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Interactive Proof System

A pair of interactive machines (P, V) is called an interactive proof system for a
language L if V is PPT TM and the following two conditions hold:

» Completeness: For every x € L, 3 P
2
PH(P, V)(x) = 1] >

» Soundness: For every x ¢ L and every interactive machine B,
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Perfect Zero-Knowledge

Let (P, V) be an interactive proof system for some language L. We say that (P, V) is
perfect zero-knowledge if

ZKP through G3C November 11, 2025 4/17



Perfect Zero-Knowledge

Let (P, V) be an interactive proof system for some language L. We say that (P, V) is
perfect zero-knowledge if for every PPT TM

ZKP through G3C November 11, 2025 4/17



Perfect Zero-Knowledge

Let (P, V) be an interactive proof system for some language L. We say that (P, V) is
perfect zero-knowledge if for every PPT TM V*, there exists a PPT algorithm M*
such that for every x € L, the following hold:

1. With probability at most %, on input x, machine M* outputs a special symbol L,
ie.,

—

PriM*(x) = 1] < 5>
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Perfect Zero-Knowledge

Let (P, V) be an interactive proof system for some language L. We say that (P, V) is
perfect zero-knowledge if for every PPT TM V*, there exists a PPT algorithm M*
such that for every x € L, the following hold:
1. With probability at most %, on input x, machine M* outputs a special symbol L,
ie.,

—

PriM*(x) = 1] < 5>

2. m*(x) g (P, V*)(x) (output of V* after interacting with P on x)

where, m*(x) denote the random variable describing the distribution of M*(x)
conditioned on M*(x) # L, i.e.,

Pr{m*(x) = a] = Pr[M*(x) = o | M*(x) # 1], Va € {0,1}".
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Computational Zero-Knowledge

Let (P, V), L, and V* be as above.

ZKP through G3C November 11, 2025 5/17



Computational Zero-Knowledge

Let (P, V), L, and V* be as above.
view?. (x) := the random variable describing the content of the random tape of V*

ZKP through G3C November 11, 2025 5/17



Computational Zero-Knowledge

Let (P, V), L, and V* be as above.
view?. (x) := the random variable describing the content of the random tape of V*
and the messages V* receives from P during their interaction on common input x.

We say that (P, V) is zero-knowledge if for every PPT TM V*, there exists PPT
algorithm M* such that the ensembles

{view(-(x)}xer and  {M*(x)}xeL

are computationally indistinguishable.
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Computational Indistinguishable and Complexity Class Relation

We consider ensembles indexed by strings from a language L. We say that the
ensembles { Ry }xcr and {Sx}xecL are computationally indistinguishable if for every
probabilistic polynomial-time algorithm D, for every polynomial p(-), and for all
sufficiently long x € L, it holds that

IPr[D(x, Ry) = 1] — Pr[D(x, Sx) = 1]| < (‘ i
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Computational Indistinguishable and Complexity Class Relation

We consider ensembles indexed by strings from a language L. We say that the
ensembles { Ry }xcr and {Sx}xecL are computationally indistinguishable if for every
probabilistic polynomial-time algorithm D, for every polynomial p(-), and for all
sufficiently long x € L, it holds that

IPr[D(x, Ry) = 1] — Pr[D(x, Sx) = 1]| < (‘ i

Complexity Class Relations:

BPP C PZK C CZK CIP
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Graph 3-Coloring (G3C)

The language Graph 3-Coloring, denoted G3C, consists of all simple (finite)
undirected graphs that can be vertex-colored using three colors such that no two
adjacent vertices are given the same color.

Formally, a graph G = (V, E) is 3-colorable if there exists a mapping
61V - {1,2,3)
such that ¢(u) # ¢(v) for every (u,v) € E.

Vi

V2 V3

2!
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Zero-Knowledge Proof for Graph 3-Coloring: Intuition

» To prove that a graph G = (V/, E) is 3-colorable, the prover generates a random
3-coloring ¢.
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Zero-Knowledge Proof for Graph 3-Coloring: Intuition

» To prove that a graph G = (V/, E) is 3-colorable, the prover generates a random
3-coloring ¢.

» Each vertex color represents a small piece of information about the global coloring.
» The verifier will only inspect the colors of a few edges to confirm correctness.

» Each inspected edge (u, v) € E yields a template (¢(u), ¢(v)).

» Each individual template reveals no information.
» If all templates are correct (distinct colors), the graph must be 3-colorable.

» Graphs that are not 3-colorable must contain at least one “bad” edge (same
color), so they are rejected with noticeable probability.

» The zero-knowledge property holds intuitively because a simulator can mimic the
interaction by picking random distinct colors for the verifier's chosen edge.
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Properties:
» If G is 3-colorable, verifier always accepts.
» If not, verifier rejects with probability at least 1/|E].
» Repeating the protocol increases confidence.

However, for implementation, we don't have perfect boxes, hence we use commitment
schemes.
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Commitment Schemes: Two-Phase Protocol
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Commitment Schemes: Two-Phase Protocol

Phase 1 — Commit (Hiding Phase)
» The sender (prover) chooses a secret value v and some random coins r.
» |t computes a commitment C = Commit(v; r) and sends C to the receiver
(verifier).

» The receiver learns nothing about v (secrecy ensured by randomness).
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» The sender (prover) chooses a secret value v and some random coins r.

» |t computes a commitment C = Commit(v; r) and sends C to the receiver

(verifier).

» The receiver learns nothing about v (secrecy ensured by randomness).
Phase 2 — Reveal (Binding Check)

» The sender reveals v and r.

» The receiver recomputes Commit(v; r) and checks it matches C.

» If it matches — accept. Otherwise — reject.
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Commitment Schemes: Two-Phase Protocol

Phase 1 — Commit (Hiding Phase)

» The sender (prover) chooses a secret value v and some random coins r.

» |t computes a commitment C = Commit(v; r) and sends C to the receiver

(verifier).

» The receiver learns nothing about v (secrecy ensured by randomness).
Phase 2 — Reveal (Binding Check)

» The sender reveals v and r.

» The receiver recomputes Commit(v; r) and checks it matches C.

» If it matches — accept. Otherwise — reject.

Prover Commit C Verifier

Reveal (v, r)

ZKP through G3C November 11, 2025 10/17



Commitment Scheme

A commitment scheme is a two-phase protocol between:
» Sender (S): commits to a value v € {0,1} using randomness r.
» Receiver (R): obtains commitment C and later verifies v.
Requirements:

» Hiding: For any receiver R*, the distributions {(5(0), R*)(1")} and
{(5(1), R*)(1™)} are computationally indistinguishable.

ZKP through G3C November 11, 2025 11/17



Commitment Scheme

A commitment scheme is a two-phase protocol between:
» Sender (S): commits to a value v € {0,1} using randomness r.
» Receiver (R): obtains commitment C and later verifies v.
Requirements:
» Hiding: For any receiver R*, the distributions {(5(0), R*)(1")} and
{(5(1), R*)(1™)} are computationally indistinguishable.
» Binding: For almost all random coins r of R, there exists at most one message m
forming a valid opening.
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Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V, E) with n=|V/|.
Auxiliary input to the prover: A valid 3-coloring ¢ of G.
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Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V, E) with n=|V/|.
Auxiliary input to the prover: A valid 3-coloring ¢ of G.

Protocol Steps:

P1: The prover picks a random permutation 7 over {1,2,3} and defines

o(v) = 7m(¥(v)) for all v e V.
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Protocol Steps:

P1: The prover picks a random permutation 7 over {1,2,3} and defines

o(v) = 7m(¥(v)) for all v e V.
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Zero-Knowledge Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V, E) with n=|V/|.
Auxiliary input to the prover: A valid 3-coloring ¢ of G.

Protocol Steps:
P1: The prover picks a random permutation 7 over {1,2,3} and defines

o(v) = 7m(¥(v)) for all v e V.

» Uses the commitment scheme to commit to each color:
S1,---5 50 < {0,1}7, ¢ = Gs(o(i))
» Sends cy,...,c, to the verifier.
V1: The verifier chooses a random edge (u,v) € E and sends it to the prover.
P2: The prover reveals colors of u and v by sending (sy, ¢(u)), (sy, p(v)).
V2: The verifier checks:

e = G5, (0(v), o = G, (¢(v)), ¢(u) # o(v)

Accept if all hold; otherwise reject.

ZKP through G3C November 11, 2025 12 /17



Completeness: If G is 3-colorable, verifier always accepts.
Soundness: If not, reject with probability > 1/|E|.
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Completeness: If G is 3-colorable, verifier always accepts.
Soundness: If not, reject with probability > 1/|E|.

The next slides will prove computational zero knowledge for above protocol.
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Simulator M* for the Graph 3-Coloring ZKP

M* incorporates the code of interactive program V*.
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Simulator M* for the Graph 3-Coloring ZKP

M* incorporates the code of interactive program V*. Simulator M* (on input graph
G=(V,E), n=|V|,G e G3():
1. Set verifier randomness: Pick random tape r € {0,1}9"), where g(-) bounds
the runtime of V*.
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G=(V,E), n=|V|,G e G3():
1. Set verifier randomness: Pick random tape r € {0,1}9"), where g(-) bounds
the runtime of V*.
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random strings s1,...,s, € {0,1}". Compute ¢/ = C;,(ej) for each i € V.
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Simulator M* for the Graph 3-Coloring ZKP

M* incorporates the code of interactive program V*. Simulator M* (on input graph

G =
1.

(V,E), n=|V|,G € G3():

Set verifier randomness: Pick random tape r € {0,1}9("), where g(-) bounds
the runtime of V*.

. Simulate commitments: Choose random colors ey, ..., e, € {1,2,3} and

random strings s1,...,s, € {0,1}". Compute ¢/ = C;,(ej) for each i € V.

. Run the verifier V*: Give G as input, r as random tape, and (ci,...,c},) as

incoming messages. Let its first outgoing message be m = (u,v) € E.
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Why the Simulator M* Works

» If the verifier's edge choice were oblivious (independent of commitments), then
for random fake colors e; € {1,2,3}:

Prle, # e/] = %

Hence, M* would succeed (not output L) with probability 3.
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Hence, M* would succeed (not output L) with probability 3.

» In reality, the verifier's request may depend on the commitments, but due to the
hiding (secrecy) of the commitment scheme, this dependence is only
computationally negligible — i.e., the verifier is almost oblivious.

> Pr[M*(G) = 1] ~ § + negl(n).
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Why the Simulator M* Works

>

v

If the verifier's edge choice were oblivious (independent of commitments), then
for random fake colors e; € {1,2,3}:

Prle, # e/] = %

Hence, M* would succeed (not output L) with probability 3.

In reality, the verifier's request may depend on the commitments, but due to the
hiding (secrecy) of the commitment scheme, this dependence is only
computationally negligible — i.e., the verifier is almost oblivious.

PriM*(G) = 1] ~ § + negl(n).

Claim 1: Using request-obliviousness, simulator’s failure probability ~ %

Claim 2: Conditioned on success, simulator’s output is computationally
indistinguishable from the real verifier's view (else we break " nonuniform”
secrecy).
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Conclusions

» The simulator M* succeeds with constant probability (= 2/3) even without
knowing the 3-coloring, by exploiting the hiding property of the commitment
scheme.

» Hence, We achieve computational zero-knowledge for 3-Colorability: the NP
complete problem.
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