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Abstract. Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for
the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete
logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding
logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be
extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide
relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve
cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations.
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1. Introduction

Since the introduction of public-key cryptography by Diffie and Hellman [14] in 1976, the
cryptographic importance of the apparent intractability of the discrete logarithm problem
has been recognized. ElGamal [16] first described how this problem may be utilized in
public-key encryption and digital signature schemes. ElGamal’'s methods have been refined
and incorporated into various protocols to meet a variety of applications, and one of its
extensions forms the basis for the U.S. government digital signature algorithm (DSA) [56].
Although the discrete logarithm problem as first employed by Diffie and Hellman in their
key agreement protocol was defined explicitly as the problem of finding logarithms with
respect to a generator in the multiplicative group of the integers modulo a prime, this idea
can be extended to arbitrary groups. I&be a finite group of ordem, and leta be an
element ofG. Thediscrete logarithm problenfor G is the following: given an element
B € G, find an integerx, 0 < x < n — 1, such thatr* = B, if such an integer exists
(i.e., if B is in the subgroup o6 generated by). Groups that have been proposed for
cryptographic use include the multiplicative group of characteristic two finite fields (see,
for example, Agnevet al[2]), subgroups of the multiplicative group of the integers modulo
a prime (Schnorr [68]), the group of units of #heren is a composite integer (McCurley
[46]), the group of points on an elliptic curve defined over a finite field (Koblitz [29] and
Miller [52]), the jacobian of a hyperelliptic curve defined over a finite field (Koblitz [31]),
and the class group of an imaginary quadratic number field (Buchmann and Williams [9]).
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Elliptic curves have been extensively studied for over a hundred years, and there is a
vast literature on the topic. Originally pursued mainly for aesthetic reasons, elliptic curves
have recently become a tool in several important applied areas, including coding theory
(Driencourt and Michon [15] and van der Geer [19]); pseudorandom bit generation (Kaliski
[26, 27]); and number theory algorithms (Goldwasser and Kilian [20] for primality proving
and Lenstra [41] for integer factorization).

In 1985, Koblitz [29] and Miller [52] independently proposed using the group of points
on an elliptic curve defined over a finite field in discrete log cryptosystems. The primary
advantage that elliptic curve systems have over systems based on the multiplicative group of
afinite field (and also over systems based on the intractability of integer factorization) is the
absence of a subexponential-time algorithm (such as those of “index-calculus” type) that
could find discrete logs in these groups. Consequently, one can use an elliptic curve group
that is smaller in size while maintaining the same level of security. The result is smaller
key sizes, bandwidth savings, and faster implementations, features which are especially
attractive for security applications where computational power and integrated circuit space
is limited, such as smart cards, PC (personal computer) cards, and wireless devices.

Elliptic curves also appear in the so-called elliptic curve analogues of the RSA cryptosys-
tem, as first proposed by Koyaned al [38]. In these systems, one works in an elliptic
curve defined over the ring,4n a composite integer), and the order of the elliptic curve
group serves as the trapdoor. The security of these schemes is based on the difficulty of
factoringn. The work of several people, including Kurosawa, Okada, and Tsujii [39], Pinch
[61], Kaliski [28], and Bleichenbacher [7] subsequently showed that these elliptic curve
analogues do not have any significant advantages over their RSA counterparts. For this
reason, they are not considered in this paper.

The remainder of the paper is organized as follows. 82 begins with a brief review of
elliptic curves. For an elementary introduction to elliptic curves, the reader is referred to
Chapter 6 of Koblitz's books [36, 37]. Charlap and Robbins [10, 11] present elementary
self-contained proofs for some of the basic theory. For more sophisticated treatments, see
Silverman [73, 74]. The elliptic curve analogues of discrete log cryptosystems are discussed
in 83. 84 studies the elliptic curve discrete logarithm problem, whose apparent intractability
is the basis for the security of elliptic curve systems. 85 considers various issues that arise
in implementation.

We will use the following notation. Fdenotes the finite field af elements anB, denotes
the algebraic closure ofyF By Z, we denote the integers modulo The cardinality of a
setSis denoted by &.

2. Background on Elliptic Curves
Assume first that {-has characteristic greater than 3. éhiptic curve Eover F; is the set
of all solutions(x, y) € Fy x Fy to an equation

y?2 =x3+ax+b, 1)
wherea, b € Fy and 43 4+ 27b? # 0, together with a special poinb called thepoint at
infinity.
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Itis well known thatE is an (additively written) abelian group with the poixt serving
as its identity element. The rules for group addition are summarized below.

Addition Formulas for the Curve (1).Let P = (X3, y1) € E; then—P = (X1, —y1). If
Q = (X2, ¥2) € E, Q # —P, thenP + Q = (X3, y3), where

X3 = )\.2_X1_X2

Y3 = A(X1 — X3) — Y1,

and
Y2—VY1 if P£Q
5 = X2 — X1
T3¢ +a .
if P=0Q.
2y1 Q

If Fq is a field of characteristic 2, then there are two types of elliptic curves quehiF
elliptic curve E of zero j-invarianbver F, is the set of all solutionex, y) € Fq x Fy to an
equation

y?+cy=x3+ax+b, )

wherea, b, ¢ € Fq, ¢ # 0, together with the point at infinitgo. An elliptic curve E of
non-zero j-invarianbver afield i of characteristic 2 is the set of solutions y) € Fy x Fq
to an equation

V4 xy=x3+ax+bh, (3)

wherea, b € Fy, b # 0, together with the point at infinitgo. In both casesE is an
(additively written) abelian group with the poinb serving as the identity. The addition
formulas for the two types of curves ovemFare given below.

Addition Formulas for the Curve (2).Let P = (X1, y1) € E; then—P = (X1, y1 +¢). If
Q = (X2, ¥2) € EandQ # —P, thenP + Q = (x3, ¥3), where

2
+
<u) +x1+X% P#Q
Xa = X1+ X2
3 x4 1 a2
1
c? P=Q
and
+
<y1 yz)(X1+X3)+Y1+C P#Q
Vs = X;-}-Xz
x2+a
<1C )(X1+X3)+y1+c P=Q.
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Addition Formulas for the Curve (3)Let P = (X3, y1) € E; then—P = (Xg, y1 + X1). If
Q = (X2, ¥2) € EandQ # —P, thenP + Q = (X3, Y3), Where

2
+ +
<Y1 y2> +y1 y2—|—xl+x2+a P£Q
X3 = X1+ X2 X1+ Xz
b
2
Xi + — P=
1+Xf Q
and
1+ Yo
(—y y)(X1+X3)+X3+y1 P#Q
X1+ X2
Y3 = Vi
Xf+<x1+x—>x3+x3 P=Q.
1

If E is an elliptic curve over a finite fieldfthen letE (Fy) denote the points i having
both coordinates inf; including the pointo; the points inE(Fy) are also known aBgq-
rational points E(Fy) is an abelian group of rank 1 or 2. We hali¢F,) = C,, & Cy,,
whereC, denotes the cyclic group of order n, dividesn;, and furthermoren,|q — 1.
A well-known theorem of Hasse states th&@®#;) = q + 1 —t, where|t| < 2,/q. The
curve E is said to besupersingularif t> = 0, g, 2q, 3q, or 4q; otherwise the curve is
non-supersingular

If q is a power of 2 andE is supersingular, thenB{F,) is odd; ifq is a power of 2 and
E is non-supersingular, therE#F,) is even. A result of Waterhouse [81] states thaj if
is a prime, then for eachsatisfying|t| < 2,/q there exists at least one elliptic curie
defined over fwith #E(Fy) = g+ 1—t; if g is a power of 2, then for each odidatisfying
[t| < 2,/q there exists at least one (non-supersingular) elliptic caefined over f
with #E(Fq) = g+ 1—t. More generally, Schoof [70] derived a formula for the number of
isomorphism classes of elliptic curves defined ovgwith #E(F;) = q + 1 —t, for each

t satisfying|t| < 2,/4.

Example(elliptic curve over Z3). Consider the elliptic curv&: y? = x3 + x + 1 defined
over Zs3. Then #(Z,3) = 28, E(Zy3) is cyclic, and a generator & (Z,3) is P = (0, 1).
The points inE(Z,3), expressed as multiples &, are shown below:

P=(01) 2P = (6, -4 3P =(3,-10 4P = (10, -7)
5P =(-5,3) 6P = (7,11) 7P =113 8P = (5,4
9P = (—4,-5) 10P = (12 4) 11P=(1, -7) 12P = (-6, —3)
13P = (9, -7) 14P = (4,0) 15P = (9,7) 16P = (-6, 3)

17P = (1, 7) 18P = (12, —4) 19P = (—4,5)  20P = (5,4)
21P = (11, —3) 22P =(7—11) 23P =(-5,-3) 24P =(-10,7)
25P — (3,10)  26P = (6, 4) 27P = (0,-1)  28P = oo. O

Example(elliptic curve over k). Consider the elliptic curv&: y? + xy = x3 +x2+ 1
defined over [z. Fx is constructed using the primitive irreducible polynomfalx) =
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x3 4+ x + 1 and aroote. Then #£ (Fx) = 14, andE (Fx) is cyclic. A generator of (Fys)
is P = (a, «®). The points inE (Fx), expressed as multiples &, are shown below:

P = (a, & 2P = (3, 0) 3P = (a2, &) 4P = («, 0)

5P = (¢*, a® 6P = (b, o) 7P = (0,1 8P = (%, 0)

9P = (¢*, a® 10P = (¢ &® 11P = (0% a3 12P = (a3, ad)

13P = (o, %) 14P = 0. 0

3. Elliptic Curve Cryptosystems

Discrete log cryptosystems are typically described in the setting of the multiplicative group
of the integers modulo a primg. Such systems can be modified to work in the group of
points on an elliptic curve. For instance, the Diffie—Hellman key agreement protocol can be
adapted for elliptic curves as follows. First note that a “random” point on an elliptic curve

E can serve as a key, since Alice and Bob can agree in advance on a method to convert it
to an integer (for example, they can take the image of-it®ordinate under some agreed
upon simple map from§to the natural numbers).

So suppose thdE is an elliptic curve over & and Q is an agreed upon (and publicly
known) point on the curve. Alice secretly chooses a random integemd computes
the pointkaQ, which she sends to Bob. Likewise, Bob secretly chooses a rakgpm
computekg Q, and sends it to Alice. The common keyRs= kakg Q. Alice computes
P by multiplying the point she received from Bob by her se&igtBob computesP by
multiplying the point he received from Alice by his sedktgt An eavesdropper who wanted
to spy on Alice and Bob would have to determife= kakg Q knowing Q, kaQ, andkg Q,
but notka or kg. The eavesdropper’s task is called the “Diffie—Hellman problem for elliptic
curves.”

Itis not hard to modify the Diffie—Hellman protocol for the purpose of message transmis-
sion, using an idea of EIGamal [16]. Suppose that the set of message units has been embed-
ded inE in some agreed upon way, and Bob wants to send Alice a me&sag&. Alice
and Bob have already exchangedQ andkgQ as in Diffie—Hellman. Bob now chooses
another secret random intedeand sends Alice the pair of poinQ, M + I (kaQ)). To
decipher the message, Alice multiplies the first point in the pair by her deciesid then
subtracts the result from the second point in the pair.

We next describe the elliptic curve analogue (ECDSA) of the U.S. government digital
signature algorithm (DSA). The ECDSA is an ANSI standard and is also being considered
by the ANSI X9F1 and IEEE P1363 standards committees as a digital signature standard
(see 85.3).

ECDSA Key Generation. [ an elliptic curve defined overfFandP is a point of prime
ordernin E(Fy); these are system-wide parameters. For simplicity, we shall suppose that
g is a prime, although the construction can easily be adapted to a prime gagewell.

Each entityA does the following:

1. Select arandom integdrin the interval [1n — 1].

107



178 KOBLITZ ET AL.

2. ComputeQ =dP.
3. A’s public key isQ; A’s private key isd.

ECDSA Signature GenerationTo sign a message, A does the following:
1. Select arandom integktiin the interval [1n — 1].

2. Computk P = (X1, y1) andr = x; modn (wherex; is regarded as an integer between
0 andg — 1). If r = 0 then go back to step.

3. Computek—! modn.

4. Computes = k=*{h(m) + dr} modn, whereh is the Secure Hash Algorithm (SHA-1
[57]). If s =0, then go back to step?l.

5. The signature for the messageés the pair of integergr, s).

ECDSA Signature Verification. To verify A’'s signature(r,s) on m, B should do the
following:

1. Obtain an authenticated copy A% public key Q.
Verify thatr ands are integers in the interval [h — 1].

Computew = s~* modn andh(m).

2
3
4., Computad; = h(myw modn andu, = rw modn.
5. Computau; P + u,Q = (Xo, Yo) andv = xo modn.
6

Accept the signature if and onlyif=r.

Discussion. The only significant difference between ECDSA and DSA is in the generation
of r. The DSA does this by taking the random eleme#ftmod p) and reducing it modulo
g, thus obtaining an integer in the interval fl— 1]. (In the DSA,q is a 160-bit prime
divisor of p — 1, andx is an element of order in F.) The ECDSA generates the integer
r in the interval [1 n — 1] by taking thex-coordinate of the random poik® and reducing
it modulon.

To obtain a security level similar to that of the DSA, the parametgnould have about
160 bits. If this is the case, then DSA and ECDSA signatures have the same bitlength
(320 hits).

Instead of using system-wide parameters, we could fix the underlying finite fjeftar F
all entities, and let each entity select its own elliptic cuBvand pointP € E(Fg). In this
case, the defining equation f&r, the pointP, and the orden of P must also be included
in the entity’s public key. If the underlying fieldyHs fixed, then hardware or software can
be built to optimize computations in that field. At the same time, there are an enormous
number of choices of elliptic curves over the fixed f.
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4. Security

The basis for the security of elliptic curve cryptosystems such as the ECDSA is the apparent
intractability of the followingelliptic curve discrete logarithm proble(@CDLP): given an
elliptic curve E defined over f, a pointP € E(Fy) of ordern, and a pointQ € E(Fy),
determine the integdr 0 < | < n — 1, such thaQ = I P, provided that such an integer
exists.

The Pohlig—Hellman algorithm [62] reduces the determinatidn@the determination of
I modulo each of the prime factors of Hence, in order to achieve the maximum possible
security level,n should be prime. The best algorithm known to date for ECDLP is the
Pollard p-method [63], as modified by Gallant, Lambert and Vanstone [18], and Wiener
and Zuccherato [82], which takes abdytn)/2 steps, where atephere is an elliptic
curve addition. Van Oorschot and Wiener [59, 60] showed how the Pgllanéthod can
be parallelized so that if processors are used, then the expected number of steps by each
processor before a single discrete logarithm is obtainég'ian)/(2r). For elliptic curves
E defined over a subfield,fof F.m, the parallelized Pollard-method for the ECDLP in
E(F2m) can be sped up to an expected running timeégnl/m)/(2r) (see [18, 82]).

An elliptic curve E over K, is said to bgprime-field-anomalous #E(F,) = p. Semaev
[72], Smart [77] and Satoh and Araki [64] independently showed how to efficiently compute
anisomorphism betweds(Fp), whereE is a prime-field-anomalous curve, and tuglitive
group of k. This gives a polynomial-time algorithm for the ECDLPH{F,). The attack
does not appear to extend to any other class of elliptic curves. Consequently, by verifying
that the number of points on an elliptic curve does not equal the cardinality of the underlying
field, one can easily ensure that the Semaev—-Smart—Satoh—Araki attack does not apply.

Menezes, Okamoto and Vanstone (MOV) ([49]; see also Menezes [48]) used the Well
pairing on an elliptic curvé to embed the grouf (Fq) in the multiplicative group of the
field Fy for some integek. This reduces the ECDLP i&(Fy) to the discrete logarithm
problem (DLP) in F. A necessary condition foE(Fg) to be embedded ingf is that
n divide g¢ — 1; and in [5] it is proved that this condition is also sufficient under a mild
assumptiorf.Now in P(;k we can hope to use a version of the index-calculus algorithm with
subexponential running time

exp((c + o(1))(log g*)*3(log logg*)%?). 4

See Coppersmith [12] for the case wiega power of 2, and Gordon [21] and Schirokauer
[67] for the case wheq is a prime andk = 1. No algorithm with running time (4) is known
whenq is odd anck > 1, but we adopt the “optimistic” supposition that the time estimate
(4) is the complexity of the discrete logarithm problem ga for allg andk > 1.

Note thatk must be less than 18g, since otherwise the index-calculus algorithm fgr F
will take fully exponential time (in log)). For the very special class of supersingular curves,
it is known thatk < 6. For these curves, the MOV reduction gives a subexponential-time
algorithm for the ECDLP. However, a randomly generated elliptic curve has an exponen-
tially small probability of being supersingular; and, as shown by Koblitz [33] (see also
Balasutz?ramanian and Koblitz [5]), for most randomly generated elliptic curves we have
k > logq.
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No subexponential-time algorithm is known for the ECDLP for any class of elliptic curves
other than the ones discussed above. Miller [52] discusses the index-calculus method as
it might apply to elliptic curve groups. He comments that unlike in the casg oflfere
there are natural candidates for the factor baqggrime numbers of small size or small
degree irreducible polynomials), there appear to be no likely candidatesFg). The
most natural ones for elliptic curves ovey $eem to be points of small height BXQ), Q
the field of rational numbers (the height of a point is related to the number of bits needed
to represent the point). However, Miller points out that there are very few points of small
height inE(Q). Furthermore, even if such a detexists, finding an efficient method for
liting a point in E(Fp) to a point inE(Q) looks hopeless. Miller's argument against the
possibility of index-calculus attacks has been elaborated on and explored in more detail by
J. Silverman and Suzuki [76], who support his conclusions.

A very interesting line of attack on the ECDLP was recently proposed by J. Silverman
[75]. His “xedni calculus” turns the index calculus method “on its head” (hence the name).
Given a discrete log problem on an elliptic curve ovgrife first lifts the points in question
(actually,r different integer linear combinations of them, where< 9) to points in the
plane over Q, and then he considers elliptic curz¢®) that pass through thesepoints.

If E(Q) can be chosen to have rarkr —i.e., so that there is an integer linear dependence
relation among the points — then the ECDLP is solved. In general, the probability of rank

< r is negligible. However, Silverman’s idea is to impose a number of “Mestre conditions”
modulo for small primest in order to increase this probability. (Each Mestre condition
[51] forces # (F,) to be as small as possible.) Although the xedni calculus attack is clever
and elegant, a careful analysis [25] showed that it is extremely impractical. One intriguing
aspect of Silverman’s algorithm is that it can be adapted (with no important changes) to solve
both the discrete log problem in the multiplicative group gifad the integer factorization
problem. Thus, ifithad turned out to be efficient, it would have attacked all major public-key
cryptosystems that are in practical use.

Other work has treated problems that are related to the ECDLP. Freyskd '] used a
variant of the Tate pairing for abelian varieties over local fields to extend the MOV reduction
algorithm to jacobian groups of curves of gerqusver finite fields. Adleman, DeMarrais
and Huang [1] (see also Stein,uMer and Thiel [80]) presented a subexponential-time
algorithm for the discrete logarithm problem in the jacobian of a large genus hyperelliptic
curve over a finite field. More precisely, there exists a nunth€r < ¢ < 2.181, such
that for all sufficiently largeg > 1 and all odd prime® with log p < (2g + 1)°%, the
expected running time of the algorithm for computing logarithms in the jacobian of a genus
g hyperelliptic curve over Fis conjectured to be

exp((c + o(1))(log p**1)*2(log log p?8™™H)Y/3).

However, in the case of elliptic curves (which are hyperelliptic curves of ggnud) the
algorithm is worse than naive exhaustive search.

In 1994, Scheidler, Buchmann and Williams [65] used a non-group structure, the so-
called infrastructure of the principal ideals of a real quadratic number field, to implement
the Diffie—Hellman key agreement protocol. To overcome some difficulties with imple-
menting such a scheme, Scheidler, Stein and Williams [66] extended the ideas to (odd
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Table 1. Computing power needed to compute el-
liptic curve logarithms with the Pollard-method.

Field size Sizeoh (/mn)/2 MIPS years
(in bits) (in bits)

163 160 80 8.5 x 101!
191 186 3 7.0 x 10t
239 234 317 1.2 x 108
359 354 377 1.3 x 101
431 426 213 9.2 x 10°1

characteristic) real quadratic congruence function fields; see algleiMVanstone and
Zuccherato [54] for the case of even characteristic quadratic congruence function fields.
Stein [79] (and Zuccherato [85] in the case of even characteristic) showed that the discrete
logarithm problem in real quadratic congruence function fields of genus 1 is equivalent to
the ECDLP. No subexponential-time algorithm is known for the former problem.

The security of the elliptic curve Diffie-Hellman key agreement protocol relies on the
intractability of the elliptic curve Diffie—Hellman problem (ECDHP): given an elliptic curve
E defined over f and pointsP, ki P, kaP € E(Fy), compute the poink;k,P. Clearly
ECDHP polynomial-time reduces to ECDLP. Boneh and Lipton [8] proved that if the
ECDLP cannot be solved in subexponential time, then neither can ECDHP.

Software Attacks.We assume that a million-instructions-per-second (MIPS) machine can
perform 4x 10* elliptic curve additions per second, i.e., abotft &@liptic curve additions
per year. (This estimate is indeed conservative — an application-specific integrated circuit
(ASIC) for performing elliptic curve additions over the fielghés (see [3]) has a 40 MHz
clock-rate and can perform roughly 40,000 elliptic curve operations per second. Also, the
software implementation by Schroeppalal [71] on a SPARC IPC (rated at 25 MIPS)
performs 2,000 elliptic curve additions per second.) The tdtf@S yeardenotes the com-
putational power of a MIPS computer utilized for one year. Table 1 shows the computing
power required for various values ofto compute a single discrete logarithm using the
Pollard p-method.

For instance, if 10,000 computers each rated at 1,000 MIPS are available ra2éf°,
then a single elliptic curve discrete logarithm can be computed in 85,000 years. Odlyzko
[58] has estimated that if 0.1% of the world’s computing power were available for one year
to work on a collaborative effort to break some challenge cipher, then the computing power
available would be 1MIPS years in 2004 and betweent4@nd 16! MIPS years in 2014.

To put the numbers in Table 1 in some perspective, Table 2 (due to Odlyzko [58]) shows
the estimated computing power required to factor integers with current versions of the
general number field sieve.

Hardware Attacks. For well-funded attackers, a more promising approach might be to build

special-purpose hardware for a parallel search using the Pgltardthod. Van Oorschot
and Wiener [59] provide a detailed study of such a possibility. In their 1994 study, they

111



182 KOBLITZ ET AL.

Table 2. Computing power
needed to factor integers using
the general number field sieve.

Bitsize of integer  MIPS years
to be factored

512 3x 10*
768 2x 10°
1024 3x 1011
1280 1x 101
1536 3x 106
2048 3x 1020

estimated that ih ~ 10% ~ 2129 then a machine witm = 325,000 processors that could
be built for about US$10 million would compute a single discrete logarithm in about 35
days.

Discussion. It should be pointed out that in the software and hardware attacks described
above, computation of a single elliptic curve discrete logarithm has the effect of revealing
asingleuser’s private key. Roughly the same effort must be repeated in order to determine
another user’s private key.

In [6], Blazeet alreport on the minimum key lengths required for secure symmetric-key
encryption schemes. They come to the following conclusions:

To provide adequate protection against the most serious threats — well-funded com-
mercial enterprises or government intelligence agencies — keys used to protect data
today should be at least 75 bits long. To protect information adequately for the
next 20 years in the face of expected advances in computing power, keys in newly-
deployed systems should be at least 90 bits long.

Extrapolating these conclusions to the case of elliptic curves, we seg #hetuld be at
least 150 bits for short-term security and at least 180 bits for medium-term security. This
extrapolation is justified by the following considerations:

1. Exhaustive search throughkait symmetric-key cipher takes about the same time as
the Pollardp-algorithm applied to an elliptic curve having &-Bit parameten.

2. Exhaustive searches with a symmetric-key cipher and the PpHalgiorithm can both
be parallelized with a linear speedup.

3. A basic operation with elliptic curves (addition of two points) is computationally more
expensive than a basic operation in a symmetric-key cipher (encryption of one block).

4. Inboth symmetric-key ciphers and elliptic curve systems, a “break” has the same effect:
it recovers a single private key.
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5. Implementation Issues

Since the elliptic curve discrete logarithm problem appears to be harder that the discrete
logarithm problem in § (or the problem of factoring a composite integgy one can use
an elliptic curve group that is significantly smaller that(Fespectivelyn). For example,
an elliptic curveE(Fy) with a pointP € E(Fy) whose order is a 160-bit prime offers
approximately the same level of security as DSA with a 1024-bit modukrsd RSA with
a 1024-bit modulus.

In order to get a rough idea of the computational efficiency of elliptic curve systems, let
us compare the times to compute

(i) kP whereP € E(Fum), E is a non-supersingular curve ~ 160, andk is a random
160-bit integer (this is an operation in ECDSA); and

(i) «* mod p, wherep is a 1024-bit prime ané is a random 160-bit integer (this is an
operation in DSA).

Let us assume that a field multiplication ig,Rvhere logq = I, takesl? bit operations;

then a modular multiplication in (i) take€024/160> ~ 41 times longer than a field
multiplication in (i). Computation ok P by repeated doubling and adding on the average
requires 160 elliptic curve doublings and 80 elliptic curve additions. From the addition
formula for non-supersingular curves (see 82), we see that an elliptic curve addition or
doubling requires 1 field inversion and 2 field multiplications. (The cost of field addition
is negligible, as is the cost of a field squaring especially if a normal basis representation
is used.) Assume also that the time to perform a field inversion is equivalent to that of
3 field multiplications (this is what has been reported in practice; see Schroepakl

[71] and De Winet al [83]). Hence, computing P requires the equivalent of 1200 field
multiplications, or 120041 ~ 29 1024-bit modular multiplications. On the other hand,
computinge® mod p by repeated squaring and multiplying requires an average of 240
1024-bit modular multiplications. Thus, the operation in (i) can be expected to be about
8 times faster than the operation in (lisince multiplication in B~ is in fact substan-

tially faster than modular multiplication, even more impressive speedups can be realized in
practice.

Another important consequence of using a smaller group in elliptic curve systems is that
low-cost and low-power implementations are feasible in restricted computing environments,
such as smart cards, pagers, hand-held computers, and cellular telephones. For example, an
ASIC built for performing elliptic curve operations over the fielgs&(see Agnew, Mullin
and Vanstone [3]) has only 12,000 gates and would occupy less that 5% of the area typically
designated for a smart card processor. By comparison, a chip designed to do modular
multiplication of 512-bit numbers (see Ivey al [24]) has about 50,000 gates, while the
chip designed to do field multiplications insk (see Agnewet al [2]) has about 90,000
gates.

Another advantage of elliptic curve systems is that the underlying figtohB a represen-
tation for its elements can be selected so that the field arithmetic (addition, multiplication,
and inversion) can be optimized. This is not the case for systems based on discrete log (re-
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spectively, integer factorization), where the prime modyysespectively, the composite
modulusn) should not be chosen to have a special form that would be likely to make the
cryptanalyst’s task easier (using the number field sieve).

With our current knowledge, elliptic curve systems over prime order figicsppear to
provide the same level of security as elliptic curve systems over characteristic two fields
Fom whenp ~ 2™. Because it appears that arithmetic ig» Ean be implemented more
efficiently in hardware and software than arithmetic jn(en platforms where specialized
arithmetic co-processors for performing the finite field arithmetic are not available), elliptic
curves over m have seen wider use in commercial implementations.

Construction of an elliptic curve cryptosystem requires some basic steps:

1. Selecting an underlying field,F

2. Selecting a representation for the elements,of F
3. Implementing the arithmetic ingF

4. Selecting an appropriate elliptic curizeover F;.

5. Implementing the elliptic curve operationskn

85.1 surveys some of the field representations used in elliptic curve implementations that
have been reported in the literature. Techniques for selecting suitable elliptic curves are
discussed in 85.2. Finally, 85.3 summarizes the current efforts underway to standardize
elliptic curve cryptosystems.

5.1. Representation of the Underlying Field

The representation used for the elements of the underlying figtéh have a significant
impact on the feasibility, cost, and speed of an elliptic curve system. It must be emphasized,
however, that the representation used for a particular figlddes not appear to affect its
security.

Elliptic Curves over . To minimize the time to perform modular multiplication, the
prime p may be chosen to be of the form= 2¢ — 1 (called aMersenne primg see the
patent of Crandall [13]. See De Wat al [84] for a report of a software implementation
of ECDSA over F, and Bailey and Paar [4] for an implementation report of elliptic curve
arithmetic over finite fields f» wherep is of the form Z & ¢ for some smalt.

Elliptic Curves over m. The field Fm can be viewed as a vector space of dimension
over k. That is, there exists a set ofelementgag, a1, ..., am—1} in Fom such that each
a € Fpm can be written uniquely in the form

m—1
o = Za‘“i’ whereg; € {0, 1}.
i=0
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We can then represeatas the binary vectaay, ay, . . . , an—1). Addition of field elements
is performed by bitwise XOR-ing the vector representations. There are many different
bases of bn over k.

1. Trinomial bases

If f(x) is an irreducible polynomial of degrewa over K, then the field bn can be
represented as the set of polynomials of degree lessiluarr F,, where multiplication

of polynomials is performed modulé(x). That is, in the above notatio = X',

0 <i <= m-— 1. Such a representation is calleghalynomial basis representation
A trinomial basis representatiois a polynomial basis representation in which the
polynomial f (x) has the formf (x) = x™ + xX + 1. Such representations have the
advantage that reduction moduf@x) can be performed efficiently, both in software
and in hardware. For a detailed description of the field arithmetic,ina Bsing a
trinomial basis representation, see Schroeppal [71].

2. Optimal normal bases
A normal basiof Fom over R is a basis of the form

8,82 8%, ..., 87,

whereg € Fom; such a basis always exists. Since squaring is a linear operategf,in F
we have

m—1 _ m—1 )
@?=3"ap?" => a_1p? = (@n-1.8.....8n2).
i=0 i=0

Thus, a normal basis representation ¢f lRas the advantage that squaring a field
element is accomplished by a simple rotation of the vector representation, an operation
that is easily implemented in hardware.

Multiplication in a normal basis representation is more complicated. The so-called
optimal normal base€s(see Mullinet al [55]) appear to give the most efficient imple-
mentation of field arithmetic (with respect to both speed and complexity of hardware
architecture). For areport on a hardware implementation of an elliptic curve cryptosys-
tem over Fuss using an optimal normal basis, see Agnew, Mullin and Vanstone [3].

Another advantage of normal bases is that square roots of elemenis taf be
efficiently computed. This is useful for recovering points when using the following
compression technique. L& = (x4, y1) be a point on the elliptic curvg? + xy =

x3 + ax? + b defined over fn. Define¥; to be 0 ifx; = 0; if x; # 0, theny is
defined to be the rightmost bit of the field eIemqm{l. P can now be represented
as(xy, ¥1). Givenx; and¥y, y; can be recovered using the following technique from
Menezes and Vanstone [50]. Firstxif = 0, theny; = +/b. If x; # 0, then the change
of variables(x, y) — (X, x2) transforms the curve equationzb+ z = x + a+ bx~2.
Computea = x; + a + bx; 2. To solve the quadratic equatia® + z = «, let
z2=1(20,21,...,Zm-1) anda = (ag, a, ..., an_1) be the vector representationsof
anda, respectively. Thed® +z = (zn_1+ 20, Zo+ 71, - . ., Zm—2+Zm_1). Each choice
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Zo = 0 orzg = 1 uniquely determines a soluti@to z° + z = «, by comparing the
components of? 4 zanda. The correct solutiod is selected by comparison with the
bit ¥1. Finally, y; is recovered ag; = x1Z.

3. Using subfields

Suppose thain = Ir, wherel is small (e.g.] = 8 orl = 16). Then the field = can
be viewed as an extension field of degremver K. If {ag, @1, ..., a1} is a basis for
Fom over Fy, then each element € Fon can be uniquely written in the form

[ay

r
o = gjaj, Wwhereg € Fy.
i

Il
o

Field multiplication in B now involves performing several operations in the field
F». Sincel is small, arithmetic in r can be sped up significantly, for example, by
precomputing “log” and “antilog” tables. The drawback of this method is the space
required for the tables. See Harper, Menezes and Vanstone [23] for an implementation
report wherl = 8, and De Wiret al[83] and Guajardo and Paar [22] for a report when

| =16.

5.2. Selecting an Appropriate Elliptic Curve

By an “appropriate” elliptic curve, we mean an elliptic cuigedefined over a finite field
Fq satisfying the following conditions:

(i) To resist the Pollargh-attack mentioned in 84,E{(F,) should be divisible by a suffi-
ciently large primen (for examplen > 2169),

(i) To resist the Semaev—Smart—Satoh—Araki attack mentioned inB&# should not
be equal tay.

(iii) To resist the MOV reduction attack mentioned in 4should not divideg — 1 for
all 1 < k < C, whereC is large enough so that it is computationally infeasible to find
discrete logarithms ingg. (C = 20 suffices in practice.)

We shall say that a positive integelis B-almost primdf u is divisible by a prime factor
> u/B.
Below we give an overview of four techniques for selecting an appropriate elliptic curve.

Using Hasse’s TheoremThis technique can be used for picking curves oyenf#herem
is divisible by a small integdr> 1.

If E is an elliptic curve defined overgFthenE can be viewed as an elliptic curve over
any extension & of Fy; E(Fy) is a subgroup oE(Fy). Hasse’s theorem enables one to
compute #E (Fq) from #E(Fy) as follows. Lett = q + 1 — #E(Fq). Then #(Fy) =
g+ 1 — o — K, wherea andp are complex numbers determined from the factorization
of 1 —tT +qT?= (1 —aT)(A - BT).
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To select an appropriate curve over Fwe first pick an elliptic curve over a small field
F», wherel dividesm, compute #(F,) exhaustively, and then use Hasse’s theorem to
determine £ (Fom). If conditions (i), (i) and (iii) above (withg = 2™) are not satisfied,
then another curve is selected and the process is repeated. Since the number of elliptic
curves over b is relatively small, for a fixedn it may not be possible to construct an
appropriate curve using this method.

Koblitz [34] observed that if one uses exponehktsf small Hamming weight when
computingk P in E(F.m), then one gets doubling of points “almogi3for free” for some
anomalous curve& defined over i (wherem is a multiple ofl). He provides a list
of anomalous curves defined over (fespectively k, Fg and Fg) and extension degrees
m such that £ (Fom) (respectively, #(Fsm), #E(Fgn) and #(F1en)) has a prime factor
of at least 30 decimal digits, and there exists an optimal normal basig.inFor these
curves, if one uses exponeiksf low Hamming weight, then any string ef 4 zeros irk
(respectively, exactly 2, 3, 4 zeros) can be handled with a single addition of points. In [78]
Solinas, building on earlier work of Meier and Staffelbach [47], shows how to compute
k P very efficiently inE(Fom) for arbitraryk, whereE is an anomalous curve defined over
F,. (Note: the Semaev—Smart—Satoh—Araki algorithm mentioned before does not apply
to these anomalous curves, which are used not over a prime field, but rather over a large
degree extension of their field of definition.)

The Global Method. Another possibility is to choose an elliptic curve defined over a
number field and then reduce it modulo a prime ideal such that the resulting curve over
a finite field satisfies conditions (i), (ii) and (iii). For instance, we could start with the
equation (1) withe, b € Q and then consider the same equation moghuilor large primes

p, where we want the numbei, of points on the curve over,fto be a prime or a prime
times a small factor. HerBl, is always divisible by 415, the number of points of finite
order on the original elliptic curve over Q. But the rably /#Es will often be prime. It
should be noted thatBE{,s < 16 by a deep theorem of B. Mazur [45], anHs = 1 for

most “random” curves. For more discussion of primality\yf, see [30].

Example: Consider the curvg? = x3 —m?x, wheremis an integer parameter. (Thisis the
family of curves that arises from the famous Congruent Number Problem, first studied by
the ancient Greeks; see [35].) Now consider this curve modulo a pgrine dividingm,
wherep=1 (mod 4. (Note: ifp=3 (mod 4, thenthe curveis supersingular.) ltwas
Gauss who found a simple formula fidlg,. First one has to writ@ as a sum of two squares:

p = a2 + b? (this is a very easy computational task), where without loss of generality we
suppose thaa is odd. We choose the sign afby requiring thata + b = (%) (mod 4.
ThenNp = p+ 1 — a. Since our original elliptic curve over Q has exactly four points of
finite order (namely0, 0), (+m, 0), oo), it follows that 4 dividesN,. But oftenNy/4 is
prime. |

The Complex Multiplication MethodThe method of complex multiplication (CM) allows

the choice of an elliptic curve ordeeforethe curve is explicitly constructed. Thus, orders
can be generated and tested to satisfy conditions (i), (ii) and (iii); a curve is constructed only
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when these conditions are met. The CM method is efficient provided that the finite field size
g and the order E(Fy) = q+ 1—t are chosen so that the CM-fieIc{@f2 — 4q) has small

class number. For elliptic curves oveg,khe CM method is also called ti#gkin-Morain
methodsee [53]); over b, itis called thd_ay-Zimmer metho¢see [40]). The CM method

is fast in practice. Lay and Zimmer [40] report timings of about 3 minutes on a SPARC 2
(excluding the time for precomputation) for the construction of an elliptic curve oxer F
whose order is twice a prime.

Choosing a Curve at Random. Another approach to selecting an appropriate elliptic
curve E over F is to select random parametesb € Fy (subject to the constraint that
4a3+270? # 0if gis odd, and # 0if q is a power of 2). One then computes= #E(F)
and factorau. This process is repeated until conditions (i), (i) and (iii) are satisfied.

In the case of elliptic curves ovep Rhe following theorem shows that, if the coefficients
a andb are selected uniformly at random, then the orders of the resulting elliptic curves are
roughly uniformly distributed. Similar results for the case of elliptic curves ogercen
be deduced from the work of Waterhouse [81] and Schoof [70].

THEOREM (LENSTRA[41]) There exist effectively computable positive constangsd ¢
such that for each prime p- 5 and for any subset S of integers in the interpjaH+ 1 —
VP, p+ 1+ ./p], the probability i that a random paira, b) € F, x Fy determines an
elliptic curve E y? = x3 4+ ax + b with#E(Fp) € S is bounded as follows:

#S— 2
2l /pl+1

For fixed B and sufficiently large, it is thus reasonable to assume that the probability
of B-almost primality of the order of a randomly chosen elliptic curve ovgisFoughly
equal to the probability oB-almost primality of a random integer of the same order of
magnitude as. If g is a power of 2, then one considers randevenintegers of the same
order of magnitude ag. For fixedB andg = 2™, the latter probability is asymptotic to
ZjB:/i qu/zn ~ Llog,(B/2). For example, ifj = 2175 and we want an elliptic curve
whose order is divisible by > 2169 (so B = 21%), we expect to try about 13 curves before
finding one whose order iB-almost prime.

In 1985 Schoof [69] presented a polynomial-time algorithm for computing the number of
Fy-points on an elliptic curve defined oveg F the case wheq is odd; the algorithm was
later extended to the casegé power of 2 by Koblitz [32]. Schoof’s algorithm has a worst-
case running time o®((logq)®) bit operations, and is rather inefficient in practice for the
values ofg of practical interest (i.eq > 2169). In the last few years a lot of work has been
done on improving and refining Schoof’s algorithm. Lercier and Morain [44] implemented
Schoof’s algorithm incorporating ideas of Atkin, Elkies and Couveignes. They reported
timings of 4 and 3 minutes on a DecAlpha 3000/500 for computing the orders of elliptic
curves over kss and over a 155-bit prime field, respectively. A new record for elliptic
curve point counting over prime fields was established in 1995 by Lercier and Morain [44],
who computed the order of a curve over a 499-decimal digit (1658-bit) prime field; the
computation took the equivalent of roughly 4200 hours on a DEC 3000-M300X. In the

c(logp)™t < - cx(log p)(log log p)2.

#S
s < -—F—+—
2L/PJ+1
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case of characteristic two finite fields, the current record was established in June 1998 by
A. Joux and R. Lercier, who computed the order of a curve oyesFthe computation

took the equivalent of roughly 330 days on a DEC Alpha. They used the Schoof-Elkies—
Atkin algorithm and incorporated newer ideas of Lercier [42]. Cryptographically suitable
elliptic curves over fields as large ag# can be randomly generated in a few hours on a
workstation [43].

5.3. Standards Activities

The two primary objectives of industry standards are to promote interoperability and to
facilitate widespread use of well-accepted techniques. Standards for elliptic curve systems
are currently being drafted by various accredited standards bodies around the world; some
of this work is summarized below.

1. The Elliptic Curve Digital Signature Algorithm (ECDSA) was adopted in January 1999
as an official American National Standards Institute (ANSI) standard. The ANSI X9
(Financial Services) working group is also drafting a standard for elliptic curve key
agreement and transport protocols.

2. Elliptic curves are in the draft [IEEE P1363 standard (Standard Specifications for Public-
Key Cryptography), which includes encryption, signature, and key agreement mecha-
nisms. Elliptic curves over fand over bn are both supported. For the characteristic
two finite fields, polynomial bases and normal basesebiver an arbitrary subfieldF
are supported. P1363 also includes discrete log systems in subgroups of the multiplica-
tive group of the integers modulo a prime, as well as RSA encryption and signatures.
The latest drafts are available from the web bite://stdsbbs.ieee.org/

3. The OAKLEY Key Determination Protocol of the Internet Engineering Task Force
(IETF) describes a key agreement protocol that is a variant of Diffie—Hellman. It
allows for a variety of groups to be used, including elliptic curves oyeartel bn. The
document makes specific mention of elliptic curve groups over the figldsaRd F21.

A draft is available from the web sitatp://www.ietf.cnri.reston.va.us/

4. ECDSA is specified in the draft document ISO/IEC 14888: Digital signature with
appendix — Part 3: Certificate-based mechanisms.

5. TheISO/IEC 15946 draft standard specifies various cryptographic techinques based on
elliptic curves including signature schemes, public-key encyrption schemes, and key
establishment protocols.

6. The ATM Forum Technical Committee’s Phase | ATM Security Specification draft doc-
ument aims to provide security mechanisms for Asynchronous Transfer Mode (ATM)
networks. Security services provided include confidentiality, authentication, data in-
tegrity, and access control. A variety of systems are supported, including RSA, DSA,
and elliptic curve systems.
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As these drafts become officially adopted by the appropriate standards bodies, one can
expect elliptic curve systems to be widely used by providers of information security.

Notes

1.

2.

3.

This is a security condition: if = 0, then the signing equatian= k~1{h(m) + dr} modn does not involve
the private keyd.
If s = 0 thens~ modn does not exist; this is required in step 3 of signature verification. Note tkasif
chosen at random, then the probability that either 0 ors = 0 is negligibly small.
More precisely, letn be a prime factor ofi that does not dividg — 1. Then the MOV algorithm for discrete
logs in the subgroup dE (Fy) of orderm can be carried out in;ﬁ if and only if m|gk — 1.
It must be emphasized that such a comparison is very rough, as it does not take into account the various
enhancements that are possible for each system.
Hereoptimality refers to the minimum possible number of interconnections between the components of the
multiplicands.
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