CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY
 NITIN SAXENA

ASSIGNMENT 3

POINTS: 50

DATE GIVEN: 04-OCT-2023
DUE: 25-OCT-2023

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Please give your LaTeXed or Word processed solution-sheet in PDF. This will be graded, and commented, in-place.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.
- Acknowledgements: Several problems are from Arora $\mathcal{E B ~ B a r a k , ~ C o m - ~}^{\text {- }}$ putational Complexity: A Modern Approach, and other lecture notes.

Question 1: [Chernoff bound for walks] [11 points] Let $G=(V, E)$ be a connected regular undirected graph. Let $f: V \rightarrow\{0,1\}$ be a boolean function. Let $\left(v_{1}, \ldots, v_{t}\right)$ be a $(t-1)$-step random walk in G. Prove the following relationship between the mean and the expectation of f.

$$
\operatorname{Pr}\left[\frac{1}{t} \sum_{i \in[t]} f\left(v_{i}\right)-\operatorname{Exp}[f] \geq \epsilon+\lambda(G)\right]<e^{-\Omega\left(\epsilon^{2} t\right)} .
$$

Question 2: [$8+3$ points] Show that for some $\epsilon>0$, there exists a function G that is a $2^{\epsilon n}$ - prg ignoring the explicitness condition (of G being E-computable).

Give a complexity upper bound for G as best as you can.

Question 3: [8 points] Show that for every large enough n, there is a boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ whose average-case-hardness is exponential.

Question 4: [7 points] Show that if there exists an $S(\ell)$-prg then there exists a boolean function $f \in \mathrm{E}$ such that $\mathrm{H}_{\text {wrs }}(f) \geq S(n)$.

Question 5: [13 points] If there exists a boolean function $f \in \mathrm{E}$ and $\epsilon>0$ such that $\mathrm{H}_{\mathrm{avg}}(f) \geq 2^{\epsilon n}$, then MA $=\mathrm{NP}$.

Question 6: [0 points] Show that for d-regular graph $G, \lambda(G)>1 / \sqrt{d}$.
Question 7: [0 points] State and prove the Cauchy-Schwarz inequality. When does the equality hold?

Question 8: [0 points] Let A be an $n \times n$ matrix with eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Show that there is a set of orthonormal eigenvectors $\left\{v_{1}, \ldots, v_{n}\right\}$ such that $A=\sum_{i \in[n]} \lambda_{i} v_{i} v_{i}^{\mathrm{T}}$.

Question 9: [0 points] State and prove the expression for the eigenvalues of A^{2}.

Question 10: [0 points] State and prove the expression for the eigenvalues of $A \otimes A$.

Question 11: [0 points] In Reingold's proof done in the class, we converted the given graph G to the expander $G_{O(\log n)}$. Complete the logspace algorithm to find a path from s to t.

Question 12: [0 points] Show that any algorithm of time-complexity $T(n)$ can be converted into a (uniform) circuit family of size $O\left(T(n)^{2}\right)$.

Question 13: [0 points] Why did we prove two theorems to upperbound the spectral-gap of the zig-zag product? Could one follow from the other?

