
Zero Knowledge Proof through Graph
3-Coloring

Divyansh Agarwal

CS747: Randomized Methods in Computational Complexity

Indian Institute of Technology, Kanpur

Introduction to Zero Knowledge

ZKP through G3C November 11, 2025 2 / 17

Introduction to Zero Knowledge

ZKP through G3C November 11, 2025 2 / 17

Introduction to Zero Knowledge

ZKP through G3C November 11, 2025 2 / 17

Interactive Proof System

A pair of interactive machines (P,V) is called an interactive proof system for a
language L if V is PPT TM and the following two conditions hold:

▶ Completeness: For every x ∈ L, ∃ P

Pr[⟨P,V ⟩(x) = 1] ≥ 2

3

▶ Soundness: For every x /∈ L and every interactive machine B,

Pr[⟨B,V ⟩(x) = 1] ≤ 1

3

ZKP through G3C November 11, 2025 3 / 17

Perfect Zero-Knowledge

Let (P,V) be an interactive proof system for some language L. We say that (P,V) is
perfect zero-knowledge if

for every PPT TM V ∗, there exists a PPT algorithm M∗

such that for every x ∈ L, the following hold:

1. With probability at most 1
2 , on input x , machine M∗ outputs a special symbol ⊥,

i.e.,

Pr[M∗(x) = ⊥] ≤ 1

2
.

2. m∗(x)
d
= ⟨P,V ∗⟩(x) (output of V ∗ after interacting with P on x)

where, m∗(x) denote the random variable describing the distribution of M∗(x)
conditioned on M∗(x) ̸= ⊥, i.e.,

Pr[m∗(x) = α] = Pr[M∗(x) = α | M∗(x) ̸= ⊥], ∀α ∈ {0, 1}∗.

ZKP through G3C November 11, 2025 4 / 17

Perfect Zero-Knowledge

Let (P,V) be an interactive proof system for some language L. We say that (P,V) is
perfect zero-knowledge if for every PPT TM

V ∗, there exists a PPT algorithm M∗

such that for every x ∈ L, the following hold:

1. With probability at most 1
2 , on input x , machine M∗ outputs a special symbol ⊥,

i.e.,

Pr[M∗(x) = ⊥] ≤ 1

2
.

2. m∗(x)
d
= ⟨P,V ∗⟩(x) (output of V ∗ after interacting with P on x)

where, m∗(x) denote the random variable describing the distribution of M∗(x)
conditioned on M∗(x) ̸= ⊥, i.e.,

Pr[m∗(x) = α] = Pr[M∗(x) = α | M∗(x) ̸= ⊥], ∀α ∈ {0, 1}∗.

ZKP through G3C November 11, 2025 4 / 17

Perfect Zero-Knowledge

Let (P,V) be an interactive proof system for some language L. We say that (P,V) is
perfect zero-knowledge if for every PPT TM V ∗, there exists a PPT algorithm M∗

such that for every x ∈ L, the following hold:

1. With probability at most 1
2 , on input x , machine M∗ outputs a special symbol ⊥,

i.e.,

Pr[M∗(x) = ⊥] ≤ 1

2
.

2. m∗(x)
d
= ⟨P,V ∗⟩(x) (output of V ∗ after interacting with P on x)

where, m∗(x) denote the random variable describing the distribution of M∗(x)
conditioned on M∗(x) ̸= ⊥, i.e.,

Pr[m∗(x) = α] = Pr[M∗(x) = α | M∗(x) ̸= ⊥], ∀α ∈ {0, 1}∗.

ZKP through G3C November 11, 2025 4 / 17

Perfect Zero-Knowledge

Let (P,V) be an interactive proof system for some language L. We say that (P,V) is
perfect zero-knowledge if for every PPT TM V ∗, there exists a PPT algorithm M∗

such that for every x ∈ L, the following hold:

1. With probability at most 1
2 , on input x , machine M∗ outputs a special symbol ⊥,

i.e.,

Pr[M∗(x) = ⊥] ≤ 1

2
.

2. m∗(x)
d
= ⟨P,V ∗⟩(x) (output of V ∗ after interacting with P on x)

where, m∗(x) denote the random variable describing the distribution of M∗(x)
conditioned on M∗(x) ̸= ⊥, i.e.,

Pr[m∗(x) = α] = Pr[M∗(x) = α | M∗(x) ̸= ⊥], ∀α ∈ {0, 1}∗.

ZKP through G3C November 11, 2025 4 / 17

Perfect Zero-Knowledge

Let (P,V) be an interactive proof system for some language L. We say that (P,V) is
perfect zero-knowledge if for every PPT TM V ∗, there exists a PPT algorithm M∗

such that for every x ∈ L, the following hold:

1. With probability at most 1
2 , on input x , machine M∗ outputs a special symbol ⊥,

i.e.,

Pr[M∗(x) = ⊥] ≤ 1

2
.

2. m∗(x)
d
= ⟨P,V ∗⟩(x) (output of V ∗ after interacting with P on x)

where, m∗(x) denote the random variable describing the distribution of M∗(x)
conditioned on M∗(x) ̸= ⊥, i.e.,

Pr[m∗(x) = α] = Pr[M∗(x) = α | M∗(x) ̸= ⊥], ∀α ∈ {0, 1}∗.

ZKP through G3C November 11, 2025 4 / 17

Computational Zero-Knowledge

Let (P,V), L, and V ∗ be as above.

viewP
V ∗(x) := the random variable describing the content of the random tape of V ∗

and the messages V ∗ receives from P during their interaction on common input x .

We say that (P,V) is zero-knowledge if for every PPT TM V ∗, there exists PPT
algorithm M∗ such that the ensembles

{viewP
V ∗(x)}x∈L and {M∗(x)}x∈L

are computationally indistinguishable.

ZKP through G3C November 11, 2025 5 / 17

Computational Zero-Knowledge

Let (P,V), L, and V ∗ be as above.
viewP

V ∗(x) := the random variable describing the content of the random tape of V ∗

and the messages V ∗ receives from P during their interaction on common input x .

We say that (P,V) is zero-knowledge if for every PPT TM V ∗, there exists PPT
algorithm M∗ such that the ensembles

{viewP
V ∗(x)}x∈L and {M∗(x)}x∈L

are computationally indistinguishable.

ZKP through G3C November 11, 2025 5 / 17

Computational Zero-Knowledge

Let (P,V), L, and V ∗ be as above.
viewP

V ∗(x) := the random variable describing the content of the random tape of V ∗

and the messages V ∗ receives from P during their interaction on common input x .

We say that (P,V) is zero-knowledge if for every PPT TM V ∗, there exists PPT
algorithm M∗ such that the ensembles

{viewP
V ∗(x)}x∈L and {M∗(x)}x∈L

are computationally indistinguishable.

ZKP through G3C November 11, 2025 5 / 17

Computational Indistinguishable and Complexity Class Relation

We consider ensembles indexed by strings from a language L. We say that the
ensembles {Rx}x∈L and {Sx}x∈L are computationally indistinguishable if for every
probabilistic polynomial-time algorithm D, for every polynomial p(·), and for all
sufficiently long x ∈ L, it holds that

|Pr[D(x ,Rx) = 1]− Pr[D(x ,Sx) = 1]| < 1

p(|x |)
.

Complexity Class Relations:

BPP ⊆ PZK ⊆ CZK ⊆ IP

ZKP through G3C November 11, 2025 6 / 17

Computational Indistinguishable and Complexity Class Relation

We consider ensembles indexed by strings from a language L. We say that the
ensembles {Rx}x∈L and {Sx}x∈L are computationally indistinguishable if for every
probabilistic polynomial-time algorithm D, for every polynomial p(·), and for all
sufficiently long x ∈ L, it holds that

|Pr[D(x ,Rx) = 1]− Pr[D(x ,Sx) = 1]| < 1

p(|x |)
.

Complexity Class Relations:

BPP ⊆ PZK ⊆ CZK ⊆ IP

ZKP through G3C November 11, 2025 6 / 17

Graph 3-Coloring (G3C)

The language Graph 3-Coloring, denoted G3C , consists of all simple (finite)
undirected graphs that can be vertex-colored using three colors such that no two
adjacent vertices are given the same color.

Formally, a graph G = (V ,E) is 3-colorable if there exists a mapping

ϕ : V → {1, 2, 3}
such that ϕ(u) ̸= ϕ(v) for every (u, v) ∈ E .

v1

v2 v3

v4
ZKP through G3C November 11, 2025 7 / 17

Zero-Knowledge Proof for Graph 3-Coloring: Intuition

▶ To prove that a graph G = (V ,E) is 3-colorable, the prover generates a random
3-coloring ϕ.

▶ Each vertex color represents a small piece of information about the global coloring.

▶ The verifier will only inspect the colors of a few edges to confirm correctness.
▶ Each inspected edge (u, v) ∈ E yields a template (ϕ(u), ϕ(v)).

▶ Each individual template reveals no information.
▶ If all templates are correct (distinct colors), the graph must be 3-colorable.

▶ Graphs that are not 3-colorable must contain at least one “bad” edge (same
color), so they are rejected with noticeable probability.

▶ The zero-knowledge property holds intuitively because a simulator can mimic the
interaction by picking random distinct colors for the verifier’s chosen edge.

ZKP through G3C November 11, 2025 8 / 17

Zero-Knowledge Proof for Graph 3-Coloring: Intuition

▶ To prove that a graph G = (V ,E) is 3-colorable, the prover generates a random
3-coloring ϕ.

▶ Each vertex color represents a small piece of information about the global coloring.

▶ The verifier will only inspect the colors of a few edges to confirm correctness.
▶ Each inspected edge (u, v) ∈ E yields a template (ϕ(u), ϕ(v)).

▶ Each individual template reveals no information.
▶ If all templates are correct (distinct colors), the graph must be 3-colorable.

▶ Graphs that are not 3-colorable must contain at least one “bad” edge (same
color), so they are rejected with noticeable probability.

▶ The zero-knowledge property holds intuitively because a simulator can mimic the
interaction by picking random distinct colors for the verifier’s chosen edge.

ZKP through G3C November 11, 2025 8 / 17

Zero-Knowledge Proof for Graph 3-Coloring: Intuition

▶ To prove that a graph G = (V ,E) is 3-colorable, the prover generates a random
3-coloring ϕ.

▶ Each vertex color represents a small piece of information about the global coloring.

▶ The verifier will only inspect the colors of a few edges to confirm correctness.

▶ Each inspected edge (u, v) ∈ E yields a template (ϕ(u), ϕ(v)).
▶ Each individual template reveals no information.
▶ If all templates are correct (distinct colors), the graph must be 3-colorable.

▶ Graphs that are not 3-colorable must contain at least one “bad” edge (same
color), so they are rejected with noticeable probability.

▶ The zero-knowledge property holds intuitively because a simulator can mimic the
interaction by picking random distinct colors for the verifier’s chosen edge.

ZKP through G3C November 11, 2025 8 / 17

Zero-Knowledge Proof for Graph 3-Coloring: Intuition

▶ To prove that a graph G = (V ,E) is 3-colorable, the prover generates a random
3-coloring ϕ.

▶ Each vertex color represents a small piece of information about the global coloring.

▶ The verifier will only inspect the colors of a few edges to confirm correctness.
▶ Each inspected edge (u, v) ∈ E yields a template (ϕ(u), ϕ(v)).

▶ Each individual template reveals no information.
▶ If all templates are correct (distinct colors), the graph must be 3-colorable.

▶ Graphs that are not 3-colorable must contain at least one “bad” edge (same
color), so they are rejected with noticeable probability.

▶ The zero-knowledge property holds intuitively because a simulator can mimic the
interaction by picking random distinct colors for the verifier’s chosen edge.

ZKP through G3C November 11, 2025 8 / 17

Zero-Knowledge Proof for Graph 3-Coloring: Intuition

▶ To prove that a graph G = (V ,E) is 3-colorable, the prover generates a random
3-coloring ϕ.

▶ Each vertex color represents a small piece of information about the global coloring.

▶ The verifier will only inspect the colors of a few edges to confirm correctness.
▶ Each inspected edge (u, v) ∈ E yields a template (ϕ(u), ϕ(v)).

▶ Each individual template reveals no information.
▶ If all templates are correct (distinct colors), the graph must be 3-colorable.

▶ Graphs that are not 3-colorable must contain at least one “bad” edge (same
color), so they are rejected with noticeable probability.

▶ The zero-knowledge property holds intuitively because a simulator can mimic the
interaction by picking random distinct colors for the verifier’s chosen edge.

ZKP through G3C November 11, 2025 8 / 17

Zero-Knowledge Proof for Graph 3-Coloring: Intuition

▶ To prove that a graph G = (V ,E) is 3-colorable, the prover generates a random
3-coloring ϕ.

▶ Each vertex color represents a small piece of information about the global coloring.

▶ The verifier will only inspect the colors of a few edges to confirm correctness.
▶ Each inspected edge (u, v) ∈ E yields a template (ϕ(u), ϕ(v)).

▶ Each individual template reveals no information.
▶ If all templates are correct (distinct colors), the graph must be 3-colorable.

▶ Graphs that are not 3-colorable must contain at least one “bad” edge (same
color), so they are rejected with noticeable probability.

▶ The zero-knowledge property holds intuitively because a simulator can mimic the
interaction by picking random distinct colors for the verifier’s chosen edge.

ZKP through G3C November 11, 2025 8 / 17

Properties:

▶ If G is 3-colorable, verifier always accepts.

▶ If not, verifier rejects with probability at least 1/|E |.
▶ Repeating the protocol increases confidence.

However, for implementation, we don’t have perfect boxes, hence we use commitment
schemes.

ZKP through G3C November 11, 2025 9 / 17

Commitment Schemes: Two-Phase Protocol

Phase 1 — Commit (Hiding Phase)

▶ The sender (prover) chooses a secret value v and some random coins r .

▶ It computes a commitment C = Commit(v ; r) and sends C to the receiver
(verifier).

▶ The receiver learns nothing about v (secrecy ensured by randomness).

Phase 2 — Reveal (Binding Check)

▶ The sender reveals v and r .

▶ The receiver recomputes Commit(v ; r) and checks it matches C .

▶ If it matches → accept. Otherwise → reject.

Prover VerifierCommit C

Reveal (v , r)

ZKP through G3C November 11, 2025 10 / 17

Commitment Schemes: Two-Phase Protocol

Phase 1 — Commit (Hiding Phase)

▶ The sender (prover) chooses a secret value v and some random coins r .

▶ It computes a commitment C = Commit(v ; r) and sends C to the receiver
(verifier).

▶ The receiver learns nothing about v (secrecy ensured by randomness).

Phase 2 — Reveal (Binding Check)

▶ The sender reveals v and r .

▶ The receiver recomputes Commit(v ; r) and checks it matches C .

▶ If it matches → accept. Otherwise → reject.

Prover VerifierCommit C

Reveal (v , r)

ZKP through G3C November 11, 2025 10 / 17

Commitment Schemes: Two-Phase Protocol

Phase 1 — Commit (Hiding Phase)

▶ The sender (prover) chooses a secret value v and some random coins r .

▶ It computes a commitment C = Commit(v ; r) and sends C to the receiver
(verifier).

▶ The receiver learns nothing about v (secrecy ensured by randomness).

Phase 2 — Reveal (Binding Check)

▶ The sender reveals v and r .

▶ The receiver recomputes Commit(v ; r) and checks it matches C .

▶ If it matches → accept. Otherwise → reject.

Prover VerifierCommit C

Reveal (v , r)

ZKP through G3C November 11, 2025 10 / 17

Commitment Schemes: Two-Phase Protocol

Phase 1 — Commit (Hiding Phase)

▶ The sender (prover) chooses a secret value v and some random coins r .

▶ It computes a commitment C = Commit(v ; r) and sends C to the receiver
(verifier).

▶ The receiver learns nothing about v (secrecy ensured by randomness).

Phase 2 — Reveal (Binding Check)

▶ The sender reveals v and r .

▶ The receiver recomputes Commit(v ; r) and checks it matches C .

▶ If it matches → accept. Otherwise → reject.

Prover VerifierCommit C

Reveal (v , r)

ZKP through G3C November 11, 2025 10 / 17

Commitment Scheme

A commitment scheme is a two-phase protocol between:

▶ Sender (S): commits to a value v ∈ {0, 1} using randomness r .

▶ Receiver (R): obtains commitment C and later verifies v .

Requirements:

▶ Hiding: For any receiver R∗, the distributions {⟨S(0),R∗⟩(1n)} and
{⟨S(1),R∗⟩(1n)} are computationally indistinguishable.

▶ Binding: For almost all random coins r of R, there exists at most one message m
forming a valid opening.

ZKP through G3C November 11, 2025 11 / 17

Commitment Scheme

A commitment scheme is a two-phase protocol between:

▶ Sender (S): commits to a value v ∈ {0, 1} using randomness r .

▶ Receiver (R): obtains commitment C and later verifies v .

Requirements:

▶ Hiding: For any receiver R∗, the distributions {⟨S(0),R∗⟩(1n)} and
{⟨S(1),R∗⟩(1n)} are computationally indistinguishable.

▶ Binding: For almost all random coins r of R, there exists at most one message m
forming a valid opening.

ZKP through G3C November 11, 2025 11 / 17

Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V ,E) with n = |V |.
Auxiliary input to the prover: A valid 3-coloring ψ of G .

Protocol Steps:
P1: The prover picks a random permutation π over {1, 2, 3} and defines

ϕ(v) = π(ψ(v)) for all v ∈ V .
▶ Uses the commitment scheme to commit to each color:

s1, . . . , sn ← {0, 1}n, ci = Csi (ϕ(i))

▶ Sends c1, . . . , cn to the verifier.

V1: The verifier chooses a random edge (u, v) ∈ E and sends it to the prover.

P2: The prover reveals colors of u and v by sending (su, ϕ(u)), (sv , ϕ(v)).

V2: The verifier checks:

cu = Csu(ϕ(u)), cv = Csv (ϕ(v)), ϕ(u) ̸= ϕ(v)

Accept if all hold; otherwise reject.

ZKP through G3C November 11, 2025 12 / 17

Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V ,E) with n = |V |.
Auxiliary input to the prover: A valid 3-coloring ψ of G .
Protocol Steps:
P1: The prover picks a random permutation π over {1, 2, 3} and defines

ϕ(v) = π(ψ(v)) for all v ∈ V .

▶ Uses the commitment scheme to commit to each color:

s1, . . . , sn ← {0, 1}n, ci = Csi (ϕ(i))

▶ Sends c1, . . . , cn to the verifier.

V1: The verifier chooses a random edge (u, v) ∈ E and sends it to the prover.

P2: The prover reveals colors of u and v by sending (su, ϕ(u)), (sv , ϕ(v)).

V2: The verifier checks:

cu = Csu(ϕ(u)), cv = Csv (ϕ(v)), ϕ(u) ̸= ϕ(v)

Accept if all hold; otherwise reject.

ZKP through G3C November 11, 2025 12 / 17

Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V ,E) with n = |V |.
Auxiliary input to the prover: A valid 3-coloring ψ of G .
Protocol Steps:
P1: The prover picks a random permutation π over {1, 2, 3} and defines

ϕ(v) = π(ψ(v)) for all v ∈ V .
▶ Uses the commitment scheme to commit to each color:

s1, . . . , sn ← {0, 1}n, ci = Csi (ϕ(i))

▶ Sends c1, . . . , cn to the verifier.

V1: The verifier chooses a random edge (u, v) ∈ E and sends it to the prover.

P2: The prover reveals colors of u and v by sending (su, ϕ(u)), (sv , ϕ(v)).

V2: The verifier checks:

cu = Csu(ϕ(u)), cv = Csv (ϕ(v)), ϕ(u) ̸= ϕ(v)

Accept if all hold; otherwise reject.

ZKP through G3C November 11, 2025 12 / 17

Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V ,E) with n = |V |.
Auxiliary input to the prover: A valid 3-coloring ψ of G .
Protocol Steps:
P1: The prover picks a random permutation π over {1, 2, 3} and defines

ϕ(v) = π(ψ(v)) for all v ∈ V .
▶ Uses the commitment scheme to commit to each color:

s1, . . . , sn ← {0, 1}n, ci = Csi (ϕ(i))

▶ Sends c1, . . . , cn to the verifier.

V1: The verifier chooses a random edge (u, v) ∈ E and sends it to the prover.

P2: The prover reveals colors of u and v by sending (su, ϕ(u)), (sv , ϕ(v)).

V2: The verifier checks:

cu = Csu(ϕ(u)), cv = Csv (ϕ(v)), ϕ(u) ̸= ϕ(v)

Accept if all hold; otherwise reject.

ZKP through G3C November 11, 2025 12 / 17

Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V ,E) with n = |V |.
Auxiliary input to the prover: A valid 3-coloring ψ of G .
Protocol Steps:
P1: The prover picks a random permutation π over {1, 2, 3} and defines

ϕ(v) = π(ψ(v)) for all v ∈ V .
▶ Uses the commitment scheme to commit to each color:

s1, . . . , sn ← {0, 1}n, ci = Csi (ϕ(i))

▶ Sends c1, . . . , cn to the verifier.

V1: The verifier chooses a random edge (u, v) ∈ E and sends it to the prover.

P2: The prover reveals colors of u and v by sending (su, ϕ(u)), (sv , ϕ(v)).

V2: The verifier checks:

cu = Csu(ϕ(u)), cv = Csv (ϕ(v)), ϕ(u) ̸= ϕ(v)

Accept if all hold; otherwise reject.

ZKP through G3C November 11, 2025 12 / 17

Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V ,E) with n = |V |.
Auxiliary input to the prover: A valid 3-coloring ψ of G .
Protocol Steps:
P1: The prover picks a random permutation π over {1, 2, 3} and defines

ϕ(v) = π(ψ(v)) for all v ∈ V .
▶ Uses the commitment scheme to commit to each color:

s1, . . . , sn ← {0, 1}n, ci = Csi (ϕ(i))

▶ Sends c1, . . . , cn to the verifier.

V1: The verifier chooses a random edge (u, v) ∈ E and sends it to the prover.

P2: The prover reveals colors of u and v by sending (su, ϕ(u)), (sv , ϕ(v)).

V2: The verifier checks:

cu = Csu(ϕ(u)), cv = Csv (ϕ(v)), ϕ(u) ̸= ϕ(v)

Accept if all hold; otherwise reject.

ZKP through G3C November 11, 2025 12 / 17

Completeness: If G is 3-colorable, verifier always accepts.
Soundness: If not, reject with probability ≥ 1/|E |.

The next slides will prove computational zero knowledge for above protocol.

ZKP through G3C November 11, 2025 13 / 17

Completeness: If G is 3-colorable, verifier always accepts.
Soundness: If not, reject with probability ≥ 1/|E |.

The next slides will prove computational zero knowledge for above protocol.

ZKP through G3C November 11, 2025 13 / 17

Simulator M∗ for the Graph 3-Coloring ZKP

M∗ incorporates the code of interactive program V ∗.

Simulator M∗ (on input graph
G = (V ,E), n = |V |,G ∈ G3C):

1. Set verifier randomness: Pick random tape r ∈ {0, 1}q(n), where q(·) bounds
the runtime of V ∗.

2. Simulate commitments: Choose random colors e1, . . . , en ∈ {1, 2, 3} and
random strings s1, . . . , sn ∈ {0, 1}n. Compute c ′i = Csi (ei) for each i ∈ V .

3. Run the verifier V ∗: Give G as input, r as random tape, and (c ′1, . . . , c
′
n) as

incoming messages. Let its first outgoing message be m = (u, v) ∈ E .

4. Reveal simulated colors:
▶ If eu ̸= ev , output simulated transcript (G , r , (c ′1, . . . , c

′
n), (su, eu, sv , ev)).

▶ Else, output ⊥ (simulation failure).

ZKP through G3C November 11, 2025 14 / 17

Simulator M∗ for the Graph 3-Coloring ZKP

M∗ incorporates the code of interactive program V ∗. Simulator M∗ (on input graph
G = (V ,E), n = |V |,G ∈ G3C):

1. Set verifier randomness: Pick random tape r ∈ {0, 1}q(n), where q(·) bounds
the runtime of V ∗.

2. Simulate commitments: Choose random colors e1, . . . , en ∈ {1, 2, 3} and
random strings s1, . . . , sn ∈ {0, 1}n. Compute c ′i = Csi (ei) for each i ∈ V .

3. Run the verifier V ∗: Give G as input, r as random tape, and (c ′1, . . . , c
′
n) as

incoming messages. Let its first outgoing message be m = (u, v) ∈ E .

4. Reveal simulated colors:
▶ If eu ̸= ev , output simulated transcript (G , r , (c ′1, . . . , c

′
n), (su, eu, sv , ev)).

▶ Else, output ⊥ (simulation failure).

ZKP through G3C November 11, 2025 14 / 17

Simulator M∗ for the Graph 3-Coloring ZKP

M∗ incorporates the code of interactive program V ∗. Simulator M∗ (on input graph
G = (V ,E), n = |V |,G ∈ G3C):

1. Set verifier randomness: Pick random tape r ∈ {0, 1}q(n), where q(·) bounds
the runtime of V ∗.

2. Simulate commitments: Choose random colors e1, . . . , en ∈ {1, 2, 3} and
random strings s1, . . . , sn ∈ {0, 1}n. Compute c ′i = Csi (ei) for each i ∈ V .

3. Run the verifier V ∗: Give G as input, r as random tape, and (c ′1, . . . , c
′
n) as

incoming messages. Let its first outgoing message be m = (u, v) ∈ E .

4. Reveal simulated colors:
▶ If eu ̸= ev , output simulated transcript (G , r , (c ′1, . . . , c

′
n), (su, eu, sv , ev)).

▶ Else, output ⊥ (simulation failure).

ZKP through G3C November 11, 2025 14 / 17

Simulator M∗ for the Graph 3-Coloring ZKP

M∗ incorporates the code of interactive program V ∗. Simulator M∗ (on input graph
G = (V ,E), n = |V |,G ∈ G3C):

1. Set verifier randomness: Pick random tape r ∈ {0, 1}q(n), where q(·) bounds
the runtime of V ∗.

2. Simulate commitments: Choose random colors e1, . . . , en ∈ {1, 2, 3} and
random strings s1, . . . , sn ∈ {0, 1}n. Compute c ′i = Csi (ei) for each i ∈ V .

3. Run the verifier V ∗: Give G as input, r as random tape, and (c ′1, . . . , c
′
n) as

incoming messages. Let its first outgoing message be m = (u, v) ∈ E .

4. Reveal simulated colors:
▶ If eu ̸= ev , output simulated transcript (G , r , (c ′1, . . . , c

′
n), (su, eu, sv , ev)).

▶ Else, output ⊥ (simulation failure).

ZKP through G3C November 11, 2025 14 / 17

Simulator M∗ for the Graph 3-Coloring ZKP

M∗ incorporates the code of interactive program V ∗. Simulator M∗ (on input graph
G = (V ,E), n = |V |,G ∈ G3C):

1. Set verifier randomness: Pick random tape r ∈ {0, 1}q(n), where q(·) bounds
the runtime of V ∗.

2. Simulate commitments: Choose random colors e1, . . . , en ∈ {1, 2, 3} and
random strings s1, . . . , sn ∈ {0, 1}n. Compute c ′i = Csi (ei) for each i ∈ V .

3. Run the verifier V ∗: Give G as input, r as random tape, and (c ′1, . . . , c
′
n) as

incoming messages. Let its first outgoing message be m = (u, v) ∈ E .

4. Reveal simulated colors:
▶ If eu ̸= ev , output simulated transcript (G , r , (c ′1, . . . , c

′
n), (su, eu, sv , ev)).

▶ Else, output ⊥ (simulation failure).

ZKP through G3C November 11, 2025 14 / 17

Simulator M∗ for the Graph 3-Coloring ZKP

M∗ incorporates the code of interactive program V ∗. Simulator M∗ (on input graph
G = (V ,E), n = |V |,G ∈ G3C):

1. Set verifier randomness: Pick random tape r ∈ {0, 1}q(n), where q(·) bounds
the runtime of V ∗.

2. Simulate commitments: Choose random colors e1, . . . , en ∈ {1, 2, 3} and
random strings s1, . . . , sn ∈ {0, 1}n. Compute c ′i = Csi (ei) for each i ∈ V .

3. Run the verifier V ∗: Give G as input, r as random tape, and (c ′1, . . . , c
′
n) as

incoming messages. Let its first outgoing message be m = (u, v) ∈ E .

4. Reveal simulated colors:
▶ If eu ̸= ev , output simulated transcript (G , r , (c ′1, . . . , c

′
n), (su, eu, sv , ev)).

▶ Else, output ⊥ (simulation failure).

ZKP through G3C November 11, 2025 14 / 17

Why the Simulator M∗ Works

▶ If the verifier’s edge choice were oblivious (independent of commitments), then
for random fake colors ei ∈ {1, 2, 3}:

Pr[eu ̸= ev] =
2
3 .

Hence, M∗ would succeed (not output ⊥) with probability 2
3 .

▶ In reality, the verifier’s request may depend on the commitments, but due to the
hiding (secrecy) of the commitment scheme, this dependence is only
computationally negligible — i.e., the verifier is almost oblivious.

▶ Pr[M∗(G) = ⊥] ≈ 1
3 ± negl(n).

▶ Claim 1: Using request-obliviousness, simulator’s failure probability ≈ 1
3 .

▶ Claim 2: Conditioned on success, simulator’s output is computationally
indistinguishable from the real verifier’s view (else we break ”nonuniform”
secrecy).

ZKP through G3C November 11, 2025 15 / 17

Why the Simulator M∗ Works

▶ If the verifier’s edge choice were oblivious (independent of commitments), then
for random fake colors ei ∈ {1, 2, 3}:

Pr[eu ̸= ev] =
2
3 .

Hence, M∗ would succeed (not output ⊥) with probability 2
3 .

▶ In reality, the verifier’s request may depend on the commitments, but due to the
hiding (secrecy) of the commitment scheme, this dependence is only
computationally negligible — i.e., the verifier is almost oblivious.

▶ Pr[M∗(G) = ⊥] ≈ 1
3 ± negl(n).

▶ Claim 1: Using request-obliviousness, simulator’s failure probability ≈ 1
3 .

▶ Claim 2: Conditioned on success, simulator’s output is computationally
indistinguishable from the real verifier’s view (else we break ”nonuniform”
secrecy).

ZKP through G3C November 11, 2025 15 / 17

Why the Simulator M∗ Works

▶ If the verifier’s edge choice were oblivious (independent of commitments), then
for random fake colors ei ∈ {1, 2, 3}:

Pr[eu ̸= ev] =
2
3 .

Hence, M∗ would succeed (not output ⊥) with probability 2
3 .

▶ In reality, the verifier’s request may depend on the commitments, but due to the
hiding (secrecy) of the commitment scheme, this dependence is only
computationally negligible — i.e., the verifier is almost oblivious.

▶ Pr[M∗(G) = ⊥] ≈ 1
3 ± negl(n).

▶ Claim 1: Using request-obliviousness, simulator’s failure probability ≈ 1
3 .

▶ Claim 2: Conditioned on success, simulator’s output is computationally
indistinguishable from the real verifier’s view (else we break ”nonuniform”
secrecy).

ZKP through G3C November 11, 2025 15 / 17

Why the Simulator M∗ Works

▶ If the verifier’s edge choice were oblivious (independent of commitments), then
for random fake colors ei ∈ {1, 2, 3}:

Pr[eu ̸= ev] =
2
3 .

Hence, M∗ would succeed (not output ⊥) with probability 2
3 .

▶ In reality, the verifier’s request may depend on the commitments, but due to the
hiding (secrecy) of the commitment scheme, this dependence is only
computationally negligible — i.e., the verifier is almost oblivious.

▶ Pr[M∗(G) = ⊥] ≈ 1
3 ± negl(n).

▶ Claim 1: Using request-obliviousness, simulator’s failure probability ≈ 1
3 .

▶ Claim 2: Conditioned on success, simulator’s output is computationally
indistinguishable from the real verifier’s view (else we break ”nonuniform”
secrecy).

ZKP through G3C November 11, 2025 15 / 17

Conclusions

▶ The simulator M∗ succeeds with constant probability (≈ 2/3) even without
knowing the 3-coloring, by exploiting the hiding property of the commitment
scheme.

▶ Hence, We achieve computational zero-knowledge for 3-Colorability: the NP
complete problem.

ZKP through G3C November 11, 2025 16 / 17

References

Oded Goldreich, Foundations of Cryptography, Volume 1: Basic Tools, Cambridge
University Press, 2001.

Oded Goldreich, Silvio Micali, and Avi Wigderson,
Proofs that Yield Nothing But Their Validity, or All Languages in NP Have
Zero-Knowledge Proof Systems,
Journal of the ACM, 1986.

ZKP through G3C November 11, 2025 17 / 17

