CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY
 NITIN SAXENA

ASSIGNMENT 4

POINTS: 50

DATE GIVEN: 28-OCT-2023
DUE: 13-NOV-2023

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Please give your LaTeXed or Word processed solution-sheet in PDF. This will be graded, and commented, in-place.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.
- Acknowledgements: Several problems are from Arora $\mathcal{E B ~ B a r a k , ~ C o m - ~}^{\text {- }}$ putational Complexity: A Modern Approach, and other lecture notes.

Question 1: [9 points] Suppose a boolean function f is in E with $\mathrm{H}_{\mathrm{avg}}(f) \geq n^{4}$. Show that the function $g: z \mapsto z \circ f(z)$, for $z \in\{0,1\}^{\ell}$, is an $(\ell+1)$-prg.

Question 2: [13 points] Prove that NEXP = MA implies NEXP \subseteq $\mathrm{P} /$ poly.

Question 3: [10 points] Suppose BPP \neq EXP. Could you use this to derandomize BPP to some extent? Sketch the proof details.

Question 4: [9 points] For every $\delta>0$ and sufficiently large n, prove the existence of a linear ecc $E:\{0,1\}^{n} \rightarrow\{0,1\}^{1.1 n /(1-H(\delta))}$ with distance at least δ.
(Note: Linear code means that $E(x)+E(y)=E(x+y)$, where
addition is componentwise modulo 2. Let $H(\delta):=-\delta \log \delta-(1-$ $\delta) \log (1-\delta)$.)

Question 5: [9 points] Show that there exists an explicit linear-stretch code, i.e. $\exists c, \delta>0, \forall n, \exists$ ecc $E:\{0,1\}^{n} \rightarrow\{0,1\}^{c n}$ of distance at least δ with efficient encoding/decoding algorithms.

Question 6: [0 points] For every $c>0$, prove that EXP \nsubseteq i.o.-Size $\left(n^{c}\right)$.
Question 7: [0 points] In the lectures we've been using multiple versions of the Permanent function per_{n} of an $n \times n$ matrix. It could be boolean-valued, integral, or algebraic/ arithmetic. Carefully consider these definitions and compare them.

Question 8: [0 points] Prove that, for unique decoding, the channel error should be less than 25%. What about non-unique decoding?

Question 9: [0 points] How do you factor $f(x) \bmod p$?
Question 10: [0 points] How do you factor $f\left(x_{1}, x_{2}\right) \bmod p$?
Question 11: [0 points] How do you find an integral root of an integral polynomial $f(x)$?

Question 12: [0 points] Why does Reed-Solomon code seem to 'violate' the Johnson Bound on list-decoding?

Question 13: [0 points] Complete the technical details of the amplification of worst-case hardness to average-case hardness.

