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Chapter 1

Introduction

1.1 Last semester
This course will study some computational problems and their complexity. We
will assume some basic knowledge of computation: Turing machines, P , NP ,
EXP , . . .. The lecture notes of the winter terme 2008/2009 are available at
www.klausuren-skripte-protokolle.de. Recommended text-book (online): "Com-
plexity Theory: A Modern Approach" by Arora and Barak.

1.2 Formalizing Problems and Difficulty
We call a problem computable if there is a turing-machine that solves it (in a
finite number of steps). Such problems are also called decidable or recursive in
literature. Famous examples:

1. Given a quadratic polynomial f ∈ Z[x1, . . . , xn]. The problem of deciding
the existance of a Z-root x ∈ Zn with f(x) = 0.

2. Given several quadratic polynomials f1, . . . , fm ∈ Z[x1, . . . , xn]. Decide
whether there is a Z-root x ∈ Zn with f1(x) = . . . = fm(x) = 0. This
Problem is uncomputable and called "Hilbert’s 10th problem".

We will formalize a problem L as subset of {0,1}∗ (which we will call a
language) or as a function: {0,1}∗ → {0,1}∗.

The problem of "adding two integeres" can be seen as a function:

+ ∶ {0,1}∗ → {0,1}∗
(m,n) ↦ (m + n)

or as a language
L+ ∶= {(m,n,m + n) ∣m,n ∈ Z}

or
L′+ ∶= {(m,n, i) ∣m,n ∈ Z, ith bit of m + n is 1}

We view a decision problem as a language and a functional problem as a funcion
{0,1}∗ → {0,1}∗.
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6 CHAPTER 1. INTRODUCTION

Definition 1.2.1. For a problem L, the step-by-step procedure of it’s turing-
machine (if one exists) is called an algorithm for L. The number of steps
"#steps" of the turing-machine to stop is called time complexity of L. The
number of used cells is called space complexity of L. A complexity class is a
collection of problems, for e.g.

1. Let T ∶ N→ N. Then

DTime(T (n)) ∶= {L ⊆ {0,1}∗ ∣ ∃ turing-machine that can check
x ∈ L in time O(T (∣x∣))}

2. The class of polynomial-time problems

P ∶= ⋃
c∈N

DTime(nc)

3.
E ∶= ⋃

c∈N
DTime(2cn)

4. The class of exponential-time problems

EXP ∶= ⋃
c∈N

DTime(2nc)

5. The class of sub-exponential-time problems

SUBEXP ∶= ⋂
c∈N

DTime(2nc)

e.g. 2(log(n))d for a constant d.

This course will focus on randomized methods i.e. the algorithms are allowed
to "flip coins and proceed". The only condition being that the output should be
correct with a guaranteed probability.

Definition 1.2.2.

BPP ∶= {L ⊆ {0,1}∗ ∣ ∃ a polynomial-time randomized turing-machine
that solves L with high probability }

Remark 1.2.3. The following statements are obvious:TODO: check spelling

• P ⊆ BPP (Open: P = BPP ).
• P ⊊ E ⊊ EXP
• P ⊊ SUBEXP ⊊ E ⊊ EXP

Definition 1.2.4. For a non-deterministic turing-machine we define Ntime(T (n)),NE,NEXP,SUBNEXP, . . .
analogous as in 1. It holds that NP ⊊ SUBNEXP ⊊ NE ⊊ NEXP .

There are many open questions:

• P = BPP
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• P = NP
• BPP = NP

So it seems that changing the resource leads to open questions. We will focus
on P = BPP .

Finally we define space complexity and space complexity classes analogous:

Definition 1.2.5. Let S ∶ N→ N:
Space ∶= {L ⊆ {0,1}∗ ∣ ∃ a O(S(n))-space

turing-machine solving L}
and define complexiy classes

PSPACE ∶= ⋃
c∈N

Space(nc)

EXPSPACE ∶= ⋃
c∈N

Space(2nc)

Practical efficiency corresponds to P and BPP . For example it is an open
question if IntegerFactoring ∈ BPP .
Definition 1.2.6. An arithmetic circuit is a rooted tree with inputs as leaves;
+, ∗, & as internal nodes and constants (from F ) at internal edges. The leafes
correspond the xis.

A classical example in BPP not kwnown to be in P :

Definition 1.2.7. Polynomial-Identity-Testing (PIT): Given an arithmetic
circuit C ∈ F[x1, . . . , xn]. Test if C = 0. The corresponding language is PIT ∶=
{C ∣ C = 0}.
Theorem 1.2.8.

PIT ∈ BPP
Proof. Let C(x1, . . . , xn) be the given circuit with constants from a field F.

Let s be the size of the circuit description ∣C ∣. The total degree d of the output
polynomial of C is ≤ 2s. Now we unterscheiden two cases: TODO: translate

Case ∣F∣ > 2s+1: In this case the algorithm is simple: Pick a random a ∈ Fn.
If C(a) = 0 then output 0 else 1.

The algorithm can be implemented to take p(s)-many F-operatations (where
p is a polynomial). THe correctness of the algorithm: If C = 0 then

Proba1,...,an∈F[answer is correct] = 1

but if C ≠ 0 then

p ∶= Proba1,...,an∈F[answer is correct] < 1

◻

Lemma 1.2.9.
p > (1 − d

∣F∣ )
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Chapter 2

Circuits

2.1 Polynomial-Identity-Testing is important
Theorem 2.1.1.

PIT ∈ P ⇒ (NEXP ⊈ P /Poly) ∨ (per ∉ AlgP /Poly)

Lemma 2.1.2.

(PIT ∈ P ) & (per ∈ AlgP /Poly) ⇒ P per ⊆ NP

Proof. ◻ TODO: copy lecture
notes

Idea for 2.1.1: If we also assume that NEXP ⊆ P /Poly then we will be able
to show NEXP ⊆ P per.

First we recall certain notations from the last course:

Definition 2.1.3. • ΣP2 = NPNP or equivalently L ∈ ΣP2 iff ∃ polynomial-
time turing-machine N s.t. ∀x ∈ {0,1}∗, x ∈ L iff ∃y1∀y2 [N(x, y1, y2) = 1].

• Similarly ΣP3 ,ΣP4 , . . . and finally PH = ⋃i≥1 ΣPi .

• ΠP
1 = co −ΣP1 = coNP , ΠP

2 = co −ΣP2 = co − (NPNP ) etc.

Instead of ∃ and ∀ we can also use ∃ and M (most) quantifiers, where
"My∈{0,1}l[P (y) = 1]" means that for 2

3 of the 2l strings y it holds that P (y) = 1.

Definition 2.1.4. We say L ∈ AM[k] if ∃ polynomial-time turing-machine N
s.t. ∀x ∈ {0,1}∗ it holds that x ∈ L iff My1∃y2 . . .Qyk [N(x, y1, . . . , yk) = 1]
where Q is either ∃ or M , depending only on the parity of k (we want them
to alternate: M∃M∃M∃). The sizes of all quantified variables is polynomial
bounded. AM[k] is analogous to ΠP

k .
We say L ∈MA[k] if ∃ polynomial-time turing-machine N s.t. ∀x ∈ {0,1}∗

it holds that x ∈ L iff ∃y1My2 . . .Qyk[N(x, y1, . . . , yk) = 1]. MA[k] is analogous
to ΣPk .

We write AM[2] and MA[2] as AM and MA (which are not the union of
all AM[k]).

9
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An interpretation ofAM[k] andMA[k]: A is Arthur (randomized polynomial-
time machine) and M is Merlin (all powerful machine).

We say L ∈ AM[k] if for a given input string x ∈ {0,1}∗ Merlin can convince
Arthur that x ∈ L using k interactions.

Merlin Arthur

x
(x,y1)oo

y2 //

y2oo

y3 //

y4oo

. . . . . .

yk //

Arthur accepts x iff N(x, y1, . . . , yk) = 1

Definition 2.1.5.
IP ∶= ⋃

c∈N
AM[nc]

Exercise 2.1.6. IP ⊆ PSPACE
Theorem 2.1.7.

PSPACE = IP
Proof. for PSPACE ⊆ IP [Shamir ’90]
We will give an interactive protocol for

TQBF ∶= {QBFφ ∶= ∃x1, . . .∀xnφ̃(x1, . . . , xn) ∣ φ is true}
which is a PSPACE-complete problem. Arithmetize

φ ∶= Q1x1 . . .Qnxnφ̃(x1, . . . , xn)
where Qi ∈ {∀,∃}.

1. arithmetize φ̃(x1, . . . , xn) and get Pφ̃ ∈ Z[x1, . . . , xn] by
• x̄1 ↦ (1 − x1)
• x1 ∨ x2 ↦ 1 − (1 − x1)(1 − x2)
• x1 ∧ x2 ↦ x1 ⋅ x2

so we convert boolean formulas to elements of Z[x1, . . . , xn].
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2. arithmetize quantifiers:

Q̃i = { Σ if Qi = ∃
Π if Qi = ∀

3. arithmetize φ as:

Q̃1x1 ∈ {0,1} Q̃2x2 ∈ {0,1} . . . Q̃nxn ∈ {0,1} [Pφ̃(x1, . . . , xn)] ∈ Z

Exercise 2.1.8. This value is > 0 iff φ is true.

NowMerlin tries to convince Arthur that Q̃1 . . . Q̃nPφ̃(x1, . . . , xn) =K (where
K ∈ Z>0). The protocol is as follows:

1. Arthur If n = 1: Arthur checks himself whether Q̃1x1 ∈ {0,1}Pφ̃(x1) =K
and accepts φ iff it is true.

2. Merlin sends s(x1) ∈ Z[x1] to Arthur, as a candidate for

Q̃2x2 ∈ {0,1} . . . Q̃nxn ∈ {0,1}Pφ̃(x1, . . . , xn)

3. Arthur Picks a random a ∈ Z and recursively verify whether

Q̃2 . . . Q̃nPφ̃(a, x2, . . . , xn) = s(a)

Exercise 2.1.9. If φ = T then Merlin can easily convince Arthur. If φ = F then
no matter what Merlin does Arthur will detect an error with high probability.

◻

Now we are ready to state a second lemma:

Lemma 2.1.10.
EXP ⊆ P /Poly⇒ EXP =MA

Lemma 2.1.11.

NEXP ⊆ P /Poly⇒ NEXP = EXP

Proof. for 2.1.1. For contradiction sake, assume: PIT ∈ P
1. per ∈ AlgP /Poly
2. NEXP ⊆ P /Poly
By assumption 2 and 2.1.10 and 2.1.11: NEXP = MA. Recall Toda’s

theorem PH ⊆ P per which implies that NEXP ⊆ P per.
By assumption 1 and 2.1.2: P per ⊆ NP . But NEXP ⊆ NP contradicts the

nondeterministic time hierarchy.
◻
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Lemma 2.1.12.
EXP ⊆ P /poly⇒ EXP =MA

Proof. Recall the classical Karp-Lippton-Theorem:

NP ⊆ P /poly⇒ ΣP2 = ΠP
2

Similar ideas will be used to show that EXP ⊆ P /poly ⇒ EXP = ΣP2 : Let
L ∈ EXP solved by a turing-machine N . For x ∈ L the j-th bit in the i-th
configuration of N(x) can be found in exponential time. Thus EXP ⊆ P /poly
implies that ∃ small circuit C s.t. C(x, i, j) is the j-th bit in the i-th step of
N(x). Now x ∈ L implies that ∃ circuit C s.t. ∀ configurations i and ∀ bits j:

C(x, i, j) → C(x, i + 1, j) is a valid transition step of N

Exercise 2.1.13. Complete the description.

The converse also holds. Hence L ∈ ΣP2 : EXP ⊆ ΣP2 . So EXP = ΣP2 .
Now we show the lemma itself: We have ΣP2 ⊆ PSPACE = IP ⊆ EXP . If

we assume EXP ⊆ P /poly then EXP = IP . Thus every problem L ∈ EXP has
an interactive protocol, like that for TQBF , with the prover Merline being a
PSPACE machine. Thus Merlin can be replaced by a polynomial sized circuit
family {Cn}n≥1. This suggests the following protocol for any L ∈ EXP : For any
x ∈ {0,1}n we have

1. Merlin: Sends Arthur a circuit C supposed to be Cn

2. Arthur: Runs the interactive protocol on x using C as Merlin and accepts
x iff the simulated protocoll accepts.

Exercise 2.1.14. This means that L ∈MA.

◻

Philosophically this is an interesting "flip" (the existance of an algorithm
implies non-existance of another algorithm).

2.2 (Circuit) Lower Bounds
We believe that NP ≠ P . One way to prove this could be to prove a stronger
result: NP ⊈ P /poly. This approach was actively tried in the 70s and 80s and
lower bounds for special circutits were obtained.

Definition 2.2.1.

AC0 ∶= {L ⊆ {0,1}∗ ∣ L has polynomial sized, constant depth boolean circuits }

ACi ∶= {L ⊆ {0,1}∗ ∣ L has polynomial sized, logi(n) depth boolean circuits }
AC ∶= ⋃

i∈N
ACi
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Definition 2.2.2.

NCi ∶= {L ⊆ {0,1}∗ ∣ L has polynomial sized, logi(n) depth
and bounded fanin boolean circuits }

NC ∶= ⋃
i∈N
NCi

Exercise 2.2.3. Show that

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ . . .

Open: NC ≠ P
Definition 2.2.4. The problem of parity

⊕ ∶ {0,1}n → {0,1}
(x1, . . . , xn) → ∑ni=1 xi (mod 2)

Remark 2.2.5. 1. ⊕ ∈ NC1

2. ⊕ can be computed by O(1)-depth, O(2n)-sized boolean circuits.

3. Can we do better?

Theorem 2.2.6 (Furst, Saxe & Sipser 1981). ⊕ ∉ AC0

We use "randomized restrictions" i.e. randomly picking input variables and
fixing them to a random bit. We show that a depth-d circuit becomes constant
if we apply random restriction on (n − nε) input variables. On the other hand
⊕ does not satisfy this. Now we study the effect of random restrictions on an
AC0-circuit.

Definition 2.2.7. A k-DNF (k-CNF) is an OR-of-ANDs (AND-of-ORs)
where each AND (OR) involves at most k variables.

Lemma 2.2.8 (Switching). Suppose f is expressible as a k-DNF, let ρ be a
random restriction on t > 2n

3 input-variables. Then ∀s ≥ 2:

Pr
ρ

[f ∣ρ is not expressible as a s-CNF] ≤ [(1 − t

n
)10k]

s
2

Remark 2.2.9. It "switches" a k-DNF to a s-CNF and vice-versa.

Proof. We first show how to use this Lemma to prove the theorem: Starting
with an AC0-circuit C(x1, . . . , xn) and assume w.l.o.g:

1. all fanouts are 1 (i.e. the circuit is a tree)

2. NOT -gates are only at the bottom-most level, thus we can remove them
altogether by introducing x̄1, . . . , x̄n as new variables

3. AND and OR gates alternate

4. bottom level has AND gates of fanin 1.
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We randomly restrict variables in C in various steps s.t. with high probabil-
itydepth reduces by 1 in each step. Let n0 be the number of unfixed variables
after step i4. We fix (ni − √

ni) variables in the (i + 1)-th) step So ni = n
1
2i .

Let nb be the number of gates in C(x1, . . . xn). Let ki ∶= (2i10b). We begin
with a 1-DNF at the bottom. We will show that after the i-th step, with high
probability are left with (a(d− i)-depth circuit with bottom level fanin at most
k. TODO: hier fehlt was

By the Switchung Lemma 2.2.8 each such ∨-gate will be espressable as a
ki+1-CNF, after the restriction with prob P :

P ≥ 1 − ((1 − ni−√ni
ni

)10ki)
ki+1

2

= 1 − ( 2−(i+1)

n2−i 10ki)

= 1 − ( 10ki
n−2i+1 )

ki+1
2

≥ (1 − 1
10nb )

Note that i ≤ d = const. Thus after the (i+1)-th step with prob ≥ (1− 1
10nb ) the

last two levels compute a ki+1-CNF, which we can now merge with the & layer
just above it, making now the last two layers computing ki+1-CNF and overall
depth = (d − i − 1).

The second case is where two levels are ∨s and & s can be prove just like
above using dual of the switching lemma.

After (d−2) steps, we get a kd−2-CNF for kd−2-DNF with prob. ≥ 1
10nbxn

b =
9
10 . Thus at the end we get a kd−2-CNF/DNF representation of the parity of
nd−2 = n2−(d−2) variables. So ∃ a fixing of kd−2 variables that fixxes parity, which
is a contradiction.

◻

Exercise 2.2.10.

⊕ ∉ polynomial sized o(log(log(n)))-depth circuits

Proof. [Switching Lemma] Let f be expressible as a k-DNF on n variables.
Let t > 2n

3 and let Rt be the set of all restrictions to t variables. ∣Rt∣ = (nt)2t.
Let Kt,s be those restrictions p for which f ∣p is not a s-CNF. We will bound
∣Kt,s∣
∣Rt∣ .

Idea: We give a 1 ∶ 1 map: Kt,s → Z ×S where Z is the set of all restrictions
on ≥ (t + s) variables und S is a set of size 32ks.

∣Kt,s∣
∣Rt∣ ≤ ∣Z∣∣s∣

∣Rt∣

≤
∑nt′=t+s(

n

t′)st′

(nt)2t
32ks

≤
n( n
t+s)2t+s

(nt)2t
32ks

< n2s32ks (n−t)(n−t−s+1
(t+1)⋯(t+s)

≤ n4s32ks (n−t)s
ts

< (n−t
t

10k) s2
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f is a disjunctin of several terms, each being & s involving k variables.
Define a natural ordering on the variables and the terms (i.e. lexicografically).
Now consider a restriction

r ∈Kt,s Mapping of r into Z ×S: Let term1 be the first unfixed term in f ∣r
and let x1 be the first unfix variable in term1. All terms less then f ∣P are fixd
to false. Let R1 be the (unique)fixing of the k variables in term1 that makes
it true. Note that if both f ∣(X1 = T ) ○ r and f ∣(X1 = F ) ○ r are expressible as
(s − 1)-CNF then f ∣r is expressible as s-CNF.

Thus one of f ∣(X1 = T ) ○ r and f ∣(X1 = F ) ○ r) is inexpressible as a (s − 1)-
CNF, call that assignment L1. Let term2 be the first unfixed term in f ∣L1○r and
let x2 be the first unfixed variable in term2. Let R2 be the fixing of kvariables
in term2 making it true. [terms < term2 are False in f ∣L1r]

Let L2 be the fixing of x2 s..t. f ∣L2L1r is inexpressible as (s − 2)-CNF.
Continuing this way we get L1, . . . , Ls,R1, . . . ,Rs s.t. we define fi ∶= Li⋯L1r
and r0 ∶= r then ∀1 ≤ i ≤ s:

1. termi is the first unfixed term in f ∣ri−1

2. termi is the first True term in f ∣Riri−1

3. Li and Ri agree with fi−1 on all the variables fied by ri−1.

Our next aim is r ↦ (R1⋯RsLs⋯L1r. Define τi ∶= (Ri⋯Rsrs) with τs+1 ∶= rs.
Notice that termi is the first True term in f ∣τi. [τ1 ∶= R1⋯RsLs⋯L1r ⇒ f ∣τ1
has term1 as its first True term. So on for i > 1

Exercise 2.2.11. Show that you can recover termi from τi.

Define z1, . . . , zs,w1, . . . ,ws ∈ {0,1,∗}k (here 0 and 1 mean “fixed” and ∗
means “unfixed”) as: zi describes the action of ri−1 on the k variables in termi

and wi the action of τi+1 on the k variables in termi. Finally we claim that
the mapping r ↦ (τ1, z1, . . . , zs,w1, . . . ,ws) is a 1 ∶ 1 mapping from Kt,s →
Z × {0,1,∗}2ks.

Exercise 2.2.12. Prove this.

◻

We saw that AC0 cannot compute parity in polynomial-size. What if we
add parity-gates to AC0?

Definition 2.2.13. For m1, . . . ,mk ∈ Z
ACC0[m1, . . . ,mk] ∶= {L ⊆ {0,1}∗ ∣ L has polynomial-size, constant depth circuits, using ∨, & ,¬, (mod m1), . . . , (mod mk)}
where

(mod m) ∶ {0,1}l → {0,1}
(x1, . . . , xl) ↦ { 1 if ∑li=1 xi ≡ 0 (mod m)

0 else

and
ACC0 ∶= ⋃

k,m1,...,mk∈N
ACC0[m1, . . . ,mk]
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Theorem 2.2.14 (by Razborov, Smolensky, 1980s). For distinct primes p and
q: (mod p) ∉ ACC0[q].

Lower bounds for ACC0 inspired the "method of apprixmations" first used
by Razborov. This will strengthen ⊕ ∉ AC0.

We will exhibit the proof for p = 2, q = 3.

Lemma 2.2.15. For a depth d circuit C ∈ ACC0[3] on n inputs and size s there
is a polynomial in F3[x1, . . . , xn] of deg ≤ (2l)d which agrees with C(x1, . . . , xn)
on ≥ (1 − s

2l ) fraction of the inputs x̄ ∈ {0,1}n.

Proof. Thus if we fix l = n
d
2

2 , we get s
2l = 0.01 which means that s ≥ 0.01⋅2n

d
2
2

if C computes (mod 2).
Proof of Claim 1: We construct an approximator polynomial in F3[x1, . . . , xn]

for C by induction (on the number of gates): Let g be a node in C at a height
(depth) h, then we construct a polynomial g̃ ∈ F3[x1, . . . , xn] with deg(g) = (2l)h
s.t. g̃(x1, . . . , xn) = g(x1, . . . , xn) for "most" of the 2n inputs (x1, . . . , xn) ∈
{0,1}n:

1. If g is a variable node xi then g̃ = xi.
2. If g is a NOT gate, say g = ¬f for some gate f at height ≤ (h − 1), then

by induction we have the polynomial f̃ with deg(f) ≤ (2l)h−1: g̃ ∶= (1− f̃ .
So deg(g̃) = deg(f̃) ≤ (2l)h−1 and its definition introduces no new errors.

3. If g is a (mod 3) gate, say g = (mod 3)(f1, . . . , fk). Then by induction
we have polynomials f̃1, . . . , f̃k each with deg ≤ (2l)h−1. We define g̃ ∶=
(∑ki=1 f̃i)2. And we see that deg(g̃) ≤ 2 ⋅ (2l)h−1 ≤ (2l)h and we introdued
no new error.

4. If g is an OR gate, say g = ⋁ki=1 fi. g̃ ∶= 1 − ∏k
i=1(1 − f̃i) is not feasible

because the degree whould explode by a factor of k. But we could only
pick a random subset S ⊂ [k] ∶= {1, . . . , k} and define g̃ = (∑i∈S fi)2. For
any x we compute

p ∶= Prob∅≠S⊆[k] [f1 ∨ . . . ∨ fk ≡ ∑
i∈S
fi (mod 3)] ≥ 1

2

An x for which f1(x) = . . . = fk(x) = 0 we know that p = 1.

Exercise 2.2.16. For other xs we show that p ≥ 1
2 .

Hint: Lock at ∑ki=1 aifi. Picking a random subset S is equivalent to picking
ai ∈ {0,1} randomly. So we get ∑ki=1 aifi ≡ 0 (mod 3) iff a1 ≡ −∑ki=2 aifi
(mod 3).

This gives us the idea of picking l random subsets S1, . . . , Sl ⊆ [k] and
define

g̃′ ∶=
l

⋁
j=1

⎛
⎝∑i∈Sj

f̃i
⎞
⎠

2

We have by the above abservation that: For any x it holds that
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ProbS1,...,Sl⊆[k] [g̃′ ≠
k

⋁
i=1
f̃i] ≤ 1

2l

so ∃S0
1 , . . . , S

0
l ⊆ [k] with

Probx∈{0,1}n [g̃′ ≠
k

⋁
i=1
f̃i] ≤ 1

2l

Use these S0
1 , . . . , S

0
l to define g̃:

g̃ ∶= OR
⎛
⎜⎜
⎝
⎛
⎝∑i∈S0

1

f̃i
⎞
⎠

2

, . . . ,
⎛
⎜
⎝
∑
i∈S0

l

f̃i
⎞
⎟
⎠

2⎞
⎟⎟
⎠

where OR(u1, . . . , ul) ∶= 1 −∏l
i=1(1 − ui). g̃ is of deg ≤ (2l)(2l)n−1 = (2l)h

and we introduce error on ≤ 2−l fraction of inputs.

5. If g is an AND gate, say g = ⋁ki=1 fi. By de Morgan’s laws: ¬g = ⋀ki=1 ¬fi.
Construct a polynomial for this OR using the technice in the previous case
and subtract it from 1 to get g̃.

By applying the above 5 cases we convert a circuit C(x̄) to a polynomial
in F3[x1, . . . , xn] of deg ≤ (2l)d which disagrees with C on at mose s

2l fraction
(where s is the size i.e. the number of nodes).

◻

By replacing X2 by Xp−1 in the previous proof you can prove the lemma for
any prime p. But it is an open question if (mod 5) ∈ ACC0[6].
Lemma 2.2.17. There is no polynomial f ∈ F3[x1, . . . , xn] with deg(f) ≤ √

n
which agrees with C on ≥ 0.99 ⋅ 2n inputs.

Proof. Suppose f ∈ F3[x1, . . . , xn] agrees with (mod 2) on G′ ⊆ {0,1}n
and deg(f) ≤ √

n. Transform f to g as:

g(y1, . . . , ym) ∶= f(y1 − 1, . . . , ym − 1) + 1 (mod 3)
Thus fs input/ouptut "0/1" will be "+1/−1" of g. deg(g) ≤ √

n and it agress
with ∏n

i=1 yi on G ⊆ +1,−1n where G′ → G via 0 ↦ +1, 1 ↦ −1. This already
seems strange! We will show that this implies a "small" G. Let FG be the set
of functions u ∶ G→ F3 ∶= {−1,0,+1}.
Exercise 2.2.18. Any u ∈ FG can be realizes as a multilinear polynomial in
F3[x1, . . . , xn].

i.e.:
u(y1, . . . , yn) = ∑

I⊆[n]
aI ⋅∏

i∈I
yi aI ∈ F3

Now any monomial ∏i∈I yi in u that is of deg > n
2 can be replaced by ∏i ∈

[n]yi⋅∏i∈Ī yi = g⋅∏i∈Ī yi of degree deg < (n2 +
√
n)Thusanyu ∈ FG is a polynomial

F3 ∶ ∑I⊆[n],∣I ∣<(n2 +√n) aI∏i∈I yi
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Exercise 2.2.19. ≤ 0.992n

◻

2.3 Monotone Circuits
Definition 2.3.1. A boolean circuit is monotone if contains only AND and
OR-gates and no NOT -gates.

Remark 2.3.2. A monotone circuit can compute only monotone functions:

Definition 2.3.3. 1. For x, y ∈ {0,1}n, x ≤ y if ∀i ∈ [n], xi ≤ yi.

2. A function f ∶ {0,1}n → {0,1} is monotone if f(x) < f(y) whenever x < y.

Definition 2.3.4. Look at the functional problem

Cliquek,n ∶ {0,1}(
n
2) → {0,1}

that on a grpah G↦ 1 iff G has a k-clique (a complete graph on k vertices).

Clearly Cliquek,n is a monotone function. Is there a "small" monotone circuit
solving it? We will prove NO! (Note that Cique is NP -complete and we do
expect NP ⊈ P /poly).

Definition 2.3.5. ∀S ⊆ [n] let CS ∶ {0,1}(
n
2) → {0,1} that on any input graph

G↦ 1 iff ∃ clique on vertices S in G. Here CS is called clique indicator of S.

Theorem 2.3.6 (Razborov 80s). ∀k ≤ 4
√
n there exists no monotone circuit of

size ≤ n
√
k

20 solving Cliquek,n.

Proof. The idea is to show that any monotone circuit K computing
Cliquek,n can be approximated by an OR of "few" clique indicators.

Cliquek,n ≡ ⋁
S⊆[n],∣S∣=n

CS

Let us first show that Cliquek,n cannot be computed by an OR of ≤ n n
20

clique indicators. Defin two distributions
Y ∶= randomly choose K of size k and outputs the graph having a clique on

K and no other edges.
N ∶= randomly choose a functions C ∶ [n] → [k−1] , output the graph having

an edge (u, v) iff C(u) ≠ C ∶ V
◻

Remark 2.3.7. Cliquek,n is 1 on Y and 0 on N .
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Lemma 2.3.8. If k ≤ 4
√
n and S ⊆ [n] then either

ProbG∈N[CS(G) = 1] > 0.99

or
ProbGinY [CS(G)] < n−

√
k

20

Proof. Define l ∶=
√
k−1
10 . If S ≤ l then a random f ∶ S → [k − 1] is 1 ∶ 1 with

probability ≥ 1 ⋅ (1 − 1
k−1)⋯(1 − l

k−1) ≥ e−
1
k−1− 2

k−1−...− l
k−1 ≥ e− l2

k−1 ≥ e− 1
100 ≥ 0.99

Case 2: ∣S∣ > l

ProbG∈Y [CS(G) = 1] = ProbK⊆[n],∣K∣=k[S ⊆ k] ≤
(

n

k − l)

(nk)

Exercise 2.3.9.
≤ (2k

n
)
l

< (n−0.7)l < n −
√
k

20

This means that an OR of m ≤ n
√
k

20 clique indicators cannot compute
Cliquek,n because: the presence of een one indicator CS for ∣S∣ ≤ l will make the
OR true with probability ≥ 0.99 on NO-instances. If all indicators are on Ss of
size > l then the ORis false on Y ES instances with probability ≥ (1 − 1

n
√
k20

)m ≥
1
e
. Next we show how to approximate any "small" monotone circuit by an OR

of "few" clique inndicators.
◻
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Chapter 3

Expanders

3.1 Pseudorandom Constructions: Expanders
Definition 3.1.1. An undirected graph G is

algebraic an (n, d, λ)-expander if G is d-regular, n-verrtex and the second-
largest eigenvalue of A is ≤ λ. (0 ≤ λ ≤ (1 − o(1))2

√
d−1
d

)

combinatorial an (n, d, r)-edge-expander if G is d-regular, n-vertex and ∀S ⊆
V (G) s.t. ∣s∣ ≤ n

2 , ∣E(S, S̄)∣ ≥ r ⋅ d ⋅ ∣S∣. (0 ≤ r ≤ 1
2)

Lemma 3.1.2. Let G be a (n, d, λ)-expander, it holds ∀S ⊆ V (G) that:

∣E(S, S̄)∣ ≥ (1 − λ)d
n

⋅ ∣S∣ ⋅ ∣S̄∣

Proof. Define a vector x̄ ∈ Rn as:

xi = { ∣S̄∣ if i ∈ S
−∣S∣ if i ∉ S

Consider
Z ∶= ∑

1≤i,j≤n
Aij(xi − xj)2

and note that Z = 1
d
∣E(S, S̄)∣ ⋅ n2 ⋅ 2. On the other hand:

Z = ∑1≤i,j≤nAijx
2
i +∑1≤i,j≤nAijx

2
j − 2∑1≤i,j≤nAijxixj

= 2∑ni=1 x
2
i − 2∑1≤i,j≤nAijxixj

= 2∣∣x̄∣∣2 − 2 < Ax̄, x̄ >
≥ 2∣∣x̄∣∣2 − 2λ∣∣x̄∣∣2

Exercise 3.1.3. 1. Proof that ∑1≤i,j≤nAijxixj =< Ax̄, x̄ >
2. If 1 = λ1, . . . , λn are the eigenvalues of A s.t. 1 = ∣λ1∣ ≥ ∣λ2∣ ≥ . . . ≥ ∣λn∣

then:
λ2 = max

<v̄,1̄>=0

∣∣Av̄∣∣
∣∣v̄∣∣

21
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So finally we see that 2n2

d
∣E(S, S̄)∣ ≥ 2∣∣x̄∣∣2(1 − λ) and ∣E(s, S̄) ≥ d

n2 ∣∣x̄∣∣2(1 −
λ) = d(1−λ)

n2 (∣S∣ ⋅ ∣S̄∣2 + ∣S̄∣ ⋅ ∣S∣2) = d(1−λ)
n

∣S∣ ⋅ ∣S̄∣. ◻

Corrolar 3.1.4. For ∣S∣ ≤ n
2 it holds with s = ∣S∣ that

(1 − λ) d
n
s(n − s) ≥ 1 − λ

2
⋅ d ⋅ s

Theorem 3.1.5. If G is an (n, d, λ)-exnapder then it is an (n, d, λ)-edge-
expander

Proof. Lemma 3.1.2. ◻

Theorem 3.1.6. If G is a (n, d, r)-edge-expander then G is a (n, d,1 − ε)-
expander where ε = min{ 2

d
, r

2

2 . (G is an n-vertex, d-regular graph with all self-
loops)

Proof. Let G = (V,E) be an n-vertex, d-regular graph s.t. ∀S ⊆ V (G)
with ∣S∣ ≤ n

2 there are ≥ r ⋅ d ⋅ ∣S∣ edges between S and V − S. Let A be a G’s
randdom-walk matrix and let 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1 be the eigenvalues of
A.

Exercise 3.1.7.
Show that λn = −1 in an bipartit graph.

Claim 1: λn ≥ (−1 + 2
d
). Look at the graph G′ after removing all self-loops

from G and let A′ be it’s random-walk matrix:

(d − 1)A′ = dA − In ⇒ A = (d − 1
d

A′ + 1
d
In)

So λn ≥ d−1
d

(−1) + 1
d
= (−1 + 2

d
).

By the definition of eigenvalue we have that ∃ū ∈ Rn − {0̄} s.t.

Aū = λ2ū and ū < ū, 1̄ >= 0

Thus ū has positive nand negative coordinates, let ū = v̄ + w̄ where v̄ is the
positive part and w̄ is the negative part. Note that v̄, w̄ ≠ 0̄. Assume that
vi = 0 ∀i > n

2 otherwise use −ū. Sort the v1 ≥ v2 ≥ . . . vn2 .
Define

Z ∶= ∑
1≤i,j≤n

Aij(v2
i − v2

j )

we will show that
Claim 2: Z ≥ 2r∣∣v̄∣∣2

Z = ∑
1≤i,j≤n

Aij(v2
i − v2

j ) = ∑
1≤i,j≤n

Aij
j−1
∑
k=i

(v2
k − v2

k+1)

Rewriting this with respect to k and using vk = 0 for k > n
2 the above equals

2
d

n
2

∑
k=1

(v2
k − v2

k+1)∣E({1, . . . , k},{k + 1, . . . , n})∣ ≥ 2
d

n
2

∑
k=1

pdk(v2
k − v2

k+1)
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which is equal to

2r
n
2

∑
k=1

(kv2
k − kv2

k+1) = 2r
n
2

∑
k=1

(kv2
k − (k − 1)v2

k) = 2r∣∣v̄∣∣2

Claim 3: Z ≤
√

8(1 − λ2) ⋅ ∣∣v̄∣∣2.
Note that

< Aū, v̄ >=< λ2ū, v̄ >=< λ2v̄, v̄ > + < λ2w̄, v̄ >= λ2∣∣v̄∣∣2

and on the other hand:

∣ < Aū, v̄ >=< Av̄, v̄ > + < Aw̄, v̄ >≤< Av̄, v̄ >
which implies that λ2 ≤ <Av̄,v̄

∣∣v̄∣∣2 and by this we get

(1−λ2) ≥ ∣∣v̄∣∣2− < Av̄, v̄
∣∣v̄∣∣2 =

1
2 ∑1≤i,j≤nAij(vi − vj)2

∣∣v̄∣∣2 = ∑1≤i,j≤nAij(vi − vj)2 ⋅ ∑1≤i,j≤nAij(vi − vj)2

∣∣v̄∣∣2 ⋅ ∑1≤i,j≤nAij(vi − vj)2

The Cauchy-Schwarzt inequality implies that the numerator is ≤ (∑1≤i,j≤nAij(vi−
vj)2)2 = Z2. The denominator:

∣∣v̄∣∣2⋅ ∑
1≤i,j≤n

Aij(vi−vj)2 = 2∣∣v̄∣∣2⋅( ∑
1≤i,j≤n

Aijv
2
i + ∑

1≤i,j≤n
Aijv

2
j+2 ∑

1≤i,j≤n
Aijvivj = 2∣∣v̄∣∣2(2∣∣v̄∣∣2+2 ∑

1≤i,j≤n
Aijvivj ≤ 2∣∣v∣∣2(2∣∣v̄∣∣2+ ∑

1≤i,j≤n
Aij(v2

i +v2
j )) ≤ 8∣∣v̄∣∣4

Which implies that

(1 − λ2) ≥ Z2

8∣∣v̄∣∣4

And finally Z ≤
√

8(1 − λ2)∣∣v̄∣∣2.
The three claims together show that for a combinatorial expander in a graph

(with all the self-loops) it holds that:

λ2 ≤ (1 − r
2

2
) and λn ≥ (2

d
− 1)

◻

3.2 Error-Reduction using expanders
Recall from the last semester that if a problem L ∈ TPP has an algorithm
M(x, y) for x ∈ L that uses r random bits y and has an error-probability < 1

3
then by repeating the algorithm k times: [M(x, y1), . . . ,M(x, yk)] and taking
the majority-vote we get a new algorithm M ′ that uses r ⋅ k random bits and
has error-probability < 1

2k (Chernoff bound).
Now we will use expanders to reduce the used random bits to r+o(k) random

bits. Idea: Suppose wwe have an (2r, d, 1
10)-expander G for a constant d (for

example 3) in which the neighbours of a vertex are listable in time p(r) for a
polynomial p. Choose a vertex v1 ∈ V (G) at random and do a random walk
(v1, . . . , vk). Use the vi as the random strings to repeat M for k times. We will
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show that the majority-vote is wrong probability < 2−k. The number of used
random bits here is ≤ r+k log(d). This means that in the expander G on {0,1}k
vertices, the set B ⊆ {0,1}k of bad vertices (i.e. on which M(x) makes an
error)satisfies ∣B∣ < 2k

3 . We will compute the probability that all the k vertices
in the random walk are in B.

Theorem 3.2.1. Let G be an (n, d, λ)-expander and B ⊂ V = [n] with ∣B∣ < βn.
Let X1, . . . ,Xk be random variables denoting the k-random-walk in G. Then:

Probk-walk[∀i ∈ [k] ∶Xi ∈ B] < ((1 − λ)
√
β + λ)k−1

(Note that (1 − λ)β + λ < 1 if β,λ < 1).

Proof. Let Bi be the event Xi ∈ B. We are trying to bound Prob[⋀ni=1Bi] =
Prob[B1] ⋅Prob[B1] ⋅Prob[B2∣P1] . . .Prob[Bk ∣ ⋀k−1

i=1 Bi]. We will express this in
terms of a matrxi product, so we define:

1. Let A be tghe random-walk matrix of G

2. Let B be the n × n-identity matrix with rows corresponding to [n] − B
replaced by zreo

3. 1⃗ ∶= ( 1
n
)i

We see that
Prob[B1] = ∣B1⃗∣1

and
Prob[B1] ⋅Prob[B2∣B1] = ∣BA ⋅B1⃗∣1

Exercise 3.2.2. 1.
Prob[

n

⋀
i=1
Bi] = ∣(BA)k−1B1⃗

2. ∀u⃗ ∈ Rn: ∣∣u⃗∣∣ ≤ ∣u⃗∣1 ≤
√
n∣∣u⃗∣∣.

Thus it suffices to show that

∣∣(AB)k−1 ⋅B1⃗∣∣ < ((1 − λ)√β + λ)k−1
√
n

To show this we will use the notion of the spectral norm ∣∣(BA)k−1B∣∣s and show
it to be small: For any matrix C ∈ Rn×n the spectral norm:

∣∣C ∣∣s ∶= max
u∈Rn×n−{0}

∣∣Cu∣∣
∣∣u∣∣

it is a well-behaved norm of n × n-matrices:

Exercise 3.2.3. 1. ∣∣C +D∣∣s ≤ ∣∣C ∣∣s + ∣∣D∣∣s
2. ∣∣CD∣∣s ≤ ∣∣C ∣∣s∣∣D∣∣s
3. For a random-walk matrix A: ∣∣A∣∣s = 1.
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Lemma 3.2.4. Let A be the random-walk-matrix of an (n, d, λ)-expander and
T ∶= (1/n)n×n. Then

A = (1 − λ)T + λC
where ∣∣C ∣∣s ≤ 1.

Proof. Consider C ∶= 1
λ
(A − (1 − λ)T ). We will show that ∣∣Cv⃗∣∣ ≤ ∣∣v⃗∣∣

for all v⃗ ∈ Rn. Decompose v⃗ = u⃗ + w⃗ where u⃗ = α1⃗ and < w⃗, 1⃗ >= 0. Now
Cu⃗ = 1

λ
(Au⃗−(1−λ)T u⃗) = 1

λ
(u⃗−(1−λ)u⃗) = u⃗ and Cw⃗ = 1

λ
(Aw⃗−(1−λ)Tw⃗) = 1

λ
Aw⃗.

And we see that ∣∣Cv⃗∣∣2 = ∣∣Cu⃗ + Cw⃗∣∣2 ≤ ∣∣Cu⃗∣∣2 + ∣∣Cw⃗∣∣2 ≤ ∣∣u⃗∣∣2 + 1
λ
∣∣Aw⃗∣∣2 ≤

∣∣u⃗∣∣2 + ∣∣w⃗∣∣2 = ∣∣u⃗ + w⃗∣∣2 = ∣∣w⃗∣∣2. ◻ This C will help usin bounding ∣∣BA∣∣s:

BA = (1 − λ)BT + λBC
⇒ ∣∣BA∣∣s ≤ (1 − λ)∣∣BT ∣∣s + λ∣∣BC ∣∣s

Exercise 3.2.5. Show that ∣∣BT ∣∣s =
√
β and ∣∣BC ∣∣s ≤ 1.

and we see that ∣∣BA∣∣s ≤ (1−λ)√β+λ and ∣∣(BA)k−1∣∣s ≤ ((1−λ)√β+λ)k−1

and finally

∣∣(BA)k−1B1⃗∣∣ ≤ ((1 − λ)
√
β + λ)k−1∣∣B1⃗∣∣ = ((1 − λ)

√
β + λ)k−1

√
β

n

◻

Corrolar 3.2.6. ∀I ⊂ [k]:

Prob[∀i ∈ I,Xi ∈ B] ≤ ((1 − λ)
√
β + λ)∣I ∣−1

Using ail estimates for binomial sums we get:

Theorem 3.2.7. (Expander-Chernoff-Bound) ∀i ∈ [k] let B̃i be the random
variable that is 1 if Xi ∈ B and 0 otherwise. Then ∀δ > 0 ∶

Probk-walk[∣∑
k
i=1 B̃i
k

− β∣ > δ] < 2(e− δ
2(1−λ)

3 )
k

Exercise 3.2.8. Proof 3.2.6 and 3.2.7.

3.3 Explicit Construction of Expanders
We will construct an explicit family of expander graphs, where local connectivity
information can be efficienbtly retrieved. The main idea would be to to define
operations on graphs: graph products. The trade-off whould be between the
degree and the second largest eigenvallue.

Till now we have used only adjacency matrix , now we will define another
representation of a graph:
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Definition 3.3.1. If Gis an n-vertex, d-regular graph then we give each neigh-
bour of each vertex a label ∈ [d] and define a rotation map:

Ĝ ∶ [n] × [d] → [n] × [d]
(v, i) ↦ (u, j)

where u is the i-th neighbour of v and v is the j-th neighbour of u.

Remark 3.3.2. Ĝ is a permutation on [n] × [d] and describes G.

3.3.1 The Matrix-product
Definition 3.3.3. For two n-vertex graphs G and G′ with degrees d and d′ and
random-walk matrices A and A′ we define a new graph GG′ as the graph with
the random-walk matrix A ⋅A′ (or equivalently d ⋅ d′ ⋅A ⋅A′).

Remark 3.3.4. • A ⋅A′ is a symmetric stochastic matrix

• The matrix-product of two graphs are general graphs possibly with multiple
edges and loops

• GG′ has degree d ⋅ d′ (counting multiple edges) and n vertices

Lemma 3.3.5.
λ(GG′) ≤ λ(G) ⋅ λ(G′)

Proof.

λ(GG′) = λ(A ⋅A′) = max
<u⃗,1⃗>=0

∣∣AA′u⃗∣∣
∣∣u⃗∣∣ = max

<u⃗,1⃗>=0

∣∣AA′u⃗∣∣
∣∣A′u⃗∣∣

∣∣A′u⃗∣∣
∣∣u⃗∣∣

and we know that < A′u⃗, 1⃗ >= 0 because A′ is a random-walk matrix. So:

max
<u⃗,1⃗>=0

∣∣AA′u⃗∣∣
∣∣A′u⃗∣∣

∣∣A′u⃗∣∣
∣∣u⃗∣∣ ≤ λ(A)λ(A′) = λ(G)λ(G′)

◻

Theorem 3.3.6. If G and G′ are (n, d, λ) and (n, d′, λ′)-expanders then GG′

is an (n, dd′, λλ′)-expander.
Thus the matrix product improves the expansion at the cost of the degree.

3.3.2 The Tensor-product
Definition 3.3.7. For two graphs G and G′ of n and n′ vertices, d and d′

degress and random-walk matrices A and A′ the graph G⊗G′ is the graph with
the random-walk matrix A⊗A′ (with adjacency matrix dd′A⊗A′).

A⊗A′ ∶=
⎛
⎜
⎝

A1,1A
′ ⋯ A1,nA

′

⋮ ⋮
An,1A

′ ⋯ An,nA
′

⎞
⎟
⎠
nn′×nn′
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Exercise 3.3.8. 1. A⊗A′ is a symmetric stochastic matrix.

2. G⊗G′ has nn′ vertices and degree dd′

Lemma 3.3.9.
λ(G⊗G′) ≤ max{λ(G), λ(G′)}

Proof. If 1 = λa ≥ . . . ≥ λn ≥ −1 are the eigentvalues of A and 1 = λ′1 ≥
. . . ≥ λ′n′ ≥ −1 are the eigenvalues of A′ then all the eigenvalues of A ⊗ A′ are
L = {λiλ′j ∣ i ∈ [n], j ∈ [n′]} (exercise). Thus the largest in L apart from 1 are
of the form 1 ⋅ λ′j and λi ⋅ 1 for all i ∈ [n] and j ∈ [n′]. So the largest of them is
exactle max{λ(G), λ(G′)}. ◻

Theorem 3.3.10. If G and G′ are (n, d, λ) and (n′, d′, λ′) expanders then G⊗G′

is an (nn′, dd′,max{λ,λ′})-expannder.
Thus the tensor product increases the number of vertices and the degree

while preserving the expansion.

3.3.3 The Replacement-product
This product is easier to see as a walk rather than a matrix operation. Suppose
we have an expander G with high degree D then, in order to walk using fewer
random bits, we can use another expander G′ withD vertices and degree d <<D.
This motivates the following product:

Definition 3.3.11. Let G and G′ be graphs with vertices n and D, degrees D
and d and random-walk matrices A and A′. The new graph G⊙G′ is a graph
on n ⋅D vertices s.t.

1. ∀u ∈ V (G),G⊙G′ has a copy of G′

2. If {u, v} ∈ E(G) then we place d parallel edges between {u, i} and {v, j}
in G⊙G′ where Ĝ(u, i) = (v, j).

Remark 3.3.12. G⊙G′ has nD vertices and degree 2d.

From the definition the following matrix seems a candidate for the random-
walk matrix of G⊙G′:

⎛
⎜⎜⎜
⎝

A′ 0 ⋯ 0
0 ⋱ ⋱ 0
⋮ ⋱ ⋱ 0
0 ⋯ 0 A′

⎞
⎟⎟⎟
⎠
nD×nD

+ Â

where Â has 1 at the entry ((u, i), (v, j)) iff Ĝ(u, i) = (v, i) for all u, v ∈ [n]
and i, j ∈ [D]. After normalization it defines a new matrix product:

A⊙A′ ∶= 1
2
(In ⊗A′ + Â)

Exercise 3.3.13. Show that A⊙A′ is the random walk matrix of G⊙G′.
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Lemma 3.3.14. If for ε, δ > 0, λ(G) ≤ 1 − ε and λ(G′) ≤ 1 − δ then:

λ(G⊙G′) ≤ 1 − εδ
2

24

Proof. We will show that λ((A ⊙ A′)3) ≤ (1 − εδ2

8 ) which implies that
(λ(A⊙A′))3 ≤ (1 − εδ2

8 and λ(A⊙A′) ≤ (1 − εδ2

24 ).
So let B ∶= (A⊙A′)3 it holds that

B = (1
2
(In ⊗A′) + Â

2
)

3

and since we have seen that ∃C with ∣∣C ∣∣s ≤ 1 s.t. A′ = (1 − δ)C + δJD where
JD = ID

D
we write

B = ( Â
2
+ 1 − δ

2
(In ⊗C) + δ

2
(In ⊗ JD))

3

and we see that in this expansion Â, In ⊗ C and In ⊗ JD have spectral norms
≤ 1.

B = [(1
2
+ 1 − δ

2
+ δ

2
)

3
− 1

2
δ

2
δ

2
]C ′ + δ

2
(In ⊗ JD) Â

2
(In ⊗ JD)δ

2
where C ′ has spectral norm ≤ 1.

B = (1 − δ
2

8
)C ′ + δ

2

8
(In ⊗ JD)Â(In ⊗ JD)

Exercise 3.3.15. Show that (In ⊗ JD)Â(In ⊗ JD) = A⊗ Jd.

B = (1 − δ
2

8
)C ′ + δ

2

8
(A⊗ JD)

with ∣∣C ′∣∣s ≤ 1. And finally:

λ(B) ≤ (1 − δ
2

8
)λ(C ′) + δ

2

8
λ(A⊗ JD) ≤ (1 − δ

2

8
) ⋅ 1 + δ

2

8
⋅max{λ(A), λ(JD)}

where λ(JD) = 0, so we get

λ(B) ≤ 1 − δ
2

8
+ δ

2

8
(1 − ε)

◻

Theorem 3.3.16. If G and G′ are (n,D,1−ε) and (D,d,1−δ)-expanders then
G⊙G′ is an (nD,2d,1 − εδ2

24 )-expander

Thus when D >> d the Replacement-product significantly reduces the degree
while almost preserving expansion.
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3.4 The Construction
Using this three products we now give strongly explicit construction of an
(n, d, λ)-expanders G, i.e. for (u, i) ∈ E(G) the i-th neighbour of u can be
computed in O(p(log(n))) time (where p is a polynomial).

Theorem 3.4.1. (Reingold, Vadhan, Wigdesson 2000) ∃ a strongly explicit
(d, λ)-expander family for some d ∈ N, 0 < λ < 1.

Proof. We will recursively construct a family of graphs {Gk}k≥1 s.t. Gk
has at most ck vertices (for some constant c). Let H be a ((2d)100, d,0.01)-
expander. It can be found by brute-force for a constant d large enough (the
existance of such a d and H is garantueed be probabilistic reasons). Instead of
brute-force, number theory constructions can be used to find H. Also find a
((2d)100,2d,0.5)-expander G1. Now set G2 = G1. For odd k > 2 define

Gk ∶= (G k−1
2
⊗G k−1

2
)50 ⊙H

and for even k > 3 we set Gk = Gk−1.
Claim: For every odd k the graph Gk is a ((2d)100k,2d,1 − 1

50)-expander.
This is clear for k = 1. By induction the number of vertices in Gk equals

((2d)100 k−1
2 )2 ⋅ (2d)100 = (2d)100k

and the degree of (G k−1
2
⊗G k−1

2
)50

is (2d)2⋅50. Replacement with H is well
defined and so the degree of Gk is 2d. Finally

λ((G k−1
2
⊗G k−1

2
)50) ≤ (1 − 1

50
)

50
< e−1 < 1

2

and λ(H) ≤ 0.01 = 1−0.99, which implies that λ(Gk) ≤ 1− 0.5⋅0.992

24 < 1− 1
50 . The

algorithm for finding all the neighbours of a vertex in Gk is also recursive: Say
listing a row in G k−1

2
takes time T (k−1

2 ). Using this listing algorithm we can list
a row in G k−1

2
⊗G k−1

2
in time 2T (k−1

2 )+p(d, k) (as usual p is a polynomial) and
uses (2d)2 space. Listing all the needed (2d)2 rows will take (4d2) ⋅ 2T (k−1

2 ) in
one matrix. Powering by 50 takes 50 ⋅ (4d4) ⋅ 2T (k−1

2 ) + poly(d, k) time. Listing
a row in Gk takes

T (k) ≤ (400d2)T (k − 1
2

) + poly(d, k)

so
T (k) ≤ p (dlog(k)) = dO(log(k) = kO(log(k)

the number of vertices in Gk is (2d)100k =∶ n vertices:

T (k) ≤ (log(n))O(log(d)) = p(log(n))

◻
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3.5 Derandomization of UDC
Now we are ready to derandomize undirected connectivity’s LogSpace-algorithm.

Theorem 3.5.1. (Reingold 2005) Undirected connectivity ∈ LogSpace

Proof. Given an n-vertex graph G and s, t ∈ V (G). Idea: apply graph
products on G to get G̃ s.t. the connected component of s in G̃ becomes an
expander. Recall that in an expander the shortest path are O(log(n)) long.
Thus, we can now check all the paths of length O(log(n)) in G̃ starting from s
in LogSpace. Let d be a large enough constant s.t ∃ a (d50, d2 ,0.01)-expander
H. Compute it and keep this H. We can make G a d50-regular graph.

Exercise 3.5.2. Show that this is possible.

For this exposition assume G is the connected component of s. G0 ∶= G and
for k ≥ 1 define:

Gk ∶= (Gk−1 ⊙H)50

Claim: For all k it holds thatGk is a (d50kn, d50,max{1 − 1
10 ,1 − 2k

12n2 })-expander.
For k = 0 the claim holds because any connected graph has λ < (1 − 1

12n2 )
(see last semester or the book). For k ≥ 1 it holds that

∣V (Gk)∣ = d50(k−1)nd50 = d50kn
deg(Gk) = d50

If λGk−1 ≤ 1 − ε for ε = min{ 1
10 ,

2k−1

12n2 } then λ(Gk−1 ⊙ H) ≤ 1 − ε⋅0.992

24 and

λ(Gk) ≤ (1 − ε⋅0.992

24 )50 < (1 − 2ε) thus we double ε with each iteration. So for
l = 2 log(n) we get that Gl is an expander with λ < 1− 1

10 . So for any given graph
G we consider the strongly explicit expander Gl and test all parts of length l
from s.

Exercise 3.5.3. Show that a row in Gl can be listed in LogSpace using recur-
sion. And finally check whether (s̃, t̃) have an l-path in Gl.

◻
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Pseudorandom generators

4.1 Introduction and Definition
Expanders help in derandomizing the algorithm for undirected connectivity.
Pseudorandom generators (PRGs) are objects to derandomize more general ran-
domized algorithms.

Definition 4.1.1. A distribution R on {0,1}m is called (S, ε)-pseudorandom if
for all circuits C of size ≤ S:

∣Pr
x∈R

[C(x) = 1] − Pr
x∈Um

[C(x) = 1]∣ < ε

where Um is the uniform distribution on {0,1}m. The difference measures how
well C can distinguish R from Um.

Definition 4.1.2. If S ∶ N→ N then a 2n-time computable G ∶ {0,1}∗ → {0,1}∗
is called an S(l)-PSG if ∀ l ∈ N it holds that G ∶ {0,1}l → {0,1}S(l) and G(Ul) is
(S(l)3,0.1)-pseudorandom. The constants 3 and 0.1 are chosen for convenience.

4.2 Derandomization and PRG
Lemma 4.2.1. Let l, S ∶ N → N be easily computable functions. If ∃S(l)-PRG
then

BPTime(S(l(n))) ⊆ DTime(2O(l(n)) ⋅ S(l(n)))

This gives the following conditional derandomizations:

Corrolar 4.2.2. 1. If ∃ 2εl-PRG (for some ε > 0) then BPP = P .

2. If ∃ 2lε-PRG (for some ε > 0) then BPP ⊆ DTime(2p(log(n))) =∶ QuasiP
where p is a polynomial.

3. If ∀c > 1, ∃lc-PRG then BPP ⊆ SUBEXP ∶= ⋂ε>0 DTime(2nε).

Exercise 4.2.3. Proof 4.2.2.

31
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Proof. (of 4.2.1) a language is L ∈ BPTime(S(l(n))) if ∃ an algorithm A
that uses m ∶= S(l(n)) random bits r on an input x ∈ {0,1}n and runs for time
O(S(l(n))) s.t.

Pr
r∈{0,1}m

[A(x, r) = L(x)] ≥ 2
3

The derandomization idea is to use an S(l)-PRG G to produce every possible
value for r:

On input x ∈ {0,1}n out deterministic alogirhtm B will go over all z ∈
{0,1}l(n) strings, compute A(x,G(z)) and output the majority vote. We claim
that

Pr
z∈{0,1}l(n)

[A(x,G(z)) = L(x)] ≥ 2
3
− 0.1 > 1

2

thus B is a correct algorithm for L. Suppose the contrary:

∣ Pr
z∈{0,1}l(n)

[A(x,G(z)) = L(x)] − Pr
r∈{0,1}m

[A(x, r) = L(x)]∣ > 0.1

Now define a circuit C that on input y ∈ {0,1}m output 1 iff A(x,G(z)) =
L(x) (C can compute A(x, y) and the value L(x) is wired-in). Since A is
O(S(l(n)))-time algorithm C is of size O(S2(l(n))). But then C can distinguish
the uniform-distribution Um from G(Ul(n)) which contradicts G being an S(l)-
PRG. Thus B is a deterministic algorithm solving L correctly in time O(2l(n) ⋅
2l(n) ⋅ S(l(n))) and L ∈ DTime(22l(n) ⋅ S(l(n))). ◻

How do we construct a PRG? Miraculously using hard functions! (Hardness
vs. Randomness).

4.3 Hardness and PRG
We define two types of circuit hardness of boolean functions:

Definition 4.3.1. (Worst-case hardness) Let f ∶ {0,1}∗ → {0,1} then Hwrs(f)
is the largest S(n) s.t. ∀ circuits C on n bits of size ≤ S(n) it holds that

Pr
x∈{0,1}n

[C(x) = f(x)] < 1

(which means that C cannot compute f).

Definition 4.3.2. (Average-case hardness) Let f ∶ {0,1}∗ → {0,1} then Havg(f)
is the largest S(n) s.t. ∀ circuits C on n bits of size ≤ S(n) it holds that

Pr
x∈{0,1}n

[C(x) = f(x)] < 1
2
+ 1
S(n)

Exercise 4.3.3. Shwo that for any function f ∶ {0,1}n → {0,1} it holds that
Havg(f) ≤Hwrs(f) ≤ O ( 2n

n
)

Conjecture natural examples:
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1. Hwrs(3SAT ) ≥ 2Ω(n)

2. HavgIntFactoring ≥ nω(1)

Later we will build worst-case hard function from average-case hard function.
Now we show that hard-on-average functions give a PRG.

Theorem 4.3.4. (Nisan, Wigderson ’88) If ∃f ∈ E (so solvable in 2O(n)) with
Havg(f) ≥ S(n) then ∃S′(l)-PRG where S′(l) = S(n)δ for some δ > 0 (l will be
like n in the construction).

Corrolar 4.3.5. ∃f ∈ E with Havg(f) ≥ 2εn then BPP = P .
Corrolar 4.3.6. ∃f ∈ E with Havg(f) ≥ 2nε then BPP ⊆ QuasiP.

Corrolar 4.3.7. ∃f ∈ E with Havg(f) ≥ nω(1) then BPP ⊆ SUBEXP .
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Chapter 5

Error-Correction

5.1 Concatenated Code
Walsh-Hadamard code has a large code length, while Reed-Solomon code has a
nonbinary alphabet.

Definition 5.1.1. Let F be a finite field, RS ∶ Fn → Fn and WH ∶ {0,1}log(∣F∣) →
{0,1}∣F∣ then the concatenated code is WH ○RS ∶ {0,1}n log(∣F∣) → {0,1}m∣F∣ by

1. View RS as a code from {0,1}n log(∣F∣) to Fm and WH as code from F to
{0,1}∣F∣ (using a natural boolean representation of field elements)

2. ∀x ∈ {0,1}n log(∣F ∣)
,WH ○RS(x) =<WH(RS(x)1), . . . ,WH(RS(x)m) >.

Remark 5.1.2. WH ○RS is computable in poly(∣F∣) time

Lemma 5.1.3. Let δ1 = (1 − n
m
) be the distance of RS and δ2 = 1

2 be the distance
of WH. Then WH ○RS has distance δ1δ2.

Proof. Let x, y ∈ {0,1}n log(∣F∣) with x ≠ y.

∆(RS(x),RS(y)) ≥ δ1

If x′, y′ ∈ F in the i-th place ofRS(x) andRS(y) are different then ∆(WH(x′),WH(y′)) ≥
δ2. Overall we get ∆(WH(RS(x)),WH(RS(y))) ≥ δ1δ2. ◻

Recall that ∀k ≥ 2 ∃p ∈ [k,2k) ∩ P which gives us a field F ∶= Fp. Thus
WH ○RS gives us an ECC.

E ∶ {0,1}k log(k) → {0,1}10k⋅2k

with distance 1
2 (1 − n

m
) > 1

2 (1 − k
10k) > 0.4. So for all n ∈ N there exists a

polynomial-time computable (in n) ECC E ∶ {0,1}n → {0,1}20n2
of distance 0.4

(and unique decoding up to 20% of errors).

35
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5.2 Efficient Decoding
We need an efficient way to decode the message x from E(x), even if we have a
corrupted E(x). Let us now decode Redd-Solomon:

Theorem 5.2.1. Given a list (a1, b1), . . . , (am, bm) ∈ F2 for which exists a poly-
nomial G(x) of degree d (with m > d) satisfying G(ai) = bi for t of the pairs
where t > m (1

2 + d
2m). Then there exists a polynomial time algorithm that re-

constructs G.

Remark 5.2.2. RS-code: δ > (1 − n−1
m

) , d = (n − 1); so even if RS(x)is cor-
rupted in 1

2 (1 − n
m
) places x can be reconstructed by the above algorithm.

Proof. This algorithm is called Berlekamp-Welsh decoding (1986). Without
error we whould have tried to compute a degree d polynomial C(x) s.t. C(ai) =
bi ∀i ∈ [m].

1. Find a degree (m+d
2 ) polynomial C(x) and a degree (m−d

2 ) polynomial
E(x) s.t. C(ai) = bi ⋅E(ai) for all i ∈ [m]. View these asm linear equations
in m+d

2 +1+ m−d
2 +1 = (m+2) variables. Note that this system has at least

one solution: Pick E(ai) = 0 whenever G(ai) ≠ bi. Put C(x) = G(x)⋅E(x).
2. Output C(x)/E(x). Consider T (x) ∶= C(x) − E(x)G(x). It holds that

deg(T ) ≤ m+d
2 < t. Whenever G(ai) = bi: T (ai) = C(ai) −E(ai)bi = 0 and

T (x) = 0⇒ C(x)
E(x) = G(x).

◻

5.3 Decoding Concatenated Code
Theorem 5.3.1. For WH ○ RS ∶ {0,1}n log(∣F∣) → {0,1}m∣F∣ there exists a
poly(∣F∣)-time decoder that uniquely corrects by 1

4 ( 1
2 − n

2m) errors.

Proof. Given a corrupted y ”close to“ <WH(RS(x)1), . . . ,WH(RS(x)m) >.
Note that

∣{i ∈ [m] ∣WH(RS(x)i) has ≥ ∣F∣
4

errors}∣ <m(1
2
− n

m
)

Thus WH-decoding of the blocks in y gives < ỹ1, . . . , ỹm > then ỹi = RS(x)i for
≥m (1

2 − n
2m) of the is. RS-decoding of < ỹ1, . . . , ỹm > gives back x uniquely. ◻

5.4 Local Decoding
Definition 5.4.1. Let E ∶ {0,1}n → {0,1}n be an error-correcting code and
r ∈ (0,1). A local decoder for E handling r errors is an algorithm that, given j ∈
[n], oracle access to y ∈ {0,1}m s.t. ∆(y,E(x)) < r, outputs xj with probability
≥ 2

3 and in poly(log(m))-time.



5.4. LOCAL DECODING 37

5.4.1 Local decoding for Walsh-Hadamard-code
Theorem 5.4.2. For every r < 1

4 , the Walsh-Hadamard code has a local decoder
handling r errors.

Proof. Input: j ∈ [n], orace f ∶ {0,1}n → {0,1} , x ↦ WH(x) ↦ y (where
x ∈ {0,1}n and WH(x) ∈ {0,1}2n) s.t.

Probz[f(z) ≠ x⊙ z] ≤ r

Output: a bit (goal: xj).
Algorithm:

• ej ∈ {0,1}n is all zero except 1 at j-th place.

• randomly pick z ∈ {0,1}n

• ouptut f(z) + f(z + ej) (mod 2).
Analysis:
Time: poly(n) = poly(log(m)).
Probability:

Probz [f(z) = x⊙ z ∧ f(z + ej) = x⊙ (z + ej)] ≥ 1 − 2r > 1
2

so

Probz [f(z) + f(z + ej) = x⊙ (z + z + ej) = xj (mod 2)] ≥ 1 − 2r > 1
2

By repeating algorithm twice we get error probability < 1
4 . ◻

5.4.2 Local decoder for RM Code
Recall that RM ∶ F(l+d

d
) → F∣F∣l for a finite field F. For local decoding we will

redefine RM to be mapping (l+d
d
) evaluations of a polynomial to ∣F∣l evaluations.

Theorem 5.4.3. There exists a poly(∣F∣, l, d)-time algorithm s.t. given x ∈ Fl
and an oracle access to f ∶ Fl → F (that agrees with some l-variate d-degree
polynomial p on ≥ 1 − 1

6 (1 − d
∣F∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

evaluations) outputting P (x) with probability

≥ 2
3 .

Proof. Idea: Pick a ranndom line Lx throigh x, evaluate f at each point of
the line and use RS decoder.

Algorithm:

1. Pick a random z ∈ Fl and

Lx ∶= {x + tz ∣ t ∈ F}

2. Query f on the while of Lx i.e. collect pairs: {(t, f(x + tz)) ∣ t ∈ F}
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3. Run RS decoder on this set of pairs to find a univeriate Q s.t. Q(t) =
f(x + tz) for the largest number of t’s.

4. Output Q(0).
Time: poly(∣F∣, l, d)-time
Analysis: The polynomial that RS decoder tries to reconstruct is P (x +

tz) ∶= Q̃(t) which has degree ≤ d in variable t. Thus we only need to shat the
probability of ≥ 2

3 .

#{t ∈ F ∣ Q̃(t) ≠ f(x + tz)}
#F

< 1
2
(1 − d

∣F∣ )

For that we compute the expected value:

Ez [#{t ∈ F ∣ Q̃(t) ≠ f(x + tz)}] = ∑
t∈F

Probz[P (x + tz) ≠ f(x + tz)] ≤ ∑
t∈F
r = r∣F∣

Thus by Markov-Inequality:

Probz[#{t ∈ F ∣ Q̃(t) ≠ f(x + tz)} ≥ 1
2
(1 − d

∣F∣ ) ∣F∣] ≤ r∣F∣
1
2 (1 − d

∣F∣) ∣F∣
= 1

3

This means with Probz ≥ 2
3 step (3) produces Q(t) = Q̃(t) = P (x + tz) ⇒

Q(0) = P (x). ◻

5.4.3 Local decoder for Conactenated-Code
Theorem 5.4.4. Let E1 ∶ {0,1}n → Σm (resp. E2 ∶ Σ → {0,1}k) be two error-
correcting codes (where Σ is a set of arbitrary symbols) with local decoders using
q1 (resp. q2) queries and handling r1 (resp. r2) errors. Then there exists an
O(q1q2 log(q1) log(q2) log(∣Σ∣))-query local decoder for the error-correcting code
E ∶= E2 ○E1 ∶ {0,1}n → {0,1}km, handling r1 ⋅ r2 errors.

Proof.
Input: An i ∈ [n] and oracle access to y ∈ {0,1}mk s.t. ∆(y,E(x)) < r1r2.
Output: a bit (goal: xi)
Algorithm:

1. View y as m blocks each of k-bits
(Note that E(x) =< E2(E1(x)1), . . . ,E2(E1(x)m) >)

2. To find the j-th symbol of E1(x) (i.e. E1(x)j) we call the local decoder of
E2 on “j-th block of y”, log(∣Σ∣) times (to compute the full E1(x)j ∈ Σ).
To get a decent probability we first boost E2’s local decoder by repeating
log(q1) times. Thus finding E1(x)j takes O(q2 log(∣Σ∣) log(q1))-queries
and has error-probability ≤ 1

10q1 (since log(∣Σ∣)
3log(q1) ≤ 1

10q1 ). Note that at most
r1 of the m blocks in y can be at distance > r2 from the corresponding
“correct” E1(x)j block. Thus local decoder of E1 can be used querying q1
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of the blocks in y. With probability ≥ 1 − 1
10q1 ⋅ q1 = 0.9 the q1 answers to

the local decoder of E1 are all correct. So E1 outputs xj with probability
≥ 0.9 − 1

3 > 0.6.

◻

5.4.4 Local List Decoding
Out final goal is to show that starting from a worst-case hard boolean function
f and a locally decodable code E, E(f̂) is the true table of an average-case
hard function g (where f̂ is the true table of f on {0,1}n). But for average-case
hardness of g (i.e. g cannot be computed upto 1

2 + 1
s
inputs) we whould need E

that is locally decodable upto (1
2 − δ)-errors.

None of out error-correcting codes are “uniquely decodable” at (1
2 − δ)-error.

So we relax “unique decodability”.

Theorem 5.4.5. (Johnson’s bound, 1962) If E ∶ {0,1}n → {0,1}m is an error-
correcting code with distance ≥ ( 1

2 − ε) then ∀x ∈ {0,1}m and δ ≥ √
ε there exist

at most 1
2δ

2 codewords y1, . . . , yl ∈ {0,1}m s.t.

∆(x, yi) ≤ 1
2
− δ ∀i

Proof. Let us define l vectors z1, . . . , zl ∈ {−1,1}m s.t.

zi,k ∶= { +1 if xk = yi,k
−1, else

Now since ∆(x, yi) ≤ ( 1
2 − δ) one can calculate

m

∑
k=1

zi,k ≥ 1(1
2
+ δ)m − 1(1

2
− δ)m = 2δm

and since ∆(yi, yj) ≥ ( 1
2 − ε) we get

< zi, zj >=
m

∑
k=1

zikzjk ≤ (1
2
+ ε)m − (1

2
− ε)m = 2εm ≤ 2δ2m

Define w ∶= ∑mk=1 zk. By the preceeding two equation we get

< w,w > = ∑li=1 < zi, zi > +∑i≠j∈[l] < zi, zj >
≤ ∑li=1m +∑i≠j∈[l] 2δ2m
= (lm + 2δ2ml2)

and (< w,w >= ∑k=1mw
2
k)

m

∑
k=1

wk = ∑
1≤i≤l,1≤k≤m

zi,k ≥ 2δml

Cauchy-Schwartz yields:
m

∑
k=1

w2
k ≥

(∑wk)2

m
≥ 4δ2l2m
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Combiniing the two bounds we get

4δ2l2m ≤ < w,w > ≤ (lm + 2δ2ml2)
⇒ 2δ2l2m ≤ lm
⇒ l ≤ 1

2δ2

◻

Thus there are 1
2ε many codewords ( 1

2 −
√
ε)-close to a string, if the code is

of distance ( 1
2 − ε). These can be found efficiently in the case of RS code:

5.4.5 List Decoding of RS
Theorem 5.4.6. (Sudan 1996) there exists a polynomial-time-algorithm that
given

{(ai, bi) ∈ F2 ∣ 1 ≤ i ≤m}
with m > d returns the list of all polynomials G(x) with deg(G) = d s.t.

#{i ∈ [m] ∣ G(ai) = bi} > 2
√
dm

Remark 5.4.7. The RS-decoder “uniquely” found a G for which the number of
fitting pairs (ai, bi) was m+d

2 while now the number of fitting pair is just 2
√
dm.

Proof. Find a nonzeroQ(x, y) with degx(Q) ≤
√
dm and degy(Q) ≤ √

m
d
s.t.

Q(ai, bi) = 0 for all i ∈ [m] (view this as m linear equations in the coefficients of
Q as unknowns, which are (1 +

√
dm) (1 +√

m
d
) >m at number. So the system

has a nonzero solution). Now factor Q(x, y) completely (using any efficient
polynomial-factoring algorithm). For all factors of the form (y−P (x)) ∣ Q(x, y),
deg(P (x)) = d and #{i ∈ [m] ∣ P (ai) = bi} > 2

√
dm output P (x).

If a degree d polynomal G(x) fits t > 2
√
dm points (ai, bi) then consider

Q(x,G(x)) has degx ≤
√
dm + d√m

d
< t and at least t points ai it is zero. This

implies that Q(x,G(x)) = 0 and y −G(x) ∣ Q(x, y). ◻

5.4.6 Local List Decoding
Definition 5.4.8. Let E ∶ {0,1}n → {0,1}m be an error-correcting code and
ε ∶= ( 1

2 − ρ) for ρ ∈ (0, 1
2). An algorithm Dis a local list decoder for E handling

ρ errors if ∀ x ∈ {0,1}n , y ∈ {0,1}m s.t. ∆(E(x), y) ≤ ρ: ∃i0 ∈ {1, . . . ,poly (n
ε
)}

s.t. on input ⟨i0, j,oracle f for y⟩ s.t. D runs for for poly (log(m), 1
ε
) time and

outputs xj with probability ≥ 2
3 .

i0 is called advice. interpret the defintions as: D outputting the j-th bit of
the i0-th element in the list: {x ∈ {0,1}m ∣ ∆(E(x), y) ≤ ρ}.

5.4.7 Local List Decoder for WH
Theorem 5.4.9 (Goldreich-Levin). Let WH ∶ {0,1}n → {0,1}2n and f be an
oracle s.t. for some x ∈ {0,1}n:

Pr
z∈{0,1}m

[f(z) =WH(x)z] ≥ 1
2
+ ε

2
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Then the list of messages {x ∣ ∆(f̂ ,WH(x)) ≤ 1
2 − ε

2} can be computed in
poly (n

ε
) time by a probabilistic algorithm.

Proof. Fix m = 200n
ε
, k = log(m + 1). Randomly pick s1, . . . , sk ∈ {0,1}n

and σ1, . . . , σk ∈ {0,1}. Our hope is that ∀i ∈ [k] ∶ σi = x⊙ si. Creating a lot of
pairwise independent strings. ∀φ ≠ T ⊆ [k] define sT ∶= ⊕ß∈T si and ρT ∶= ⊕i∈Tσi.
Hope: ∀T ⊆ k, ρt = x⊙sT . Compute for alle j ∈ [n], xj ∶= majT {ρT ⊕f(rT +ej)}.
Output x1⋯xn.

Analysis: Let us look at a fixed x ≠ 0n in the list.

Pr [∀i ∈ [k], σi = x⊙ si] = 2−k ≥ 1
2m

We now assume in the arguments that ∀i ∶ σi = x⊙si. Define ∀T ⊆ [k] a random
variable

ZT ∶= { 1 if ρT = x⊙ rT and f(rt + ej) = x⊙ (rt + ej)
0 else

we now can calculate the expectation

E [ZT ] = Pr
rT

[f(rT + ej) = x⊙ (rT + ej)] ≥ 1
2
+ ε

2

by linearity of expectation-value we get

E [∑
T

ZT ] ≥ (2k − 1)(1 + ε) =m(1 + ε)

By pairwise independence of the ZT s we can use “Chebychev’s inequality”:

Pr [∣R −E(R)∣ > δ ⋅Var(R)] ≤ 1
δ2

to calculate

Pr [∑
T

ZT ≤ m
2
] = Pr [∣∑ZT −E (∑ZT )∣ ≥ mε2 ] < 1

mε2
< 1

10n

using Var (∑T ZT ) ≥
√
m
4 .

Exercise 5.4.10. Proof the above.

So we finally get

Pr[the last step gives X] ≥ (1 − 1
10

)

Thus
Pr [x1⋯xn =X] ≥ 1

2m
(1 − 1

10
) = ε2

400n
(1 − 1

10
)

This means that repeating this algorithm for example 400n
ε2

times we expect to
get the full list (of messages, see above) with constant probability ≥ 2

3 . ◻
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5.4.8 Local list decoder for RM
Recall that RM maps (l+d

d
) evaluations of a d-degree, l-variate polynomial P (x⃗)

to ∣F∣l evaluations. The task of local list decoder is to output P (x⃗) for a given
x⃗ ∈ Fl and oracle access to a corrupted codeword.

Theorem 5.4.11. RM has a local list decoder handling (1 − 10
√

d
∣F∣) errors.

Proof. We first give an algorithm D that computes P (x) correctly on 0.9
of the xs with high probability in poly(∣F ∣, l) − time given ⟨f, i0, x⟩ (f is the
oracle and i0 is an advice). The local decoder of RM can then be used to make
D work for all x ∈ Fl. ◻

5.4.9 Local List Decoder for RM
Input:

1. Oracle f s.t. Prx∈Fl [f(x) = P (x)] > 10
√

d
∣F∣ for some l variate and d-degree

unknown polynomial P (x).

2. An x ∈ Fl

3. An advice index i0 = (x0, y0) ∈ Fl×F (this will help us to uniquely identify
P )

Output: y ∈ F (goal: y = P (x) with probability 2
3 for 0.9 of the xs)

Algorithm:

1. Let Lx,x0 be a random quadratic curve passing through the points x and
x0 defined as: Pick a random r ∈ F and consider the degree 2 univariat
q ∶ F→ Fl s.t. q(0) = x and q(r) = x0. Then Lx,x0 ∶= {q(t) ∣ t ∈ F}.

2. Query f on all points of Lx,x0 to obtain S ∶= {(t, f(q(t))) ∣ t ∈ F} ⊆ F × F.

3. Run Sudan’s RS list decoder to obtain (2d)-degree polynomials g1, . . . gk

each fitting ≥ 8
√

8
∣F∣ pairs in S (recall k ≤

√
∣F∣
2d ).

4. If there exists an unique i with gi(r) = y0 then output gi(0) else goto step
1.

Analysis: We will now show that for all inputs f and x and for all polynomials
P , if x0 is chosen at random and y0 = P (x0) then the output is P (x) with
probability ≥ 0.98. This implies: for all inputs f and suitable (x0, y0) there exists
a unique P s.t. for 0.9 of the xs the algorithm outputs P (x) with probability
≥ 2

3 .
Note that for all inputs f and x and for all polynomials P where P and f

agree on the random 2-degree-curve q on ≥ 8
√

d
∣F∣ points with probability ≥ 0.99.

Exercise 5.4.12. Show the above.
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Thus step 3 gives a list containing (q(t))P say g1 with probability ≥ 0.99.
Next Prr [∃unique i ∈ [k], gi(r) = y0] = 1 − Prr [∃i ≠ 1, gi(r) = y0 = g1(r)] ≥

1 −
√

∣F∣
2d

2d
∣F∣ = 1 −

√
2d
∣F∣ > 0.99 thus with probability 0.99 there exists an uniqze

i at step 4, gi(t) = P (q(t)) ⇒ gi(0) = P (q(0)) = P (x). Thus with probability
≥ 0.992 > 0.98 the algorithm outputs correctly.

5.4.10 Local List Decoder for Concatenated Code
Theorem 5.4.13. If E1 {0,1}n → Σm and E2 ∶ Σ → {0,1}k are two codes that
are locally list decodable then so is E2 ○E1 ∶ {0,1}n → {0,1}km.

Proof. As seen before in local decoding: Run the local list decoder of E1
and answer its queries using the local list decoder of E2. Assume that the local
list decoder of E1 takes an index in the set I1 and can handle 1− ε1 errors. The
local list decoder of E2 takes an index in the set I2 and handles ( 1

2 − ε2) errors.
The local list decoder of E2 ○ E1 will take an index (i1, i2) ∈ I1 × I2 and runs
E1’s decoder with i1 and E2’s decoder with i2.

Claim: It can handle (1 − ε1∣I2∣) (1
2 − ε2) errors.

Say y given with ∆(y,E2 ○E1(x)) < (1 − ε1∣I2∣) ( 1
2 − ε2). So ∃ ≤ (1 − ε1∣I2∣)

blocks in y each having ≥ (1
2 − ε2) disagreements with the corresponding block

of E2 ○E1(x). There exists more than ε1∣I2∣ blocks in y each having ≥ ( 1
2 + ε2)

agreements with the correspondig block in E2○E1(x). Thus ∃i2 ∈ I2 s.t. witth i2
output of local list decoder of E2 agrees with E1(x) on ε1 symbols. ⇒ ∃i1 ∈ I1
s.t. with (i1, i2) and ∀ j ∈ [n] the combined local list decoder outputs xj with
high probability. ◻

5.5 Hardness Amplification
Now we apply local list decoding to transform worst-case to average-case hard-
ness.

Theorem 5.5.1. Let f ∈ E ∶= DTime (2O(n)) be s.t. Hwrs(f) ≥ S(n) for some
S ∶ N → N (say S(n) ≥ n1000). Then ∃ g ∈ E s.t. Havg(g) ≥ S (n

c
)

1
c for some

constant c > 0.

Proof. We treat f ∣{0,1}n as a string f ′ ∈ {0,1}N for all n with N ∶= 2n.
We encode f ′ using a suitable error-correcting code E ∶ {0,1}N → {0,1}Nc . g
is defined to be the following function: {0,1}cn → {0,1}, x ↦ E(f ′)x (which
means nothing more than “E(f ′) is the true-table of g”). For g to satisfy the
theorem we need an error-correcting code E s.t.

1. ∀x ∈ {0,1}N , E(x) is computable in poly(N).
2. E has a local list decoder that runs in poly(log(N)) time and handles

( 1
2 − 1

S(n)) errors.

If ∃ circut D approximating g on ≥ ( 1
2 + 1

S(n)) inputs then view D as a corrupt
oracle for the true codeword E(f ′). Then the local list decoder of E can now
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use D and reconstruct bits in f ′ which basically means that it can compute f :
a small circut solves f which is a contradiction to the worstcase-hardness of f .
◻

Theorem 5.5.2. If f ∈ E ∶= DTime(2O(n)) s.t. Hwrs(f) ≥ S(n) for some
S ∶ N→ N then ∃g ∈ E s.t. Havg(g) ≥ S (n

c
)

1
c for some constant c > 0.

Proof. Let f ′ ∈ {0,1}N be the true-table of f ∣{0,1}n for N ∶= 2n. g is defined
by g′ ∶= E(f ′) ∈ {0,1}Nc (where E can beWH ○RM -Code). So g can be viewed
as a function {0,1}cn → {0,1}. For g to satisfy the theorem statement, we need
an error-correcting code E s.t.

1. ∀x ∈ {0,1}N it holds that E(x) can be computed in poly(N) time.

2. E has a local list decoder, that runs in poly(log(N)) time and handles
1
2 − 1

S(n) of the errors.

We achieve this by concatenating RM -Code with WH-Code.
Parameters for RM -Code: ∣F∣ = S(n) 1

100 , d = S(n) 1
200 , l = 300 log(N)

log(S(n)) .

Exercise 5.5.3. Proof that (d+l
l
) > (d

l
)l > N assuming N = 2n ≥ S(n) ≥ n1000.

So this RM -Code can be used to encode f ′ ∈ {0,1}N . And since ∣F∣l < N3

this encoding can be done in poly(N) time. Distance of this RM -Code ≥ 1− d
∣F∣ ≥

1− 1
S(n) 1

200
. On this RM -Code we will apply WH-Code, WH ∶ F→ {0,1}∣F∣. Its

local list decoder runs in poly(log(∣F∣)) time and handles 1
2 − ε errors (for any

ε > 0). The concatenation WH ○RM code has a local list decoder, that runs in
poly(log(N) ⋅ log(∣F∣)) = poly(n) time, handling (1 −

√
d
∣F∣ ⋅

log ∣F∣
ε2

) (1
2 − ε) errors.

This is approximately (1 − 1
S(n) 1

400

log(S(n))
ε2

) ⋅ (1
2 − ε). We fix ε = S(n)− 1

801 . So

the above product is ≥ ( 1
2 − 1

S(n) 1
802

).

f ′ ∈ {0,1}N WH○RM→ g′ ∈ {0,1}N3
so g ∶ {0,1}3n → {0,1}. Suppos that G is

a circuit of size ≤ S(n) 1
802 that computes g∣{0,1}3n on more than ( 1

2 + 1
S(n) 1

802
)

fraction of inputs. This implies that we can use the local list decoder of WH ○
RM using G as an oracle, to get a circuit F of size (poly(n) + S(n) 1

802 ) < S(n)
computing f ′∣x = f(x) ∀x ∈ {0,1}n. This contradicts Hwrs(f) ≥ S(n).

So Havg(g) ≥ S (n3 )
1

802 > S ( n
802)

1
802 . ◻



Chapter 6

Ausblick

6.1 Extractors
We constructed expanders (inconditionally) in chapter 3 and PRGs in 4 (con-
ditionall), another related pseudorandom object is an extractor. They “extract
randomness” from a “weakly random” source.

Definition 6.1.1. The min entropy of a random variable X, denoted by H∞(X),
is the larges k ∈ R s.t. Pr[X = x] ≤ 2−k for all x ∈ range(X).

If X is a distribution on {0,1}n with H∞(X) ≥ k then it is called an
(n, k)-source. If k < n we call it a weak random source.

Exercise 6.1.2. 1. If X is a distribution on {0,1}n then H∞(X) ≤ n.

2. H∞(X) = n iff X ≈ Un (the uniform distribution).

3. Generally a probabilistic algorithm that uses k random bits requires access
to a prob. distribution X with H∞(X) ≥ k.

4. If X is the uniform distribution over S ⊂ {0,1}n of size 2k then H∞(X) = k
(this distribution “essentially captures” any distribution with min entropy
k.

Definition 6.1.3. If X,Y are probability-distributions over Ω then the statistical
distance

∆(X,Y ) ∶= max
f ∶Ω→{0,1}

(E[f(x)] −E[f(y)])

Exercise 6.1.4. It is also 1
2 ∣x⃗ − y⃗∣1 where x⃗, y⃗ ∈ R∣Ω∣ describe X and Y respec-

tively.

Definition 6.1.5. We call two distributions X and Y to be ε-close if

∆(X,Y ) ≤ ε

Extractors transform an (n, k)-source into an almost uniform distribution,
formally:

45
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Definition 6.1.6. A function

Ext ∶ {0,1}n × {0,1}d → {0,1}m

is called a (k, ε)-extractor if for any (n, k)-source X it holds that

∆(Ext(X,Ud), Um) ≤ ε

Remark 6.1.7. 1. {0,1}d is called seed of the extractor function and one of
the aims is to achieve m = k using d as small as possible.

2. Existence: Probabilistic method proves for d = log(n)+2 log ( 1
ε
)+O(1) and

m = k.
3. Explicit constructions: using expanders or PRG ideas.


