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1 IntroductionHyperelliptic curves are a special class of algebraic curves and can be viewed as generaliza-tions of elliptic curves. There are hyperelliptic curves of every genus g � 1. A hyperellipticcurve of genus g = 1 is an elliptic curve. Elliptic curves have been extensively studied for overa hundred years, and there is a vast literature on the topic; for example, see the books by Sil-verman [34, 35]. Originally pursued mainly for purely aesthetic reasons, elliptic curves haverecently become an essential tool in several important areas of applications including codingtheory (e.g., Driencourt and Michon [11] and van der Geer [15]); pseudorandom numbergeneration (e.g., Kaliski [18]); number theory algorithms (e.g., Goldwasser and Kilian [16]and Lenstra [21]); and public-key cryptography (see Koblitz [19], Miller [27], and Menezes[25]).On the other hand, the theory of hyperelliptic curves has not received as much attentionby the research community. Most results concerning hyperelliptic curves which appear inthe literature on algebraic geometry are couched in very general terms. For example, acommon source cited in papers on hyperelliptic curves is Mumford's book [28]. However, thenon-specialist will have extreme di�culty specializing (not to mention �nding) the results inthis book to the particular case of hyperelliptic curves. Another di�culty one encounters isthat the theory in such books is usually restricted to the case of hyperelliptic curves over thecomplex numbers (as in Mumford's book), or over algebraically closed �elds of characteristicnot equal to 2. The recent book of Cassels and Flynn [6] is an extensive account on curvesof genus 2. (Compared to their book, our approach is de�nitely \low-brow".) Recently,applications of hyperelliptic curves have been found to areas outside algebraic geometry.Hyperelliptic curves were a key ingredient in Adleman and Huang's random polynomial-time algorithm for primality proving [3]. Hyperelliptic curves have also been consideredin the design of error-correcting codes [4], in integer factorization algorithms [22], and inpublic-key cryptography [20]. Hyperelliptic curves over �nite �elds of characteristic two areespecially interesting for the purpose of implementing these codes and cryptosystems.Charlap and Robbins [7, 8] presented an elementary introduction to elliptic curves. Thepurpose was to provide elementary self-contained proofs of some of the basic theory relevantto Schoof's algorithm [33] for counting the points on an elliptic curve over a �nite �eld.The discussion was restricted to �elds of characteristic not equal to 2 or 3. However, forpractical applications, elliptic and hyperelliptic curves over characteristic two �elds are es-pecially attractive. This paper, similar in spirit to that of Charlap and Robbins, presentsan elementary introduction to some of the theory of hyperelliptic curves over �nite �elds ofarbitrary characteristic that has cryptographic relevance. For a general introduction to thetheory of algebraic curves, consult Fulton's book [14].2



2 Basic de�nitions and propertiesDe�nition 1 (hyperelliptic curve) Let K be a �eld and let K be the algebraic closure of K.A hyperelliptic curve C of genus g over K (g � 1) is an equation of the formC : v2 + h(u)v = f(u) in K[u; v]; (1)where h(u) 2 K[u] is a polynomial of degree at most g, f(u) 2 K[u] is a monic polynomialof degree 2g + 1, and there are no solutions (u; v) 2 K � K which simultaneously satisfythe equation v2 + h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 andh0(u)v � f 0(u) = 0.A singular point on C is a solution (u; v) 2 K � K which simultaneously satis�es theequation v2+ h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 and h0(u)v�f 0(u) = 0. De�nition 1 thus says that a hyperelliptic curve does not have any singular points.For the remainder of this paper it is assumed that the �eld K and the curve C have been�xed.Lemma 2 Let C be a hyperelliptic curve over K de�ned by equation (1).(i) If h(u) = 0, then char(K) 6= 2.(ii) If char(K) 6= 2, then the change of variables u! u, v! (v� h(u)=2) transforms C tothe form v2 = f(u) where degu f = 2g + 1.(iii) Let C be an equation of the form (1) with h(u) = 0 and char(K) 6= 2. Then C is ahyperelliptic curve if and only if f(u) has no repeated roots in K.Proof.(i) Suppose that h(u) = 0 and char(K) = 2. Then the partial derivative equations reduceto f 0(u) = 0. Note that degu f 0(u) = 2g. Let x 2 K be a root of the equation f 0(u) = 0,and let y 2 K be a root of the equation v2 = f(x). Then the point (x; y) is a singularpoint on C. Statement (i) now follows.(ii) Under this change of variables, the equation (1) is transformed to(v � h(u)=2)2 + h(u)(v � h(u)=2) = f(u);which simpli�es to v2 = f(u) + h(u)2=4; note that degu(f + h2=4) = 2g + 1.(iii) A singular point (x; y) on C must satisfy y2 = f(x), 2y = 0, and f 0(x) = 0. Hencey = 0 and x is a repeated root of the polynomial f(u). 23



De�nition 3 (rational points, point at in�nity, �nite points) Let L be an extension �eld ofK. The set of L-rational points on C, denoted C(L), is the set of all points P = (x; y) 2 L�Lwhich satisfy the equation (1) of the curve C, together with a special point at in�nity1denoted 1. The set of points C(K) will simply be denoted by C. The points in C otherthan 1 are called �nite points.Example 4 (hyperelliptic curves over the reals) The following are three examples of hyper-elliptic curves over the �eld of real numbers. Each curve has genus g = 2 and h(u) = 0.1. C1 : v2 = u5 + u4+ 4u3 + 4u2 + 3u+ 3 = (u+ 1)(u2 + 1)(u2 + 3). The graph of C1 inthe real plane is shown in Figure 1.2. C2 : v2 = u5+ u4� u2� u = u(u� 1)(u+1)(u2+ u+1). The graph of C2 in the realplane is shown in Figure 2.3. C3 : v2 = u5 � 5u3 + 4u = u(u� 1)(u+ 1)(u� 2)(u+ 2). The graph of C3 in the realplane is shown in Figure 3.
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2Figure 1: The hyperelliptic curve C1 : v2 = u5 + u4 + 4u3 + 4u2 + 3u+ 3 over the real numbers.De�nition 5 (opposite, special and ordinary points) Let P = (x; y) be a �nite point on acurve C. The opposite of P is the point eP = (x;�y � h(x)). (Note that eP is indeed on C.)We also de�ne the opposite of 1 to be f1 = 1 itself. If a �nite point P satis�es P = ePthen the point is said to be special ; otherwise, the point is said to be ordinary.1The point at in�nity lies in the projective plane P 2(K). It is the only projective point lying on theline at in�nity that satis�es the homogenized hyperelliptic curve equation. If g � 2, then 1 is a singular(projective) point which is allowed since 1 62 K �K .4
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-2 -1 0 1 2Figure 2: The hyperelliptic curve C2 : v2 = u5 + u4 � u2 � u over the real numbers.
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-4 -3 -2 -1 0 1 2 3 4Figure 3: The hyperelliptic curve C3 : v2 = u5 � 5u3 + 4u over the real numbers.5



Example 6 (hyperelliptic curve over Z7) Consider the curve C : v2 + uv = u5 + 5u4 +6u2+u+3 over the �nite �eld Z7. Here, h(u) = u, f(u) = u5+5u4+6u2+u+3 and g = 2.It can be veri�ed that C has no singular points (other than 1), and hence C is indeed ahyperelliptic curve. The Z7-rational points on C areC(Z7) = f1; (1; 1); (1; 5); (2; 2); (2; 3); (5; 3); (5; 6); (6; 4)g:The point (6; 4) is a special point.Example 7 (hyperelliptic curve over F25) Consider the �nite �eld F25 = F2[x]=(x5+x2+1),and let � be a root of the primitive polynomial x5+x2+1 in F25. The powers of � are listedin Table 1. n �n n �n n �n0 1 11 �2 + � + 1 22 �4 + �2 + 11 � 12 �3 + �2 + � 23 �3 + �2 + �+ 12 �2 13 �4 + �3 + �2 24 �4 + �3 + �2 + �3 �3 14 �4 + �3 + �2 + 1 25 �4 + �3 + 14 �4 15 �4 + �3 + �2 + �+ 1 26 �4 + �2 + �+ 15 �2 + 1 16 �4 + �3 + �+ 1 27 �3 + �+ 16 �3 + � 17 �4 + � + 1 28 �4 + �2 + �7 �4 + �2 18 �+ 1 29 �3 + 18 �3 + �2 + 1 19 �2 + � 30 �4 + �9 �4 + �3 + � 20 �3 + �2 31 110 �4 + 1 21 �4 + �3Table 1: Powers of � in the �nite �eld F25 = F2[x]=(x5 + x2 + 1).Consider the curve C : v2+(u2+u)v = u5+u3+1 of genus g = 2 over the �nite �eld F25.Here, h(u) = u2+ u and f(u) = u5+ u3+1. It can be veri�ed that C has no singular points(other than 1), and hence C is indeed a hyperelliptic curve. The �nite points in C(F25),the set of F25-rational points on C, are:(0; 1) (1; 1) (�5; �15) (�5; �27) (�7; �4) (�7; �25) (�9; �27) (�9; �30)(�10; �23) (�10; �30) (�14; �8) (�14; �19) (�15; 0) (�15; �8) (�18; �23) (�18; �29)(�19; �2) (�19; �28) (�20; �15) (�20; �29) (�23; 0) (�23; �4) (�25; �) (�25; �14)(�27; 0) (�27; �2) (�28; �7) (�28; �16) (�29; 0) (�29; �) (�30; 0) (�30; �16)Of these, the points (0; 1) and (1; 1) are special.3 Polynomial and rational functionsThis section introduces basic properties of polynomial and rational functions which arisewhen they are viewed as functions on a hyperelliptic curve.6



De�nition 8 (coordinate ring, polynomial function) The coordinate ring of C over K, de-noted K[C], is the quotient ringK[C] = K[u; v]=(v2+ h(u)v � f(u));where (v2 + h(u)v � f(u)) denotes the ideal in K[u; v] generated by the polynomial v2 +h(u)v � f(u). Similarly, the coordinate ring of C over K is de�ned asK[C] = K [u; v]=(v2+ h(u)v � f(u)):An element of K[C] is called a polynomial function on C.Lemma 9 The polynomial r(u; v) = v2 + h(u)v � f(u) is irreducible over K, and henceK[C] is an integral domain.Proof. If r(u; v) were reducible over K, it would factor as (v � a(u))(v � b(u)) for somea; b 2 K[u]. But then degu(a � b) = degu f = 2g + 1 and degu(a+ b) = degu h � g, which isimpossible. 2Observe that for each polynomial function G(u; v) 2 K[C], we can repeatedly replaceany occurrence of v2 by f(u)� h(u)v, to eventually obtain a representationG(u; v) = a(u)� b(u)v; where a(u); b(u) 2 K[u]:It is easy to see that the representation of G(u; v) in this form is unique.De�nition 10 (conjugate) Let G(u; v) = a(u) � b(u)v be a polynomial function in K[C].The conjugate of G(u; v) is de�ned to be the polynomial function G(u; v) = a(u)+b(u)(h(u)+v).De�nition 11 (norm) Let G(u; v) = a(u)� b(u)v be a polynomial function in K[C]. Thenorm of G is the polynomial function N(G) = GG.The norm function will be very useful in transforming questions about polynomial func-tions in two variables into easier questions about polynomials in a single variable.Lemma 12 (properties of norm) Let G;H 2 K[C] be polynomial functions.(i) N(G) is a polynomial in K [u].(ii) N(G) = N(G).(iii) N(GH) = N(G)N(H). 7



Proof. Let G = a� bv and H = c� dv, where a; b; c; d 2 K [u]. 2(i) Now, G = a+ b(h+ v) andN(G) = G �G = (a� bv)(a+ b(h+ v))= a2 + abh� b2f 2 K[u]:(ii) The conjugate of G is G = (a+ bh) + (�b)(h+ v)= a� bv = G:Hence N(G) = G G = GG = N(G).(iii) GH = (ac+ bdf)� (bc+ ad+ bdh)v, and its conjugate isGH = (ac+ bdf) + (bc+ ad+ bdh)(h+ v)= ac+ bdf + bch+ adh+ bdh2 + bcv + adv + bdhv= ac+ bc(h+ v) + ad(h+ v) + bd(h2 + hv + f)= ac+ bc(h+ v) + ad(h+ v) + bd(h2 + 2hv + v2)= (a+ b(h+ v))(c+ d(h+ v))= G H:Hence N(GH) = GHGH = GHGH = GGHH = N(G)N(H). 2De�nition 13 (function �eld, rational functions) The function �eld K(C) of C over K isthe �eld of fractions of K[C]. Similarly, the function �eld K(C) of C over K is the �eld offractions of K[C]. The elements of K(C) are called rational functions on C.Note that K[C] is a subring of K(C), i.e., every polynomial function is also a rationalfunction.De�nition 14 (value of a rational function at a �nite point) Let R 2 K(C), and let P 2 C,P 6=1. Then R is said to be de�ned at P if there exist polynomial functions G;H 2 K[C]such that R = G=H and H(P ) 6= 0; if no such G;H 2 K[C] exist, then R is not de�ned atP . If R is de�ned at P , the value of R at P is de�ned to be R(P ) = G(P )=H(P ).It is easy to see that the value R(P ) is well-de�ned, i.e., it does not depend on the choiceof G and H. The following de�nition introduces the notion of the degree of a polynomialfunction.2If not explicitly stated otherwise, the variable in all polynomials will henceforth be assumed to be u.8



De�nition 15 (degree of a polynomial function) Let G(u; v) = a(u)� b(u)v be a non-zeropolynomial function in K[C]. The degree of G is de�ned to bedeg(G) = max[2 degu(a); 2g + 1 + 2degu(b)]:Lemma 16 (properties of degree) Let G;H 2 K[C].(i) deg(G) = degu(N(G)).(ii) deg(GH) = deg(G) + deg(H).(iii) deg(G) = deg(G).Proof.(i) Let G = a(u)� b(u)v. The norm of G is N(G) = a2 + abh� b2f . Let d1 = degu(a(u))and d2 = degu(b(u)). By de�nition of a hyperelliptic curve, degu(h(u)) � g anddegu(f(u)) = 2g + 1. There are two cases to consider:Case 1: If 2d1 > 2g+1+2d2 then 2d1 � 2g+2+2d2, and hence d1 � g+1+d2. Hencedegu(a2) = 2d1 � d1 + g + 1 + d2 > d1 + d2 + g � degu(abh):Case 2: If 2d1 < 2g + 1 + 2d2 then 2d1 � 2g + 2d2, and hence d1 � g + d2. Hencedegu(abh) � d1 + d2 + g � 2g + 2d2 < 2g + 2d2 + 1 = degu(b2f):It follows that degu(N(G)) = max(2d1; 2g + 1 + 2d2) = deg(G):(ii) We have deg(GH) = degu(N(GH)); by (i)= degu(N(G)N(H)); by Lemma 12(iii)= degu(N(G)) + degu(N(H))= deg(G) + deg(H):(iii) Since N(G) = N(G), we have deg(G) = degu(N(G)) = degu(N(G)) = deg(G). 2De�nition 17 (value of a rational function at 1) Let R = G=H 2 K(C) be a rationalfunction.(i) If deg(G) < deg(H) then the value of R at 1 is de�ned to be R(1) = 0.(ii) If deg(G) > deg(H) then R is not de�ned at 1.(iii) If deg(G) = deg(H) then R(1) is de�ned to be the ratio of the leading coe�cients(with respect to the deg function) of G and H.9



4 Zeros and polesThis section introduces the notion of a uniformizing parameter, and the orders of zeros andpoles of rational functions.De�nition 18 (zero, pole) Let R 2 K(C)� and let P 2 C. If R(P ) = 0 then R is said tohave a zero at P . If R is not de�ned at P then R is said to have a pole at P , in which casewe write R(P ) =1.Lemma 19 Let G 2 K[C]� and P 2 C. If G(P ) = 0 then G( eP ) = 0.Proof. Let G = a(u) � b(u)v and P = (x; y). Then G = a(u) + b(u)(v + h(u)), eP =(x;�y � h(x)), and G( eP ) = a(x) + b(x)(�y� h(x) + h(x)) = a(x)� yb(x) = G(P ) = 0. 2Lemmas 20, 21 and 22 are used in Theorem 23 which establishes the existence of uni-formizing parameters.Lemma 20 Let P = (x; y) be a point on C. Suppose that G = a(u)� b(u)v 2 K[C]� has azero at P and that x is not a root of both a(u) and b(u). Then G(P ) = 0 if and only if P isa special point.Proof. If P is a special point, then G(P ) = 0 by Lemma 19. Conversely, suppose that P isan ordinary point, i.e., y 6= (�y � h(x)). If G(P ) = 0 then we have:a(x)� b(x)y = 0a(x) + b(x)(h(x) + y) = 0:Subtracting the two equations yields b(x) = 0, and hence a(x) = 0, which contradicts thehypothesis that x is not a root of both a(u) and b(u). Hence if G(P ) = 0 then P is special.2Lemma 21 Let P = (x; y) be an ordinary point on C, and let G = a(u)� b(u)v 2 K[C]�.Suppose that G(P ) = 0 and x is not a root of both a(u) and b(u). Then G can be writtenin the form (u � x)sS, where s is the highest power of (u � x) which divides N(G), andS 2 K(C) has neither a zero nor a pole at P .Proof. We can write G = G � GG = N(G)G = a2 + abh� b2fa+ b(h+ v) :Let N(G) = (u � x)sd(u), where s is the highest power of (u � x) which divides N(G)(so d(u) 2 K[u]� and d(x) 6= 0). By Lemma 20, G(P ) 6= 0. Let S = d(u)=G. ThenG = (u� x)sd(u)=G and S(P ) 6= 0;1. 210



Lemma 22 Let P = (x; y) be a special point on C. Then (u � x) can be written in theform (v � y)2 � S(u; v), where S(u; v) 2 K(C) has neither a zero nor a pole at P .Proof. Let H = (v � y)2 and S = (u� x)=H, and note that (u� x) = H � S. We will showthat S(P ) 6= 0;1. Since P is a special point, 2y + h(x) = 0. Consequently, since P is not asingular point, we have h0(x)y� f 0(x) 6= 0. Also, f(x) = y2+ h(x)y = y2+ (�2y)(y) = �y2.Now, H(u; v) = (v � y)2 = v2 � 2yv + y2 = f(u)� h(u)v � 2yv + y2:Hence 1S(u; v) =  f(u) + y2u� x !� v h(u) + 2yu� x ! : (2)Notice that the right hand side of (2) is indeed a polynomial function. Let s(u) = H(u; y),and observe that s(x) = 0. Moreover, s0(u) = f 0(u)�h0(u)y, whence s0(x) 6= 0. Thus (u�x)divides s(u), but (u � x)2 does not divide s(u). It follows that the right hand side of (2) isnon-zero at P , and hence that S(P ) 6= 0;1, as required. 2Theorem 23 (existence of uniformizing parameters) Let P 2 C. Then there exists a func-tion U 2 K(C) with U(P ) = 0 such that the following property holds: for each polynomialfunction G 2 K [C]�, there exists an integer d and function S 2 K(C) such that S(P ) 6= 0;1and G = UdS. Furthermore, the number d does not depend on the choice of U . The functionU is called a uniformizing parameter for P .Proof. Let G(u; v) 2 K[C]�. If P is a �nite point, suppose that G(P ) = 0; if P = 1,suppose that G(P ) = 1. (If G(P ) 6= 0;1, then we can write G = U0G where U is anypolynomial in K[C] satisfying U(P ) = 0.) We prove the theorem by �nding a uniformizingparameter for each of the following cases: (i) P =1; (ii) P is an ordinary point; and (iii) Pis a special point.(i) We �rst show that a uniformizing parameter for the point P =1 is U = ug=v. Firstnote that U(1) = 0 since deg(ug) < deg(v). Next, writeG = �ugv �d � vug�dG;where d = �deg(G). Let S = (v=ug)dG. Since deg(v) � deg(ug) = 2g + 1 � 2g = 1and d = �deg(G), it follows that deg(u�gdG) = deg(v�d). Hence S(1) 6= 0;1.(ii) Assume now that P = (x; y) is an ordinary point. We show that a uniformizingparameter for P is U = (u� x); observe that U(P ) = 0. Write G = a(u)� b(u)v. Let(u� x)r be the highest power of (u� x) which divides both a(u) and b(u), and writeG(u; v) = (u� x)r(a0(u)� b0(u)v):11



By Lemma 21, we can write (a0(u)� b0(u)v) = (u� x)sS for some integer s � 0, andS 2 K(C) such that S(P ) 6= 0;1. Hence G = (u � x)r+sS satis�es the statement ofthe theorem with d = r + s.(iii) Assume now that P = (x; y) is a special point. We show that a uniformizing parameterfor P is U = (v � y); observe that U(P ) = 0. By replacing any powers of u greaterthan 2g with the equation of the curve, we can writeG(u; v) = u2gb2g(v) + u2g�1b2g�1(v) + � � �+ ub1(v) + b0(v);where each bi(v) 2 K[v]. Replacing all occurrences of u by ((u�x)+x) and expandingyieldsG(u; v) = (u� x)2gb2g(v) + (u� x)2g�1b2g�1(v) + � � �+ (u� x)b1(v) + b0(v)= (u� x)B(u; v) + b0(v);where each bi(v) 2 K[v], and B(u; v) 2 K [C]. Now G(P ) = 0 implies b0(y) = 0, andso we can write b0(v) = (v � y)c(v) for some c 2 K[v]. By the proof of Lemma 22(see equation (2)), we can write (u� x) = (v� y)2=A(u; v), where A(u; v) 2 K[C] andA(P ) 6= 0;1. HenceG = (v � y) "(v � y)B(u; v)A(u; v) + c(v)#= (v � y)A(u; v) [(v � y)B(u; v) +A(u; v)c(v)]def= (v � y)A(u; v)G1(u; v):Now if G1(P ) 6= 0, then we are done by taking S = G1=A. On the other hand, ifG1(P ) = 0, then c(y) = 0 and we can write c(v) = (v � y)c1(v) for some c1 2 K[v].Hence G = (v � y)2 "B(u; v)A(u; v) + c1(v)#= (v � y)2A(u; v) [B(u; v) +A(u; v)c1(v)]def= (v � y)2A(u; v) G2(u; v):Again, if G2(P ) 6= 0 then we are done. Otherwise, the whole process can be repeated.To see that the process terminates, suppose that we have pulled k factors of v � y.There are two cases to consider. 12



(a) If k is even, say k = 2l, we can writeG = (v � y)2lA(u; v)l D(u; v)where D 2 K[C]. Hence AlG = (v�y)2lD = (u�x)lAlD, whence G = (u�x)lD.Taking norms of both sides yieldsN(G) = (u�x)2lN(D). Hence k � degu(N(G)).(b) If k is odd, say k = 2l + 1, we can writeG = (v � y)2l+1A(u; v)l+1 D(u; v)where D 2 K[C]. Hence Al+1G = (v � y)2l+1D = (u � x)lAl(v � y)D, whenceAG = (u�x)l(v�y)D. Taking norms of both sides yieldsN(AG) = (u�x)2lN(v�y)N(D). Hence 2l < degu(N(AG)), and so k � degu(N(AG)).In either case, k is bounded by degu(N(AG)) and so the process must terminate.To see that d is independent of the choice of U , suppose that U1 is another uniformizingparameter for P . Since U(P ) = U1(P ) = 0, we can write U = Ua1A and U1 = U bB,where a � 1, b � 1, A;B 2 K(C), A(P ) 6= 0;1, B(P ) 6= 0;1. Thus U = (U bB)aA =UabBaA. Dividing both sides by U yields Uab�1BaA = 1. Substituting P in both sidesof this equation tells us ab � 1 = 0. Hence a = b = 1. Thus G = UdS = Ud1 (AdS),where AdS has neither a zero nor a pole at P . 2The notion of a uniformizing parameter is next used to de�ne the order of a polynomialfunction at a point. An alternative de�nition from [20], which is more convenient to usefor computational purposes, is given in De�nition 26. Lemma 27 establishes that these twode�nitions are in fact equivalent.De�nition 24 (usual de�nition of order of a polynomial function at a point) Let G 2 K[C]�and P 2 C. Let U 2 K(C) be a uniformizing parameter for P , and write G = UdS whereS 2 K(C), S(P ) 6= 0;1. The order of G at P is de�ned to be ordP (G) = d.Lemma 25 Let G1; G2 2 K [C]� and P 2 C, and let ordP (G1) = r1, ordP (G2) = r2.(i) ordP (G1G2) = ordP (G1) + ordP (G2).(ii) Suppose that G1 6= �G2. If r1 6= r2 then ordP (G1 +G2) = min(r1; r2). If r1 = r2 thenordP (G1 +G2) � min(r1; r2).Proof. Let U be a uniformizing parameter for P . By De�nition 24, we can write G1 = U r1S1and G2 = U r2S2, where S1; S2 2 K(C), S1(P ) 6= 0;1, S2(P ) 6= 0;1. Without loss ofgenerality, suppose that r1 � r2. 13



(i) G1G2 = U r1+r2(S1S2), from which it follows that ordP (G1G2) = r1 + r2.(ii) G1 + G2 = U r2(U r1�r2S1 + S2). If r1 > r2 then (U r1�r2S1)(P ) = 0, S2(P ) 6= 0;1, andso ordP (G1+G2) = r2. If r1 = r2 then (S1+S2)(P ) 6=1 (although it may be the casethat (S1 + S2)(P ) = 0), and so ordP (G1 +G2) � r2. 2De�nition 26 (alternate de�nition of order of a polynomial function at a point) Let G =a(u) � b(u)v 2 K[C]� and P 2 C. The order of G at P , denoted ordP (G), is de�ned asfollows:(i) If P = (x; y) is a �nite point, then let r be the highest power of (u� x) which dividesboth a(u) and b(u), and write G(u; v) = (u�x)r(a0(u)� b0(u)v). If a0(x)� b0(x)y 6= 0then let s = 0; otherwise, let s be the highest power of (u�x) which divides N(a0(u)�b0(u)v) = a20 + a0b0h � b20f . If P is an ordinary point, then de�ne ordP (G) = r + s. IfP is a special point, then de�ne ordP (G) = 2r + s.(ii) If P =1 then ordP (G) = �max[2 degu(a); 2g + 1 + 2degu(b)]:Lemma 27 De�nition 24 and De�nition 26 are equivalent. That is, if the order function ofDe�nition 26 is denoted by ord, then ordP (G) = ordP (G) for all P 2 C and G 2 K[C]�.Proof. If P = 1, the proof of the lemma follows directly from the proof of Theorem 23(i).For the case P is an ordinary point, the proof of the lemma follows directly from Lemma 21and the proof of Theorem 23(ii).Suppose now that P = (x; y) is a special point, and let G = a � bv. Let r be the highestpower of (u� x) which divides both a(u) and b(u), and writeG = (u� x)r(a0(u)� b0(u)v) def= (u� x)rH(u; v):Let ordP (H) = s. Then, by Lemma 22,ordP (G) = ordP ((u� x)r) + ordP (H) = 2r + s:Now, since v � y is a uniformizing parameter for P , we can writeH(u; v) = (v � y)sA1=A2; where A1, A2 2 K[C], A1(P ) 6= 0, A2(P ) 6= 0:Multiplying both sides by A2 and taking norms yieldsN(A2)N(H) = (y2 + h(u)y � f(u))sN(A1):Now, N(A1)(x) 6= 0 since A1(P ) 6= 0 and P is special (Lemma 19). Similarly,N(A2)(x) 6= 0.Also, u = x is a root of the polynomial y2 + h(u)y � f(u). Moreover, u = x is not a doubleroot of y2 + h(u)y � f(u) since h0(x)y � f 0(x) 6= 0. It follows that (u � x)s is the highestpower of (u� x) which divides N(H). Hence ordP (G) = 2r + s = ordP (G). 214



Lemma 28 is a generalization of Lemma 19.Lemma 28 Let G 2 K[C]� and P 2 C. Then ordP (G) = ordeP (G).Proof. There are two cases to consider.(i) Suppose P = 1; then eP = 1. By De�nitions 26(ii) and 15, ordP (G) = �deg(G)and ordeP (G) = ordP (G) = �deg(G). By Lemma 16(iii), deg(G) = deg(G). HenceordP (G) = ordeP (G).(ii) Suppose now that P = (x; y) is a �nite point. Let G = a(u)� b(u)v = (u�x)rH(u; v),where r is the highest power of (u�x) which divides both a(u) and b(u) and H(u; v) =a0(u)� b0(u)v. If H(x; y) 6= 0 then let s = 0; otherwise, let s be the highest power of(u�x) which divides N(H). Now, G = (u�x)rH, where H = (a0+ b0h)+ b0v. Recallthat H(P ) = 0 if and only if H( eP ) = 0. Since (u � x) does not divide both a0 + b0hand b0 (since otherwise, (u�x)ja0), and s is the highest power of (u�x) which dividesN(H) = N(H), it follows from De�nition 26 that ordeP (G) = ordP (G). 2Theorem 29 Let G 2 K[C]�. Then G has a �nite number of zeros and poles. Moreover,PP2C ordP (G) = 0.Proof. Let n = deg(G); then degu(N(G)) = n. We can writeN(G) = GG = (u� x1)(u� x2) � � � (u� xn);where xi 2 K , and the xi are not necessarily distinct. The only pole of G is at P = 1,and ord1(G) = �n. If xi is the u-coordinate of an ordinary point P = (xi; yi) on C, thenordP (u�xi) = 1 and ordeP (u�xi) = 1, and (u�xi) has no other zeros. If xi is the u-coordinateof a special point P = (xi; yi) on C, then ordP (u� xi) = 2, and (u� xi) has no other zeros.Hence, N(G), and consequently also G, has a �nite number of zeros and poles, and moreoverPP2Cnf1g ordP (N(G)) = 2n. But, by Lemma 28, PP2Cnf1g ordP (G) = PP2Cnf1g ordP (G),and hence PP2Cnf1g ordP (G) = n. We conclude that PP2C ordP (G) = 0. 2De�nition 30 (order of a rational function at a point) Let R = G=H 2 K(C)� and P 2 C.The order of R at P is de�ned to be ordP (R) = ordP (G)� ordP (H).It can readily be veri�ed that ordP (R) does not depend on the choice of G and H, andthat Lemma 25 and Theorem 29 are also true for non-zero rational functions.15



5 DivisorsThis section presents the basic properties of divisors and introduces the jacobian of a hyper-elliptic curve.De�nition 31 (divisor, degree, order) A divisor D is a formal sum of points in CD = XP2CmPP; mP 2Z;where only a �nite number of the mP are non-zero. The degree of D, denoted degD, is theinteger PP2C mP . The order of D at P is the integer mP ; we write ordP (D) = mP .The set of all divisors, denoted D, forms an additive group under the addition rule:XP2CmPP + XP2C nPP = XP2C(mP + nP )P:The set of all divisors of degree 0, denoted D0, is a subgroup of D.De�nition 32 (gcd of divisors) Let D1 =PP2C mPP and D2 = PP2C nPP be two divisors.The greatest common divisor of D1 and D2 is de�ned to begcd(D1;D2) = XP2Cmin(mP ; nP )P �  XP2Cmin(mP ; nP )!1:(Note that gcd(D1;D2) 2 D0.)De�nition 33 (divisor of a rational function) Let R 2 K(C)�. The divisor of R isdiv(R) = XP2C(ordPR)P:Note that if R = G=H then div(R) = div(G) � div(H). Theorem 29 shows that thedivisor of a rational function is indeed a �nite formal sum and has degree 0.Example 34 If P = (x; y) is an ordinary point on C, then div(u � x) = P + eP � 21. IfP = (x; y) is a special point on C, then div(u� x) = 2P � 21.Lemma 35 Let G 2 K[C]�, and let div(G) = PP2C mPP . Then div(G) = PP2C mP eP .Proof. The result follows directly from Lemma 28. 2If R1; R2 2 K(C)� then it follows from Lemma 25(i) that div(R1R2) = div(R1)+div(R2).16



De�nition 36 (principal divisor, jacobian) A divisor D 2 D0 is called a principal divisor ifD = div(R) for some rational function R 2 K(C)�. The set of all principal divisors, denotedP, is a subgroup of D0. The quotient group J = D0=P is called the jacobian of the curve C.If D1, D2 2 D0 then we write D1 � D2 if D1 �D2 2 P; D1 and D2 are said to be equivalentdivisors.De�nition 37 (support of a divisor) Let D = PP2C mPP be a divisor. The support of Dis the set supp(D) = fP 2 C j mP 6= 0g.De�nition 38 (semi-reduced divisor) A semi-reduced divisor is a divisor of the form D =PmiPi � (Pmi)1, where each mi � 0 and the Pi's are �nite points such that when Pi 2supp(D) then fPi 62 supp(D), unless Pi = fPi, in which case mi = 1.Lemma 39 For each divisor D 2 D0 there exists a semi-reduced divisor D1 (D1 2 D0) suchthat D � D1.Proof. Let D = PP2C mPP . Let (C1; C2) be a partition of the set of ordinary points on Csuch that (i) P 2 C1 if and only if eP 2 C2; and (ii) if P 2 C1 then mP � meP . Let C0 be theset of special points on C. Then we can writeD = XP2C1mPP + XP2C2mPP + XP2C0mPP �m1:Consider the following divisorD1 = D � XP=(x;y)2C2mPdiv(u� x)� XP=(x;y)2C0 �mP2 �div(u� x):Then D1 � D. Finally, by Example 34, we haveD1 = XP2C1(mP �meP )P + XP2C0 �mP � 2 �mP2 ��P �m11for some m1 2Z, and hence D1 is a semi-reduced divisor. 26 Representing semi-reduced divisorsThis section describes a polynomial representation for semi-reduced divisors of the jacobian.It leads to an e�cient algorithm for adding elements of the jacobian (see x8).Lemma 40 Let P = (x; y) be an ordinary point on C, and let R 2 K(C) be a rationalfunction which does not have a pole at P . Then for any k � 0, there are unique elementsc0; c1; : : : ; ck 2 K and Rk 2 K(C) such that R = Pki=0 ci(u� x)i+ (u� x)k+1Rk, and whereRk does not have a pole at P . 17



Proof. There is a unique c0 2 K, namely c0 = R(x; y), such that P is a zero of R � c0.Since (u� x) is a uniformizing parameter for P , we can write R � c0 = (u� x)R1 for some(unique) R1 2 K(C) with ordP (R1) � 0. Hence R = c0+(u�x)R1. The lemma now followsby induction. 2Lemma 41 Let P = (x; y) be an ordinary point on C. Then for each k � 1, there exists aunique polynomial bk(u) 2 K[u] such that(i) degu bk < k;(ii) bk(x) = y; and(iii) b2k(u) + bk(u)h(u) � f(u) (mod (u� x)k).Proof. Let v = Pk�1i=0 ci(u � x)i + (u � x)kRk�1 where ci 2 K and Rk�1 2 K(C). De�nebk(u) = Pk�1i=0 ci(u � x)i. From the proof of Lemma 40, we know that c0 = y, and hencebk(x) = y. Finally, since v2 + h(u)v = f(u), reducing both sides modulo (u � x)k yieldsbk(u)2+ bk(u)h(u) � f(u) (mod (u�x)k). Uniqueness is easily proved by induction on k. 2The following theorem shows how a semi-reduced divisor can be represented as the gcdof the divisors of two polynomial functions.Theorem 42 Let D = PmiPi � (Pmi)1 be a semi-reduced divisor, where Pi = (xi; yi).Let a(u) = Q(u � xi)mi . Let b(u) be the unique polynomial satisfying: (i) degu b < degu a;(ii) b(xi) = yi for all i for which mi 6= 0; and (iii) a(u) divides (b(u)2 + b(u)h(u) � f(u)).Then D = gcd(div(a(u));div(b(u)� v)).Notation: gcd(div(a(u));div(b(u)� v)) will usually be abbreviated to div(a(u); b(u)� v) or,more simply, to div(a; b).Proof. Let C1 be the set of ordinary points in supp(D), and let C0 be the set of specialpoints in supp(D). Let C2 = f eP : P 2 C1g. Then we can writeD = XPi2C0 Pi + XPi2C1miPi �m1;where mi, m 2Z�1.We �rst prove that there does indeed exist a unique polynomial b(u) which satis�es theconditions of the theorem. By Lemma 41, for each Pi 2 C1 there exists a unique polynomialbi(u) 2 K[u] satisfying (i) degu bi < mi; (ii) bi(xi) = yi; and (iii) (u�xi)mi jb2i (u)+bi(u)h(u)�f(u). It can be easily veri�ed that for each Pi 2 C0, bi(u) = yi is the unique polynomialsatisfying (i) degu bi < 1; (ii) bi(xi) = yi; and (iii) (u � xi)jb2i (u) + bi(u)h(u) � f(u). Bythe Chinese Remainder Theorem for polynomials, there is a unique polynomial b(u) 2 K[u],degu b < Pmi, such thatb(u) � bi(u) (mod (u� xi)mi) for all i:18



It can now be veri�ed that b(u) satis�es conditions (i), (ii) and (iii) of the statement of thetheorem.Now,div(a(u)) = div �Y(u� xi)mi� = XPi2C0 2Pi + XPi2C1miPi + XPi2C1mi ePi � (�)1:And, div(b(u)� v) = XPi2C0 tiPi + XPi2C1 siPi + XPi2Cn(C0[C1[C2[f1g)miPi � (�)1;where each si � mi since (u�xi)mi divides N(b� v) = b2+hb� f . Now, if P = (x; y) 2 C0,then (u� x) divides b2 + bh� f . The derivative of this polynomial evaluated at u = x is2b(x)b0(x) + b0(x)h(x) + b(x)h0(x)� f 0(x) = b0(x)(2y + h(x)) + (h0(x)y � f 0(x))= h0(x)y � f 0(x); since 2y + h(x) = 06= 0:Hence u = x is a simple root of N(b� v) = b2+ bh� f , and hence ti = 1 for all i. Thereforegcd(a(u); b(u)� v) = XPi2C0 Pi + XPi2C1miPi �m1 = D;as required. 2Note that the zero divisor is represented as div(1; 0). The next result follows from theproof of Theorem 42.Lemma 43 Let a(u); b(u) 2 K [u] be such that degu b < degu a. If aj(b2 + bh � f) thendiv(a; b) is semi-reduced.7 Reduced divisorsThis section de�nes the notion of a reduced divisor and proves that each coset of the quotientgroup J = D0=P has exactly one reduced divisor. We can therefore identify each coset withits reduced divisor.De�nition 44 (reduced divisor) Let D = PmiPi � (Pmi)1 be a semi-reduced divisor. IfPmi � g (g is the genus of C) then D is called a reduced divisor.De�nition 45 (norm of a divisor) Let D = PP2C mPP be a divisor. The norm of D isde�ned to be jDj = XP2Cnf1g jmP j:19



Note that given a divisor D 2 D0, the operation described in the proof of Lemma 39produces a semi-reduced divisor D1 such that D1 � D and jD1j � jDj.Lemma 46 Let R be a rational function in K(C)�. If R has no �nite poles, then R is apolynomial function.Proof. Let R = G=H, where G;H 2 K[C]�. Then R = GH � HH = GH=N(H), and so wecan write R = (a � bv)=c, where a; b; c 2 K[u], c 6= 0. Let x 2 K be a root of c. LetP = (x; y) 2 C where y 2 K, and let d � 1 be the highest power of (u� x) which divides c.If P is ordinary, then ordP (c) = ordeP (c) = d. SinceR has no �nite poles, ordP (a�bv) � dand ordeP (a� bv) � d. Now, since P and eP are both zeros of a� bv, it is true that a(x) = 0and b(x) = 0. It follows that ordP (a) � d and ordP (b) � d. Hence (u � x)d is a commondivisor of a and b, which can be cancelled with the factor (u� x)d of c.Suppose now that P is special. Then ordP (c) = 2d. Since R has no �nite poles, ordP (a�bv) � 2d. Then, as in part (iii) of the proof of Theorem 23, we can writea� bv = (v � y)2dDAd ;where A;D 2 K[C]� and A satis�es (v� y)2 = (u� x)A. Hence a� bv = (u� x)dD. Again,the factor (u� x)d of a� bv can be cancelled with the factor (u� x)d of c.This can be repeated for all roots of c; it follows that R is a polynomial function. 2Theorem 47 For each divisor D 2 D0 there exists a unique reduced divisor D1 such thatD � D1.Proof. (Existence) Let D0 be a semi-reduced divisor such that D0 � D and jD0j � jDjproduced as in the proof of Lemma 39. If jD0j � g then D0 is reduced and we are done.Otherwise, let P1; P2; : : : ; Pg+1 be �nite points in supp(D0), not necessarily distinct. (Apoint P cannot occur in this list more than ordP (D0) times.) Let div(a(u); b(u)) be therepresentation of the divisor P1 + P2 + � � �+ Pg+1 � (g + 1)1as given by Theorem 42. Since degu(b) � g, we have deg(b(u)� v) = 2g + 1, and hencediv(b(u)� v) = P1 + P2 + � � � + Pg+1 +Q1 + � � �+Qg � (2g + 1)1for some �nite points Q1; Q2; : : : ; Qg. Subtracting this divisor from D0 gives a divisor D00,where D00 � D0 � D and jD00j < jD0j. We can now produce another semi-reduced divisorD000 � D00 such that jD000j � jD00j. After doing this a �nite number of times, we obtain asemi-reduced divisor D1 with jD1j � g, and we are done.33Algorithm 2 in Section 8 describes an e�cient algorithm which, given a semi-reduced divisor D =div(a; b), �nds a reduced divisor D1 such that D � D1; the algorithm only uses a and b.20



(Uniqueness) Suppose that D1 and D2 are two reduced divisors with D1 � D2, D1 6= D2.Let D3 be a semi-reduced divisor with D3 � D1�D2 obtained as in the proof of Lemma 39.Since D1 6= D2, there is a point P such that ordP (D1) 6= ordP (D2). Suppose, without lossof generality, that ordP (D1) = m1 � 1, and either (i) ordP (D2) = 0 and ordeP (D2) = 0;or (ii) ordP (D2) = m2 with 1 � m2 < m1; or (iii) ordeP (D2) = m2 with 1 � m2 � m1.(If P is special then only (i) can occur.) In case (i), ordP (D3) = m1 � 1. In case (ii),ordP (D3) = (m1 � m2) � 1. In case (iii), ordP (D3) = (m1 + m2) � 1. In all cases,ordP (D3) � 1, and so D3 6= 0. Also, jD3j � jD1 � D2j � jD1j + jD2j � 2g. Let G be arational function in K(C)� such that div(G) = D3; since D1 � D2, and D3 � D1 �D2, weknow that D3 is principal and hence such a function G exists. By Lemma 46, since G has no�nite poles, it must be a polynomial function. Then G = a(u)� b(u)v for some a; b 2 K[u].Since deg(v) = 2g + 1 and deg(G) = jD3j � 2g, we must have b(u) = 0. Suppose thatdegu(a(u)) � 1, and let x 2 K be a root of a(u). Let P = (x; y) be a point on C. Now, if Pis ordinary, then both P and eP are zeros of G, contradicting the fact that D3 is semi-reduced.If P is special, then it must also be a zero of G of order at least 2, again contradicting thefact that D3 is semi-reduced. Thus, degu(a(u)) = 0 and so D3 = 0, a contradiction. 28 Adding reduced divisorsLet C be a hyperelliptic curve of genus g de�ned over a �nite �eld K, and let J be thejacobian of C. Let P = (x; y) 2 C, and let � be an automorphism of K over K. ThenP � def= (x�; y�) is also a point on C.De�nition 48 (�eld of de�nition of a divisor) A divisor D = PmPP is said to be de�nedover K if D� def= PmPP � is equal to D for all automorphisms � of K over K.Note that if D is de�ned over K, it does not mean that each point in the support of Dis a K-rational point. A principal divisor is de�ned over K if and only if it is the divisorof a rational function that has coe�cients in K. The set J(K) of all divisor classes in Jthat have a representative that is de�ned over K is a subgroup of J . Each element of J(K)has a unique representation as a reduced divisor div(a; b), where a; b 2 K[u], degu a � g,degu b < degu a, and hence J(K) is in fact a �nite abelian group. This section presents ane�cient algorithm for adding elements in this group.Let D1 = div(a1; b1) and D2 = div(a2; b2) be two reduced divisors de�ned over K (so a1,a2, b1, b2 2 K[u]). Algorithm 1 �nds a semi-reduced divisor D = div(a; b) with a; b 2 K[u],such that D � D1 + D2. Algorithm 2 reduces D to an equivalent reduced divisor D0.Notation: b mod a denotes the remainder polynomial when b is divided by a.21



Algorithms 1 and 2 were presented by Koblitz [20], and generalized earlier algorithms ofCantor [5] which assumed that h(u) = 0 and char(K) 6= 2. 4Algorithm 1Input: Reduced divisors D1 = div(a1; b1) and D2 = div(a2; b2) both de�ned over K.Output: A semi-reduced divisor D = div(a; b) de�ned over K such that D � D1 +D2.1. Use the extended Euclidean algorithm to �nd polynomials d1, e1, e2 2 K[u] whered1 = gcd(a1; a2) and d1 = e1a1 + e2a2.2. Use the extended Euclidean algorithm to �nd polynomials d, c1, c2 2 K[u] whered = gcd(d1; b1 + b2 + h) and d = c1d1 + c2(b1 + b2 + h).3. Let s1 = c1e1, s2 = c1e2, and s3 = c2, so thatd = s1a1 + s2a2 + s3(b1 + b2 + h): (3)4. Set a = a1a2=d2 (4)and b = s1a1b2 + s2a2b1 + s3(b1b2 + f)d mod a: (5)Theorem 49 (Algorithm 1 works) Let D1 = div(a1; b1) and D2 = div(a2; b2) be semi-reduced divisors. Let a and b be de�ned as in equations (4) and (5). Then D = div(a; b) isa semi-reduced divisor and D � D1 +D2.Proof. We �rst verify that b is a polynomial. Using equation (3), we can writes1a1b2 + s2a2b1 + s3(b1b2 + f)d = b2(d� s2a2 � s3(b1 + b2 + h)) + s2a2b1 + s3(b1b2 + f)d= b2 + s2a2(b1 � b2)� s3(b22 + b2h� f)d :Since dja2 and a2j(b22 + b2h� f), b is indeed a polynomial.4Koblitz did not provide proofs of correctness of the algorithms, and Cantor's proof contains some errors.In de�ning the polynomials a(u) and b(u) which represent the semi-reduced divisor D = PPi2C miPi (forthe case of hyperelliptic curves with h(u) = 0), Cantor incorrectly states that the condition that aj(b2 � f)is equivalent to the condition that b� yi be divisible by (u� xi)mi for all i (where Pi = (xi; yi)).22



Let b = (s1a1b2 + s2a2b1 + s3(b1b2 + f))=d + sa, where s 2 K[u]. Now,b� v = s1a1b2 + s2a2b1 + s3(b1b2 + f)� dvd + sa= s1a1b2 + s2a2b1 + s3(b1b2 + f)� s1a1v � s2a2v � s3(b1 + b2 + h)vd + sa= s1a1(b2 � v) + s2a2(b1 � v) + s3(b1 � v)(b2 � v)d + sa: (6)From (6) it is not hard to see that aj(b2 + bh � f). Namely, b2 + bh� f is obtained bymultiplying the left side of (6) by its conjugate: (b�v)(b+v+h) = b2+bh�f . Thus, to see thataj(b2+bh�f) it su�ces to show that a1a2 divides the product of (s1a1(b2�v)+s2a2(b1�v)+s3(b1�v)(b2�v)) with its conjugate; this follows because a1j(b21+b1h�f) = (b1�v)(b1+v+h)and a2j(b22+ b2h� f) = (b2� v)(b2+ v+ h). Lemma 43 now implies that div(a; b) is a semi-reduced divisor.We now prove that D � D1 +D2. There are two cases to consider.(i) Let P = (x; y) be an ordinary point. There are two subcases to consider.(a) Suppose that ordP (D1) = m1, ordeP (D1) = 0, ordP (D2) = m2, and ordeP (D2) = 0,where m1 � 0, m2 � 0. Now, ordP (a1) = m1, ordP (a2) = m2, ordP (b1 � v) � m1,and ordP (b2 � v) � m2. If m1 = 0 or m2 = 0 (or both) then ordP (d1) = 0,whence ordP (d) = 0 and ordP (a) = m1 +m2. If m1 � 1 and m2 � 1, then, since(b1 + b2 + h)(x) = 2y + h(x) 6= 0, we have ordP (d) = 0 and ordP (a) = m1 +m2.From equation (6), it follows thatordP (b� v) � minfm1 +m2;m2 +m1;m1 +m2g = m1 +m2:Hence ordP (D) = m1 +m2.(b) Suppose that ordP (D1) = m1 and ordeP (D2) = m2, where m1 � m2 � 1. We haveordP (a1) = m1, ordP (a2) = m2, ordP (d1) = m2, ordP (b1�v) � m1, ordP (b2�v) =0, and ordeP (b2�v) � m2. The last inequality implies that ordP (b2+h+v) � m2,and hence ordP (b1+b2+h) � m2 or (b1+b2+h) = 0. It follows that ordP (d) = m2and ordP (a) = m1 �m2.From equation (6), it follows thatordP (b� v) � minfm1 + 0;m2 +m1;m1 + 0g �m2 = m1 �m2:Hence ordP (D) = m1 �m2.(ii) Let P = (x; y) be a special point. There are two subcases to consider.23



(a) Suppose that ordP (D1) = 1 and ordP (D2) = 1. Then ordP (a1) = 2, ordP (a2) = 2,and ordP (d1) = 2. Now, (b1+b2+h)(x) = 2y+h(x) = 0, whence ordP (b1+b2+h) �2 or (b1 + b2 + h) = 0. It follows that ordP (d) = 2 and ordP (a) = 0. HenceordP (D) = 0.(b) Suppose that ordP (D1) = 1 and ordP (D2) = 0. Then ordP (a1) = 2, ordP (a2) = 0,whence ordP (d1) = ordP (d) = 0 and ordP (a) = 2. Since ordP (b1�v) = 1, it followsfrom equation (6) that ordP (b� v) � 1. It can be inferred from equation (6) thatordP (b�v) � 2 only if ordP (s2a2+ s3(b2�v)) � 1. If this is indeed the case, thenordP (s2a2 + s3(b2 + h + v)) � 1, and hence ordP (s2a2 + s3(b1 + b2 + h)) � 1 (ors2a2 + s3(b1 + b2 + h) = 0). It now follows from equation (3) that ordP (d) � 1, acontradiction. Hence ordP (b� v) = 1, whence ordP (D) = 1. 2Example 50 (adding two reduced divisors) Consider the hyperelliptic curve C : v2 + (u2 +u)v = u5 + u3 + 1 of genus g = 2 over the �nite �eld F25 (see Example 7). P = (�30; 0)is an ordinary point in C(F25) and the opposite of P is eP = (�30; �16). Q1 = (0; 1) andQ2 = (1; 1) are special points in C(F25). The following are examples of computing thesemi-reduced divisor D = div(a; b) = D1 +D2, for sample reduced divisors D1 and D2 (seeAlgorithm 1).(i) Let D1 = P + Q1 � 21 and D2 = eP + Q2 � 21 be two reduced divisors. ThenD1 = div(a1; b1) where a1 = u(u + �30), b1 = �u + 1, and D2 = div(a2; b2) wherea2 = (u+ 1)(u+ �30), b2 = �23u+ �12.1. d1 = gcd(a1; a2) = u+ �30; d1 = a1 + a2.2. d = gcd(d1; b1 + b2 + h) = u+ �30; d = 1 � d1 + 0 � (b1 + b2 + h).3. d = a1 + a2 + 0 � (b1 + b2 + h).4. Set a = a1a2=d2 = u(u+ 1) = u2 + u, andb = 1 � a1b2 + 1 � a2b1 + 0 � (b1b2 + f)d mod a� 1 (mod a):Check: div(a) = 2Q1 + 2Q2 � 41div(b� v) = Q1 +Q2 + 3Xi=1Pi � 51; where Pi 6= Q1; Q2div(a; b) = Q1 +Q2 � 21:(ii) Let D1 = P + Q1 � 21 and D2 = Q1 + Q2 � 21. Then D1 = div(a1; b1) wherea1 = u(u+ �30), b1 = �u+ 1, and D2 = div(a2; b2) where a2 = u(u+ 1), b2 = 1.24



1. d1 = gcd(a1; a2) = u; d1 = �14a1 + �14a2.2. d = gcd(d1; b1 + b2 + h) = u; d = 1 � u+ 0 � (b1 + b2 + h).3. d = �14a1 + �14a2 + 0 � (b1 + b2 + h).4. a = (u+ �30)(u+ 1); b � �14u+ �13 (mod a).Check: div(a) = 2Q2 + P + eP � 41div(b� v) = P +Q2 + 3Xi=1 Pi � 51; where Pi 6= P; eP ;Q2div(a; b) = P +Q2 � 21:(iii) Let D1 = P + Q1 � 21 and D2 = P + Q2 � 21. Then D1 = div(a1; b1) wherea1 = u(u + �30), b1 = �u + 1, and D2 = div(a2; b2) where a2 = (u + �30)(u + 1),b2 = �14u+ �13.1. d1 = gcd(a1; a2) = (u+ �30); d1 = 1 � a1 + 1 � a2.2. d = gcd(d1; b1 + b2 + h) = 1.3. d = (�15u+ �4)a1 + (�15u+ �4)a2 + �15 � (b1 + b2 + h).4. a = u(u+ 1)(u+ �30)2; b � �17u3 + �26u2 + �2u+ 1 (mod a).Check: div(a) = 2P + 2 eP + 2Q1 + 2Q2 � 81div(b� v) = 2P +Q1 +Q2 + 2Xi=1 Pi � 61; where Pi 6= P; eP ;Q1; Q2div(a; b) = 2P +Q1 +Q2 � 41:Algorithm 2Input: A semi-reduced divisor D = div(a; b) de�ned over K.Output: The (unique) reduced divisor D0 = div(a0; b0) such that D0 � D.1. Set a0 = (f � bh� b2)=a (7)and b0 = (�h� b) mod a0: (8)2. If degu a0 > g then set a a0, b b0 and go to step 1.25



3. Let c be the leading coe�cient of a0, and set a0 c�1a0.4. Output(a0,b0).Theorem 51 (Algorithm 2 works) Let D = div(a; b) be a semi-reduced divisor. Then thedivisor D0 = div(a0; b0) returned by Algorithm 2 is reduced and D0 � D.Proof. Let a0 = (f � bh� b2)=a and b0 = (�h� b) mod a0. We show that(i) degu(a0) < degu(a);(ii) D0 = div(a0; b0) is semi-reduced; and(iii) D � D0.The theorem then follows by repeated application of the reduction process (step 1 of Algo-rithm 2).(i) Let m = degu a, n = degu b, where m > n, and m � g + 1. Then degu a0 = max(2g +1; 2n)�m. If m > g +1, then max(2g +1; 2n) � 2(m� 1), whence degu a0 � m� 2 <degu a. If m = g + 1, then max(2g + 1; 2n) = 2g + 1, whence degu a0 = g < degu a.(ii) Now, f � bh� b2 = aa0. Reducing both sides modulo a0 yieldsf + (b0 + h)h � (b0 + h)2 � 0 (mod a0)which simpli�es to f � b0h� (b0)2 � 0 (mod a0):Hence a0j(f � b0h� (b0)2). It follows from Lemma 43 that div(a0; b0) is semi-reduced.(iii) Let C0 = fP 2 supp(D) : P is specialg, C1 = fP 2 supp(D) : P is ordinaryg, andC2 = f eP : P 2 C1g. Then, as in the proof of Theorem 42, we can writeD = XPi2C0 Pi + XPi2C1miPi � (�)1:Now, div(a) = XPi2C0 2Pi + XPi2C1miPi + XPi2C1mi ePi � (�)1and div(b� v) = XPi2C0 Pi + XPi2C1 niPi + XPi2C1 0 ePi + XPi2C3 siPi � (�)1;where ni � mi, C3 is a set of points in Cn(C0 [ C1 [ C2 [ f1g), si � 1, and si = 1 ifPi is special. Since b2 + bh� f = N(b� v), it follows from Lemma 35 thatdiv(b2 + bh� f) = XPi2C0 2Pi + XPi2C1 niPi + XPi2C1 ni ePi + XPi2C3 siPi + XPi2C3 si ePi � (�)1;26



and hencediv(a0) = div(b2 + bh� f)� div(a)= XPi2C01 tiPi + XPi2C01 ti ePi + XPi2C3 siPi + XPi2C3 si ePi � (�)1;where ti = ni�mi and C 01 = fPi 2 C1 : ni > mig. Now, b0 = �h� b+ sa0 for some s 2K[u]. If Pi = (xi; yi) 2 C 01[C3, then b0(xi) = �h(xi)�b(xi)+s(xi)a0(xi) = �h(xi)�yi.Then, as in the proof of Theorem 42, it follows thatdiv(b0 � v) = XPi2C01 0Pi + XPi2C01 ri ePi + XPi2C3 0Pi + XPi2C3wi ePi + XPi2C4 ziPi � (�)1;where ri � ti, wi � si, wi = 1 if Pi 2 C3 is special, and C4 is a set of points inCn(C 01 [ C3 [ f1g). Hencediv(a0; b0) = XPi2C01 ti ePi + XPi2C3 si ePi � (�)1� � XPi2C01 tiPi � XPi2C3 siPi + (�)1= D � div(b� v);whence D � D0. 2Note that all computations in Algorithms 1 and 2 take place in the �eld K itself (andnot in any proper extensions of K). In Algorithm 1, if degu a1 � g and degu a2 � g, thendegu a � 2g. In this case, Algorithm 2 requires at most dg=2e iterations of step 1.Example 52 (reducing a semi-reduced divisor) Consider the hyperelliptic curve C : v2 +(u2 + u)v = u5 + u3 + 1 of genus g = 2 over the �nite �eld F25 (see Example 7). Considerthe semi-reduced divisor D = (0; 1) + (1; 1) + (�5; �15)� 31. Then D = div(a; b), wherea(u) = u(u+ 1)(u + �5) = u3 + �2u2 + �5uand b(u) = �17u2 + �17u+ 1:Algorithm 2 yields a0(u) = u2 + �15u+ �26;b0(u) = �23u+ �21:Hence D � div(a0; b0) = (�28; �7) + (�29; 0)� 21.27



9 Implementation of hyperelliptic curve cryptosystemsThe Di�e-Hellman key exchange [10] is a protocol whereby two entities A and B can, by asequence of transmissions over a public channel, agree upon a secret cryptographic key. Themethod is as follows. A and B �rst choose a (multiplicatively written) �nite abelian groupG and some element � 2 G. A then selects a random integer a and transmits �a to B. B inturn selects a random integer b and transmits �b to A. Both A and B can then determine�ab, which is their shared secret key.An eavesdropper C monitoring the transmission between A and B would know G, �, �a,and �b. The parameters G and � should be chosen so that it is computationally infeasible forC to then determine �ab. Certainly, if C could compute either a or b, then C could determine�ab. The problem of determining a given � and � = �a is called the discrete logarithmproblem in G. The integer a, which is unique if restricted to the range [0; order(�) � 1], iscalled the discrete logarithm of � to the base �. It is an open problem to decide whether ornot determining �ab is equivalent to computing discrete logarithms in G. Among the othercryptographic protocols whose security relies upon the discrete logarithm problem are theElGamal public-key encryption and digital signature schemes [12], and the recently adoptedU.S. Digital Signature Standard [29].The best algorithms that are known for solving the discrete logarithm problem in anarbitrary group G are the exponential square root attacks (see McCurley [24]) that have arunning time that is roughly proportional to the square root of the largest prime factor ofl, where l is the order of �. Consequently, if G and � are chosen so that l has a large primefactor, then these attacks can be avoided.Let Fq denote the �nite �eld of order q, and let q = pm where p is the characteristic of Fq.Di�e and Hellman originally proposed G = F�q, the multiplicative group of Fq, as a candidatefor implementing the Di�e-Hellman key exchange. There are randomized subexponential-time algorithms known for computing logarithms in Fq. (See Coppersmith, Odlyzko andSchroeppel [9] and Gordon [17] for the case q a prime, Odlyzko [30] for the case wherep = 2, and Adleman and DeMarrais [1] for the general situation.) These algorithms are anasymptotic improvement over the general algorithms mentioned in the previous paragraph.For cryptographic purposes we are interested in groups for which subexponential algorithmsfor the corresponding discrete logarithm problem are not known. Additionally, for e�cientand practical implementation, the group operation should be relatively easy to apply. Thejacobian of a hyperelliptic curve de�ned over a �nite �eld is one possibility for such a group.To implement a discrete log cryptosystem using hyperelliptic curves, a suitable curve Cand underlying �nite �eld K must be selected. Desirable properties of the selected curveand �eld include the following:1. Arithmetic in the underlying �nite �eldK should be e�cient to implement; �nite �eldsof characteristic 2 appear to be the most attractive choice.28



2. The order of the jacobian J(K) of C, denoted #J(K), should be divisible by a largeprime number. Given the current state of computer technology, a security requirementis that #J(K) be divisible by a prime number r of at least 45 decimal digits. In addi-tion, to avoid the reduction attack of Frey and R�uck [13] which reduces the logarithmproblem in J(K) to the logarithm problem in an extension �eld of K = Fq, r shouldnot divide qk � 1 for all small k for which the discrete logarithm problem in Fqk isfeasible (1 � k � 2000=(log2 q) su�ces).One technique for selecting a hyperelliptic curve and computing #J(K) is described next.Let J be the jacobian of the hyperelliptic curve C de�ned over Fq, and given by the equationv2+h(u)v = f(u). Let Fqn denote the degree-n extension of Fq, and let Nn denote the orderof the (�nite) abelian group J(Fqn). Denote by Mn the number of Fqn -rational points on C.Associated with C is the zeta-function, de�ned next.De�nition 53 (zeta function) Let C be a hyperelliptic curve de�ned over Fq, and letMr =#C(Fqr) for r � 1. The zeta-function of C is the power seriesZC(t) = exp0@Xr�1Mr trr 1A :The following are some well-known facts (e.g., see [23]) about the zeta-function.Theorem 54 (properties of the zeta-function) Let C be a hyperelliptic curve of genus gde�ned over Fq, and let ZC(t) be the zeta-function of C.(i) ZC(t) 2Z(t). More precisely, we haveZC(t) = P (t)(1 � t)(1� qt) (9)where P (t) is a polynomial of degree 2g with integer coe�cients. Moreover, P (t) hasthe form: P (t) = 1 + a1t+ � � �+ ag�1tg�1 + agtg +qag�1tg+1 + q2ag�2tg+2 + � � �+ qg�1a1t2g�1 + qgt2g: (10)(ii) P (t) factors as P (t) = gYi=1(1 � �it)(1� �it); (11)where each �i is a complex number of absolute value pq, and �i denotes the complexconjugate of �i. 29



(iii) Nn = #J(Fqn) satis�es Nn = gYi=1 j1� �ni j2; (12)where j j denotes the usual complex absolute value.In order to compute Nn, it thus su�ce to (i) determine the coe�cients a1; a2; : : : ; ag ofP (t), hence determining P (t); (ii) factor P (t) thus determining the �i; (iii) compute Nn viaequation (12). Now, multiplying both sides of equation (9) by (1 � t)(1� qt) yieldsP (t) = (1 � t)(1� qt)ZC(t):Taking logarithms of both sides and then di�erentiating with respect to t yieldsP 0(t)P (t) = Xr�0(Mr+1 � 1 � qr+1)tr:By equating coe�cients of t0; t1; : : : ; tg�1 of both sides, we see that the �rst g valuesM1;M2; : : : ;Mg su�ce to determine the coe�cients a1; a2; : : : ; ag and, hence, Nn.The following procedure summarizes the technique for computing Nn in the case g = 2.1. By exhaustive search, compute M1 and M2.2. The coe�cients of ZC(t) are given by a1 =M1� 1� q and a2 = (M2 � 1� q2+ a21)=2.3. Solve the quadratic equation X2+ a1X +(a2� 2q) = 0, to obtain two solutions 
1 and
2.4. Solve X2� 
1X + q = 0 to obtain a solution �1, and solve X2� 
2X + q = 0 to obtaina solution �2.5. Then Nn = j1 � �n1 j2 � j1� �n2 j2.The following bounds on the order Nn of the jacobian are an immediate corollary ofTheorem 54(iii).Corollary 55 Let C be a hyperelliptic curve of genus g de�ned over Fq, and let Nn =#J(Fqn). Then (qn=2 � 1)2g � Nn � (qn=2 + 1)2g:Hence, Nn � qng. 30



Example 56 (selecting a hyperelliptic curve) Consider the following hyperelliptic curve Cof genus 2 de�ned over F2: C : v2 + v = u5 + u3 + u:By exhaustive search, we �ndM1 = 3 andM2 = 9; hence a1 = 0 and a2 = 2. The solutions ofX2�2 = 0 are 
1 = p2 and 
2 = �p2. SolvingX2�p2X+2 = 0 yields �1 = (p2+p6i)=2;solving X2 +p2X + 2 = 0 yields �2 = (�p2 +p6i)=2. HenceNn = j1� �n1 j2 � j1� �n2 j2 = 8>>><>>>: 22n + 2n + 1; if n � 1; 5 (mod 6);(2n + 2n=2 + 1)2; if n � 2; 4 (mod 6);(2n � 1)2; if n � 3 (mod 6);(2n=2 � 1)4; if n � 0 (mod 6):For n = 101,N101 = 6427752177035961102167848369367185711289268433934164747616257;and its prime factorization isN101 = 7 � 607 � 1512768222413735255864403005264105839324374778520631853993:Hence N101 is divisible by a 58-decimal digit prime r. However, since r divides (2101)3 � 1,the Frey-R�uck attack tells us that C o�ers no more security that a discrete log system inF2303 . Hence the curve C is not suitable for cryptographic applications.10 Future workThere are several areas of research that need to be pursued before hyperelliptic curve cryp-tosystems may be adopted in practical applications.1. The most important issue is with regards to the security of hyperelliptic curve cryp-tosystems. More precisely, the security relies upon the hyperelliptic curve discretelogarithm problem (HCDLP) which is the following: given a hyperelliptic curve C overa �nite �eldK, and given reduced divisorsD1, D2 2 J(K), determine a positive integerl such that D2 = lD1, provided that such an integer exists.If the order of the divisor D1 is divisible by a large prime factor r, then the best algo-rithm known for the HCDLP is an exponential one and takes O(pr) steps. However,for special hyperelliptic curves, it may be possible to reduce the HCDLP to the DLP ina small extension �nite �eld. Since there are subexponential-time algorithms known forthe DLP, this will yield a subexponential-time algorithm for the HCDLP; hyperellipticcurves for which such reductions exist o�er no signi�cant advantages over �nite �eldsfor the implementation of discrete log cryptosystems.31



Such a reduction was accomplished for the genus 1 hyperelliptic curves (or ellipticcurves) by Menezes, Okamoto and Vanstone [26]. Frey and R�uck [13] extended thisreduction to more general classes of abelian varieties. The reduction is e�cient forsome classes of hyperelliptic curves; the implications of the Frey-R�uck reduction tohyperelliptic curve cryptography need to be fully explored.Adleman, DeMarrais and Huang [2] recently discovered an algorithm for HCDLP whichtakes subexponential time if the genus g of the curve is large. More precisely, ifthe curve is de�ned over Zp, then the genus g should satisfy log p � (2g + 1)0:98.Interestingly, the algorithm is worse than exhaustive search if specialized to the g = 1case. It would be interesting to implement this algorithm, and to better understandwhy it is ine�cient when the genus is small.2. It could be useful to classify the isomorphism classes of hyperelliptic curves over �nite�elds, in order to know how many essentially di�erent choices of curves there are.3. Further research needs to be done on the e�cient implementation of the addition rulein the jacobian. A more e�cient algorithm may arise by considering a di�erent formof the de�ning equation or by restricting the genus to certain values (e.g., when g = 1,the equation has a simple form). Cantor [5] described a reduction algorithm thatis asymptotically faster than Algorithm 2. Petersen [31] presented an algorithm foraddition in the jacobian when g = 2 which is comparable to that of Cantor's.4. Another method for selecting a suitable hyperelliptic curve is to select at randoma de�ning equation over a large �nite �eld K, and compute #J(K) directly. Pila[32] presented a generalization of Schoof's algorithm for computing the characteristicpolynomial P (t) of the Frobenius endomorphism of an abelian variety de�ned overa �nite �eld in deterministic polynomial time. In the case that the variety is thejacobian of an algebraic curve C de�ned over Fq, the number of Fq{rational points onC is then easily recovered. Pila's algorithm, as it applies to hyperelliptic curves, shouldbe studied further and implemented.AcknowledgementsThe authors would like to thank Doug Leonard for his helpful comments that led to thesimpli�cation of several proofs.References[1] L. Adleman and J. DeMarrais, \A subexponential algorithm for discrete logarithms overall �nite �elds", Mathematics of Computation, 61 (1993), 1-15.32
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