## CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY NITIN SAXENA

## ASSIGNMENT 1

POINTS: 50

DATE GIVEN: 30-JUL-2018
DUE: 23-AUG-2018

## Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.
- Acknowledgements: Several problems are from Arora $\mathcal{E}$ Barak, Computational Complexity: A Modern Approach and other lecture notes.

Question 1: [5 points] Let $\mathbb{F}_{p}$ be a finite field. Show that the question of existence of a zero of a system of quadratic equations is NP-complete.

Question 2: [10 points] Consider the question of adding two $n$-bit numbers. Show that it can be done by a poly $(n)$-sized, constant-depth boolean circuit.
[It is usually stated as $A d d i t i o n \in A C^{0}$.]
Question 3: [15 points] Show that QBF is PSPACE-complete.

Question 4: [10 points] In the definition of BPP we had used an error probability of $1 / 4$. Show that the class BPP remains the same if we change the probability upper bound to $\frac{1}{2}-\frac{1}{\operatorname{poly}(n)}$, where $n$ is the input size.

Question 5: [10 points] Show that $\mathrm{BPP} \subseteq \mathrm{P} /$ poly.
Question 6: [0 points] Consider the circuit complexity class $\operatorname{Size}(n)$. Show that it has uncomputable problems.

Question 7: [Permanent] [0 points] The question of counting the number of satisfying assignments of a given boolean formula is called \#SAT. Show that \#SAT and permanent (for $0 / 1$ matrices) are poly-time equivalent functional problems.

Question 8: [Time hierarchy] [0 points] Let $s(n)$ be a real-valued polynomial. Prove that $\operatorname{Dtime}(s(n))$ is a proper subset of $\operatorname{Dtime}\left(s(n)^{2}\right)$.

Question 9: [0 points] State and prove the hierarchy theorems for Ntime $(s(n))$ and Space $(s(n))$.

Question 10: [0 points] In Q.4. if we change the error probability (upper bound) to $\frac{1}{2}-\frac{1}{2^{n}}$, what complexity class do you get? Could this be called efficient randomized algorithm?

Question 11: [ 0 points] Let $d \in \mathbb{N}$ and a prime $p$ be given in the input in binary. Give a poly $(d \log p)$-time randomized algorithm to construct the finite field $\mathbb{F}_{p^{d}}$.

