## CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY NITIN SAXENA

## **ASSIGNMENT 4**

POINTS: 50

DATE GIVEN: 25-OCT-2025 DUE: 13-NOV-2025

## Rules:

• You are strongly encouraged to work *independently*. That is the best way to understand & master the subject.

- Write the solutions on your own and honorably *acknowledge* the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Submit your solutions, before time, to your TA. Please give your LaTeXed or Word processed solution-sheet in PDF. This will be graded, and commented, in-place.
- Clearly express the fundamental *idea* of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked '0 points' are for practice.
- Acknowledgements: Several problems are from *Arora & Barak, Computational Complexity: A Modern Approach*, and other lecture notes.

**Question 1:** [9 points] Suppose a boolean function f is in E with  $H_{avg}(f) \geq n^4$ . Show that the function  $g: z \mapsto z \circ f(z)$ , for  $z \in \{0, 1\}^{\ell}$ , is an  $(\ell + 1)$ -prg.

**Question 2:** [13 points] Prove that NEXP = MA implies NEXP  $\subseteq$  P/poly.

Question 3: [10 points] Suppose BPP≠EXP. Could you use this to derandomize BPP to some extent? Sketch the proof details.

Question 4: [9 points] For every  $\delta > 0$  and sufficiently large n, prove the existence of a linear ecc  $E : \{0,1\}^n \to \{0,1\}^{1.1n/(1-H(\delta))}$  with distance at least  $\delta$ .

(Note: Linear code means that E(x) + E(y) = E(x + y), where

addition is componentwise modulo 2. Let  $H(\delta) := -\delta \log \delta - (1 - \delta) \log(1 - \delta)$ .)

Question 5: [9 points] Show that there exists an explicit linear-stretch code, i.e.  $\exists c, \delta > 0, \forall n, \exists \text{ ecc } E : \{0,1\}^n \to \{0,1\}^{cn} \text{ of distance at least } \delta \text{ with efficient encoding/decoding algorithms.}$ 

Question 6: [0 points] For every c > 0, prove that  $EXP \not\subseteq i.o.$ -Size $(n^c)$ .

**Question 7:** [0 points] In the lectures we've been using multiple versions of the Permanent function  $\operatorname{per}_n$  of an  $n \times n$  matrix. It could be boolean-valued, integral, or algebraic/ arithmetic. Carefully consider these definitions and compare them.

Question 8: [0 points] Prove that, for unique decoding, the channel error should be less than 25%. What about non-unique decoding?

Question 9: [0 points] How do you factor  $f(x) \mod p$ ?

Question 10: [0 points] How do you factor  $f(x_1, x_2) \mod p$ ?

**Question 11:** [0 points] How do you find an integral root of an *integral* polynomial f(x)?

Question 12: [0 points] Why does Reed-Solomon code seem to 'violate' the Johnson Bound on list-decoding?

Question 13: [0 points] Complete the technical details of the amplification of worst-case hardness to average-case hardness.

Question 14: [0 points] Give an upper bound on the average-case hardness of a boolean function  $f: \{0,1\}^n \to \{0,1\}$ . E.g. could it be super-exponential?

Question 15: [0 points] Recall the definition of  $(S, \varepsilon)$ -pseudorandom distribution. What happens to the theory of prg if we take  $\varepsilon = 1/2$ ? What happens if we take  $\varepsilon = 1/2 - 1/S$ ?

**Question 16:** [0 points] How do you test two integral polynomials  $f(x), g(x) \mod p^2$  for *co-primality*? For irreducibility?