operatorname{ord}_P(r) > j$.

Remark. In particular, the equivalence holds for all $1 \le j \le 4$ by our global assumption on char(k).

Proof. The statement would follow immediately from 1.12 unless $\operatorname{ord}_P(r)$ is a multiple of $p := \operatorname{char}(k)$. In this case, we claim that both statements are true. Since the order of r at P must be greater than zero, this would mean that $p \neq 0$ and $\operatorname{ord}_P(r) \geq p > j$ by assumption. We write $\operatorname{ord}_P(r) = np$ and pick a uniformizer u at P to write $r = u^{np}s$ with some s that is finite and nonzero at P. Then,

$$D(r) = D(u^{np})s + u^{np}D(s) = p \cdot nu^{np-1}s + u^{np}D(s) = u^{np}D(s)$$

and by 1.8, D(s) is finite and nonzero at P. Thus, $\operatorname{ord}_P(D(r)) = \operatorname{ord}_P(r)$, so $D^j(r)(P) = 0$ holds for all j.

2 The Group Law

In this section, we define a group structure on the points of E and show that it can be given a very profund geometric intuition.

Recall. $\Delta \in \operatorname{Div}^0(E) \Rightarrow \exists ! P_\Delta \in E \text{ with } \Delta \sim \langle P_\Delta \rangle - \langle \mathcal{O} \rangle$. The map

$$\bar{\sigma} : \operatorname{Div}^0(E) \longrightarrow E \Delta \longmapsto P_\Delta$$

induces a bijection $\sigma : \operatorname{Pic}^0(E) \xrightarrow{\sim} E$,

$$\begin{array}{c|c} \operatorname{Div}^{0}(E) & & \\ \pi & & \\ \downarrow & & \\ \operatorname{Pic}^{0}(E) & & \\ \hline & & \\ \hline & & \\ \kappa := \sigma^{-1} & E \end{array}$$

since $\operatorname{Pic}^{0}(E) = \operatorname{Div}^{0}(E) / \sim$. We set $\kappa := \sigma^{-1}$.

Definition 2.1. We define a group law on *E* by

$$\begin{array}{rccc} E\times E & \longrightarrow & E \\ (P,Q) & \longmapsto & P+Q := \sigma(\kappa(P)+\kappa(Q)) \end{array}$$

In other words, E = (E, +) has the group structure induced by σ . For $Q \in E$, we define the **translation by** Q to be the map $T_Q : E \to E$ defined by $P \mapsto P + Q$. The translation by -Q is an inverse for it.

Fact 2.2. The neutral element of E is $\sigma(0) = \mathcal{O}$.

Proof. Follows from $\sigma(0) = \sigma(\pi(0)) = \bar{\sigma}(0) = \mathcal{O}$.

Lemma 2.3. Whenever $l(x, y) = \alpha x + \beta y + \gamma$ is a line on E with divisor

$$\operatorname{div}(l) = \langle P_1 \rangle + \ldots + \langle P_n \rangle - n \langle \mathcal{O} \rangle$$

then $P_1 + \ldots + P_n = \mathcal{O}$ in E.

Proof. From the equality $\sigma(\pi(\langle P \rangle - \langle \mathcal{O} \rangle)) = \bar{\sigma}(\langle P \rangle - \langle \mathcal{O} \rangle) = P$, we conclude that $\kappa(P) = \sigma^{-1}(P) = \pi(\langle P \rangle - \langle \mathcal{O} \rangle)$. Thus,

$$\kappa(P_1) + \ldots + \kappa(P_n) = \pi(\langle P_1 \rangle - \langle \mathcal{O} \rangle) + \ldots + \pi(\langle P_n \rangle - \langle \mathcal{O} \rangle)$$
$$= \pi(\langle P_1 \rangle + \ldots + \langle P_n \rangle - n \langle \mathcal{O} \rangle)$$
$$= \pi(\operatorname{div}(l)) = 0$$

implies that $P_1 + \ldots + P_n = \sigma(0) = \mathcal{O}$ by 2.2.

Proposition 2.4. The inverse of $P \in E$ is -P := (x(P), -y(P)).

Proof. Consider the line l(x, y) := x - x(P). It has exactly two zeros on E at P and -P. It also has a pole on E at \mathcal{O} . We note that

$$u_{\mathcal{O}}^2 \cdot l = (x/y)^2 \cdot (x - x(P)) = \frac{x^2(x - x(P))}{y^2} = \frac{x^3 - x(P) \cdot x^2}{x^3 + Ax + B}$$

evaluates to 1 at \mathcal{O} . Hence, $\operatorname{ord}_{\mathcal{O}}(l) = -2$. Thus,

$$\operatorname{div}(l) = \langle P \rangle + \langle -P \rangle - 2 \langle \mathcal{O} \rangle$$

and the claim follows from 2.3.

Proposition 2.5. Let $P_1, P_2 \in E \setminus \{\mathcal{O}\}$ such that $P_1 \neq -P_2$ and set $P_3 := P_1 + P_2$. Let $x_i := x(P_i)$ as well as $y_i := y(P_i)$ for i = 1, 2, 3. With

$$\lambda := \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & ; \quad x_1 \neq x_2 \\ \frac{3x_1^2 + A}{2y_1} & ; \quad x_1 = x_2 \end{cases}$$

we then claim that

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1.$ (4)

Proof. We define

$$\gamma := \begin{cases} \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1} & ; & x_1 \neq x_2 \\ y_1 - \lambda x_1 & ; & x_1 = x_2 \end{cases}$$

and claim that the line

$$l(x,y) := y - \lambda x - \gamma.$$

has a zero on E at P_1 and P_2 . In the case $x_1 \neq x_2$, we check this by calculating

$$(x_2 - x_1) \cdot l(P_1) = y_1(x_2 - x_1) + (y_1 - y_2)x_1 - (y_1x_2 - y_2x_1) = 0$$

$$(x_2 - x_1) \cdot l(P_2) = y_2(x_2 - x_1) + (y_1 - y_2)x_2 - (y_1x_2 - y_2x_1) = 0$$

Since $x_1 = x_2$ implies $y_1 = y_2$ by our assumption $P_1 \neq -P_2$, the second case is trivial. Intuitively speaking, l is the line through P_1 and P_2 . For $P_1 = P_2$, it is the tangent to E at that point.

Our first goal is to show that

$$\exists R \in E : \operatorname{div}(l) = \langle P_1 \rangle + \langle P_2 \rangle + \langle R \rangle - 3 \langle \mathcal{O} \rangle$$
(5)

For $P_1 \neq P_2$, the above is obvious since $\deg(l) = 3$. For $P := P_1 = P_2$, we have to show that $\operatorname{ord}_P(l) \geq 2$. This follows from 1.13 because

$$D(l) = D((y - y_1) - \lambda(x - x_1))$$

= $3x^2 + A - 2\lambda y$
= $(3x^2 + A) - (3x_1^2 + A) \cdot (y/y_1)$

implying D(l)(P) = 0.

From (5), we can now conclude that $P_1 + P_2 = -R$ by virtue of 2.3. Thus, $P_3 = -R$ and this means $R = (x_3, -y_3)$ by 2.4. The *x*-coordinates of P_1 , P_2 and $-P_3$ are the roots of

$$g(X) := X^3 + AX + B - (\lambda X + \gamma)^2$$

which means $g(X) = c(X - x_1)(X - x_2)(X - x_3)$. Comparing coefficients, we immediately conclude c = 1 and $x_1 + x_2 + x_3 = \lambda^2$. This verifies the first part of (4). The second part follows because $l(x_3, -y_3) = 0$ implies

$$y_3 = -\lambda x_3 - \gamma = \lambda (x_1 - x_3) - \lambda x_1 - \gamma = \lambda (x_1 - x_3) - y_1 \qquad \Box$$

Fact 2.6. The linear coefficient λ in 2.5 can always be expressed as

$$\lambda := \frac{x_2^2 + x_1 x_2 + x_1^2 + A}{y_1 + y_2}$$

Proof. For $x_1 = x_2 \Rightarrow y_1 = y_2$, this is obvious. On the other hand,

$$\begin{aligned} \frac{y_2 - y_1}{x_2 - x_1} &= \frac{y_2 - y_1}{x_2 - x_1} \cdot \frac{y_2 + y_1}{y_2 + y_1} = \frac{y_2^2 - y_1^2}{(x_2 - x_1)(y_2 + y_1)} \\ &= \frac{(x_2^3 - x_1^3) + A(x_2 - x_1)}{(x_2 - x_1)(y_2 + y_1)} = \frac{x_2^2 + x_1x_2 + x_1^2 + A}{y_1 + y_2} \end{aligned}$$

verifies the formula in the case $x_2 \neq x_1$.

Definition 2.7. We define a map sum : $Div(E) \rightarrow E$ by

$$\sum_{P \in E} n_P \langle P \rangle \quad \longmapsto \quad \sum_{P \in E} n_P \cdot P$$

which means sum $|_{\text{Div}^0(E)} = \bar{\sigma}$.

Proposition 2.8. A divisor $\Delta \in \text{Div}(E)$ is principal if and only if $\text{deg}(\Delta) = 0$ and $\text{sum}(\Delta) = \mathcal{O}$.

Proof. Both conditions imply $\Delta \in \text{Div}^0(E)$, so $\Delta \sim \langle \text{sum}(\Delta) \rangle - \langle \mathcal{O} \rangle$ and thus, the claim follows because $\text{sum}(\Delta) = \mathcal{O} \Leftrightarrow \Delta \sim 0 \Leftrightarrow \Delta$ is principal. \Box

3 Point Multiplication

By **point multiplication** we understand the scalar multiplication of E as a \mathbb{Z} -module. For finite curves (over finite fields), this multiplication gives rise to the diffie-hellman problem – which has important applications in cryptography.

Recall. We consider the rational maps as points of the curve E(K(E)), points with coordinates in the field of rational functions K(E).

Proposition 3.1. Let F_1 and F_2 be rational maps on E. If $F_3 = F_1 + F_2$ as points of E(K(E)), then $\forall P \in E : F_3(P) = F_1(P) + F_2(P)$.

Proof. We will assume that $F_i \neq \mathcal{O}_M$ for all *i* since the statement is obviously correct in these cases. Hence, we write $F_i = (f_i, g_i)$. We write

$$\lambda = \frac{f_1^2 + f_1 f_2 + f_2^2 + A}{g_1 + g_2}$$

as in 2.6.

Case 1 $(F_1(P) \neq \mathcal{O}, F_2(P) \neq \mathcal{O})$. If $g_1(P) \neq -g_2(P)$, this case is trivial because the addition formulas coincide. Otherwise, we have $F_1(P) = -F_2(P)$ and also, λ has a pole at P. Consequently, f_3 and g_3 have poles at P yielding $F_3(P) = \mathcal{O} = F_1(P) + F_2(P)$.

Case 2 $(F_1(P) = \mathcal{O}, F_2(P) \neq \mathcal{O})$. We write $f_1 = u^{-d}r$ and $g_1 = u^{-e}s$ where u is a uniformizer and both r and s are finite and nonzero at P. Since

$$u^{-2e}s^{2} = g_{1}^{2} = f_{1}^{3} + Af_{1} + B = u^{-3d}r^{3} + Au^{-d}r + B$$
$$= u^{-2e}(u^{2e-3d}r^{3} + Au^{2e-d}r + u^{2e}B),$$

we conclude 2e = 3d so 2d > e > d. Also, $f_1 \neq f_2$ because they differ in P, we can use

$$\lambda = \frac{g_2 - g_1}{f_2 - f_1}$$

for the calculation

$$\begin{split} f_3 &= \left(\frac{g_2 - g_1}{f_2 - f_1}\right)^2 - (f_2 + f_1) \\ &= \frac{(g_2^2 - 2g_1g_2 + g_1^2) - (f_2 + f_1)(f_2 - f_1)^2}{(f_2 - f_1)^2} \\ &= \frac{g_2^2 - 2g_1g_2 + g_1^2 - f_1^3 + f_1f_2^2 - f_2^3 + f_1^2f_2}{f_1^2 + f_2^2 - 2f_1f_2} \\ &= \frac{g_2^2 - 2g_1g_2 + Af_1 + B + f_1f_2^2 - f_2^3 + f_1^2f_2}{f_1^2 + f_2^2 - 2f_1f_2} \\ &= \frac{f_1^2f_2 - 2g_1g_2}{f_1^2 + f_2^2 - 2f_1f_2} + \underbrace{\frac{g_2^2 + Af_1 + B + f_1f_2^2 - f_2^3}{f_1^2 + f_2^2 - 2f_1f_2}}_{\text{vanishes at } P} \end{split}$$

By multiplying numerator and denominator by 2d and evaluating at P, we get that

$$f_3(P) = \frac{r^2 f_2 - 2su^{2d-e} g_2}{r^2 + f_2^2 u^{2d} - 2ru^d f_2}(P) = f_2(P).$$

We therefore know that $F_3(P) \neq \mathcal{O}$. Since $F_3 - F_2 = F_1$, the first case gives us

$$F_3(P) - F_2(P) = F_3(P) + (-F_2)(P) = F_1(P) = \mathcal{O},$$

so we are done.

Case 3 $(F_1(P) = \mathcal{O}, F_2(P) = \mathcal{O})$. We know that $F_1 + (F_2 - F_3) = \mathcal{O}_M$. Assume that $F_3(P) = Q \neq \mathcal{O}$. Then, by the previous case,

$$(F_2 - F_3)(P) = F_2(P) - F_3(P) = -Q$$

and consequently,

$$\mathcal{O} = \mathcal{O}_M(P) = (F_1 + (F_2 - F_3))(P) = F_1(P) + (F_2 - F_3)(P) = -Q$$

which is a direct contradiction to $\mathcal{O} \neq Q$.

Definition 3.2. For every $n \in \mathbb{Z}$, we define the *n*-fold point multiplication to be the map

$$\begin{array}{cccc} [n]: E & \longrightarrow & E \\ P & \longmapsto & n \cdot P \end{array}$$

Also set $g_n := x \circ [n]$ and $h_n := y \circ [n]$, i.e. $n \cdot P = (g_n(P), h_n(P))$. We also define the *n*-torsion points of *E* to be the set

$$E[n] := \{ P \in E \mid n \cdot P = \mathcal{O} \}.$$

It is clearly a subgroup of E.

Theorem 3.3. For all $n \in \mathbb{Z}$, the n-fold point multiplication is a rational map. For $n \neq 0$, its kernel E[n] is a finite set.

Remark. In other words, g_n and h_n are rational functions for all $n \in \mathbb{Z}$.

Proof. If the statement holds for $n \ge 0$, then it holds for -n as well by 2.4. Furthermore, the statement is trivial for n = 0, 1. We use this as the base for an induction on n > 0. By $n \cdot P = (n-1) \cdot P + P$ and 3.1, we can conclude that [n] = [n-1] + [1] is a rational map. To see that E[n] is finite, we only have to verify that $[n] \neq \mathcal{O}_M$.

We note that $E[2] = \{ \mathcal{O}, \Omega_1, \Omega_2, \Omega_3 \}$ is clearly finite. If *n* is an odd prime, this implies $n \cdot \Omega_1 = \Omega_1 \neq \mathcal{O}$ and therefore, $[n] \neq \mathcal{O}_M$. Thus, we can assume *n* to have a nontrivial divisor *m*. More precisely, we assume $n = j \cdot m$ such that by induction hypothesis, E[j] and E[m] are finite. Note that

$$E[n] = \bigcup_{R \in E[j]} \{ P \in E \mid m \cdot P = R \} = \bigcup_{R \in E[j]} [m]^{-1}(R)$$

so it suffices to prove that $[m]^{-1}(R)$ is finite for all R. We may assume that the set is not empty and pick $Q_R \in [m]^{-1}(R)$. The translation T_{Q_R} then induces a bijection $E[m] \cong [m]^{-1}(R)$.

Corollary 3.4. We observe $n \neq 1 \Rightarrow g_n - x \not\equiv 0$.

Proof. If $g_n - x$ was identically zero, then $n \cdot P = \pm P$ would hold for all P. We can write this as $(n \pm 1) \cdot P = \mathcal{O}$ for all P. Thus, either E[n-1] or E[n+1] would have to be infinite – contradicting 3.3.

4 Counting Torsion Points

We have seen that E[n] is always a finite set – the main result of this section will be the fact that it contains exactly n^2 points as long as n is not a multiple of char(k). This result will later be used to determine the total number of points on a finite curve. This number has to satisfy certain conditions in order to make the curve suitable for cryptographic purposes – it is our final goal to devise an algorithm for counting all points on a finite curve.

Proposition 4.1. Assume that n is not a multiple of char(k). Then,

$$(g_n/x)(\mathcal{O}) = n^{-2}$$
 and $(h_n/y)(\mathcal{O}) = n^{-3}$.

Proof. The statement is symbolically correct for n = 0 and obviously holds for n = 1. We use this as the base for an induction on n. For $n \ge 1$, we consider the point addition $(n + 1) \cdot P = n \cdot P + P$. Using 2.6 for (4),

$$\frac{g_{n+1}}{x} = \frac{1}{x} \cdot \left(\left(\frac{g_n^2 + g_n x + x^2 + A}{h_n + y} \right)^2 - g_n - x \right)$$
$$= \frac{x^4}{y^2 x} \cdot \left(\frac{(g_n/x)^2 + (g_n/x) + 1 + (A/x^2)}{(h_n/y) + 1} \right)^2 - (g_n/x) - 1.$$

By induction hypothesis, evaluation at \mathcal{O} yields

$$(g_{n+1}/x)(\mathcal{O}) = \left(\frac{n^{-4} + n^{-2} + 1}{n^{-3} + 1}\right)^2 - \frac{1}{n^2} - 1$$

$$= \left(\frac{1 + n^2 + n^4}{n + n^4}\right)^2 - \frac{1 + n^2}{n^2}$$

$$= \frac{n^8 + 2n^6 + 3n^4 + 2n^2 + 1}{(n + n^4)^2} - \frac{(1 + n^2)(1 + n^3)^2}{(n + n^4)^2}$$

$$= \frac{n^8 + 2n^6 + 3n^4 + 2n^2 + 1}{(n + n^4)^2} - \frac{(1 + n^2)(1 + n^3)^2}{(n + n^4)^2}$$

$$= \frac{n^8 + 2n^6 + 3n^4 + 2n^2 + 1 - 1 - n^2 - 2n^3 - 2n^5 - n^6 - n^8}{(n + n^4)^2}$$

$$= \frac{n^6 - 2n^5 + 3n^4 - 2n^3 + n^2}{(n + n^4)^2} = \frac{n^4 - 2n^3 + 3n^2 - 2n + 1}{(1 + n^3)^2}$$

$$= \frac{(1 - n + n^2)^2}{(1 + n^3)^2} = \frac{1}{(1 + n)^2}$$

For the second coordinate, we use (4) to calculate

$$\frac{h_{n+1}}{y} = \frac{1}{y} \cdot \left(-y - \frac{g_n^2 + g_n x + x^2 + A}{h_n + y} \cdot (g_{n+1} - x) \right)$$
$$= -1 - \frac{x^3}{y^2} \cdot \frac{(g_n/x)^2 + (g_n/x) + 1 + (A/x^2)}{(h_n/y) + 1} \cdot \left(\frac{g_{n+1}}{x} - 1\right)$$

and evaluation at ${\mathcal O}$ yields

$$(h_{n+1}/y)(\mathcal{O}) = -1 - \frac{n^{-4} + n^{-2} + 1}{n^{-3} + 1} \cdot \left(\frac{1}{(n+1)^2} - 1\right)$$

$$= -1 - \frac{1 + n^2 + n^4}{n + n^4} \cdot \frac{1 - (n+1)^2}{(n+1)^2}$$

$$= \frac{1 + n^2 + n^4}{n + n^4} \cdot \frac{n^2 + 2n}{(n+1)^2} - 1$$

$$= \frac{n + n^3 + n^5 + 2 + 2n^2 + 2n^4}{(1 + n^3)(n+1)^2} - 1$$

$$= \frac{n^2 - n + 1}{(1 + n^3)(n+1)^2} = \frac{(n-1)^2 + n}{(1 + n^3)(n+1)^2}$$

$$= \frac{(n^2 - 1)(n - 1) + n^2 + n}{(1 + n^3)(n+1)^3} = \frac{1}{(n+1)^3}$$

which concludes the induction as long as n is not a multiple of $p := \operatorname{char}(k)$. In this case, we have to use the equation $(n+1) \cdot P = (n-1) \cdot P + 2 \cdot P$ for the induction step. This is equivalent to the above approach, but with even more mind-numbing calculations. If you are not convinced, check it with a computer algebra program.

Corollary 4.2. If n is not a multiple of char(k),

- g_n has order -2 at \mathcal{O} and leading coefficient n^{-2} .
- h_n has order -3 at \mathcal{O} and leading coefficient n^{-3} .

Proof. Since the rational function

$$(x/y)^{2} \cdot g_{n} = \frac{x^{2} \cdot g_{n}}{x^{3} + Ax + B} = \frac{g_{n}}{x} \cdot \frac{x^{2}}{x^{2} + A + Bx^{-1}}$$

has the same finite and nonzero value at \mathcal{O} as g_n/x , the first claim follows from 4.1. Equivalently, we can write

$$(x/y)^3 \cdot h_n = \frac{(y^2 - Ax - B) \cdot h_n}{y^3} = \frac{h_n}{y} \cdot \frac{y^2 - Ax - B}{y^2}$$

and obtain the result for h_n

Proposition 4.3. $D(g_n) = 2nh_n \text{ and } D(h_n) = n(3g_n^2 + A).$

Proof. The statement is clear for n = 1 by definition of D (see (3)). The equations

$$h_n^2 = g_n^3 + Ag_n + B \tag{6}$$

$$g_{n+1} = \lambda^2 - (g_n + x) \tag{7}$$

$$h_{n+1} = \lambda \cdot (x - g_{n+1}) - y \tag{8}$$

follow from the curve equation and the generic addition formula (4) using

$$\lambda = \frac{g_n^2 + g_n x + x^2 + A}{h_n + y}$$

by 2.6. We note that

$$(h_n + y) \cdot D(\lambda) = D(g_n^2 + g_n x + x^2 + A) - \lambda D(h_n + y)$$

= 2y(g_n + 2x) + 2nh_n(2g_n + x) - \lambda(3ng_n^2 + 3x^2 + (n+1)A)

In the induction step, it suffices to show that

$$0 = D(g_{n+1})/2 - (n+1)h_{n+1}$$

= $\lambda \cdot D(\lambda) - nh_n - y - (n+1)\lambda(x - g_{n+1}) + (n+1)y$
= $\lambda \cdot D(\lambda) - n(h_n - y) + \lambda(n+1)(\lambda^2 - g_n - 2x)$

On the right hand side, we reduce occurances of h_n^2 and y^2 using the curve equation. A tedious calculation proves the above equality, we suggest to use a computer algebra system. One proceeds equivalently for h_{n+1} .

Lemma 4.4. Let $P, Q \in E$ and let u be a uniformizer at P. Then, $u \circ T_Q$ is a uniformizer at P - Q.

Proof. Since $u(T_Q(P-Q)) = u(P) = 0$, we know that

$$m := \operatorname{ord}_{P-Q}(u \circ T_Q) \ge 1.$$

Let v be a uniformizer at P - Q and $u \circ T_Q = v^m s$ with s finite and nonzero at P - Q. Let r be any rational function. If $\operatorname{ord}_P(r) = d$, we write $r = u^d t$ with t finite and nonzero at P. Then,

$$r \circ T_Q = (u \circ T_Q)^d \cdot (t \circ T_Q) = v^{md} \cdot \underbrace{s^d \cdot (t \circ T_Q)}_w$$

such that $w(P-Q) = s(P-Q)^d \cdot t(P)$ is finite and nonzero. Thus, we obtain the formula $\operatorname{ord}_{P-Q}(r \circ T_Q) = m \cdot \operatorname{ord}_P(r)$. for all rational functions on E. Replacing r by $r \circ T_{-Q}$, we get

$$\operatorname{ord}_P(r \circ T_{-Q}) = \operatorname{ord}_{P-Q}(r)/m \tag{9}$$

Hence, $(v \circ T_{-Q})(P) = v(P - Q) = 0$ means

$$1 \le \operatorname{ord}_P(v \circ T_{-Q}) = \operatorname{ord}_{P-Q}(v)/m = m^{-1}.$$

Thus, m = 1 and $u \circ T_Q$ must be a uniformizer at P - Q.

Corollary 4.5. For any two points $P, Q \in E$ and any rational function r,

$$\operatorname{ord}_P(r \circ T_Q) = \operatorname{ord}_{P+Q}(r). \tag{10}$$

Proof. This is just equation (9), since we know m = 1.

Corollary 4.6. div
$$(r) = \sum_{P} n_P \langle P \rangle \Rightarrow div(r \circ T_Q) = \sum_{P} n_P \langle P - Q \rangle.$$

Lemma 4.7. If r_1 and r_2 are rational functions,

$$\operatorname{ord}_{\mathcal{O}}(r_1 - r_2) \ge \min(\operatorname{ord}_{\mathcal{O}}(r_1), \operatorname{ord}_{\mathcal{O}}(r_2)).$$
(11)

Equality holds if and only if both functions have different order at \mathcal{O} or different leading coefficients.

Proof. Let u = x/y and write $r_1 = u^{d_1}s_1$ as well as $r_2 = u^{d_2}s_2$ with s_1 and s_2 finite and nonzero at \mathcal{O} . Note that $s_i(\mathcal{O})$ is precisely the leading coefficient of r_i . Without loss of generality, assume that $d_1 \ge d_2$. Then,

$$r_1 - r_2 = u^{d_2} \cdot \underbrace{(u^{d_1 - d_2} s_1 - s_2)}_{s}$$

Now s is finite and nonzero at P if and only if $d_2 > d_1$ or $s_1(\mathcal{O}) = s_2(\mathcal{O})$. \Box

Notation 4.8. If $M \subseteq E$ is a finite set of points of E, we will write

$$\langle M \rangle := \sum_{P \in M} \langle P \rangle \in \operatorname{Div}(E).$$

Theorem 4.9. Let m > n > 0 such that neither of m, n, m - n and m + n are a multiple of char(k). Then,

$$\operatorname{div}(g_m - g_n) = \langle E[m+n] \rangle + \langle E[m-n] \rangle - 2 \langle E[m] \rangle - 2 \langle E[n] \rangle.$$
(12)

Proof. We consider the partition

$$E = \underbrace{E[m] \cap E[n]}_{E_1} \cup \underbrace{(E[m] \cup E[n]) \setminus (E[m] \cap E[n])}_{E_2} \cup \underbrace{E \setminus (E[m] \cup E[n])}_{E_3}$$

and count multiplicities. We will often require the following observation:

$$\forall : P \in E[j] : \qquad [j] \circ T_P = [j]$$

$$\implies g_j \circ T_p = g_j$$

$$\implies \operatorname{ord}_P(g_j) = \operatorname{ord}_{\mathcal{O}}(g_j).$$

$$(13)$$

This follows since $j \cdot Q = j \cdot (Q+P)$ holds for all $Q \in E$ and the final implication is due to 4.5.

We note that $E_1 \subseteq E[m+n] \cap E[m-n]$. For $P \in E_1$, this means that we have to verify $\operatorname{ord}_P(g_m - g_n) = 1 + 1 - 2 - 2 = -2$. We remark that $(m-n)(m+n) = m^2 - n^2$ is not a multiple of char(k), so $m^2 \neq n^2$ in k. Thus by 4.2, the leading coefficients of g_m and g_n differ. Since $Q := -P \in E_1$,

$$\operatorname{ord}_{P}(g_{m} - g_{n}) \stackrel{(10)}{=} \operatorname{ord}_{\mathcal{O}}((g_{m} - g_{n}) \circ T_{Q}) = \operatorname{ord}_{\mathcal{O}}(g_{m} \circ T_{Q} - g_{n} \circ T_{Q})$$
$$\stackrel{(13)}{=} \operatorname{ord}_{\mathcal{O}}(g_{m} - g_{n}) \stackrel{(11)}{=} \min(\operatorname{ord}_{\mathcal{O}}(g_{m}), \operatorname{ord}_{\mathcal{O}}(g_{n})) \stackrel{(4.2)}{=} -2.$$

We now consider the points $P \in E_2$. Since either $mP = \mathcal{O}$ or $nP = \mathcal{O}$ but not both, $P \notin E[m+n] \cup E[m-n]$. Thus, we have to show $\operatorname{ord}_P(g_m - g_n) = -2$ again. Now, $P \in E[m]$ implies $g_n(P) \neq \infty$. Writing $g_m = u_P^{-d}t$ with $t(P) \in k^{\times}$, we can see that $g_m - g_n = u_P^{-d}(t - u_P^d g_n)$. Thus,

$$\operatorname{ord}_P(g_m - g_n) = \operatorname{ord}_P(g_m) \stackrel{(13)}{=} \operatorname{ord}_\mathcal{O}(g_m) \stackrel{(4.2)}{=} -2.$$

Similarly, $P \in E[n]$ implies $g_m(P) \neq \infty$ and we get the desired result in an equivalent way.

We now consider points $P \in E_3$. Now $g_m - g_n$ can not have a pole at P. It has a zero at P if and only if $mP = \pm nP$ which is the case if and only if $P \in E[m+n] \cup E[m-n]$ since $mP = (m \mp n)P \pm nP$. This means, we only have to count the multiplicities at the points in

$$E_3 \cap (E[m-n] \cup E[m+n]) = \underbrace{E_3 \cap (E[m-n] \cap E[m+n])}_{E_4}$$
$$\cup \underbrace{E_3 \cap (E[m+n] \setminus E[m-n])}_{E_5}$$
$$\cup \underbrace{E_3 \cap (E[m-n] \setminus E[m+n])}_{E_6}$$

For points $P \in E_4$, we know Q := nP = mP = -nP, so Q is of order two. By 4.3, we can calculate

$$D(g_m - g_n)(P) = (2mh_m - 2nh_n)(P) = 2 \cdot (m - n) \cdot y(Q) = 0$$

which means that the zero at P is of order greater or equal than 2 by 1.13. Let now $\omega := g_n(P) = g_m(P)$. We derive further to see that

$$D^{2}(g_{m} - g_{n})(P) = D(2mh_{m} - 2nh_{n})(P)$$

= $(2m^{2}(3g_{m}^{2} + A) - 2n^{2}(3g_{n}^{2} + A))(P)$
= $2 \cdot (m^{2} - n^{2}) \cdot (3\omega^{2} + A)$
= $2 \cdot (m - n) \cdot (m + n) \cdot \partial_{X}(X^{3} + AX + B)(\omega)$

is nonzero since 2, m - n and m + n are not multiples of char(k) and E is assumed to be nonsingular. Thus, $\operatorname{ord}_P(g_m - g_n) = 2$ is precisely the number we wanted to count.

For $P \in E_5$, we know $nP \neq mP = -nP$ and thus, $h_n(P) = -h_m(P) \neq 0$. Thus, $D(g_m - g_n)(P) = 2(m+n)h_m(P)$ is nonzero and $\operatorname{ord}_P(g_m - g_n) = 1$ by 1.13. The case $P \in E_6$ works equivalently.

Corollary 4.10. If n is not a multiple of char(k), then $\#E[n] = n^2$.

Proof. Let $\delta : \mathbb{N} \to \mathbb{N}$ be the function defined by $\delta(n) := \#E[n]$. Let Δ be the set of all functions $d : \mathbb{N} \to \mathbb{N}$ satisfying

$$d(m+n) + d(m-n) - 2d(m) - 2d(n) = 0$$

whenever m > n > 0 and neither of m, n, m + n and m - n are multiples of char(k). Clearly, $\delta \in \Delta$ by (12). Also,

$$(m+n)^{2} + (m-n)^{2} - 2m^{2} - 2n^{2}$$

= $m^{2} + n^{2} + 2mn + m^{2} + n^{2} - 2mn - 2m^{2} - 2n^{2} = 0$

verifies that $(-)^2 \in \Delta$. We are now going to show that Δ contains precisely one function d with d(1) = 1 and d(2) = 4. Since both $(-)^2$ and δ have this property, it will prove the statement. To do so, we first note that for $d_1, d_2 \in \Delta$, also $d := d_1 - d_2 \in \Delta$. We need to show that $d \in \Delta$ with d(1) = d(2) = 0already implies $d \equiv 0$.

Now, let j > 2 be no integer multiple of char(k) =: p. We furthermore assume $p \neq 0$ since the opposite can be verified exactly as in

Case 1 (j-1 and j-2 are prime to p). This case follows by induction from

$$d(j) = d(j) - d((j-1) + 1) - d((j-1) - 1) + 2d(j-1) + 2d(1)$$

= 2d(j-1) - d(j-2) = 0.

Case 2 (j-1) is a multiple of p). We may assume j > 5 by our global assumptions on p. In this case, j-2 must be prime to p. Also, since j-1 is a multiple of $p \neq 3$, j-4 is prime to p. Consequently, the induction step follows by

$$d(j) = d(j) - d((j-2) + 2) - d((j-2) - 2) + 2d(j-2) + 2d(2)$$

= 2d(j-2) - d(j-4) = 0.

Case 3 (j-2) is a multiple of p). We know j > 6. Also, j-3 must be prime to p and j-6 can not be a multiple of p because j-2 is (and 4 is not prime). The result follows by

$$\begin{aligned} d(j) &= d(j) - d((j-3)+3) - d((j-3)-3) + 2d(j-3) + 2d(3) \\ &= 2d(j-3) + 2d(3) - d(j-6) = 0. \end{aligned}$$

This concludes $d \equiv 0$ by induction.

Corollary 4.11. For $p := char(k) \neq 0$ and $n \notin (p)$, it follows that

$$E[n] \cong \mathbb{Z}/(n) \times \mathbb{Z}/(n)$$

is a free $\mathbb{Z}/(n)$ -module of rank 2.

Proof. This follows from the fundamental theorem of abelian groups – see, for instance, [Bo06, Korollar 2.9.9].

References

- [CharRob88] Leonard S. Charlap, David P.Robbins, An Elementary Introduction to Elliptic Curves, CRD Expository Report 31
- [Eis94] David Eisenbud Commutative Algebra with a View Toward Algebraic Geometry, Springer 1994
- [Bo06] Siegfried Bosch, Algebra, Springer 2006