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We always assume k = k to be an algebraically closed field with char(k) /∈ {2, 3}.
Let E be the elliptic curve over k defined by Y 2 −X3 −AX −B.

1 Derivations

We give a quick introduction to modules of differentials. The results are simpli-
fied versions of a more general theory which is treated very well and thoroughly
in [Eis94]. Your motivation for this section should be that it will be a very
handy technical asset.

Definition 1.1. If S is a k-algebra, and M an S-module, a k-vectorspace ho-
momorphism D : S → M is called a k-linear derivation if it satisfies the
Leibnitz rule

∀f, g ∈ S : D(fg) = D(f) · g + f ·D(g). (1)

We denote by Derk(S,M) the S-module of all k-linear derivations from S to
M with scalar multiplication defined by (f · D)(g) := f · D(g). We also write
Derk(S) := Derk(S, S).

Fact 1.2. Let D ∈ Derk(S).

1. ∀λ ∈ k : D(λ) = 0.

2. ∀f ∈ S : ∀n ∈ N : D(fn) = n · fn−1 ·D(f).

Proof. For the first statement, note that

D(1) = D(1 · 1) = D(1) +D(1) ⇒ D(1) = 0

and thus, D(λ) = λ ·D(1) = 0. For the second statement, we perform induction
on n. In the case n = 1, the statement is trivial. Hence,

D(fn) = D(fn−1 · f)

= D(fn−1) · f + fn−1 ·D(f)

= (n− 1) · fn−2 ·D(f) · f + fn−1 ·D(f)

= n · fn−1 ·D(f)

verifies our claim.
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Proposition 1.3. Let S be a k-algebra. Then, there exists an S-module ΩS/k
and a surjective, k-linear derivation δ : S → ΩS/k with the following univer-
sal property: For all k-linear derivations D : S → M , there exists a unique
homomorphism D : ΩS/k →M of S-modules such that D = D ◦ δ.

S

δ
!!

CC
CC

CC
CC

∀D
//

	

M

ΩS/k

!∃D

<<

The module ΩS/k is called the module of Kähler differentials and δ is called
the universal derivation.

Proof. We define

ΩS/k :=
⊕

f∈S
δfS

/
N

where δf is a formal variable and N is the submodule generated by

1. ∀f, g ∈ S : δfg − fδg − gδf

2. ∀a, b ∈ k : ∀f, g ∈ S : δaf+bg − aδf − bδg

We then set δ(f) := δf . Since we divided out all relations of the form (2), δ is
a k-linear map. By dividing out (1), we forced it to satisfy the Leibnitz rule.
Thus, δ is actually a derivation. Note that it is also surjective. To check the
universal property, let D : S →M be a derivation.

If δ(f) = 0, then f satisfies one of the relations in (1) or (2), so we also
know D(f) = 0. This means ker(δ) ⊆ ker(D) and the statement is just the
fundamental theorem on homomorphisms.

Corollary 1.4. As S-modules, Derk(S,M) ∼= HomS(ΩS/k,M).

Proposition 1.5. For S = k[x1, . . . , xn], Derk(S) is a free S-module with a
basis given by the partial derivatives ∂i := ∂/∂xi .

Proof. Since S is generated as a k-algebra by the xi, the module of Kaehler
differentials ΩS/k is generated by the δ(xi) as an S-module. Thus, there is an
epimorphism ϕ : Sn � ΩS/k defined by sending ei to δ(xi).

Let di : ΩS/k → S be the S-module homomorphism with di ◦ δ = ∂i. Then,
the map d := (d1, . . . , dn) : ΩS/k → Sn is an inverse for ϕ since

d(ϕ(α1, . . . , αn)) = d(α1δ(x1) + . . .+ αnδ(xn)) = (α1, . . . , αn).

Thus, we have

Derk(S) ∼= HomS(ΩS/k, S) ∼= HomS(Sn, S) ∼= Sn

and under these isomorphisms, ∂i 7→ di 7→ di ◦ ϕ 7→ ei, verifying our claim.
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Corollary 1.6. A derivation D ∈ Derk(k[x1, . . . , xn]) is uniquely defined by the
values D(x1), . . . , D(xn).

Fact 1.7. If S is an integral k-algebra, then D ∈ Derk(S) extends naturally to
a derivation Q(S)→ Q(S) by D(1/g ) = − 1

/
g2 ·D(g). This yields the formula

D(f/g ) = D(f · 1/g ) =
D(f) · g − f ·D(g)

g2
(2)

which is also called the quotient rule.

Proof. Let us first check that this is well-defined. Assuming that f1/g1 = f2/g2 ,
i.e. f1g2 = f2g1, we calculate

D(f1/g1 ) =
D(f1) · g1 − f1 ·D(g1)

g2
1

=
D(f1)

g1
− f2

g2
· D(g1)

g1

=
D(f1)g2 − f2D(g1)

g1g2

=
D(f1g2)− f1D(g2)−D(f2g1) +D(f2)g1

g1g2

=
D(f2)g1 − f1D(g2)

g1g2
= . . . = D(f2/g2 ).

It is an equally straightforward computation to verify that D remains a k-
vectorspace homomorphism satisfying the Leibnitz rule (1). Alternatively, the
entire statement follows from the fact that Kähler differentials commute with
localization in the sense of [Eis94, Proposition 16.9].

Proposition 1.8. There exists a unique derivation D ∈ Derk(K(E)) satisfying

D(x) = 2y and D(y) = 3x2 +A (3)

Proof. By 1.7, we have to find a D ∈ Derk(k[x, y]) satisfying (3). By 1.6, there
exists a unique D′ ∈ Derk(k[X,Y ]) with D(X) = 2Y and D(Y ) = 3X2 +A. We
denote by π : K[X,Y ] � k[x, y] the canonical projection whose kernel is given
by the curve equation, i.e. ker(π) =

(
Y 2 −X3 −AX −B

)
. Since

D′(Y 2 −X3 −AX −B) = D′(Y 2)−D′(X3)−A ·D′(X)

= 2Y ·D′(Y )− (3X2 +A) ·D′(X)

= D′(X) ·D′(Y )−D′(Y ) ·D′(X)

= 0

we get a unique homomorphism D : k[x, y]→ k[x, y] satisfying D ◦ π = π ◦D′.
Since D′ is a derivation, so is D and it is unique with (3).

Definition 1.9. From now on, we will always write D for the derivation satis-
fying (3) and call it the derivation on E.
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Lemma 1.10. If f ∈ k[x, y] satisfies D(f) 6= 0, then deg(D(f)) = deg(f) + 1.
In particular, the inequality deg(D(f)) ≤ deg(f) + 1 always holds.

Proof. Certainly this holds for f = x and f = y by (3). Consequently, it holds
for polynomials in x and since any polynomial has a canonical representation
f(x, y) = u(x) + y · v(x), the general case follows.

Proposition 1.11. Let P ∈ E be any point.

1. If r is a rational function which is finite at P , then so is D(r).

2. If u is a uniformizer at P , then D(u) is finite and nonzero at P .

Proof. For P 6= O, part (1) follows from the quotient rule (2). On the other
hand, r(O) 6= ∞ means r = f/g with deg(f) ≤ deg(g). By the quotient rule,
we want to show that

deg(D(f)g − fD(g)) ≤ deg(g2).

We distinguish two cases:

Case 1 (deg(f) = deg(g)). In this case, D(f) · g and f · D(g) have the same
leading term. Since we can write both polynomials in a unique normal form,
this yields

deg(D(f)g−fD(g)) = deg(D(f)g)− 1 = deg(D(f)) + deg(g)− 1

(1.10)
= deg(f) + 1 + deg(g)− 1 = 2 deg(g) = deg(g2).

Case 2 (deg(f) 6= deg(g)). In this case, we can also use 1.10 to conclude

deg(D(f)g − fD(g)) ≤ max {deg(D(f)) + deg(g), deg(f) + deg(D(g))}
≤ deg(f) + deg(g) + 1 ≤ 2 deg(g) = deg(g2).

We now proceed to prove (2). Since there are only three kinds of uniformizers,
we can check each one of them individually. If P = O then u = x/y and

D(x/y ) =
D(x)y − xD(y)

y2
=

2y2 − 3x3 −Ax
y2

=
−y2 −Ax+B

y2

evaluates to −1 at O. If P = (ω, 0) is a point of order two then u = y and

D(y)(P ) = (3x2 +A)(P ) = ∂X(X3 +AX +B)(ω) ∈ k×

since E is nonsingular. The final case is where P is none of the above and the
uniformizer is given by u = x−x(P )⇒ D(u) = 2y. Since P is not of order two,
2y(P ) is finite and nonzero.

Corollary 1.12. Let r be a rational function on E. If ordP (r) = d is not a
multiple of char(k), then ordP (D(r)) = d− 1.
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Proof. Let u be a uniformizer at P and r = udr1. Then, r1 is finite and nonzero
at P and

D(r) = D(ud · r1) = d · ud−1 ·D(u) · r1 + ud ·D(r1)

= ud−1 · (d ·D(u) · r1 + u ·D(r1))︸ ︷︷ ︸
r2

By 1.11, D(u)(P ) ∈ k× and r1(P ) ∈ k× by assumption. Since u(P ) = 0 and d
is not a multiple of char(k), r2 is finite and nonzero at P . Thus, D(r) = ud−1r2

means that ordP (D(r)) = d− 1.

Corollary 1.13. Let r be a rational function on E which has a zero at P and
j < char(k) 6= 0 or j > char(k) = 0. Then, Dj(r)(P ) = 0 ⇔ ordP (r) > j.

Remark. In particular, the equivalence holds for all 1 ≤ j ≤ 4 by our global
assumption on char(k).

Proof. The statement would follow immediately from 1.12 unless ordP (r) is a
multiple of p := char(k). In this case, we claim that both statements are true.
Since the order of r at P must be greater than zero, this would mean that
p 6= 0 and ordP (r) ≥ p > j by assumption. We write ordP (r) = np and pick a
uniformizer u at P to write r = unps with some s that is finite and nonzero at
P . Then,

D(r) = D(unp)s+ unpD(s) = p · nunp−1s+ unpD(s) = unpD(s)

and by 1.8, D(s) is finite and nonzero at P . Thus, ordP (D(r)) = ordP (r), so
Dj(r)(P ) = 0 holds for all j.

2 The Group Law

In this section, we define a group structure on the points of E and show that it
can be given a very profund geometric intuition.

Recall. ∆ ∈ Div0(E) ⇒ ∃!P∆ ∈ E with ∆ ∼ 〈P∆〉 − 〈O〉. The map

σ̄ : Div0(E) −→ E

∆ 7−→ P∆

induces a bijection σ : Pic0(E) ∼−→ E,

Div0(E)

	

σ̄

��

π

����

Pic0(E)
σ

//
E

κ:=σ−1

oo

since Pic0(E) = Div0(E)
/
∼ . We set κ := σ−1.
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Definition 2.1. We define a group law on E by

E × E −→ E

(P,Q) 7−→ P +Q := σ(κ(P ) + κ(Q))

In other words, E = (E,+) has the group structure induced by σ. For Q ∈ E, we
define the translation by Q to be the map TQ : E → E defined by P 7→ P +Q.
The translation by −Q is an inverse for it.

Fact 2.2. The neutral element of E is σ(0) = O.

Proof. Follows from σ(0) = σ(π(0)) = σ̄(0) = O.

Lemma 2.3. Whenever l(x, y) = αx+ βy + γ is a line on E with divisor

div(l) = 〈P1〉+ . . .+ 〈Pn〉 − n 〈O〉 ,

then P1 + . . .+ Pn = O in E.

Proof. From the equality σ(π(〈P 〉 − 〈O〉)) = σ̄(〈P 〉 − 〈O〉) = P , we conclude
that κ(P ) = σ−1(P ) = π(〈P 〉 − 〈O〉). Thus,

κ(P1) + . . .+ κ(Pn) = π(〈P1〉 − 〈O〉) + . . .+ π(〈Pn〉 − 〈O〉)
= π(〈P1〉+ . . .+ 〈Pn〉 − n 〈O〉)
= π(div(l)) = 0

implies that P1 + . . .+ Pn = σ(0) = O by 2.2.

Proposition 2.4. The inverse of P ∈ E is −P := (x(P ),−y(P )).

Proof. Consider the line l(x, y) := x − x(P ). It has exactly two zeros on E at
P and −P . It also has a pole on E at O. We note that

u2
O · l = (x/y)

2 · (x− x(P )) =
x2(x− x(P ))

y2
=
x3 − x(P ) · x2

x3 +Ax+B

evaluates to 1 at O. Hence, ordO(l) = −2. Thus,

div(l) = 〈P 〉+ 〈−P 〉 − 2 〈O〉

and the claim follows from 2.3.

Proposition 2.5. Let P1, P2 ∈ E \ {O} such that P1 6= −P2 and set P3 :=
P1 + P2. Let xi := x(Pi) as well as yi := y(Pi) for i = 1, 2, 3. With

λ :=


y2 − y1

x2 − x1
; x1 6= x2

3x2
1 +A

2y1
; x1 = x2

we then claim that

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1. (4)
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Proof. We define

γ :=


y1x2 − y2x1

x2 − x1
; x1 6= x2

y1 − λx1 ; x1 = x2

and claim that the line
l(x, y) := y − λx− γ.

has a zero on E at P1 and P2. In the case x1 6= x2, we check this by calculating

(x2 − x1) · l(P1) = y1(x2 − x1) + (y1 − y2)x1 − (y1x2 − y2x1) = 0

(x2 − x1) · l(P2) = y2(x2 − x1) + (y1 − y2)x2 − (y1x2 − y2x1) = 0

Since x1 = x2 implies y1 = y2 by our assumption P1 6= −P2, the second case is
trivial. Intuitively speaking, l is the line through P1 and P2. For P1 = P2, it is
the tangent to E at that point.

Our first goal is to show that

∃R ∈ E : div(l) = 〈P1〉+ 〈P2〉+ 〈R〉 − 3 〈O〉 (5)

For P1 6= P2, the above is obvious since deg(l) = 3. For P := P1 = P2, we have
to show that ordP (l) ≥ 2. This follows from 1.13 because

D(l) = D((y − y1)− λ(x− x1))

= 3x2 +A− 2λy

= (3x2 +A)− (3x2
1 +A) · (y/y1)

implying D(l)(P ) = 0.
From (5), we can now conclude that P1 + P2 = −R by virtue of 2.3. Thus,

P3 = −R and this means R = (x3,−y3) by 2.4. The x-coordinates of P1, P2

and −P3 are the roots of

g(X) := X3 +AX +B − (λX + γ)2

which means g(X) = c(X − x1)(X − x2)(X − x3). Comparing coefficients, we
immediately conclude c = 1 and x1 + x2 + x3 = λ2. This verifies the first part
of (4). The second part follows because l(x3,−y3) = 0 implies

y3 = −λx3 − γ = λ(x1 − x3)− λx1 − γ = λ(x1 − x3)− y1

Fact 2.6. The linear coefficient λ in 2.5 can always be expressed as

λ :=
x2

2 + x1x2 + x2
1 +A

y1 + y2

Proof. For x1 = x2 ⇒ y1 = y2, this is obvious. On the other hand,

y2 − y1

x2 − x1
=
y2 − y1

x2 − x1
· y2 + y1

y2 + y1
=

y2
2 − y2

1

(x2 − x1)(y2 + y1)

=
(x3

2 − x3
1) +A(x2 − x1)

(x2 − x1)(y2 + y1)
=
x2

2 + x1x2 + x2
1 +A

y1 + y2

verifies the formula in the case x2 6= x1.

7



Definition 2.7. We define a map sum : Div(E)→ E by∑
P∈E

nP 〈P 〉 7−→
∑
P∈E

nP · P

which means sum |Div0(E) = σ̄.

Proposition 2.8. A divisor ∆ ∈ Div(E) is principal if and only if deg(∆) = 0
and sum(∆) = O.

Proof. Both conditions imply ∆ ∈ Div0(E), so ∆ ∼ 〈sum(∆)〉 − 〈O〉 and thus,
the claim follows because sum(∆) = O ⇔ ∆ ∼ 0 ⇔ ∆ is principal.

3 Point Multiplication

By point multiplication we understand the scalar multiplication of E as a
Z-module. For finite curves (over finite fields), this multiplication gives rise to
the diffie-hellman problem – which has important applications in cryptography.

Recall. We consider the rational maps as points of the curve E(K(E)), points
with coordinates in the field of rational functions K(E).

Proposition 3.1. Let F1 and F2 be rational maps on E. If F3 = F1 + F2 as
points of E(K(E)), then ∀P ∈ E : F3(P ) = F1(P ) + F2(P ).

Proof. We will assume that Fi 6= OM for all i since the statement is obviously
correct in these cases. Hence, we write Fi = (fi, gi). We write

λ =
f2

1 + f1f2 + f2
2 +A

g1 + g2

as in 2.6.

Case 1 (F1(P ) 6= O, F2(P ) 6= O). If g1(P ) 6= −g2(P ), this case is trivial
because the addition formulas coincide. Otherwise, we have F1(P ) = −F2(P )
and also, λ has a pole at P . Consequently, f3 and g3 have poles at P yielding
F3(P ) = O = F1(P ) + F2(P ).

Case 2 (F1(P ) = O, F2(P ) 6= O). We write f1 = u−dr and g1 = u−es where u
is a uniformizer and both r and s are finite and nonzero at P . Since

u−2es2 = g2
1 = f3

1 +Af1 +B = u−3dr3 +Au−dr +B

= u−2e(u2e−3dr3 +Au2e−dr + u2eB),

we conclude 2e = 3d so 2d > e > d. Also, f1 6= f2 because they differ in P , we
can use

λ =
g2 − g1

f2 − f1
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for the calculation

f3 =

(
g2 − g1

f2 − f1

)2

− (f2 + f1)

=
(g2

2 − 2g1g2 + g2
1)− (f2 + f1)(f2 − f1)2

(f2 − f1)2

=
g2

2 − 2g1g2 + g2
1 − f3

1 + f1f
2
2 − f3

2 + f2
1 f2

f2
1 + f2

2 − 2f1f2

=
g2

2 − 2g1g2 +Af1 +B + f1f
2
2 − f3

2 + f2
1 f2

f2
1 + f2

2 − 2f1f2

=
f2

1 f2 − 2g1g2

f2
1 + f2

2 − 2f1f2
+
g2

2 +Af1 +B + f1f
2
2 − f3

2

f2
1 + f2

2 − 2f1f2︸ ︷︷ ︸
vanishes at P

.

By multiplying numerator and denominator by 2d and evaluating at P , we get
that

f3(P ) =
r2f2 − 2su2d−eg2

r2 + f2
2u

2d − 2rudf2
(P ) = f2(P ).

We therefore know that F3(P ) 6= O. Since F3 − F2 = F1, the first case gives us

F3(P )− F2(P ) = F3(P ) + (−F2)(P ) = F1(P ) = O,

so we are done.

Case 3 (F1(P ) = O, F2(P ) = O). We know that F1+(F2−F3) = OM . Assume
that F3(P ) = Q 6= O. Then, by the previous case,

(F2 − F3)(P ) = F2(P )− F3(P ) = −Q

and consequently,

O = OM (P ) = (F1 + (F2 − F3))(P ) = F1(P ) + (F2 − F3)(P ) = −Q

which is a direct contradiction to O 6= Q.

Definition 3.2. For every n ∈ Z, we define the n-fold point multiplication
to be the map

[n] : E −→ E

P 7−→ n · P

Also set gn := x ◦ [n] and hn := y ◦ [n], i.e. n · P = (gn(P ), hn(P )). We also
define the n-torsion points of E to be the set

E[n] := {P ∈ E | n · P = O} .

It is clearly a subgroup of E.
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Theorem 3.3. For all n ∈ Z, the n-fold point multiplication is a rational map.
For n 6= 0, its kernel E[n] is a finite set.

Remark. In other words, gn and hn are rational functions for all n ∈ Z.

Proof. If the statement holds for n ≥ 0, then it holds for −n as well by 2.4.
Furthermore, the statement is trivial for n = 0, 1. We use this as the base for
an induction on n > 0. By n ·P = (n− 1) ·P +P and 3.1, we can conclude that
[n] = [n− 1] + [1] is a rational map. To see that E[n] is finite, we only have to
verify that [n] 6= OM .

We note that E[2] = {O, Ω1, Ω2, Ω3 } is clearly finite. If n is an odd prime,
this implies n · Ω1 = Ω1 6= O and therefore, [n] 6= OM . Thus, we can assume n
to have a nontrivial divisor m. More precisely, we assume n = j ·m such that
by induction hypothesis, E[j] and E[m] are finite. Note that

E[n] =
⋃

R∈E[j]

{P ∈ E | m · P = R } =
⋃

R∈E[j]

[m]−1(R)

so it suffices to prove that [m]−1(R) is finite for all R. We may assume that the
set is not empty and pick QR ∈ [m]−1(R). The translation TQR

then induces a
bijection E[m] ∼= [m]−1(R).

Corollary 3.4. We observe n 6= 1 ⇒ gn − x 6≡ 0.

Proof. If gn−x was identically zero, then n ·P = ±P would hold for all P . We
can write this as (n ± 1) · P = O for all P . Thus, either E[n − 1] or E[n + 1]
would have to be infinite – contradicting 3.3.

4 Counting Torsion Points

We have seen that E[n] is always a finite set – the main result of this section will
be the fact that it contains exactly n2 points as long as n is not a multiple of
char(k). This result will later be used to determine the total number of points
on a finite curve. This number has to satisfy certain conditions in order to make
the curve suitable for cryptographic purposes – it is our final goal to devise an
algorithm for counting all points on a finite curve.

Proposition 4.1. Assume that n is not a multiple of char(k). Then,

(gn/x) (O) = n−2 and (hn/y) (O) = n−3.

Proof. The statement is symbolically correct for n = 0 and obviously holds for
n = 1. We use this as the base for an induction on n. For n ≥ 1, we consider
the point addition (n+ 1) · P = n · P + P . Using 2.6 for (4),

gn+1

x
=

1

x
·

((
g2
n + gnx+ x2 +A

hn + y

)2

− gn − x

)

=
x4

y2x
·

(
(gn/x)

2
+ (gn/x) + 1 +

(
A
/
x2
)

(hn/y) + 1

)2

− (gn/x)− 1.
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By induction hypothesis, evaluation at O yields

(gn+1/x) (O) =

(
n−4 + n−2 + 1

n−3 + 1

)2

− 1

n2
− 1

=

(
1 + n2 + n4

n+ n4

)2

− 1 + n2

n2

=
n8 + 2n6 + 3n4 + 2n2 + 1

(n+ n4)2
− (1 + n2)(1 + n3)2

(n+ n4)2

=
n8 + 2n6 + 3n4 + 2n2 + 1

(n+ n4)2
− (1 + n2)(1 + n3)2

(n+ n4)2

=
n8 + 2n6 + 3n4 + 2n2 + 1− 1− n2 − 2n3 − 2n5 − n6 − n8

(n+ n4)2

=
n6 − 2n5 + 3n4 − 2n3 + n2

(n+ n4)2
=

n4 − 2n3 + 3n2 − 2n+ 1

(1 + n3)2

=
(1− n+ n2)2

(1 + n3)2
=

1

(1 + n)2

For the second coordinate, we use (4) to calculate

hn+1

y
=

1

y
·
(
−y − g2

n + gnx+ x2 +A

hn + y
· (gn+1 − x)

)
= −1− x3

y2
·

(gn/x)
2

+ (gn/x) + 1 +
(
A
/
x2
)

(hn/y) + 1
·
(gn+1

x
− 1
)

and evaluation at O yields

(hn+1/y) (O) = −1− n−4 + n−2 + 1

n−3 + 1
·
(

1

(n+ 1)2
− 1

)
= −1− 1 + n2 + n4

n+ n4
· 1− (n+ 1)2

(n+ 1)2

=
1 + n2 + n4

n+ n4
· n

2 + 2n

(n+ 1)2
− 1

=
n+ n3 + n5 + 2 + 2n2 + 2n4

(1 + n3)(n+ 1)2
− 1

=
n2 − n+ 1

(1 + n3)(n+ 1)2
=

(n− 1)2 + n

(1 + n3)(n+ 1)2

=
(n2 − 1)(n− 1) + n2 + n

(1 + n3)(n+ 1)3
=

1

(n+ 1)3

which concludes the induction as long as n is not a multiple of p := char(k). In
this case, we have to use the equation (n + 1) · P = (n − 1) · P + 2 · P for the
induction step. This is equivalent to the above approach, but with even more
mind-numbing calculations. If you are not convinced, check it with a computer
algebra program.
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Corollary 4.2. If n is not a multiple of char(k),

• gn has order −2 at O and leading coefficient n−2.

• hn has order −3 at O and leading coefficient n−3.

Proof. Since the rational function

(x/y)
2 · gn =

x2 · gn
x3 +Ax+B

=
gn
x
· x2

x2 +A+Bx−1

has the same finite and nonzero value at O as gn/x , the first claim follows from
4.1. Equivalently, we can write

(x/y)
3 · hn =

(y2 −Ax−B) · hn
y3

=
hn
y
· y

2 −Ax−B
y2

and obtain the result for hn

Proposition 4.3. D(gn) = 2nhn and D(hn) = n(3g2
n +A).

Proof. The statement is clear for n = 1 by definition of D (see (3)). The
equations

h2
n = g3

n +Agn +B (6)

gn+1 = λ2 − (gn + x) (7)

hn+1 = λ · (x− gn+1)− y (8)

follow from the curve equation and the generic addition formula (4) using

λ =
g2
n + gnx+ x2 +A

hn + y

by 2.6. We note that

(hn + y) ·D(λ) = D(g2
n + gnx+ x2 +A)− λD(hn + y)

= 2y(gn + 2x) + 2nhn(2gn + x)− λ(3ng2
n + 3x2 + (n+ 1)A)

In the induction step, it suffices to show that

0 = D(gn+1)/2 − (n+ 1)hn+1

= λ ·D(λ)− nhn − y − (n+ 1)λ(x− gn+1) + (n+ 1)y

= λ ·D(λ)− n(hn − y) + λ(n+ 1)(λ2 − gn − 2x)

On the right hand side, we reduce occurances of h2
n and y2 using the curve

equation. A tedious calculation proves the above equality, we suggest to use a
computer algebra system. One proceeds equivalently for hn+1.

Lemma 4.4. Let P,Q ∈ E and let u be a uniformizer at P . Then, u ◦ TQ is a
uniformizer at P −Q.
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Proof. Since u(TQ(P −Q)) = u(P ) = 0, we know that

m := ordP−Q(u ◦ TQ) ≥ 1.

Let v be a uniformizer at P −Q and u ◦ TQ = vms with s finite and nonzero at
P −Q. Let r be any rational function. If ordP (r) = d, we write r = udt with t
finite and nonzero at P . Then,

r ◦ TQ = (u ◦ TQ)d · (t ◦ TQ) = vmd · sd · (t ◦ TQ)︸ ︷︷ ︸
w

such that w(P −Q) = s(P −Q)d · t(P ) is finite and nonzero. Thus, we obtain
the formula ordP−Q(r ◦ TQ) = m · ordP (r). for all rational functions on E.
Replacing r by r ◦ T−Q, we get

ordP (r ◦ T−Q) = ordP−Q(r)/m (9)

Hence, (v ◦ T−Q)(P ) = v(P −Q) = 0 means

1 ≤ ordP (v ◦ T−Q) = ordP−Q(v)/m = m−1.

Thus, m = 1 and u ◦ TQ must be a uniformizer at P −Q.

Corollary 4.5. For any two points P,Q ∈ E and any rational function r,

ordP (r ◦ TQ) = ordP+Q(r). (10)

Proof. This is just equation (9), since we know m = 1.

Corollary 4.6. div(r) =
∑
P nP 〈P 〉 ⇒ div(r ◦ TQ) =

∑
P nP 〈P −Q〉.

Lemma 4.7. If r1 and r2 are rational functions,

ordO(r1 − r2) ≥ min(ordO(r1), ordO(r2)). (11)

Equality holds if and only if both functions have different order at O or different
leading coefficients.

Proof. Let u = x/y and write r1 = ud1s1 as well as r2 = ud2s2 with s1 and s2

finite and nonzero at O. Note that si(O) is precisely the leading coefficient of
ri. Without loss of generality, assume that d1 ≥ d2. Then,

r1 − r2 = ud2 · (ud1−d2s1 − s2)︸ ︷︷ ︸
s

Now s is finite and nonzero at P if and only if d2 > d1 or s1(O) = s2(O).

Notation 4.8. If M ⊆ E is a finite set of points of E, we will write

〈M〉 :=
∑
P∈M

〈P 〉 ∈ Div(E).
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Theorem 4.9. Let m > n > 0 such that neither of m, n, m−n and m+n are
a multiple of char(k). Then,

div(gm − gn) = 〈E[m+ n]〉+ 〈E[m− n]〉 − 2 〈E[m]〉 − 2 〈E[n]〉 . (12)

Proof. We consider the partition

E = E[m] ∩ E[n]︸ ︷︷ ︸
E1

·∪ (E[m] ∪ E[n]) \ (E[m] ∩ E[n])︸ ︷︷ ︸
E2

·∪ E \ (E[m] ∪ E[n])︸ ︷︷ ︸
E3

and count multiplicities. We will often require the following observation:

∀ : P ∈ E[j] : [j] ◦ TP = [j] (13)

=⇒ gj ◦ Tp = gj

=⇒ ordP (gj) = ordO(gj).

This follows since j ·Q = j ·(Q+P ) holds for all Q ∈ E and the final implication
is due to 4.5.

We note that E1 ⊆ E[m + n] ∩ E[m − n]. For P ∈ E1, this means that
we have to verify ordP (gm − gn) = 1 + 1 − 2 − 2 = −2. We remark that
(m− n)(m+ n) = m2 − n2 is not a multiple of char(k), so m2 6= n2 in k. Thus
by 4.2, the leading coefficients of gm and gn differ. Since Q := −P ∈ E1,

ordP (gm − gn)
(10)
= ordO((gm − gn) ◦ TQ) = ordO(gm ◦ TQ − gn ◦ TQ)

(13)
= ordO(gm − gn)

(11)
= min(ordO(gm), ordO(gn))

(4.2)
= −2.

We now consider the points P ∈ E2. Since either mP = O or nP = O but not
both, P /∈ E[m + n] ∪ E[m − n]. Thus, we have to show ordP (gm − gn) = −2
again. Now, P ∈ E[m] implies gn(P ) 6=∞. Writing gm = u−dP t with t(P ) ∈ k×,

we can see that gm − gn = u−dP (t− udP gn). Thus,

ordP (gm − gn) = ordP (gm)
(13)
= ordO(gm)

(4.2)
= −2.

Similarly, P ∈ E[n] implies gm(P ) 6= ∞ and we get the desired result in an
equivalent way.

We now consider points P ∈ E3. Now gm − gn can not have a pole at P .
It has a zero at P if and only if mP = ±nP which is the case if and only if
P ∈ E[m + n] ∪ E[m − n] since mP = (m ∓ n)P ± nP . This means, we only
have to count the multiplicities at the points in

E3 ∩ (E[m− n] ∪ E[m+ n]) = E3 ∩ (E[m− n] ∩ E[m+ n])︸ ︷︷ ︸
E4

·∪ E3 ∩ (E[m+ n] \ E[m− n])︸ ︷︷ ︸
E5

·∪ E3 ∩ (E[m− n] \ E[m+ n])︸ ︷︷ ︸
E6
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For points P ∈ E4, we know Q := nP = mP = −nP , so Q is of order two. By
4.3, we can calculate

D(gm − gn)(P ) = (2mhm − 2nhn)(P ) = 2 · (m− n) · y(Q) = 0

which means that the zero at P is of order greater or equal than 2 by 1.13. Let
now ω := gn(P ) = gm(P ). We derive further to see that

D2(gm − gn)(P ) = D(2mhm − 2nhn)(P )

= (2m2(3g2
m +A)− 2n2(3g2

n +A))(P )

= 2 · (m2 − n2) · (3ω2 +A)

= 2 · (m− n) · (m+ n) · ∂X(X3 +AX +B)(ω)

is nonzero since 2, m − n and m + n are not multiples of char(k) and E is
assumed to be nonsingular. Thus, ordP (gm − gn) = 2 is precisely the number
we wanted to count.

For P ∈ E5, we know nP 6= mP = −nP and thus, hn(P ) = −hm(P ) 6= 0.
Thus, D(gm − gn)(P ) = 2(m+ n)hm(P ) is nonzero and ordP (gm − gn) = 1 by
1.13. The case P ∈ E6 works equivalently.

Corollary 4.10. If n is not a multiple of char(k), then #E[n] = n2.

Proof. Let δ : N → N be the function defined by δ(n) := #E[n]. Let ∆ be the
set of all functions d : N→ N satisfying

d(m+ n) + d(m− n)− 2d(m)− 2d(n) = 0

whenever m > n > 0 and neither of m,n,m + n and m − n are multiples of
char(k). Clearly, δ ∈ ∆ by (12). Also,

(m+ n)2 + (m− n)2 − 2m2 − 2n2

= m2 + n2 + 2mn+m2 + n2 − 2mn− 2m2 − 2n2 = 0

verifies that (−)
2 ∈ ∆. We are now going to show that ∆ contains precisely

one function d with d(1) = 1 and d(2) = 4. Since both (−)
2

and δ have this
property, it will prove the statement. To do so, we first note that for d1, d2 ∈ ∆,
also d := d1 − d2 ∈ ∆. We need to show that d ∈ ∆ with d(1) = d(2) = 0
already implies d ≡ 0.

Now, let j > 2 be no integer multiple of char(k) =: p. We furthermore
assume p 6= 0 since the opposite can be verified exactly as in

Case 1 (j − 1 and j − 2 are prime to p). This case follows by induction from

d(j) = d(j)− d((j − 1) + 1)− d((j − 1)− 1) + 2d(j − 1) + 2d(1)

= 2d(j − 1)− d(j − 2) = 0.
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Case 2 (j − 1 is a multiple of p). We may assume j > 5 by our global assump-
tions on p. In this case, j− 2 must be prime to p. Also, since j− 1 is a multiple
of p 6= 3, j − 4 is prime to p. Consequently, the induction step follows by

d(j) = d(j)− d((j − 2) + 2)− d((j − 2)− 2) + 2d(j − 2) + 2d(2)

= 2d(j − 2)− d(j − 4) = 0.

Case 3 (j − 2 is a multiple of p). We know j > 6. Also, j − 3 must be prime
to p and j − 6 can not be a multiple of p because j − 2 is (and 4 is not prime).
The result follows by

d(j) = d(j)− d((j − 3) + 3)− d((j − 3)− 3) + 2d(j − 3) + 2d(3)

= 2d(j − 3) + 2d(3)− d(j − 6) = 0.

This concludes d ≡ 0 by induction.

Corollary 4.11. For p := char(k) 6= 0 and n /∈ (p), it follows that

E[n] ∼= Z/(n) × Z/(n)

is a free Z/(n) -module of rank 2.

Proof. This follows from the fundamental theorem of abelian groups – see, for
instance, [Bo06, Korollar 2.9.9].
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