CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY
 NITIN SAXENA

ASSIGNMENT 2

POINTS: 50

DATE GIVEN: 01-SEP-2023
DUE: 18-SEP-2023

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Please give your LaTeXed or Word processed solution-sheet in PDF. This will be graded, and commented, in-place.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.
- Acknowledgements: Several problems are from Arora $\mathcal{E B ~ B a r a k , ~ C o m - ~}^{\text {- }}$ putational Complexity: A Modern Approach, and other lecture notes.

Question 1: $[6+3$ points $]$ In the class we proved the Razborov-Smolensky result: $\bmod _{p} \notin \mathrm{ACC}^{0}[q]$, for $p=2=q-1$. Give the general proof for primes $p \neq q$.

What happens to the proof when one of them is a composite?

Question 2: [7 points] Show that the OR of n variables cannot be expressed as a polynomial over \mathbb{F}_{p} of degree less than n.

Question 3: [13 points] Give an example of a set-family \mathcal{Z} with $(p-1)^{\ell}$ subsets (each size $\leq \ell$), such that there is no sunflower with p-petals.

Question 4: $[6+9$ points $]$ Let A be a real symmetric stochastic matrix. Show that
(1) its eigenvalues are real with absolute value at most 1.
(2) its eigenvectors, for different eigenvalues, are linearly independent.

Question 5: [6 points] Let A, B be real symmetric stochastic matrices. Show that the second-largest eigenvalue function $\lambda(\cdot)$ is subadditive (i.e. $\lambda(A+B) \leq \lambda(A)+\lambda(B))$.

Question 6: [0 points] Let G be a graph with only two distinct eigenvalues. Prove that G is a complete graph.

Question 7: [0 points] Show that for an $n \times n$ matrix $X=\left(\left(x_{i, j}\right)\right)$, the polynomial $\operatorname{per}(X)$ has a formula of size $2^{O(n)}$.

Question 8: [0 points] Show that $\mathrm{AM}[k]=\mathrm{AM}[2]$ for all constant $k \geq 2$.

Question 9: [0 points] Show that the graph isomorphism problem is in NP \cap coAM. (So, "almost" in NP $\cap c o N P$.)

Question 10: [0 points] Fix parameters n, d. Show that a random n-vertex d-regular graph is a $(n, 2 d, 1 / 3)$-combinatorial expander.

Question 11: $[0$ points $]$ Consider a subset A of the n-tuples \mathbb{F}_{3}^{n}. We are interested in the largest set A that is free of arithmetic progressions of size 3 (i.e. there is no $a, b, c \in A$ satisfying $a+b+c \equiv \mathbf{0} \bmod 3$).

Could you relate this question to the sunflower lemma?
Question 12: [0 points] Recall our proof of the $n^{\Omega(\sqrt{k})}$ monotone circuit lower bound for the k-clique problem. Is this bound tight?

Question 13: [0 points] Think of another "hard" problem that is monotone.

