CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY NITIN SAXENA

MID-SEMESTER EXAMINATION (2023-24/I)
POINTS: 40

DATE GIVEN: 21-SEP'23
DUE: 25-SEP'23 (10AM)

Rules:

- You are not allowed to discuss.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Please give your LaTeXed or Word processed solution-sheet in PDF. This will be graded, and commented, in-place.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proof details covered before.

Solve any two of Q.1-3, and solve Q.4. In all, you have to attempt three problems.

Question 1: [10 points] Show that $\mathrm{P} \neq \mathrm{BPP}$ implies $\mathrm{P} \neq \mathrm{NP}$.
Question 2: [10 points] Recall Razborov-Smolensky's approximator polynomial technique. Can it be generalized to prove $\bmod _{p} \notin \mathrm{ACC}^{0}\left[q^{m}\right]$, where p, q are distinct primes and $m \in \mathbb{N}$? Give a detailed response.

Question 3: [10 points] Let G be an undirected non-complete regular graph with self-loops. Let A be its normalized adjacency matrix. Show that the eigenvalue of A with the second-largest value (note- we are not considering the absolute value) is positive.

Question 4: $[15+5$ points] Let G be an (n, d, λ)-expander. Prove the following combinatorial expansion property: For all $S, T \subseteq V(G)$,

$$
\left||E(S, T)|-\frac{d}{n}\right| S|\cdot| T|\mid \leq \lambda d \cdot \sqrt{|S| \cdot|T|} .
$$

$E(S, T)$ denote the set of edges from S to T.
Deduce an upper bound on the size of independent sets in G.

