CS688 - COMPUTATIONAL ARITHMETIC-GEOMETRY \& APPLICATIONS NITIN SAXENA

END-SEMESTER EXAMINATION
 POINTS: 65

DATED: 27-APR-2023
DUE: 01-MAY-2023 (10AM)

Rules:

- You are strongly encouraged to work independently. You are not allowed to discuss.
- Write the solutions on your own and honorably acknowledge the sources if any. cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Submit your solutions, before time, to your TA. Preferably, submit a printed/pdf copy of your LaTeXed or Word processed solution sheet.
TA: Diptajit Roy diptajit@cse.iitk.ac.in

Question 1: $[3+3$ points $]$ Show that the smoothness of curves is not preserved under birational equivalence.

- How does the number of \mathbb{F}_{q}-points on a curve change when we move to its smooth model?

Question 2: (Genus one) [9+5 points] Let C be a genus one smooth projective curve over k (any field) and say it has a k-point P. Show that C has an affine description $y^{2}+h(x) y=f(x)$, for some $h, f \in k[x]$ of degrees at most 1,3 respectively.
[Hint: Can you utilize $L(i P)$?]

- Finally show that any such C, over a field where $6 \neq 0$, has an affine description $y^{2}=x^{3}+a x+b$, with $4 a^{3}+27 b^{2} \neq 0$.

Question 3: (Fermat curve) [18 points] Compute the genus of the curve $C: x_{0}^{n}+x_{1}^{n}+x_{2}^{n}=0$ over any algebraically closed field k.

Question 4: [5+6 points] Let C be a smooth projective curve, over $k=\mathbb{F}_{q}$, of genus g. Let $J(C)$ be its Jacobian variety. Estimate the size $|J(C)|$.

- What can you say about the structure of the group $J(C)$ as a product of cyclic groups?

Question 5: $[4+4+8$ points] Let k be a field where $6 \neq 0$.
Consider the affine curve $C: y^{2}=x^{3}-x$ and its projective version $\tilde{C}: y^{2} z=x^{3}-x z^{2}$. Show that \tilde{C} is non-singular at all points.

- Now, consider $C: y^{2}=x^{4}-x$ and its projective version $\tilde{C}: y^{2} z^{2}=$ $x^{4}-x z^{3}$. Show that \tilde{C} has a singularity. Thus, plain homogenization does not always give a smooth model for varieties!
- Describe a smooth model of the curve $y^{2}=x^{4}-x$.

