CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY NITIN SAXENA

END-SEMESTER EXAMINATION (2023-24/I)

POINTS: 40

DATE GIVEN: 21-NOV'23 DUE: 24-NOV'23 (8PM)

Rules:

• You are *not* allowed to discuss.

- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Submit your solutions, before time, to your TA. Please give your LaTeXed or Word processed solution-sheet in PDF. This will be graded, and commented, in-place.
- Clearly express the fundamental *idea* of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proof details covered before.

Question 1: [10 points] Suppose boolean function f is in E with $H_{avg}(f) \geq n^4$. Then, the function $g: z_1z_2 \mapsto z_1 \circ z_2 \circ f(z_1) \circ f(z_2)$, for $z_1, z_2 \in \{0, 1\}^{\ell/2}$, is an $(\ell + 2)$ -prg.

Question 2: [12 points] An ecc $E: \{0,1\}^n \to \{0,1\}^m$ is called ϵ -biased if for all nonzero $x \in \{0,1\}^n$, $\#\{i \mid E(x)_i \neq 0\}/m \in \left(\frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon\right)$.

For every $\epsilon \in (0, \frac{1}{2})$, prove the existence of an ϵ -biased linear error-correcting code $E: \{0,1\}^n \to \{0,1\}^{\text{poly}(n/\epsilon)}$ with poly-time encoding and decoding algorithms.

Let us explore some fundamental concepts from cryptography.

Function $f: \{0,1\}^* \to \{0,1\}^*$ is called *one-way* if

- \bullet f is poly-time computable, and
- for all randomized poly-time algorithms $A, \forall c > 0$, for all sufficiently large n,

Prob
$$[A(f(x), 1^n) \in f^{-1}(f(x))] < n^{-c},$$

where the probability is over $x \in \{0,1\}^n$ and the random bits of A.

Predicate $b: \{0,1\}^* \to \{0,1\}$ is called hard-core of a function f if

- f, b are poly-time computable, and
- for all randomized poly-time algorithms $A, \forall c > 0$, for all sufficiently large n,

Prob
$$[A(f(x)) = b(x)] < \frac{1}{2} + n^{-c},$$

where the probability is over $x \in \{0,1\}^n$ and the random bits of A.

Question 3: [4+4+4+6 points] Prove the following facts:

- (1) If there is a one-way function then there is a *length-preserving* one-way function.
- (2) If b is hard-core (of some f) then (for the uniform distribution U_n),

$$|\operatorname{Prob}[b(U_n) = 0] - \operatorname{Prob}[b(U_n) = 1]| = n^{-\omega(1)}.$$

- (3) If b is hard-core of some one-to-one function f, then f is one-way.
- (4) For every one-way function there is a hard-core predicate.

