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0. INTRODUCTION

In a very rough sketch we explain what algebraic geometry is about and what it can be
used for. We stress the many correlations with other fields of research, such as com-
plex analysis, topology, differential geometry, singularity theory, computer algebra,
commutative algebra, number theory, enumerative geometry, and even theoretical
physics. The goal of this section is just motivational; you will not find definitions or
proofs here (and probably not even a mathematically precise statement).

0.1. What is algebraic geometry? To start from something that you probably know, we
can say that algebraic geometry is the combinatidimefr algebraandalgebra

¢ In linear algebra, we study systems of linear equations in several variables.
¢ In algebra, we study (among other things) polynomial equations in one variable.

Algebraic geometry combines these two fields of mathematics by studying systems of
polynomial equations in several variables.

Given such a system of polynomial equations, what sort of questions can we ask? Note
that we cannot expect in general to write down explicitly all the solutions: we know from
algebra that even a single complex polynomial equation of defjreel in one variable
can in general not be solved exactly. So we are more interested in statements about the
geometric structure of the set of solutions. For example, in the case of a complex polyno-
mial equation of degreg, even if we cannot compute the solutions we know that there are
exactlyd of them (if we count them with the correct multiplicities). Let us now see what
sort of “geometric structure” we can find in polynomial equations in several variables.

Example 0.1.1. Probably the easiest example that is covered neither in linear algebra nor
in algebra is that of a single polynomial equation in two variables. Let us consider the
following example:

Ch={(xy) €C?; y?=(x—1)(x—2)---(x—2n)} C C2,

wheren > 1. Note that in this case it is actually possible to write down all the solutions,
because the equation is (almost) solvedyf@lready: we can pick to be any complex
number, and then get two values for— unlessx € {1,...,2n}, in which case we only get
one value fory (namely 0).

So it seems that the set of equations looks like two copies of the complex plane with the
two copies of each point,1..,2n identified: the complex plane parametrizes the values
for x, and the two copies of it correspond to the two possible valueg fa. the two roots
of the numbefx—1)--- (x—2n).

This is not quite true however, because a complex non-zero number does not have a
distinguished first and second root that could correspond to the first and second copy of
the complex plane. Rather, the two roots of a complex number get exchanged if you run
around the origin once: if we consider a path

x=re'®  for0< ¢ <2mand fixedr >0

around the complex origin, the square root of this number would have to be defined by

Jx=re?

which gives opposite values @t= 0 and$ = 2rt In other words, if inC, we run around

one of the points 1..,2n, we go from one copy of the plane to the other. The way to draw
this topologically is to cut the two planes along the lifie2], .. .,[2n— 1,2n], and to glue

the two planes along these lines as in this picture (lines marked with the same letter are to
be identified):
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To make the picture a little nicer, we can compactify our set by adding two points at infinity,
in the same way as we go frofhto C., by adding a pointo. If we do this here, we end up
with a compact surface with— 1 handles:

add points

_— >

at infinity

Such an object is called a surfackgenus n- 1; the example above shows a surface of
genus 2.

Example 0.1.2. Example 0.1.1 is a little “cheated” because we said before that we want
to figure out the geometric structure of equations that we cannot solve explicitly. In the
example however, the polynomial equation was chosen so that we could solve it, and in
fact we used this solution to construct the geometric picture. Let us see how what we can
still do if we make the polynomial more complicated.

What happens if we consider
Co={(xy) €C?; Y’ =f(x)} C C?

with f some polynomial irx of degree B8? Obviously, as long as then2oots of f are

still distinct, the topological picture does not change. But if two of the roots approach
each other and finally coincide, this has the effect of shrinking one of the tubes connecting
the two planes until it finally reduces to a “singular point” (also calletbdg, as in the
following picture on the left:

glue
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Obviously, we can view this as a surface with one handle less, where in addition we identify
two of the points (as illustrated in the picture on the right). Note that we can still see the
“handles” when we draw the surface like this, just that one of the handles results from the
glueing of the two points.

Example 0.1.3. You have probably noticed that the polynomial equation of example 0.1.2
could be solved directly too. Let us now consider

Ca={(xy) € C?; f(xy) =0} C C?,

wheref is an arbitrary polynomial of degrek This is an equation that we certainly cannot
solve directly if f is sufficiently general. Can we still deduce the geometric structu@® of

In fact, we can do this with the idea of example 0.1.2. We saw there that the genus
of the surface does not change if we perturb the polynomial equation, even if the surface
acquires singular points (provided that we know how to compute the genus of such a sin-
gular surface). So why not deform the polynomiigb something singular that is easier to
analyze? Probably the easiest thing that comes into mind is to degenerate the polynomial
f of degreed into a product ofl linear equationgs,...,4q:

Cy={(xy) € C?; fa(xy) -~ La(xy) = 0} C C,
This surface should have the same “genus” as the ori@inal

It is easy to see what looks like: of course it is just a union af lines. Any two of
them intersect in a point, and we can certainly choose the lines so that no three of them
intersect in a point. The picture below sho@sfor d = 3 (note that every line is — after
compactifying — just the complex sphets).

What is the genus of this surface? In the picture above it is obvious that we have one loop;
so if d = 3 we get a surface of genus 1. What is the general formula? Wedchspkeres,

and every two of them connect in a pair of points, so in total we f@)/eonnections. But

d — 1 of them are needed to glue thespheres to a connected chain without loops; only
the remaining ones then add a handle each. So the ge@jgafd hence o) is

d d-1
—(d-1)= .
This is commonly called thdegree-genus formular plane curves.

Remark0.1.4 One of the trivial but common sources for misunderstandings is whether we
count dimensions ovet or overR. The examples considered above i@ surfacegthe
dimension oveR is 2), butcomplex curvefthe dimension ove€ is 1). We have used the
word “surface” as this fitted best to the pictures that we have drawn. When looking at the
theory however, it is usually best to call these objects curves. In what follows, we always
mean the dimension ovér unless stated otherwise.

Remark0.1.5 What we should learn from the examples above:

e Algebraic geometry can make statements about the topological structure of ob-
jects defined by polynomial equations. It is therefore relatetbpmlogyand
differential geometrywhere similar statements are deduced using analytic meth-
ods).
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e The geometric objects considered in algebraic geometry need not be smooth (i.e.
they need not benanifoldd. Even if our primary interest is in smooth objects,
degenerations to singular objects can greatly simplify a problem (as in example
0.1.3). This is a main point that distinguishes algebraic geometry from other
“geometric” theories (e.g. differential or symplectic geometry). Of course, this
comes at a price: our theory must be strong enough to include such singular
objects and make statements how things vary when we degenerate from smooth
to singular objects. In this regard, algebraic geometry is relatesingularity
theorywhich studies precisely these questions.

Remark0.1.6 Maybe it looks a bit restrictive to allow only algebraic (polynomial) equa-
tions to describe our geometric objects. But in fact it is a deep theorem thediigpact
objects, we would not get anything different if we allowealomorphicequations too. In

this respect, algebraic geometry is very much related (and in certain cases identical) to
complex (analytic) geometryThe easiest example of this correspondence is that a holo-
morphic map from the Riemann sphétg to itself must in fact be a rational map (i.e. the
guotient of two polynomials).

Example 0.1.7.Let us now turn our attention to the next more complicated objects, namely
complex surfaces in 3-space. We just want to give one example her& Hesthecubic
surface

S={(xY,2); 1+ +y*+Z2 - (1+x+y+2°3=0} c C3
As this object has real dimension 4, it is impossible to draw pictures of it that reflect its
topological properties correctly. Usually, we overcome this problem by just drawing the
real part, i.e. we look for solutions of the equation over the real numbers. This then gives a
real surface iR3 that we can draw. We should just be careful about which statements we
can claim to “see” from this incomplete geometric picture.

The following picture shows the real part of the surf&ce

In contrast to our previous examples, we have now uderbar projection to map the real
3-dimensional space onto the drawing plane.

We see that there are some lines containesl in fact, one can show thatzerysmooth
cubic surface has exactly 27 lines on it (see section 4.5 for details). This is another sort of
guestion that one can ask about the solutions of polynomial equations, and that is not of
topological nature: do they contain curves with special properties (in this case lines), and if
so, how many? This branch of algebraic geometry is usually calledherative geometry

Remark0.1.8 It is probably surprising that algebraic geometry, in particular enumerative
geometry, is very much related tioeoretical physicsin fact, many results in enumerative
geometry have been found by physicists first.

Why are physicists interested e.g. in the number of lines on the cubic surface? We try
to give a short answer to this (that is necessarily vague and incomplete): There is a branch
of theoretical physics callestring theorywhose underlying idea is that the elementary
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particles (electrons, quarks,. ..) might not be point-like, but rather one-dimensional objects
(the so-called strings), that are just so small that their one-dimensional structure cannot be
observed directly by any sort of physical measurement. When these particles move in time,
they sweep out a surface in space-time. For some reason this surface has a natural complex
structure coming from the underlying physical theory.

Now the same idea applies to space-time in general: string theorists believe that space-
time is not 4-dimensional as we observe it, but rather has some extra dimensions that are
again so small in size that we cannot observe them directly. (Think e.g. of a long tube
with a very small diameter — of course this is a two-dimensional object, but if you look at
this tube from very far away you cannot see the small diameter any more, and the object
looks like a one-dimensional line.) These extra dimensions are parametrized by a space
that sometimes has a complex structure too; it might for example be the complex cubic
surface that we looked at above.

So in this case we're in fact looking at complex curves in a complex surface. A priori,
these curves can sit in the surface in any way. But there@uations of motiothat tell
you how these curves will sit in the ambient space, just as in classical mechanics it follows
from the equations of motion that a particle will move on a straight line if no forces apply
to it. In our case, the equations of motion say that the curve mustholmorphically
to the ambient space. As we said in remark 0.1.6 above, this is equivalent to saying that
we must have algebraic equations that describe the curve. So we are looking at exactly the
same type of questions as we did in example 0.1.7 above.

Example 0.1.9. Let us now have a brief look at curves in 3-dimensional space. Consider
the example

C={(xy2=@%t"t°;teC}cC.

We have given this curve parametrically, but it is in fact easy to see that we can give it
equally well in terms of polynomial equations:

C={(xy2; X =yz Y =xz Z =x}.

What is striking here is that we havhree equations, although we would expect that a
one-dimensional object in three-dimensional space should be given by two equations. But
in fact, if you leave out any of the above three equations, you're changing the set that it
describes: if you leave out e.g. the last equattos: X%y, you would get the whole-axis
{x=y =0} as additional points that do satisfy the first two equations, but not the last one.
So we see another important difference to linear algebra: it is not true that every object
of codimensiord can be given byl equations. Even worse, if you are giverequations,
it is in general a very difficult task to figure out what dimension their solution has. There
do exist algorithms to find this out for any given set of polynomials, but they are so com-
plicated that you will in general want to use a computer program to do that for you. This
is a simple example of an applicationaimputer algebrao algebraic geometry.

Remark0.1.1Q Especially the previous example 0.1.9 is already very algebraic in nature:
the question that we asked there does not depend at all on the ground field being the com-
plex numbers. In fact, this is a general philosophy: even if algebraic geometry describes
geometric objects (when viewed over the complex numbers), most methods do not rely
on this, and therefore should be established in purely algebraic terms. For example, the
genus of a curve (that we introduced topologically in example 0.1.1) can be defined in
purely algebraic terms in such a way that all the statements from complex geometry (e.g.
the degree-genus formula of example 0.1.3) extend to this more general setting. Many
geometric questions then reduce to pcoenmutative algebravhich is in some sense the
foundation of algebraic geometry.
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Example 0.1.11. The most famous application of algebraic geometry to ground fields
other than the complex numbers is certainly Fermat's Last Theorem: this is just the state-
ment that the algebraic curexer the rational numbers

C={(xy) eQ?®; xX"+y" =1} c Q?

contains only the trivial points where= 0 ory = 0. Note that this is very different from the
case of the ground fiel@, where we have seen in example 0.1.3 &t a curve of genus
(”51). But a lot of the theory of algebraic geometry applies to the rational numbers (and
related fields) as well, so if you look at the proof of Fermat's theorem (which you most
probably will not understand) you will notice that it uses e.g. the concepts of algebraic
curves and their genus all over the place, although the corresponding pdintgetains

only some trivial points. So, in some sense, we can \(ggebraic) number theorgs a

part of algebraic geometry.

Remark0.1.12 With this many relations to other fields of mathematics (and physics), it

is obvious that we have to restrict our attention in this class to quite a small subset of the
possible applications. Although we will develop the general theory of algebraic geometry,
our focus will mainly be on geometric questions, neglecting number-theoretic aspects most
of the time. So, for example, if we say “lktbe an algebraically closed field”, feel free to
read this as “lek be the complex humbers” and think about geometry rather than algebra.

Every now and then we will quote results from or give applications to other fields of
mathematics. This applies in particular to commutative algebra, which provides some of
the basic foundations of algebraic geometry. So unless you want to take commutative
algebra as a black box that spits out a useful theorem from time to time (which is possible
but not recommended), you should get some background in commutative algebra while
learning algebraic geometry. Some knowledge about geometric objects occurring in other
fields of mathematics (manifolds, projective spaces, differential forms, vector bundles, ...)
is helpful but not necessary. We will develop these concepts along the way as we need
them.

0.2. Exercises. Note: As we have not developed any theory yet, you are not expected
to be able to solve the following problems in a mathematically precise way. Rather, they
are just meant as some “food for thought” if you want to think a little further about the
examples considered in this section.

Exercise 0.2.1.What do we get in example 0.1.1 if we consider the equation

Ch={(xy) €C?; ¥ = (x=1)(x=2)--+(x—(2n—1))} C C?
instead?

Exercise 0.2.2.(For those who know something about projective geometry:) In example
0.1.3, we argued that a polynomial of degee two complex variables gives rise to a
surface of genusﬁd;l). In example 0.1.1 however, a polynomial of degreegave us a
surface of genus — 1. Isn’t that a contradiction?

Exercise 0.2.3.

(i) Show that the space of lines @" has dimension2— 2. (Hint: use that there is
a unique line through any two given pointsG.)

(i) Let Sc C2 be a cubic surface, i.e. the zero locus of a polynomial of degree 3 in
the three coordinates Gf. Find an argument why you would expect there to be
finitely many lines inS(i.e. why you would expect the dimension of the space of
lines inSto be 0-dimensional). What would you expect if the equatiofs bas
degree less than or greater than 3?
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Exercise 0.2.4.Let Sbe the specific cubic surface
S={(xY,2); X+ +Z=(x+y+2°% cC>
(i) Show that there are exactly 3 lines containe&in
(ii) Using the description of the space of lines of exercise 0.2.3, try to find an argu-
ment why these 3 lines should be counted with multiplicity 9 each (in the same
way as e.g. double roots of a polynomial should be counted with multiplicity 2).
We can then say that there are 27 linesSpoounted with their correct multiplic-
ities.
(Remark: It is actually possible to prove that the number of lines on a cubic surface does
not depend on the specific equation of the surface. This then shows, together with this

exercise, that every cubic surface has 27 lines on it. You need quite a lot of theoretical
background however to make this into a rigorous proof.)

Exercise 0.2.5.Show that if you replace the three equations defining the dDimeexam-
ple 0.1.9 by

(i) C=y>x°=2,y =2 or

(i) x®=y?x®=2,y> = 2 + ¢ for small but non-zerg,

the resulting set of solutions is in fact 0-dimensional, as you would expect it from three
equations in three-dimensional space. So we see that very small changes in the equations
can make a very big difference in the result. In other words, we usually cannot apply
numerical methods to our problems, as very small rounding errors can change the result
completely.

Exercise 0.2.6.Let X be the set of all complex 2 3 matrices of rank at most 1, viewed as
a subset of th€® of all 2 x 3 matrices. Show that has dimension 4, but that you need 3
equations to defin¥ in the ambient 6-dimensional spaté.
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1. AFFINE VARIETIES

A subset of affine n-space A" over a field K is called an algebraic set if it can be
written as the zero locus of a set of polynomials. By the Hilbert basis theorem, this
set of polynomials can be assumed to be finite. We define the Zariski topology on A"
(and hence on any subset of A") by declaring the algebraic sets to be the closed sets.

Any algebraic set X C A" has an associated radical ideal | (X) C K[Xq,...,Xn] that
consists of those functions that vanish on X. Conversely, for any radical ideal | there
is an associated algebraic set Z(1) which is the common zero locus of all functions
in |. If K is algebraically closed, Hilbert’s Nullstellensatz states that this gives in
fact a one-to-one correspondence between algebraic sets in A" and radical ideals in
K[X1,...,%n].

An algebraic set (or more generally any topological space) is called irreducible
if it cannot be written as a union of two proper closed subsets. Irreducible algebraic
sets in A" are called affine varieties. Any algebraic set in A" can be decomposed
uniquely into a finite union of affine varieties. Under the correspondence mentioned
above, affine varieties correspond to prime ideals. The dimension of an algebraic set
(or more generally of a topological space) is defined to be the length of the longest
chain of irreducible closed subsets minus one.

1.1. Algebraic sets and the Zariski topology. We have said in the introduction that we
want to consider solutions of polynomial equations in several variables. So let us now
make the obvious definitions.

Definition 1.1.1. Letk be a field (recall that you may think of the complex numbers if you
wish). We definaffine n-spaceoverk, denoted\", to be the set of alt-tuples of elements
of k:

A":={(ay,...,an); a ekfor1<i<n}
The elements of the polynomial ring

K[X1,...,X:] :={polynomials in the variables, ..., x, overk}
:{Za|x' ;a ek}

(with the sum taken over all multi-indicds= (i1,...,in) withi; >0 forall 1< j <n)
define functions or\" in the obvious way. For a given s8tC K[Xy, ..., X,] of polynomials,
we call

Z(S):={PcA"; f(P)=0forall f € S} C A"
thezero setof S. Subsets of\" that are of this form for som8 are calledalgebraic sets
By abuse of notation, we also wri f4,..., f;) for Z(S) if S={fy,..., fi}.

Example 1.1.2. Here are some simple examples of algebraic sets:

(i) Affine n-space itself is an algebraic sét? = Z(0).
(ii) The empty setis an algebraic sét=Z(1).
(iii) Any single point inA" is an algebraic setay,...,an) =Z(X1 —ai,...,Xn— an)-
(iv) Linear subspaces d&{" are algebraic sets.
(v) All the examples from section 0 are algebraic sets: e.g. the curves of examples
0.1.1 and 0.1.3, and the cubic surface of example 0.1.7.

Remarkl.1.3 Of course, different subsets kfxi, ..., xn] can give rise to the same alge-
braic set. Two trivial cases are:

(i) If two polynomials f andg are already irS, then we can also throw ifi + g
without changingZ(S).

(i) If fisinS andg is any polynomial, then we can also throw fn g without
changingZ(9).
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Recall that a subse of a commutative rindR (in our caseR = K[xy, ..., X)) is called
anideal if it is closed both under addition and under multiplication with arbitrary ring
elements. ISC Ris any subset, the set
(9 ={fig1+ -+ fmgm; fic S g R}

is called theideal generated byS, it is obviously an ideal. So what we have just said
amounts to stating that(S) = Z((S)). It is therefore sufficient to only look at the cases
whereSis an ideal ok[Xy, . .., Xn].

There is a more serious issue though that we will deal with in section 1.2: a furfction
has the same zero set as any of its powiérso e.g.Z(x1) = Z(x?) (although the ideals
(x1) and(x?) are different).

We will now address the question whether any algebraic set can be definefihiig a
number of polynomials. Although this is entirely a question of commutative algebra about
the polynomial ringR = K[x, ..., %s], we will recall here the corresponding definition and
proposition.

Lemma and Definition 1.1.4. Let R be a ring. The following two conditions are equiva-
lent:

(i) Everyidealin R can be generated by finitely many elements.

(i) R satisfies thescending chain condition every (infinite) ascending chain of
ideals b C I, C I3 C --- is stationary, i.e. we must havg £ Ini1 =l = - -
for some m.

If R satisfies these conditions, it is callsdetherian

Proof. (i) = (ii): Let I3 C I, C --- be an infinite ascending chain of idealsRn Then
| := Ujilj is an ideal ofR as well; so by assumption (i) it can be generated by finitely many
elements. These elements must already be contained in one lgf, tiwdich means that
Im=In+1="---.

(i) = (i): Assume that there is an ideblthat cannot be generated by finitely many
elements. Then we can recursively construct elemgrits| by picking f1 € | arbitrary
andfi 1 € 1\(fq,..., fj). It follows that the sequence of ideals

(f1) C (f1,f2) C (fa, f2, f3) C---
is not stationary. O

Proposition 1.1.5. (Hilbert basis theorem If R is a Noetherian ring then so is[®. In
particular, Kx1,...,X,] is Noetherian; so every algebraic set can be defined by finitely
many polynomials.

Proof. Assume that C R[X] is an ideal that is not finitely generated. Then we can define
a sequence of elemenfse | as follows: letfy be a non-zero element dfof minimal
degree, and lefi 1 be an element of of minimal degree in\(fo,..., fi). Obviously,
degf; < degfi, for all i by construction.

For alli let € R be the leading coefficient df, and letl; = (ap,...,a) C R AsRis
Noetherian, the chain of ideals C |1 C --- in Ris stationary. Hence there is amsuch
thatam:1 € (ao,...,am). Letro,...,rm € Rsuch thatam:1 = Y yria, and consider the
polynomial

m
= foq— § xdegfmia—degfi ¢
m+1 i;) ili
We must havd € I\(fo,..., fm), as otherwise the above equation would imply that; €
(fo,..., fm). But by construction the coefficient éfof degree ded. 1 is zero, so def) <
degfm1, contradicting the choice df,;1. HenceR[x] is Noetherian.
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In particular, ak is trivially Noetherian, it follows by induction th&dxg, ..., x| is. O

We will now return to the study of algebraic sets and make them into topological spaces.

Lemma 1.1.6.

(i) St C S CkXy,..., X then 4S) C Z(S1) € A"
(i) If {S} is afamily of subsets of,...,x,] thenN; Z(S) = Z(U; ) C A"
(i) 1S, S Ckixa,...,X]thenZS)UZ(S) =Z2($S) C A"

In particular, arbitrary intersections and finite unions of algebraic sets are again algebraic
sets.

Proof. (i) and (ii) are obvious, so let us prove (iii).C": If P € Z(S)UZ(S) thenP €
Z(S) orP e Z(S). In particular, for anyfy € §, f € S, we havef1(P) =0 or f2(P) =0,
so f1fp(P) =0. “D™ If P¢ Z(S)UZ(S) thenP ¢ Z(S) andP ¢ Z(S). So there
are functionsf; € §; and f, € S that do not vanish aP. Hencef;f,(P) £ 0, soP ¢
2(31%). O

Remarkl.1.7. Recall that @opology on any sefX can be defined by specifying which
subsets oK are to be considered closed sets, provided that the following conditions hold:

(i) The empty se® and the whole space are closed.
(i) Arbitrary intersections of closed sets are closed.
(i) Finite unions of closed sets are closed.

Note that the standard definition of closed subsef®bthat you know from real analysis
satisfies these conditions.

A subsely of X is then called open if its complemeXitY is closed. IfX is a topological
space andt C X any subsetY inherits aninduced subspace topologyy declaring the
sets of the forn¥ NZ to be closed wheneveéris closed inX. Amapf : X — Y is called
continuousf inverse images of closed subsets are closed. (For the standard topolkgy of
from real analysis and the standard definition of continuous functions, it is a theorem that
a function is continuous if and only if inverse images of closed subsets are closed.)

Definition 1.1.8. We define theZariski topology on A" to be the topology whose closed

sets are the algebraic sets (lemma 1.1.6 tells us that this gives in fact a topology). Moreover,
any subseX of A" will be equipped with the topology induced by the Zariski topology on

A". This will be called the Zariski topology oX.

Remarkl.1.9 In particular, using the induced subspace topology, this defines the Zariski
topology on any algebraic st c A" the closed subsets Of are just the algebraic sets
Y C A" contained inX.

The Zariski topology is the standard topology in algebraic geometry. So whenever
we use topological concepts in what follows we refer to this topology (unless we specify
otherwise).

Remarkl.1.1Q The Zariski topology is quite different from the usual ones. For example,
on A", a closed subset that is not equalAth satisfies at least one non-trivial polynomial
equation and has therefore necessarily dimension lessnth&o the closed subsets in
the Zariski topology are in a sense “very small”. It follows from this that any two non-
empty open subsets &' have a non-empty intersection, which is also unfamiliar from the
standard topology of real analysis.

Example 1.1.11. Here is another example that shows that the Zariski topology is “un-
usual”. The closed subsets &t besides the whole space and the empty set are exactly the
finite sets. In particular, if : A — Al is anybijection, thenf is a homeomorphism. (This
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last statement is essentially useless however, as we will not define morphisms between
algebraic sets as just being continuous maps with respect to the Zariski topology. In fact,
this example gives us a strong hint that we should not do so.)

1.2. Hilbert's Nullstellensatz. We now want to establish the precise connection between
algebraic sets if\" and ideals irk[xs, ..., X,], hence between geometry and algebra. We
have already introduced the operati®n) that takes an ideal (or any subsekp;, . .., Xq])

to an algebraic set. Here is an operation that does the opposite job.

Definition 1.2.1. For a subseX C A", we call
I(X) :={f €eklx,...,xn]; f(P)=0forallPe X} Cklx,..., %]
theideal of X (note that this is in fact an ideal).

Remarkl.2.2 We have thus defined a two-way correspondence

{ algebraic sets} LN { ideals in }
K[ ’

in A" L X1, .- -y Xn)

We will now study to what extent these two maps are inverses of each other.

Remarkl.2.3 Let us start with the easiest case of algebraic sets and look at poifats in
Points are minimal algebraic sets, so by lemma 1.1.6 (i) they should correspond to maximal
ideals. In fact, the poinfay, . ..,a,) € A" is the zero locus of the idebk= (x3 —ag, ..., X —

an). Recall from commutative algebra that an idealf a ring R is maximal if and only

if R/l is a field. So in our caskis indeed maximal, ag[xs,...,X,]/l = k. However,

for generak there are also maximal ideals that are not of this form, @+ 1) C R[X
(whereR[x]/(x? + 1) = C). The following proposition shows that this cannot happen if

is algebraically closedi.e. if every non-constant polynomial kix] has a zero.

Proposition 1.2.4. (Hilbert's Nullstellensatz(“theorem of the zeros”)) Assume that k is
algebraically closed (e.g. ¥ C). Then the maximal ideals of¥, .. .,x,] are exactly the
ideals of the form{x; —ay, ..., Xn — an) for some ac k.

Proof. Again this is entirely a statement of commutative algebra, so you can just take it on
faith if you wish (in fact, many textbooks on algebraic geometry do so). For the sake of
completeness we will give a short proof here in the daseC that uses only some basic
algebra; but feel free to ignore it if it uses concepts that you do not know. A proof of the
general case can be found e.g. in [Ha] proposition 5.18.

So assume tha = C. From the discussion above we see that it only remains to show
that any maximal ideah is contained in an ideal of the for(; —ay, ..., Xn — an).

AsC[xg,...,Xn| is Noetherian, we can write = (f1,..., f;) for somef; € C[xq,...,Xq].
Let K be the subfield of obtained by adjoining td) all coefficients of thef;. We will
now restrict coefficients to this subfield, so letmg = m NK]xy,...,%). Note that then
m=mg-C[xq,...,Xn], as the generator of m lie in mo.

Note thatmg C K[xq,...,Xn] IS @ maximal ideal too, because if we had an inclusion
mo ¢ my € K[xq,...,X%y] of ideals, this would give us an inclusiomC m’ C C[xy, ..., Xn]
by taking the product witlC[xy, ..., Xs]. (This last inclusion has to be strict as intersecting
it with K[xq,...,Xn] gives the old idealsy C mg, back again.)

SoK|[xq,...,X)]/mg is a field. We claim that there is an embeddi€ly, . . ., Xn]/mo —
C. To see this, split the field extensidfixs,...,X]/mo : Q into a purely transcendental
partL : Q and an algebraic pak[xy,...,X)|/mo: L. AsK[xy,...,X]/mg and hencd is
finitely generated ove®) whereasC is of infinite transcendence degree o@rthere is an
embeddind- C C. Finally, asK[xy,...,xn]/mp : L is algebraic and algebraically closed,
this embedding can be extended to give an embeddjrg.. ., xn]/mo C C.
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Let g be the images of the under this embedding. Thef(ay,...,a,) = 0 for alli by
construction, sdj € (x; —ag,...,Xn— &) and hencen C (x1 —ay,...,Xn —an). O

Remarkl.2.5 The same method of proof can be used for any algebraically closedkfield
that has infinite transcendence degree over the prime@iedF .

Corollary 1.2.6. Assume that k is algebraically closed.

(i) Thereis a 1:1 correspondence
{points inA"} «— {maximal ideals of |1, ..,%n]}

given by(ay,...,an) «— (X1 —ai,...,Xn— an)-
(i) Everyideal IC k[xq,...,%n] has a zero il\".

Proof. (i) is obvious from the Nullstellensatz, and (ii) follows in conjunction with lemma
1.1.6 (i) as every ideal is contained in a maximal one. O

Example 1.2.7. We just found a correspondence between points"vand certain ideals
of the polynomial ring. Now let us try to extend this correspondence to more complicated
algebraic sets than just points. We start with the case of a collection of poiats in

() LetX ={ay,...,a} C A! be afinite algebraic set. ObviouslyX) is then gen-
erated by the functiofix—a;)--- (x—a), andZ(1(X)) = X again. SaZ is an
inverse ofi.

(i) Conversely, let C k[X] be an ideal (not equal t®) or (1)). Ask[x] is a principal
ideal domain, we have= (f) for some non-constant monic functidne K[x].
Now for the correspondence to work at all, we have to require khzd alge-
braically closed: for iff had no zeros, we would ha€l ) = 0, andl (Z(1)) = (1)
would give us back no information abouat all. But ifk is algebraically closed,
we can writef = (x—ag)™--- (x—a )™ with thea distinct andm; > 0. Then
Z(l)={ay,...,a } and thereforé(Z(l)) is generated byx—az)--- (x— &), i.e.
all exponents are reduced to 1. Another way to express this fact is that a function
isinl(Z(1)) if and only if some power of it lies ih. We write this a$(Z(1)) = V1,
where we use the following definition.

Definition 1.2.8. For an ideal C K[xy,...,Xn], we define theadical of | to be
VI = {f eK[xq,..., x| ; f" € for somer > 0}.

(In fact, this is easily seen to be an ideal.) An idea called radical il = v/I. Note that
the ideal of an algebraic set is always radical.

The following proposition says that essentially the same happensfot. As it can
be guessed from the example above, the @46€X)) is more or less trivial, whereas the
casel (Z(1)) is more difficult and needs the assumption thihe algebraically closed.

Proposition 1.2.9.
(i) If X3 C X, are subsets ah" then I(X) C 1(Xy).
(i) For any algebraic set X A" we have ZI (X)) = X.
(i) If kis algebraically closed, then for any ideatd k[x1, ..., X, we have (Z(])) =

VI

Proof. (i) is obvious, as well as the>” parts of (i) and (jii).
(i) “ C”: By definition X = Z(I) for somel. Hence, by (iii) " we havel C I (Z(l)) =
[(X). By 1.1.6 (i) it then follows thaZ (1 (X)) C Z(I) = X.
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(iii) “ ™ (This is sometimes also called Hilbert's Nullstellensatz, as it follows easily
from proposition 1.2.4.) Lef € I(Z(1)). Consider the ideal

J=1+(ft—1) CK[Xq,...,%n,t].

This has empty zero locus ™!, asf vanishes orZ(1), so if we requireft = 1 at the
same time, we get no solutions. Herlkce (1) by corollary 1.2.6 (i). In particular, there is
arelation

1= (ft—l)go-l-z figi € K[x,...,%n,1]
for someg; € k[xq,...,%n,t] and f; € I. If tN is the highest power dfoccurring in theg;,
then after multiplying withfN we can write this as

fN = (ft —1)Go(xq,. .., %n, ft) + > fiGi(Xe, .- X, ft)
whereG; = fNg; is considered to be a polynomiala, ..., X,, ft. Modulo ft — 1 we get
= fiGi(x1, . X, 1) € KX, ,%n, ft]/(ft — 1),

But as the maf[x1, ..., Xa] — K[X1,...,%n, ft]/(ft — 1) is injective, this equality holds in
factink[x,...,X), sofN €1l. O

Corollary 1.2.10. If k is algebraically closed, there is a one-to-one inclusion-reversing
correspondence between algebraic setdihand radical ideals in ks, ...,%n], given by
the operations Z) and I(-). (This is also sometimes called the Nullstellensatz.)

Proof. Immediately from proposition 1.2.9 and lemma 1.1.6 (i). O

From now on up to the end of sectionwe will always assume that the ground field k
is algebraically closed

Remark1.2.11 Even though the radical/l of an ideall was easy to define, it is quite
difficult to actually computeV/I for any given ideall. Even worse, it is already quite
difficult just to check whethdritself is radical or not. In general, you will need non-trivial
methods of computer algebra to solve problems like this.

1.3. Irreducibility and dimension. The algebraic seX = {x;x; =0} C AZ can be written

as the union of the two coordinate ax¥s= {x; = 0} and X = {x2 = 0}, which are
themselves algebraic sets. Howewer,and X, cannot be decomposed further into finite
unions of smaller algebraic sets. We now want to generalize this idea. It turns out that this
can be done completely in the language of topological spaces. This has the advantage that
it applies to more general cases, i.e. open subsets of algebraic sets.

However, you will want to think only of the Zariski topology here, since the concept of
irreducibility as introduced below does not make much sense in classical topologies.

Definition 1.3.1.

(i) A topological spaceX is said to bereducible if it can be written as a union
X =X UXp, whereX; andX; are (non-empty) closed subsetsXohot equal to
X. ltis calledirreducible otherwise. An irreducible algebraic setA is called
anaffine variety.

(ii) A topological spaceX is calleddisconnectedif it can be written as alisjoint
unionX = X; U X, of (non-empty) closed subsetsXinot equal taX. Itis called
connectedotherwise.

Remark1.3.2 Although we have given this definition for arbitrary topological spaces,
you will usually want to apply the notion of irreducibility only in the Zariski topology.
For example, in the usual complex topology, the affine kidgi.e. the complex plane) is
reduciblebecause it can be written e.g. as the union of closed subsets

Al={zeC;|7<1}u{zeC; |74 >1}.
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In the Zariski topology howeveA! is irreducible (as it should be).

In contrast, the notion of connectedness can be used in the “usual” topology too and
does mean there what you think it should mean.

Remark1.3.3 Note that there is a slight inconsistency in the existing literature: some
authors call a variety what we call an algebraic set, and consequently an irreducible variety
what we call an affine variety.

The algebraic characterization of affine varieties is the following.

Lemma 1.3.4. An algebraic set X_ A" is an affine variety if and only if its idea(X) C
K[X1,...,Xn] is a prime ideal.

Proof. “<": Let I(X) be a prime ideal, and suppose that= X3 UXz. Thenl|(X) =
[(X1) N1(X2) by exercise 1.4.1 (i). A$(X) is prime, we may assumigX) = 1(Xy), so
X = X1 by proposition 1.2.9 (ii).

“=": Let X be irreducible, and lefg € 1(X). ThenX C Z(fg) = Z(f)UZ(g), hence
X = (Z(f)ynX)U(Z(g)NX) is a union of two algebraic sets. Asis irreducible, we may
assume thaX = Z(f)NX, sof € [(X). O
Example 1.3.5.

(i) A"is an affine variety, ag A") = (0) is prime. Iff €k[x,...,xn] is anirreducible
polynomial, thenZ(f) is an affine variety. A collection ofm points in A" is
irreducible if and only ifm= 1.

(i) Every affine variety is connected. The union of the&oordinate axes ik" is
always connected, although it is reducible fos 1. A collection ofm points in
A" is connected if and only ifn= 1.

As it can be expected, any topological space that satisfies a reasonable finiteness con-
dition can be decomposed uniquely into finitely many irreducible spaces. This is what we
want to show next.

Definition 1.3.6. A topological space is calledNoetherian if every descending chain
X DXy D Xp D --- of closed subsets of is stationary.

Remarkl.3.7. By corollary 1.2.10 the fact th&fx, . .., X,] is @ Noetherian ring (see propo-
sition 1.1.5) translates into the statement that any algebraic set is a Noetherian topological
space.

Proposition 1.3.8. Every Noetherian topological space X can be written as a finite union
X =X1U---UX of irreducible closed subsets. If one assumes that X; for all i # j,

then the Xare unique (up to permutation). They are called ttieducible componentsf

X.

In particular, any algebraic set is a finite union of affine varieties in a unique way.

Proof. To prove existence, assume that there is a topological spdaewhich the state-
ment is false. In particulai is reducible, henc¥ = X; UX{. Moreover, the statement of
the proposition must be false for at least one of these two subset&; s@pntinuing this
construction, one arrives at an infinite chXim X; 2 X, 2 --- of closed subsets, which is
a contradiction aX is Noetherian.

To show uniqueness, assume that we have two decomposKieas; U:---U X, =
X{U---UXE ThenXy C Ui X/, so X1 = U(X1NX/). But X, is irreducible, so we can
assumexX; = Xg mx{, i.e. X1 C X{. For the same reason, we must haqe: X; for some
i. SoX; C X{ C X, which means by assumption that 1. HenceX; = X; is contained
in both decompositions. Now &t = X\X;. ThenY = XoU---UX = X, U---UX,; so
proceeding by induction onwe obtain the uniqueness of the decomposition. |
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Remarkl.3.9 Itis probably time again for a warning: given an idéaf the polynomial

ring, it is in general not easy to find the irreducible componen(bf, or even to deter-
mine whetheZ(l) is irreducible or not. There are algorithms to figure this out, but they are
computationally quite involved, so you will in most cases want to use a computer program
for the actual calculation.

Remark1.3.1Q In the same way one can show that every algebraidgsta (disjoint)
finite union ofconnectedilgebraic sets, called tlownnected componentsf X.

Remarkl.3.11 We have now seen a few examples of the correspondence between geome-
try and algebra that forms the base of algebraic geometry: points in affine space correspond
to maximal ideals in a polynomial ring, affine varieties to prime ideals, algebraic sets to
radical ideals. Most concepts in algebraic geometry can be formulated and most proofs
can be given both in geometric and in algebraic language. For example, the geometric
statement that we have just shown that any algebraic set can be written as a finite union
of irreducible components has the equivalent algebraic formulation that every radical ideal
can be written uniquely as a finite intersection of prime ideals.

Remark1.3.12 An application of the notion of irreducibility is the definition of the di-
mension of an affine variety (or more generally of a topological space; but as in the case
of irreducibility above you will only want to apply it to the Zariski topology). Of course,
in the case of complex varieties we have a geometric idea what the dimension of an affine
variety should be: it is the number of complex coordinates that you need to deXdabe
cally around any point. Although there are algebraic definitions of dimension that mimics
this intuitive one, we will give a different definition here that uses only the language of
topological spaces. Finally, all these definitions are of course equivalent and describe the
intuitive notion of dimension (at least ovéY), but it is actually quite hard to prove this
rigorously.

The idea to define the dimension in algebraic geometry using the Zariski topology is the
following: if X is an irreducible topological space, then any closed subsétrait equal
to X must have dimension (at least) one smaller. (This is of course an idea that is not valid
in the usual topology that you know from real analysis.)

Definition 1.3.13. Let X be a (non-empty) irreducible topological space. @imension

of X is the biggest integem such that there is a chath=% Xo C X3 € --- € Xy = X of
irreducible closed subsets ¥f If X is any Noetherian topological space, the dimension of

X is defined to be the supremum of the dimensions of its irreducible components. A space
of dimension 1 is called aurve, a space of dimension 2sarface

Remarkl.3.14 In this definition you should think of; as having dimension The content
of the definition is just that there is “nothing between” varieties of dimenisardi + 1.

Example 1.3.15.The dimension of\! is 1, as single points are the only irreducible closed
subsets ofA! not equal toA®. We will see in exercise 1.4.9 that the dimensiomdfis

2. Of course, the dimension af" is alwaysn, but this is a fact from commutative algebra
that we cannot prove at the moment. But we can at least see that the dimenaibisof
not less tham, because there are sequences of inclusions

of linear subspaces of increasing dimension.

Remarkl.3.16 This definition of dimension has the advantage of being short and intuitive,
but it has the disadvantage that it is very difficult to apply in actual computations. So for
the moment we will continue to use the concept of dimension only in the informal way as
we have used it so far. We will study the dimension of varieties rigorously in section 4,
after we have developed more powerful techniques in algebraic geometry.
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Remark1.3.17 Here is another application of the notion of irreducibility (that is in fact
not much more than a reformulation of the definition). Kebe an irreducible topological
space (e.g. an affine variety). LgtC X be a non-empty open subset, and¥Yef X be

a closed subset. The fact thétcannot be the unio@X\U)UY can be reformulated by
saying thatJ cannot be a subset ¥f. In other words, theldsgteefU (i.e. the smallest
closed subset oX that containdJ) is equal toX itself. Recall that an open subset of a
topological spac« is calleddenseif its closure is equal to the whole spaXe With this
wording, we have just shown that in anirreducible topological space every non-empty open
subset is dense. Note that this is not true for reducible spaceX:defx;x; = 0} C A?

be the union of the two coordinate axes, andJet {x; # 0} N X be the open subset &f
consisting of thex;-axis minus the origin. Then the closurelWfin X is just thex;-axis,
and not all ofX.

1.4. Exercises. In all exercises, the ground fieldis assumed to be algebraically closed
unless stated otherwise.

Exercise 1.4.1.Let X1, X, C A" be algebraic sets. Show that
OR (Xl @] Xz) =1 (Xl) Nl (Xz),
(ii) |(X1ﬂX2) = w/|(X1)+|(X2).

Show by example that taking the radical in (ii) is in general necessary, i.e. find algebraic
setsXz, X2 such that (Xg N Xz) # [ (X1) +1(Xz). Can you see geometrically what it means
if we have inequality here?

Exercise 1.4.2.Let X ¢ A3 be the union of the three coordinate axes. Determine gener-
ators for the ideal (X). Show thatl (X) cannot be generated by fewer than 3 elements,
althoughX has codimension 2 ia3.

Exercise 1.4.3.In affine 4-dimensional spacé* with coordinates,y,zt let X be the
union of the two planes

X' ={x=y=0} and X'={z=x-t=0}.

Compute the idedl=1(X) C k[x,y,zt]. Foranyac kletly C k[x,y,Z] be the ideal obtained
by substituting = ain |, and letX, = Z(I5) C AS.

Show that the family of algebraic seXg with a € k describes two skew lines i3
approaching each other, until they finally intersect transverselg fo0.

Moreover, show that the idealg are radical fora # 0, but thatlgp is not. Find the
elements in/lg\lp and interpret them geometrically.

Exercise 1.4.4.Let X C A% be the algebraic set given by the equatighs xox3 = X;X3 —

x1 = 0. Find the irreducible components ¥f What are their prime ideals? (Don't let the
simplicity of this exercise fool you. As mentioned in remark 1.3.9, it is in genaza}
difficult to compute the irreducible components of the zero locus of given equations, or
even to determine if it is irreducible or not.)

Exercise 1.4.5.Let A3 be the 3-dimensional affine space over a fieldith coordinates
X,Y,z. Find ideals describing the following algebraic sets and determine the minimal num-
ber of generators for these ideals.

(i) The union of the(x, y)-plane with thez-axis.
(i) The union of the 3 coordinate axes.
(iii) The image of the map\! — A3 given byt — (t3,t4,t°).

Exercise 1.4.6.LetY be a subspace of a topological spaceShow thaty is irreducible
if and only if the closure o¥ in X is irreducible.
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Exercise 1.4.7.(For those of you who like pathological examples. You will need some
knowledge on general topological spaces.) Find a Noetherian topological space with infi-
nite dimension. Can you find an affine variety with infinite dimension?

Exercise 1.4.8.Let X = {(t,t3,t%) ; t € k} c A3. Show thatX is an affine variety of
dimension 1 and computéX).

Exercise 1.4.9.Let X C A? be an irreducible algebraic set. Show that either

e X =2Z(0),i.e.X is the whole spacé?, or
e X =Z(f) for some irreducible polynomidi € k[x,y], or
e X=Z(x—a,y—b) for somea,b €k, i.e. X is a single point.

Deduce that dirfh?) = 2. (Hint: Show that the common zero locus of two polynomials
f,g € k[x,y] without common factor is finite.)
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2. FUNCTIONS, MORPHISMS AND VARIETIES

IfX C A" is an affine variety, we define the function field K(X) of X to be the quotient
field of the coordinate ring A(X) = K[X1,...,Xn]/1(X); this can be thought of as the
field of rational functions on X. For a point P € X the local ring Ox p is the subring
of K(X) of all functions that are regular (i.e. well-defined) at P, and for U C X an
open subset we let Ox (U) be the subring of K(X) of all functions that are regular at
every P € U. The ring of functions that are regular on all of X is precisely A(X).

Given two ringed spaces (X, Ox), (Y, Oy) with the property that their structure
sheaves are sheaves of k-valued functions, a set-theoretic map f : X — Y determines a
pull-back map f* from k-valued functions onY to k-valued functions on X by compo-
sition. We say that f is a morphism if f is continuous and f*Oy(U) C Ox(f~1(U))
for all open sets U in Y. In particular, this defines morphisms between affine vari-
eties and their open subsets. Morphisms X — Y between affine varieties correspond
exactly to k-algebra homomorphisms A(Y) — A(X).

In complete analogy to the theory of manifolds, we then define a prevariety to
be a ringed space (whose structure sheaf is a sheaf of k-valued functions and) that
is locally isomorphic to an affine variety. Correspondingly, there is a general way to
construct prevarieties and morphisms between them by taking affine varieties (resp.
morphisms between them) and patching them together. Affine varieties and their
open subsets are simple examples of prevarieties, but we also get more complicated
spaces as e.g. P and the affine line with a doubled origin. A prevariety X is called
a variety if the diagonal A(X) C X x X is closed, i.e. if X does not contain “doubled
points”.

2.1. Functions on affine varieties. After having defined affine varieties, our next goal
must of course be to say what the maps between them should be. Let us first look at the
easiest case: “regular functions”, i.e. maps to the ground kietdA®. They should be
thought of as the analogue of continuous functions in topology, or differentiable functions
in real analysis, or holomorphic functions in complex analysis. Of course, in the case
of algebraic geometry we want to have algebraic functions, i.e. (quotients of) polynomial
functions.

Definition 2.1.1. Let X C A" be an affine variety. We call
A(X) :=K[xq, ..., Xn]/1(X)
thecoordinate ring of X.

Remark2.1.2 The coordinate ring oK should be thought of as the ring of polynomial
functions onX. In fact, for anyP € X an elemenf € A(X) determines a polynomial map
X — k (usually also denoted bf) given by f — f(P):

o this is well-defined, because all functiond {iX) vanish onX by definition,
o if the functionf : X — kis identically zero therf € | (X) by definition, sof =0
in A(X).

Note thatl (X) is a prime ideal by lemma 1.3.4, #¢X) is an integral domain. Hence we
can make the following definition:

Definition 2.1.3. Let X C A" be an affine variety. The quotient fieKi(X) of A(X) is
called thefield of rational functions on X.

Remark2.1.4 Recall that the quotient field of an integral domaiiR is defined to be the
set of pairg f,g) with f,g € R, g # 0, modulo the equivalence relation

(f,g) ~ (f',d) — fd —gf' =0.
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An element(f,g) of K is usually written as;, and we think of it as the formal quotient
of two ring elements. Addition of two such formal quotients is defined in the same way as
you would expect to add fractions, namely

f f  fg+gf
for_fg+of
9 g a9
and similarly for subtraction, multiplication, and division. This makgX) into a field.
In the case wher® = A(X) is the coordinate ring of an affine variety, we can therefore

think of elements oK (X) as being quotients of polynomial functions. We have to be very
careful with this interpretation though, see example 2.1.7 and lemma 2.1.8.

Now let us define what we want to mean by a regular function on an open suldet
an affine varietyX. This is more or less obvious: a regular function should be a rational
function that is well-defined at all points bf:

Definition 2.1.5. Let X C A" be an affine variety and I& € X be a point. We call
f
Ocp = { 5 .92 AX) andg(P) 20} <K (X)

thelocal ring of X at the pointP. Obviously, this should be thought of as the rational
functions that are regular & If U C X is a non-empty open subset, we set

OxV) = ﬂ Ox p.

PcU
This is a subring oK (X). We call this theing of regular functions onU.

Remark2.1.6 The setmxp := {f € A(X) ; f(P) = 0} of all functions that vanish &®

is an ideal inA(X). This is a maximal ideal, a&(X)/mx p = k, the isomorphism being
evaluation of the polynomial at the poit With this definition,Ox p is just the localization

of the ring A(X) at the maximal ideaiyx p. We will explain in lemma 2.2.10 where the
name “local” (resp. “localization”) comes from.

Example 2.1.7. We have just defined regular functions on an open subset of an affine
variety X C A" to be rational functions, i.e. elements in the quotient fi€lK), with
certain properties. This means that every such function can be written as the “quotient”
of two elements iMA(X). It doesnot mean however that we can always write a regular
function as the quotient of two polynomials lfx, ...,ny). Here is an example showing
this. LetX c A% be the variety defined by the equation, = xox3, and letU C X be the
open subset of all points iK wherex, £ 0 or x4 #£ 0. The function% is defined at all
points of X wherex, # 0, and the functior{j is defined at points oK wherex, # 0. By
the equation oK, these two functions coincide where they are both defined; in other words
X1 X3
X2 X4
by remark 2.1.4. So this gives rise to a regular functioblomut there is no representation
of this function as a quotient of two polynomialskfxi, X2, X3, X4] that works on all oJ
— we have to use different representations at different points.

As we will usually want to write down regular functions as quotients of polynomials,
we should prove a precise statement how regular functions can be patched together from
different polynomial representations:

€ K(X)

Lemma 2.1.8. The following definition of regular functions is equivalent to the one of
definition 2.1.5:

Let U be an open subset of an affine variety A", A set-theoretic map : U — k is
called regular at the point & U if there is a neighborhood V of P in U such that there are
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polynomials fg € K[xq, ..., X,] with g(Q) # 0and¢(Q) = % forallQ e V. Itis called
regular on U if it is regular at every pointin U.

Proof. It is obvious that an element of the ring of regular functionslbietermines a
regular function in the sense of the lemma.

Conversely, lep : U — A be a regular function in the sense of the lemma. R.etU

be any point, then there are polynomidlg such thag(Q) # 0 and$(Q) = % for all

pointsQ in some neighborhood of P. We claim thaté € K(X) is the element in the ring
of regular functions that we seek.

In fact, all we have to show is that this element does not depend on the choices that
we made. So leP’ € U be another point (not necessarily distinct frét)) and suppose

that there are polynomial¥’, g such tha% = é—f on some neighborhood’ of P’. Then
fg = gf’ onV NV’ and hence oiX asV NV’ is dense inX by remark 1.3.17. In other
words, fg' —gf’ € I(X), so itis zero inA(X), i.e.é = & € K(X). O

Remark2.1.9 An almost trivial but remarkable consequence of our definition of regular
functions is the following: ety C V be non-empty open subsets of an affine varketyf

01,92 :V — kare two regular functions ovi that agree otJ, then they agree on all &f.

This is obvious because the ring of regular functions (on any non-empty open subset) is a
subring of the function fieldK (X), so if two such regular functions agree this just means
that they are the same elementiafX). Of course, this is not surprising as open subsets
are always dense, so if we know a regular function on an open subset it is intuitively clear
that we know it almost everywhere anyway.

The interesting remark here is that the very same statement holds in complex analysis for
holomorphic functions as well (or more generally, in real analysis for analytic functions):
two holomorphic functions on a (connected) open suhket C" must be the same if
they agree on any smaller open subget U. This is called the identity theorem for
holomorphic functions — in complex analysis this is a real theorem because there the
open subse¥ can be “very small”, so the statement that the extensidd te unique is
a lot more surprising than it is here in algebraic geometry. Still this is an example of a
theorem that is true in literally the same way in both algebraic and complex geometry,
although these two theories are quite different a priori.

Let us compute the ringSx (U) explicitly in the cases wherd is the complement of
the zero locus of just a single polynomial.

Proposition 2.1.10. Let X C A" be an affine variety. Let € A(X) and X% = {P €
X; f(P) # 0}. (Open subsets of this form are calldidtinguished open subsejsThen

Ox(X1) = AX) 1 = {fgr ;

In particular, Ox (X) = A(X), i.e. any regular function on X is polynomial (take=f1).

ge A(X)and r> O}.

Proof. Itis obvious thatA(X)s C Ox(Xt), so let us prove the converse. ldet Ox(Xs) C
K(X). Letd={ge A(X); gb € A(X)}. This is an ideal irA(X); we want to show that
f' € J for somer.

For anyP € X¢ we know thatp € Ox p, SO¢p = g with g # 0 in a neighborhood dP.
In particularg € J, soJ contains an element not vanishingRatThis means that the zero
locus of the ideal (X) +J C K[x1,...,Xq] is contained in the seP € X ; f(P) =0}, or
in other words thaZ (I (X) +J) C Z(f). By proposition 1.2.9 (i) it follows thalt(Z(f))
1(Z(1(X)+J)). Sof" e l(Z(1(X)+J)), wheref’ € k[x1,...,%] is a representative of.
Thereforef”" € 1(X) + J for somer by the Nullstellensatz 1.2.9 (iii), and $6 € J. O
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Remark2.1.11 In the proof of proposition 2.1.10 we had to use the Nullstellensatz again.
In fact, the statement is false if the ground field is not algebraically closed, as you can see
from the example of the functi% that is regular on all oA(R), but not polynomial.

Example 2.1.12. Probably the easiest case of an open subset of an affine vArtast is
not of the formX as in proposition 2.1.10 is the complemeht= C2\ {0} of the origin in
the affine plane. Let us comput&..(U). By definition 2.1.5 any element € Og2(U) C
C(x,y) is globallythe quotient) = é of two polynomialsf,g € C[x,y]. The condition that
we have to satisfy is thag(x,y) # 0 for all (x,y) # (0,0). We claim that this implies that
g is constant. (In fact, this follows intuitively from the fact that a single equation can cut
down the dimension of a space by only 1, so the zero locus of the polyngroahnot
only be the origin inC2. But we have not proved this rigorously yet.)

We know already by the Nullstellensatz that there is no non-constant polynomial that
has empty zero locus ifi2, so we can assume thgwanishes orf0, 0). If we write g as

9(%.y) = fo(X) + f1(x) -y + f2(X) - Y2+ + f(x) -V,
this means thafy(0) = 0. We claim thatfp(x) must be of the fornx™ for somem. In fact:

o if fpisthe zero polynomial, theg(x,y) containgy as a factor and hence the whole
x-axis in its zero locus,

e if fp contains more than one monomi#j,has a zerag # 0, and hencg(Xp,0) =
0.

Sog(x,y) is of the form

g(x,y) = X"+ f1(x) -y + Fo2(X) - Y2 4 -+ () - Y.

Now sety = € for some smalk. As g(x,0) = x™ and all f; are continuous, the restriction
g(x,€) cannot be the zero or a constant polynomial. Hegieee) vanishes for some,
which is a contradiction.

So we see that we cannot have any denominator$)i£U ) = C[x,y]. In other words,
a regular function oriC2\ {0} is always regular on all ofC?. This is another example of
a statement that is known from complex analysisifolomorphicfunctions, known as the
removable singularity theorem.

2.2. Sheaves.We have seen in lemma 2.1.8 that regular functions on affine varieties are
defined in terms of local properties: they are set-theoretic functions that can locally be writ-
ten as quotients of polynomials. Local constructions of function-like objects occur in many
places in algebraic geometry (and also in many other “topological” fields of mathematics),
so we should formalize the idea of such objects. This will also give us an “automatic”
definition of morphisms between affine varieties in section 2.3.

Definition 2.2.1. A presheaf ¥ of rings on a topological spac€ consists of the data:

o for every open sat) C X aring ¥ (U) (think of this as the ring of functions on
),

o for every inclusiorJ C V of open sets iiX a ring homomorphisrpyy : (V) —
F(U) called the restriction map (think of this as the usual restriction of functions
to a subset),

such that
¢ F(0)=0,
e pyy is the identity map for alU,
o for any inclusiord C V C W of open sets iXX we havepy y o pwy = pwu-

The elements off (U) are usually called thsectionsof # overU, and the restriction
mapspyy are written asf — f|y.
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A presheaff of rings is called asheafof rings if it satisfies the following glueing
property: ifU C X is an open sefU; } an open cover df andf; € # (U;) sections for all
such thatfi|umuj = fjlumuj for alli, j, then there is a uniquee ¥ (U) such thatf |y, = f;
for alli.

Remark2.2.2 In the same way one can define (pre-)sheaves of Abelian gréeggébras
etc., by requiring that alf (U) are objects and aflyy are morphisms in the corresponding
category.

Example 2.2.3.1f X C A" is an affine variety, then the ring3« (U) of regular functions

on open subsets of (with the obvious restriction mapsx (V) — Ox(U) forU c V) form

a sheaf of ringDx, thesheaf of regular functionsor structure sheafon X. In fact, all
defining properties of presheaves are obvious, and the glueing property of sheaves is easily
seen from the description of regular functions in lemma 2.1.8.

Example 2.2.4. Here are some examples from other fields of mathematicsX l-efR",
and for any open subsigtC X let ¥ (U) be the ring of continuous functions th Together
with the obvious restriction maps, these ringdJ ) form a sheaf, theheaf of continuous
functions In the same way we can define the sheak dimes differentiable functions,
analytic functions, holomorphic functions @', and so on. The same definitions can be
applied ifX is a real or complex manifold instead of jugt or C".

In all these examples, the sheaves just defined “are” precisely the functions that are con-
sidered to be morphisms in the corresponding category (for example, in complex analysis
the morphisms are just the holomorphic maps). This is usually expressed in the follow-
ing way: a pair(X, ) whereX is a topological space anf is a sheaf of rings oiX is
called aringed space The sheaff is then called the structure sheaf of this ringed space
and usually writterOx. Hence we have just given affine varieties the structure of a ringed
space. (Although being general, this terminology will usually only be appligdattually
has an interpretation as the space of functions that are considered to be morphisms in the
corresponding category.)

Remark2.2.5 Intuitively speaking, any “function-like” object forms a presheaf; it is a
sheaf if the conditions imposed on the “functions” are local. Here is an example illustrating
this fact. LetX = R be the real line. FAU C X open and non-empty lef (U) be the ring

of constant (real-valued) functions ah i.e. F(U) <R for allU. Letpyy forU cV

be the obvious restriction maps. Thénis obviously a presheaf, but not a sheaf. This is
because being constantrist a local property it means thatf (P) = f(Q) for all P and

Q that are possibly quite far away. For example,Uet (0,1) U (2,3). ThenU has an
open covet) =U; UU, with Uy = (0,1) andU, = (2,3). Let f; : U; — R be the constant
function 0, and leff, : U, — R be the constant function 1. Thdn and f; trivially agree

on the overlapJ; NU, = @, but there is n@wonstantfunction onU that restricts to botH;
and f, on Uy andU,, respectively. There is however a uniquely defitezhlly constant
function onU with that property. In fact, it is easy to see that kbeally constanfunctions

on X do form a sheaf.

Remark2.2.6 If ¥ is a sheaf orX andU C X is an open subset, then one defines the
restriction of ¥ to U, denoted¥ |y, by (F|u)(V) = F (V) for all open subset¥ C U.
Obviously, this is again a sheaf.

Finally, let us see how the local rings of an affine variety appear in the language of
sheaves.

Definition 2.2.7. Let X be a topological spac®,c X, and¥ a (pre-)sheaf oX. Consider
pairs(U,¢) whereU is an open neighborhood &fand$ € F (U) a section ofF overU.
We call two such pairfJ,¢) and(U’, ¢’) equivalent if there is an open neighborhabdf
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P withV c U NU’ such thath|y = ¢’|v. (Note that this is in fact an equivalence relation.)
The set of all such pairs modulo this equivalence relation is calledtétle 7p of F atP,
its elements are callagermsof 7.

Remark2.2.8 If ¥ is a (pre-)sheaf of rings (dalgebras, Abelian groups, etc.) then the
stalks of F are rings (ok-algebras, Abelian groups, etc.).

Remark2.2.9 The interpretation of the stalk of a sheaf is obviously that its elements are
sections off that are defined in an (arbitrarily small) neighborhood aroendence e.g.

on the real line the germ of a differentiable function at a pBiatlows you to compute the
derivative of this function aP, but none of the actual values of the function at any point
besides”. On the other hand, we have seen in remark 2.1.9 that holomorphic functions
on a (connected) complex manifold are already determined by their values on any open
set, so germs of holomorphic functions carry “much more information” than germs of
differentiable functions. In algebraic geometry, this is similar: it is already quite obvious
that germs of regular functions must carry much information, as the open subsets in the
Zariski topology are so big. We will now show that the stalkyf at a pointP is exactly

the local ringOx p, which finally gives a good motivation for the name “local ring”.

Lemma 2.2.10. Let X be an affine variety and®X. The stalk oDx at P is Ox p.

Proof. Recall thatOx (U) C Ox p C K(X) for all P € U by definition.

Therefore, if we are given a pdid, ¢) with P < U and$ € Ox(U), we see thap € Ox p
determines an element in the local ring. If we have another equivalenfWai’), then
¢ andd’ agree on som¥ with P € V c U NU’ by definition, so they determine the same
element inOx (V) and hence irOx p.

Conversely, ifp € Ox p is an element in the local ring, we can write it¢us= é with
polynomialsf,g such thag(P) # 0. Then there must be a neighborhddaf P on which
g is non-zero, and therefore tifg, ¢ ) defines an element in the stalk 6% atP. O

2.3. Morphisms between affine varieties.Having given the structure of ringed spaces to
affine varieties, there is a natural way to define morphisms between them. In this section we
will allow ourselves to view morphisms as set-theoretic maps on the underlying topological
spaces with additional properties (see lemma 2.1.8).

Definition 2.3.1. Let (X, Ox) and(Y, Oy) be ringed spaces whose structure sheayeand
Oy are sheaves df-valued functions (in the case we are considering right XoandY
will be affine varieties or open subsets of affine varieties).fLeX — Y be a set-theoretic
map.

(i) If ¢ :U — kis ak-valued (set-theoretic) function on an open subhsef Y, the
compositionpo f : f~1(U) — kis again a set-theoretic function. It is denoted by
f*¢ and is called theull-back of ¢.

(i) The mapf is called amorphism if it is continuous, and if it pulls back regular
functions to regular functions, i.e. ff Oy (U) c Ox(f~1(U)) for all openU C Y.

Remark2.3.2 Recall that a functiorf : X — Y between topological spaces is caltzzh-
tinuous if inverse images of open subsets are always open. In the above definition (i), the
requirement thaf be continuous is therefore necessary to formulate the second condition,
as it ensures that~1(U) is open, so thadx (f~1(U)) is well-defined.

Remark2.3.3 In our context of algebraic geomet@x and Oy will always be the sheaves

of regular maps constructed in definition 2.1.5. But in fact, this definition of morphisms

is used in many other categories as well, e.g. one can say that a set-theoretic map between
complex manifolds is holomorphic if it pulls back holomorphic functions to holomorphic
functions. In fact, itis almost the general definition of morphisms between ringed spaces —
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the only additional twist in the general case is thdtilX — Y is a continuous map between
arbitrary ringed spac€%, Ox) and(Y, Oy), there is no a priori definition of the pull-back
mapOy (U) — Ox(f~1(U)). In the case above we solved this problem by applying the set-
theoretic viewpoint that gave us a notion of pull-back in our special case. In more general
cases (e.g. for schemes that we will discuss later in section 5) one will have to include these
pull-back maps in the data needed to define a morphism.

We now want to show that for affine varieties the situation is a lot easier: we actually do
not have to deal with open subsets, but it suffices to check the pull-back propefybah
functions only:

Lemma 2.3.4. Let f: X — Y be a continuous map between affine varieties. Then the
following are equivalent:

(i) fis a morphism (i.e. f pulls back regular functions on open subsets to regular
functions on open subsets).
(i) For every¢ € Oy(Y) we have fop € Ox(X), i.e. f pulls backglobal regular
functions toglobalregular functions.
(iii) For every Pe X and everyp € Oy ¢(p) We have f¢ € Oxp, i.e. f pulls back
germsof regular functions tagermsof regular functions.

Proof. (i) = (ii) is trivial, and (iii) = (i) follows immediately from the definition oy (U )
and Ox(f~1(U)) as intersections of local rings. To prove (@ (iii) let ¢ € Oy,t(p) be
the germ of a regular function ovi. We write ¢ = 2 with g,h € A(Y) = Oy(Y) and
h(f(P)) # 0. By (ii), f*g and f*h are global regular functions iA(X) = Ox(X), hence
f*¢ = 18 € O p, since we havéa(f (P)) # 0. O

Example 2.3.5. Let X = A? be the affine line with coordinate and letY = A! be the
affine line with coordinatg. Consider the set-theoretic map

f:X=Y, x—y=x.

We claim that this is a morphism. In fact, by lemma 2.3.4 (ii) we just have to showf that
pulls back polynomials ik[y] to polynomials ink|x]. But this is obvious, as the pull-back
of a polynomiald(y) € KJy] is justd(x?) (i.e. we substitute? for y in ¢). This is still a
polynomial, so it is irk[x].

Example 2.3.6. For the very same reason, every polynomial map is a morphism. More
precisely, letX ¢ A™ andY C A" be affine varieties, and ldt: X — Y be a polynomial
map, i.e. a map that can be writtenfg®) = (f1(P),..., fa(P)) with fi € K[X1,...,Xm]. As

f then pulls back polynomials to polynomials, we conclude first of all thatcontinuous.
Moreover, it then follows from lemma 2.3.4 (i) th&is a morphism. In fact, we will show
now that all morphisms between affine varieties are of this form.

Lemma 2.3.7. Let X C A" and Y C A™ be affine varieties. There is a one-to-one cor-
respondence between morphismsXf — Y and k-algebra homomorphisms :fA(Y) —
A(X).

Proof. Any morphismf : X — Y determines &-algebra homomorphisnfi* : Oy (Y) =
A(Y) — Ox(X) = A(X) by definition. Conversely, if

g:ky1, -, Ym]/1(Y) = K[Xa,..., %] /1(X)

is anyk-algebra homomorphism then it determines a polynomial hap(fi,..., fm) :
X —Y as in example 2.3.6 b§ = g(yi), and hence a morphism. d
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Example 2.3.8. Of course, ansomorphism is defined to be a morphismh: X — Y that

has an inverse (i.e. a morphism such that there is a morphistn— X with go f = idx

and f og=idy). A warning is in place here that an isomorphism of affine varieties is
not the same as a bijective morphism (in contrast e.g. to the case of vector spaces). For
example, le)X c A? be the curve given by the equatigh= y, and consider the map

fiAY =X, t (x=t3y=t?).
2-y3

X
Al f \/
—_—

This is a morphism as it is given by polynomials, and it is bijective as the inverse is given
by

X if (xy) #(0,0),

0 if (x,y)=(0,0).

But if f was an isomorphism, the correspondiaglgebra homomorphism
kx,y]/(®—y®) = Kk[t], x—t3andy— t?

would have to be an isomorphism by lemma 2.3.7. This is obviously not the case, as the
image of this algebra homomorphism contains no linear polynomials.

fl:x—AL (xy)— {

Example 2.3.9. As an application of morphisms, let us consider products of affine va-
rieties. LetX C A" andY C A™ be affine varieties with ideal(X) C K[x1,...,X,] and
[(Y) C K[y1,--.,Ym]. As usual, we define theroduct X x Y of X andY to be the set

XxY={(PQ) eA"xA™; PeXandQeY}CA"x AM=A"M
Obviously, this is an algebraic set &f"™™ with ideal
L(X % Y) = 1(X) +1(Y) C KlXe.- .o X0 Y1, Yl

where we considek[xy, ..., xn] andk|yi,...,ym| as subalgebras &fxq, ..., X, Y1, -, Ym|
in the obvious way. Let us show that it is in fact a variety, i.e. irreducible:

Proposition 2.3.10.1f X and Y are affine varieties, then so isoY .

Proof. For simplicity, let us just write for the collection of the, andy for the collection
of they;. By the above discussion it only remains to show t{at x Y) is prime. So let
f,g € k[x,y] be polynomial functions such thég € | (X x Y); we have to show that either
f orgvanisheson all oK x Y, i.e. thatX x Y C Z(f) orX x Y C Z(Q).

So let us assume thatx Y ¢ Z(f), i.e. there is a poinP, Q) € X x Y\Z(f) (where
P e X andQ €Y). Denote byf(-,Q) € k[x] the polynomial obtained fronfi € k[x,y] by
plugging in the coordinates @ for y. For allP’ € X\Z(f(-,Q)) (e.g. forP = P) we must
have

Y CZ(f(P,-)-g(P ) =Z(T(P,-))UZ(g(P',")).

AsY is irreducible and/ ¢ Z(f(P',-)) by the choice of, it follows thatY c Z(g(P',-)).

This is true for allP’ € X\Z(f(-,Q)), so we conclude thaX\Z(f(-,Q)) x Y C Z(g).
But asZ(g) is closed, it must in fact contain the closure (@\Z(f(-,Q)) x Y as well,
which is justX x Y asX is irreducible andX\Z(f(-,Q)) a non-empty open subset ¥f
(see remark 1.3.17). O

The obvious projection maps
Tk : XxY—=X, (PQ)—P and Ty :XxY =Y, (PQ) —Q

are given by (trivial) polynomial maps and are therefore morphisms. The important main
property of the producX x Y is the following:
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Lemma 2.3.11. Let X and Y be affine varieties. Then the produck X satisfies the
following universal property: for every affine variety Z and morphismsZf— X and
g:Z — Y, there is a uniqgue morphism& — X x Y such that &=Tixoch and g=Ti oh,
i.e. such that the following diagram commutes:

In other words, giving a morphism Z X x Y “is the same” as giving two morphisms
Z—XandZ—Y.

Proof. Let A be the coordinate ring &. Then by lemma 2.3.7 the morphisim Z — X is
given by ak-algebra homomorphisrfi: k|xy, ..., X, /1(X) — A. This in turn is determined
by giving the imaged; := f(xi) € A of the generatorg;, satisfying the relations df (i.e.
F(fy,...,f))=0forallF(x,...,x,) € I(X)). The same is true fag, which is determined
by the images)i= §(yi) € A.

Now it is obvious that the elemenfsandg; determine &-algebra homomorphism

k[Xla s 7Xn7Y17 ce 7Ym]/(| (X> + I (Y)) - Aa
which determines a morphism: Z — X x Y by lemma 2.3.7.

To show uniqueness, just note that the relatibrs Tk o h andg = 1& o himply imme-
diately thath must be given set-theoretically byP) = (f(P),g(P)) forall P € Z. O

Remark2.3.12 It is easy to see that the property of lemma 2.3.11 determines the product
X x'Y uniqguely up to isomorphism. It is therefore often taken to be the defining property
for products.

Remark2.3.13 If you have heard about tensor products before, you will have noticed that
the coordinate ring oX x Y is just the tensor produét(X) ® A(Y) of the coordinate rings

of the factors (where the tensor product is takerk-afgebras). See also section 5.4 for
more details.

Remark2.3.14 Lemma 2.3.7 allows us to associate an affine variety up to isomorphism
to any finitely generatel-algebra that is a domain: A is such an algebra, leg, ..., X,

be generators ok, so thatA = k[xy, ..., X%y]/ for some ideal. Let X be the affine variety

in A" defined by the idedl; by the lemma it is defined up to isomorphism. Therefore we
should make a (very minor) redefinition of the term “affine variety” to allow for objects that
are isomorphic to an affine variety in the old sense, but that do not come with an intrinsic
description as the zero locus of some polynomials in affine space:

Definition 2.3.15. A ringed spacéX, Ox) is called araffine variety overk if

(i) Xisirreducible,
(ii) O is a sheaf ok-valued functions,
(iif) X is isomorphic to an affine variety in the sense of definition 1.3.1.

Here is an example of an affine variety in this new sense although it is not a priori given
as the zero locus of some polynomials in affine space:

Lemma 2.3.16. Let X be an affine variety and ¢ A(X), and let X = X\Z(f) be a
distinguished open subset as in proposition 2.1.10. Then the ringed §4aadx |, ) is
isomorphic to an affine variety with coordinate ring»® .
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Proof. Let X C A" be an affine variety, and Idt € k[xs,...,X,] be a representative df
LetJ C k[xa,...,%n,t] be the ideal generated tyX) and the function +-tf’. We claim
that the ringed spadeXs, Ox|x; ) is isomorphic to the affine variety

Z(J)={(PN); PeXandA = gi5} CAML

Consider the projection map: Z(J) — X given byti(P,A) = P. This is a morphism with

image X¢ and inverse morphismt*(P) = (P, ﬁ), hencert is an isomorphism. It is

obvious thatA(Z(J)) = A(X) . O

Remark2.3.17 So we have just shown that even open subsets of affine varieties are them-
selves affine varieties, provided that the open subset is the complement of the zero locus of
a single polynomial equation.

Example 2.1.12 shows however that not all open subsets of affine varieties are them-
selves isomorphic to affine varietiesUfc C?\ {0} we have seen thad, (U) = k[x,y]. So
if U was an affine variety, its coordinate ring mustdiey], which is the same as the coor-
dinate ring ofC2. By lemma 2.3.7 this means tHatandC? would have to be isomorphic,
with the isomorphism given by the identity map. Obviously, this is not true. Henise
not an affine variety. It can however be covered by two open sulget€} and{y # 0}
which are both affine by lemma 2.3.16. This leads us to the idpatohingaffine varieties
together, which we will do in the next section.

2.4. Prevarieties. Now we want to extend our category of objects to more general things
than just affine varieties. Remark 2.3.17 showed us that not all open subsets of affine va-
rieties are themselves isomorphic to affine varieties. But note that every open subset of
an affine variety can be written as a finite union of distinguished open subsets (as this is
equivalent to the statement that every closed subset of an affine variety is the zero locus
of finitely many polynomials). Hence any such open subset casoberedby affine va-
rieties. This leads us to the idea that we should study objects that are not affine varieties
themselves, but rather can be covered by (finitely many) affine varieties. Note that the
following definition is completely parallel to the definition 2.3.15 of affine varieties (in the
new sense).

Definition 2.4.1. A prevariety is a ringed spacéX, Ox) such that

(i) Xisirreducible,
(i) O is a sheaf ok-valued functions,
(iii) there is a finite open covefU;} of X such thaiU;, Ox|y;) is an affine variety for
alli.

As before, a morphism of prevarieties is just a morphism as ringed spaces (see definition
2.3.1).

An open subset) C X of a prevariety such that), Ox|y) is isomorphic to an affine
variety is called araffine open set

Example 2.4.2. Affine varieties and open subsets of affine varieties are prevarieties (the
irreducibility of open subsets follows from exercise 1.4.6).

Remark2.4.3 The above definition is completely analogous to the definition of manifolds.
Recall how manifolds are defined: first you look at open subsek$ tfiat are supposed to

form the patches of your space, and then you define a manifold to be a topological space
that looks locally like these patches. In the algebraic case now we can say that the affine
varieties form the basic patches of the spaces that we want to consider, and that e.g. open
subsets of affine varieties are spaces that look locally like affine varieties.
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As we defined a prevariety to be a space that can be covered by affine opens, the most
general way to construct prevarieties is of course to take some affine varieties (or prevari-
eties that we have already constructed) and patch them together:

Example 2.4.4. Let X1, X, be prevarieties, ld); C X; andU, C X; be non-empty open
subsets, and left : (Uz, Ox, |u,) — (U2, Ox,|u,) be an isomorphism. Then we can define a
prevarietyX, obtained byglueing X; andX; alongU; andU,, via the isomorphisnf:

e As a set, the spac¥ is just the disjoint uniorX; U X, modulo the equivalence
relationP ~ f(P) for all P € U;.

e As atopological space, we endotwith the so-calledjuotient topologynduced
by the above equivalence relation, i.e. we say that a subsetX is open if
and only ifi;*(U) ¢ X andi;*(U) C X, are both open, witf, : X; — X and
i2 : Xo — X being the obvious inclusion maps.

e As aringed space, we define the structure sligaby

Ox(U) = {($1,02) ; 91 € O, (i1 (V)), 92 € O (i3 (V)
d1 = ¢ on the overlap (i-ef*(¢2|i51(u)mu2) = ¢l|i;1<u)mu1)}~

It is easy to check that this defines a sheak-ehlued functions orX and thatX is irre-
ducible. Of course, every point &fhas an affine neighborhood, Xas in fact a prevariety.

Example 2.4.5.As an example of the above glueing constructionyiet X, = A, Uy =
U, = AN {0}.

e Let f :U; — Uy be the isomorphism — % The spaceX can be thought of as
AU {w}: of course the affine lin&; = Al C X sits inX. The complement
X\X, is a single point that corresponds to the zero poinkire2 A* and hence
to “o0 = %” in the coordinate ofX;. In the case&k = C, the spaceX is just the

Riemann spher€..

x

We denote this space B*. (This is a special case of a projective space; see
section 3.1 and remark 3.3.7 for more details.)
e Let f:U; — Uy be the identity map. Then the spaX@btained by glueing along
f is “the affine line with the zero point doubled”:
X2 glue

LN ) LI I A ) ’ x

IBEEEREPUEEREN

X

Obviously this is a somewhat weird space. Speaking in classical terms (and think-
ing of the complex numbers), if we have a sequence of points tending to the zero,
this sequence would have two possible limits, namely the two zero points. Usu-
ally we want to exclude such spaces from the objects we consider. In the theory
of manifolds, this is simply done by requiring that a manifold satisfies the so-
calledHausdorff propertyi.e. that every two distinct points have disjoint open
neighborhoods. This is obviously not satisfied for our spacdBut the analo-
gous definition does not make sense in the Zariski topology, as hon-empty open
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subsets are never disjoint. Hence we need a different characterization of the geo-
metric concept of “doubled points”. We will do this in section 2.5.

Example 2.4.6. Let X be the complex affine curve

X={(xy) eC?;y*= Y(X—2)--- (x—2n)}.

We have already seen in example 0.1.1 ¥aan (and should) be “compactified” by adding
two points at infinity, corresponding to the limit— c and the two possible values fgr
Let us now construct this compactified space rigorously as a prevariety.

To be able to add a limit pointx‘= «” to our space, let us make a coordinate change
X= % so that the equation of the curve becomes

YN = (1-%)(1—2%)--- (1— 2n).

If we make an additional coordinate change % this becomes

¥ =(1-R)(1—2%) - (1-2nR).

In these coordinates we can add our two points at infinity, as they now correspoadXo ~
(and thereforgy = +1).

Summarizing, our “compactified curve” of example 0.1.1 is just the prevariety obtained
by glueing the two affine varieties

X={(xy) € C?; yzz (x—1)(x—2)---(x—2n)}
and X={(%y)€C?; #=(1-%)(1-2% - (1-2n%)}

along the isomorphism

fU—U, xy— (&Y= (1, y>’

).

)

il = X |
X< X

10 —U, X9~ (xy) = (

whereU = {x# 0} ¢ X andU = {X# 0} c X.

Of course one can also glue together more than two prevarieties. As the construction
is the same as in the case above, we will just give the statement and leave its proof as an
exercise:

Lemma 2.4.7. Let X, ..., X be prevarieties, and letjj C X; be non-empty open subsets
fori,j=1,...,r. Let fj :Uj ; — Uj; be isomorphisms such that

(i) fij=f
(i) fix= fjxo fi; where defined.

Then there is a prevariety X, obtained by glueing thealing the morphisms; f as in
example 2.4.4 (see below).

Remark2.4.8 The prevarietyX in the lemma 2.4.7 can be described as follows:

e As a set X is the disjoint union of the;, modulo the equivalence relatidh~
fi’j(P) forallPe Uij.

¢ To defineX as a topological space, we say that a sulfsetX is closed if and
only if all restrictionsY N X; are closed.

e A regular function on an open skt C X is a collection of regular functions
di € Ox (X NU) that agree on the overlaps.



30 Andreas Gathmann

Condition (ii) of the lemma gives a compatibility condition for triple overlaps: consider
three patcheX;, X; , X, that have a common intersection. Then we want to identify every
pointP € Uij with fi’j(P) €Ujxk, and the pointfiJ(P) with fjﬁk(fi_’j(P)) (if it lies in Uj_’k).

So the glueing madi x must mapP to the same poinf; «(fi j(P)) to get a consistent
glueing. This is illustrated in the following picture:

Let us now consider some examples of morphisms between prevarieties.

Example 2.4.9. Let f : P! — A be a morphism. We claim thdtmust be constant.

In fact, consider the restrictiof ;1 of f to the open affine subsat ¢ PL. By definition
the restriction of a morphism is again a morphismf 5@ must be of the formx — y = p(x)
for some polynomiap € k[x]. Now consider the second patch®fwith coordinatex™= )—1(

Applying this coordinate change, we see thﬁa\{o} is given byxi— p(%). But this must
be a morphism too, i.ep(%() must be a polynomial ir. "This is only true ifp is a constant.

In the same way as prevarieties can be glued, we can patch together morphisms too. Of
course, the statement is essentially that we can check the property of being a morphism on
affine open covers:

Lemma 2.4.10. Let XY be prevarieties and let fX — Y be a set-theoretic map. Let
{U1,...,Ur } be an open cover of X anfd,...,V;} an affine open cover of Y such that
f(Ui) Vi and(fly)*Ov(Mi) C Ox(Ui). Then f is a morphism.

Proof. We may assume that thé are affine, as otherwise we can replacelthéy a set
of affines that covet;. Consider the restrictiong : Ui — Vi. The homomorphisnd;* :

Oy (Vi) = A(Mi) — Ox(U;) = A(Uy) is induced by some morphisth — V; by lemma 2.3.7
which is easily seen to coincide with. In particular, thef; are continuous, and therefore
so isf. It remains to show that* takes sections afly to sections of0x. ButifV C Y is
open andp € Oy(V), thenf*¢ is at least a section af on the setf ~1(V)NU;. Since
Ox is a sheaf and the; coverX, these sections glue to give a sectiorog(f~1(V)). O

Example 2.4.11.Let f : A' — Al x— y= f(x) be a morphism given by a polynomitik

k[x]. We claim that there is a unique extension morphisni! — P! such thatf|,: = f.

We can assume théit= $_; a;x' is not constant, as otherwise the result is trivial. It is then
obvious that the extension should be givenflfy) = . Let us check that this defines in
fact a morphism.

We want to apply lemma 2.4.10. Consider the standard open affine cover of the domain
P! by the two affine lined/; = P1\{ew} andV, = P1\{0}. ThenU; := f1(V1) = AL,
and f|,1 = f is a morphism. On the other hand, l&s :== f~1(V»)\{0}. Consider the
coordinatex = % andy'= )l, onU, andVs, respectively. In these coordinates, the nidg
given by

)'ZI’]

TS
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in particulan= 0 maps toy= 0. So by definingf («) = o, we get a morphisnf : P — P!
that extendd by lemma 2.4.10.

2.5. Varieties. Recall example 2.4.5 (ii) where we constructed a prevariety that was “not
Hausdorff” in the classical sense: take two copies of the affine Aihand glue them
together on the open sét\ {0} along the identity map. The prevarietythus obtained is

the “affine line with the origin doubled”; its strange property is that even in the classical
topology (fork = C) the two origins do not have disjoint neighborhoods. We will now
define an algebro-geometric analogue of the Hausdorff property and say that a prevariety
is a variety if it has this property.

Definition 2.5.1. Let X be a prevariety. We say th&tis avariety if for every prevariety
Y and every two morphismf, fo: Y — X, the sef{P e Y ; f1(P) = f2(P)} is closed inY.

Remark2.5.2 Let X be the affine line with the origin doubled. Th&ns not a variety —
if we takeY = A and letfy, f, : Y — X be the two obvious inclusions that map the origin
in'Y to the two different origins ifX, thenf; and f, agree om\ 1\ {0}, which is not closed
in AL,

On the other hand, X has the Hausdorff property that we want to characterize, then
two morphisms’ — X that agree on an open subselahould also agree on.

One can make this definition somewhat easier and eliminate the need for an arbitrary
second prevariety. To do so note that we can define products of prevarieties in the same
way as we have defined products of affine varieties (see example 2.3.9 and exercise 2.6.13).
For any prevariety, consider thaliagonal morphism

A:X—XxX, P~ (PP).

The imageA(X) C X x X is called thediagonal of X. Of course, the morphisi : X —

A(X) is an isomorphism onto its image (with inverse morphism being giveiRlfy) — P).

So the spac&(X) is not really interesting as a new prevariety; instead the main question
is howA(X) is embedded iX x X:

Lemma 2.5.3. A prevariety X is a variety if and only if the diagona(X) is closed in
X x X.

Proof. It is obvious that a variety has this property (take= X x X and f, f» the two
projections toX). Conversely, if the diagondi(X) is closed andf, f, : Y — X are two
morphisms, then they induce a morphisfp, f2) : Y — X x X by the universal property of
exercise 2.6.13, and

{PeY|f1(P) = f2(P)} = (f1, f2) H(A(X))
is closed. O

Lemma 2.5.4. Every affine variety is a variety. Any open or closed subprevariety of a
variety is a variety.

Proof. If X c A" is an affine variety with idedl(X) = (f1,..., f), the diagonalA(X) C
A?"is an affine variety given by the equatiofiéx, ..., %)) =0fori =1,...,r andx = y;
fori=1,...,n, wherexs,...,%n,Y1,...,yn are the coordinates ah?". This is obviously
closed, s is a variety by lemma 2.5.3.

If Y C X is open or closed, thely(Y) = A(X) N (Y xY); i.e. if A(X) is closed inX x X
then soiIA(Y)inY x Y. O

Example 2.5.5. Let us illustrate lemma 2.5.3 in the case of the affine line with a doubled
origin. So letX; = X, = A1, and letX be the prevariety obtained by glueiXgto X, along
the identity onA\ {0}. ThenX x X is covered by the four affine varieti&g x Xi, X1 x Xz,
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Xo x X1, andXp x X, by exercise 2.6.13. As we glue aloagd\ {0} to obtainX, it follows
that the spacX x X contains the pointP,Q) € A® x A?

e once ifP # 0 andQ # 0,
e twice if P=0andQ +# 0, orif P# 0 andQ =0,
o four times ifP =0 andQ = 0.

In particular,X x X contains four origins now. But the diagor&]X) contains only two of
them (by definition of the diagonal we have to take the same origin in both factors). So on
the patchX; x X, the diagonal is given by(P,P) ; P # 0} C X3 x Xz = A® x A, which

is not closed. So we see again thais not a variety.

2.6. Exercises.

Exercise 2.6.1.An algebraic seK c A? defined by a polynomial of degree 2 is called a
conic. Show that any irreducible conic is isomorphic eitheZty — x?) or to Z(xy— 1).

Exercise 2.6.2.Let X,Y c A? be irreducible conics as in exercise 2.6.1, and assume that
X #Y. Show thatX andY intersect in at most 4 points. For ale {0,1,2,3,4}, find an
example of two conics that intersect in exactlpoints. (For a generalization see theorem
6.2.1.)

Exercise 2.6.3.Which of the following algebraic sets are isomorphic over the complex
numbers?

(@) At (b) Z(xy) C A?
(©) Z(% +y?) C A2 (d) Z(y2 —x3—x2) C A2
(€)Z(x*—y®) C A? (f) Z(y—x%,z—x%) C A®

Exercise 2.6.4.Let X be an affine variety, and |1& be a finite group. Assume th&tacts
on X, i.e. that for everyg € G we are given a morphisim: X — X (denoted by the same
letter for simplicity of notation), such th&go h)(P) = g(h(P)) for all g,h € G andP € X.

(i) Let A(X)C be the subalgebra @(X) consisting of allG-invariant functions on
X, i.e. of all f : X — k such thatf (g(P)) = f(P) for all P € X. Show thatA(X)®
is a finitely generatell-algebra.

(ii) By (i), there is an affine variety with coordinate ringA(X)®, together with a
morphismrt: X — Y determined by the inclusioA(X)® ¢ A(X). Show thaty
can be considered as tlgeiotient of X by G, denotedX/G, in the following
sense:

(a) mtis surjective.
(b) If Qe X thent(P) = 1(Q) if and only if there is a € G such thag(P) =
Q.

(iif) For a given group action, is an affine variety with the properties (ii)(a) and (ii)(b)
uniquely determined?

(iv) LetZ,= {exp(zlr;k) ; ke Z} c C be the group ofi-th roots of unity. LetZ, act
on C™ by multiplication in each coordinate. Show tt@&tZ,, is isomorphic toC
for all n, but tha’[(Cz/Zn is not isomorphic taC? for n > 2.

Exercise 2.6.5.Are the following statements true or false:fit A" — A™is a polynomial
map (i.e.f(P) = (f1(P),..., fm(P)) with fi € K[x1,...,%n]), and. ..
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(i) X C A"is an algebraic set, then the imaffeX) c A™is an algebraic set.
(i) X c A™is an algebraic set, then the inverse imdgé(X) c A" is an algebraic
set.
(i) X c A"is an algebraic set, then the grapk= {(x, f(x))|x € X} c A™™Mis an
algebraic set.

Exercise 2.6.6.Let f : X — Y be a morphism between affine varieties, and tetA(Y) —
A(X) be the corresponding map lefalgebras. Which of the following statements are true?

() If Pe XandQ e, thenf(P) = Qif and only if (f*)~1(1(P)) = 1(Q).
(i) f*isinjective if and only iff is surjective.
(iif) f* is surjective if and only iff is injective.
(iv) fis anisomorphism if and only if* is an isomorphism.

If a statement is false, is there maybe a weaker form of it which is true?
Exercise 2.6.7.Let X be a prevariety. Show that:

(i) Xis a Noetherian topological space,
(ii) any open subset of is a prevariety.

Exercise 2.6.8.Let (X, Ox) be a prevariety, and l&t C X be an irreducible closed subset.
For every open subsét C Y defineOy(U) to be the ring ofk-valued functionsf onU
with the following property: for every poir® € Y there is a neighborhodd of P in X and

a sectiorF € Ox(V) such thatf coincides withF onU.

(i) Show that the ring®y (U) together with the obvious restriction maps define a
sheafOy onY.
(ii) Show that(Y, Oy) is a prevariety.

Exercise 2.6.9.Let X be a prevariety. Consider paifd, f) whereU is an open subset
of X and f € Ox(U) a regular function otJ. We call two such pairgU, f) and(U’, f')
equivalent if there is an open subsein X with V c U NU’ such thatf|y = f|y:.

(i) Show that this defines an equivalence relation.
(i) Show that the set of all such pairs modulo this equivalence relation is a field. It is
called thefield of rational functions on X and denotedK(X).
(iii) If X is an affine variety, show that(X) is just the field of rational functions as
defined in definition 2.1.3.
(iv) If U C Xis any non-empty open subset, show tkdt) ) = K(X).

Exercise 2.6.10.If U is an open subset of a prevarietyandf : U — P! a morphism, is it
always true thaf can be extended to a morphism X — P* ?

Exercise 2.6.11.Show that the prevariet§! is a variety.
Exercise 2.6.12.

(i) Show that every isomorphisrh: A — Al is of the formf (x) = ax-+ b for some
a,b € k, wherex is the coordinate oA,

(i) Show that every isomorphisrh: P — P1 is of the formf(x) = 2£8 for some

a,b,c,d € k, wherex is an affine coordinate oA c P1. (For a generalization
see corollary 6.2.10.)

(iii) Given three distinct point#;,P,,P; € P and three distinct point®1,Q2,Q3 €
PP, show that there is a unique isomorphismP*! — P such thatf (P,) = Q; for
i=123.

(Remark: If the ground field i€, the very same statements are true in the complex analytic
category as well, i.e. if “morphisms” are understood as “holomorphic maps” (#ids

the Riemann spher€,). If you know some complex analysis and have some time to Kill,
you may try to prove this too.)
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Exercise 2.6.13.Let X andY be prevarieties with affine open coveild; } and{V;}, re-
spectively. Construct the product prevariéty< Y by glueing the affine varietidd; x V;
together. Moreover, show that there are projection morphism x Y — X andriy : X x
Y — Y satisfying the “usual” universal property for products: given morphi$mg — X
andg: Z —Y from any prevarietyZ, there is a unique morphisim: Z — X x Y such that
f =Txohandg=rT oh.
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3. PROJECTIVE VARIETIES

Similarly to the affine case, a subset of projective n-space P" overk is called a projec-
tive algebraic set if it can be written as the zero locus of a (finite) set of homogeneous
polynomials. The Zariski topology on P" is the topology whose closed sets are the
projective algebraic sets. The concepts of irreducibility and dimension are purely
topological and extend therefore immediately to subsets of projective space. We
prove a projective version of the Nullstellensatz and make projective varieties into
ringed spaces that are varieties.

The main property of projective varieties distinguishing them from affine varieties
is that (over C in the classical topology) they are compact. In terms of algebraic
geometry this translates into the statement that if f : X — Y is a morphism between
projective varieties then f(X) is closedin'Y.

3.1. Projective spaces and projective varietiesIn the last section we have studied va-
rieties, i.e. topological spaces that are locally isomorphic to affine varieties. In particular,
the ability to glue affine varieties together allowed us to constrastpacispaces (over the
ground fieldC) like e.g.P, whereas affine varieties themselves are never compact unless
they are a single point (see exercise 3.5.6). Unfortunately, the description of a variety in
terms of its affine patches is often quite inconvenient in practice, as we have seen already
in the calculations in the last section. It would be desirable to have a global description of
the spaces that does not refer to glueing methods.

Projective varieties form a large class of “compact” varieties that do admit such a unified
global description. In fact, the class of projective varieties is so large that it is not easy to
construct a variety that isot (an open subset of) a projective variety.

To construct projective varieties, we need to define projective spaces first. Projective
spaces are “compactifications” of affine spaces. We haveReaiready as a compact-
ification of A'; general projective spaces are an extension of this construction to higher
dimensions.

Definition 3.1.1. We defineprojective n-spaceover k, denotedP", to be the set of all
one-dimensional linear subspaces of the vector skide

Remark3.1.2 Obviously, a one-dimensional linear subspac&f is uniquely deter-
mined by a non-zero vector k1. Conversely, two such vectoes= (ay,...,a,) and

b = (b, ...,bn) in k™ span the same linear subspace if and only if they differ only by a
common scalar, i.e. it = Aa for some non-zera € k. In other words,

P"={(a0,...,an) ; & €k, not allgy = 0} / ~
with the equivalence relation
(ag,...,an) ~ (bo,...,by) if @& = Ab; for someh € k\{0} and alli.
This is often written as
P" = (K™1\{0})/(K\{0}),
and the poinP in P" determined byay, ..., an) iswritten asP = (ag : - - - : @) (the notation
[ao,...,an] is also common in the literature). So the notati@s: - -- : an) means that the
a are not all zero, and that they are defined only up to a common scalar multipley The

are called thdvomogeneous coordinatesf the pointP (the motivation for this name will
become obvious in the course of this section).

Example 3.1.3. Consider the one-dimensional projective spéeLet (ag : a;) € P* be
a point. Then we have one of the following cases:
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(i) ap#0. ThenP can be written aP = (1:a) witha= % € k. Obviously(1:a) =
(1:b) if and only ifa=b, i.e. the ambiguity in the homogeneous coordinates is
gone if we fix one of them to be 1. So the set of these points isjjlisiVe call
a= % the affine coordinate of the pointP; it is uniquely determined b (and
not just up to a multiple as for the homogeneous coordinates).

(i) ap =0, and thereforey # 0. There is just one such point that we can write as
(0:1).

SoP!is justA! with one point added. This additional poif : 1) can be thought of as a
“point at infinity”, as you can see from the fact that its affine coordinate is forrr@llso
we arrive at the same description®f as in example 2.4.5 (i).

Remark3.1.4 There is a completely analogous descriptioPdfas A" with some points
added “at infinity”: letP = (ap: - - : @;) € P" be a point. Then we have one of the following
cases:

(i) a#0. ThenP=(1:01:---:0p) with a; = % for all i. Thea; are the affine
coordinates oP; they are uniquely determined IB/and are obtained by setting
ap = 1. So the set of alP with ag # 0 is justA".

(i) ap=0,i.e.P=(0:a;:---:an), with theg still defined only up to a common
scalar. Obviously, the set of such pointsPfs1; the set of all one-dimensional
linear subspaces @f". We think of these points as points at infinity; the new twist
compared td! is just that we have point at infinity for every one-dimensional
linear subspace ofA", i.e. for every “direction” inA". So, for example, two
lines in A" will meet at infinity (when compactified i?") if and only if they
are parallel, i.e. point in the same direction. (This is good as it implies that two
distinct lines always intersect in exactly one point.)

Usually, it is more helpful to think of the projective spd@&as the affine spack” com-
pactified by adding some points (parametrizedBy?) at infinity, rather than as the set of
lines in A1,

Remark3.1.5 In the casek = C, we claim thatP" is a compact space (in the classical
topology). In fact, let

SZrH—l — {(ao’7an) c (Cn—«—l; |aO‘2++|an‘2: 1}
be the unit sphere i@"*! = R?"*2, This is a compact space as it is closed and bounded,
and there is an obvious surjective map

SZFH»]._)}P)FI7 (a(), ,an)|—> (ao an)

As images of compact sets under continuous maps are compact, it follov¥'tisahlso
compact.

Remark3.1.6 In complete analogy to affine algebraic sets, we now want to define pro-
jective algebraic sets to be subsetdPbfthat can be described as the zero locus of some
polynomials in the homogeneous coordinates. Note however that i[xo, . ..,%n] is an
arbitrary polynomial, it does not make sense to write down a definition like

Z(f)={(ao:---1an); f(ao,...,an) =0},

because the; are only defined up to a common scalar. For examplgg, x1) = x% —Xo
thenf(1,1) = 0 but f(—1,—1) # 0, although(1 : 1) and(—1 : —1) are the same point in
PPL. To get rid of this problem we have to require tigtehomogeneousi.e. that all of its
monomials have the same (total) degded his is equivalent to the requirement

f(AXo, ..., AXy) =A% f(xo,...,%,) forall A,
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S0 in particular we see that
f(AXg,...,A%1) =0 < f(Xg,..., %) =0,

i.e. the condition that homogeneousolynomial in the homogeneous coordinates vanishes
is indeed well-defined.

Definition 3.1.7. For everyf € k[xo,...,x,] let (9 denote the degreg-part of f, i.e.
f =5 f(@ with (@ homogeneous of degreb‘or all d.

Lemma 3.1.8. Let | C KXo, ...,X,] be an ideal. The following are equivalent:

(i) 1 can be generated by homogeneous polynomials.
(i) Forevery fe | we have {9 e | for all d.

An ideal that satisfies these conditions is caltexinogeneous

Proof. (i) = (ii): Let | = (f4,..., fm) with all f; homogeneous. Then evefye | can
be written asf = 5, a;fi for someg; € K[xo,...,%n] (which need not be homogeneous).
Restricting this equation to the degrégart, we getf (@) = 5;(g)(@-dedfi) f; c .

(i) = (i): Any ideal can be written ab= (f4,..., fyy) with the f; possibly not being
homogeneous. But by (ii) we know that éiffj) are inl too, so it follows that is generated
by the homogeneous polynomieqéd). O

Remark3.1.9 Note that it isnot true that every element of a homogeneous ideala
homogeneous polynomial: we can always add two polynomidismfet another element
of I, even if they do not have the same degree.

With the exception of the homogeneity requirement, the following constructions are
now completely analogous to the affine case:

Definition 3.1.10. Let | C k[xo, ..., X,] be a homogeneous ideal (or a set of homogeneous
polynomials). The set

Z(1):={(a an) €P"; f(ag,...,an)=0forall f €1}

is called thezero locusof [; this is well-defined by remark 3.1.6. Subset®bthat are of
the formZ(1) are calledhlgebraic sets If X C P" is any subset, we call

1(X) :=the ideal generated by
{f €K[Xo,...,X] homogeneousf(ag,...,an) =0forall (ag:---:an) € X}
C K[Xo, - - -, Xn]

theideal of X; by definition this is a homogeneous ideal.

If we want to distinguish between the affine zero lozik) c A" and the projective
zero locuZ(l) c P" of the same (homogeneous) ideal, we denote the form&gty and
the latter byZy(l).

Remark3.1.11 A remark that is sometimes useful is that every projective algebraic set
can be written as the zero locus of finitely many homogeneous polynoafitte same
degree This follows easily from the fact that( f ><8f .,x31) for all homogeneous
polynomialsf and everyd > 0.

Example 3.1.12.Let L ¢ A™1 be a linear subspace of dimensioa 1; it can be given

by n—k linear equations in the coordinates . The image ol under the quotient
map (A" 1\ {0})/(k\{0}) = P", i.e. the subspace & given by the sama — k equations
(now considered as equations in the homogeneous coordinaf®y) ancalled alinear
subspaceof P" of dimensionk. Once we have given projective varieties the structure of
varieties, we will see that a linear subspac@®bf dimensiork is isomorphic tdPX. For
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example, a line i3 (with homogeneous coordinates X1, X2, X3) is given by two linearly
independent equations in tle One example is the line

{xo=x3=0}={(ap:a;:0:0); ag,a € k} C P?,
which is “obviously isomorphic” tdP1.
Example 3.1.13.Consider the conics ih?
Xi={x=x¢} and Xp={xxp=1}

of exercise 2.6.1. We want to “compactify” these conics to projective algebraiXsets
X, in P2. Note that for a projective algebraic set we need the defining polynomials to be
homogeneous, which is not yet the case here. On the other hand, we have an additional
coordinatexg that you can think of as being 1 on the affine spaée P2. So it is obvious
that we should make the defining equations homogeneous by adding suitable paowers of
consider

X1 ={xox2=x2} and Xo = {xix =x3}
in P2. Then the restriction of; to the affine spac&? c P2 is just given byX; fori = 1,2.
We call X; the projective completion of X;; it can be done in the same way for all affine
varieties (see exercise 3.5.3).

Let us consideX; first. The points that we add at infinity correspond to those where
X0 = 0. It follows from the defining equation that = 0 as well; and then we must nec-
essarily havex; # 0 as the coordinates cannot be simultaneously zero. So there is only
one point added at infinity, name{@ : 0 : 1). It corresponds to the “vertical direction” in
A2, which is the direction in which the parabota= xf goes off to infinity (at both ends
actually).

For X, the added points have again= 0. This means that;x, = 0, which yields the
two points(0: 1:0) and(0:0: 1) in P?: we added two points at infinity, one corresponding
to the “horizontal” and one to the “vertical” direction i?. This is clear from the picture
below as the hyperbobax, = 1 extends to infinity both along the and thex; axis.

Note that the equations of; and X, are exactly the same, up to a permutation of the
coordinates. Even if we have not given projective varieties the structure of varieties yet,
it should be obvious thaX; and X, will be isomorphic varieties, with the isomorphism
being given by exchanging, andx;. Hence we see that the two distinct types of conics

in A2 become the same in projective space: there is only one projective cdffcup to
isomorphism. The difference in the affine case comes from the fact that some conics “meet
infinity” in one point (likeX1), and some in two (like).

Proposition 3.1.14.

(i) If11 C I, are homogeneous ideals ifxk, ..., xn] then Z12) C Z(11).
(i) If {I;} is a family of homogeneous ideals iixk . .. , x| then; Z(1;) = Z(U; i) C
P".
(iii) 1fI1,12 C K[Xo,...,Xs] are homogeneous ideals thei UZ(l2) = Z(l1l2) C P".
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In particular, arbitrary intersections and finite unions of algebraic sets are again algebraic
sets.

Proof. The proof is the same as in the affine case (proposition 1.1.6). |

Definition 3.1.15. We define thezariski topology onP" to be the topology whose closed
sets are the algebraic sets (proposition 3.1.14 tells us that this gives in fact a topology).
Moreover, any subset of P" (in particular any algebraic set) will be equipped with the
topology induced by the Zariski topology @4. This will be called the Zariski topology
onX.

Remark3.1.16 The concepts of irreducibility and dimension introduced in section 1.3 are
purely topological ones, so they apply to projective algebraic sets (or more generally to
any subset o) as well. They have the same geometric interpretation as in the affine
case. Irreducible algebraic setshh are calledorojective varieties. As in the affine case
(see lemma 1.3.4) a projective algebraic)X$as irreducible if and only if its ideal (X) is

a prime ideal. In particula?" itself is irreducible.

3.2. Cones and the projective NullstellensatzWe will now establish a correspondence
between algebraic sets ' and homogeneous radical idealskip, . . .,X,], similar to

the affine case. This is quite straightforward; the only twist is that there is no zero point
(0:---:0) in P", and so the zero locus of the radical homogeneous iggal. ., x,) is
empty although the ideal is not equal(th. So we will have to exclude this ideal from our
correspondence, which is why it is sometimes calledriledevant ideal.

As we want to use the results of the affine case for the proof of this statement, let us first
establish a connection between projective algebraic sét8 amd certain affine algebraic
sets inA"NL,

Definition 3.2.1. An affine algebraic sex ¢ A" is called aconeif it is not empty, and
if we have for allA € k

(X0y---sXn) €X = (MXo,...,AXn) € X.
If X C P"is a projective algebraic set, then
C(X) = {(X0, .- %) | (X0 -~ Xn) € X} U {0}
is called the cone ovef (obviously this is a cone).

Remark3.2.2 In other words, a cone is an algebraic setAifi! that can be written

as a (usually infinite) union of lines through the origin. The cone over a projective al-
gebraic setX ¢ P" is the inverse image ok under the projection map"+1\{0} —
(A™1\{0})/(k\{0}) = P", together with the origin.

Example 3.2.3. The following picture shows an example of a (two-dimensional) cone
C(X) in A% over the (one-dimensional) projective varigtyn H = P2:

/A3 C(X)
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(C(X) consists only of the “boundary” of the cone, not of the “interior”.) Note tBgx)
contains the two linek; andLy, which correspond to “points at infinity” of the projective
spaceP?.

Lemma 3.2.4.

(i) Let!lC K[Xo,...,X:] be a homogeneous ideal. IfXZy(I) C P", then QX) =
Za(1) C AML,
(i) Conversely, if XC P" is a projective algebraic set andX) C KXo, . ..,Xq] is its
homogeneous ideal, thefd(X)) = I (X).
In other words, there is a one-to-one correspondence between projective algebraic sets in
P" and affine cones iA™?, given by taking the zero locus of the same homogeneous ideal
(not equal to(1)) either inP" or in A1,

Proof. This is obvious from the definitions. O

Using this lemma, it is now very simple to derive a projective version of the Nullstel-
lensatz:

Proposition 3.2.5. (“The projective Nullstellensatz”)
(i) If X1 C X, are algebraic sets ifP" then I(Xp) C 1(X1).

(ify For any algebraic set X_ P" we have Z(1(X)) = X.

(iiiy For any homogeneous ideatd K[Xo, . .., Xn| such that Z(I) is not empty we have
1(Zp(1)) = V1.

(iv) For any homogeneous ideald K[xo,...,Xn] such that (I) is empty we have
either 1= (1) or VI = (Xo,...,%). In other words, %(1) is empty if and only if
(X0, ..-,%)" C | for somerr.

Proof. The proofs of (i) and (ii) are literally the same as in the affine case, see proposition
1.2.9.

(iii): Let X = Zy(1). Then
H(Zp(1)) =1(X) =1(C(X)) = (Za(1)) = VI

by lemma 3.2.4 and the affine Nullstellensatz of proposition 1.2.9 (iii).
(iv): If Zp(1) is empty, therZy(1) is either empty or just the origin. So corollary 1.2.10

tells us that = (1) or /I = (Xo,...,%n). In any case, this means thé‘te | for somek;, so
(X, ..., Xp)kot Tk ], O

Theorem 3.2.6. There is a one-to-one inclusion-reversing correspondence between alge-
braic sets inP" and homogeneous radical ideals ifxk . . .,x,] not equal to(xo, . ..,%n),
given by the operations(2 and I(-).

Proof. Immediately from proposition 3.2.5. O

3.3. Projective varieties as ringed spacesSo far we have defined projective varieties

as topological spaces. Of course we want to make them into ringed spaces and finally
show that they are varieties in the sense of definitions 2.4.1 and 2.5.1. $a’|& be a
projective variety. First of all we have to makeinto a ringed space whose structure sheaf

is a sheaf ok-valued functions. The construction is completely analogous to the affine
case discussed in section 2.1.

Definition 3.3.1. The ring
S(X) :=k[xo, - .., %n]/1(X)
is called thehomogeneous coordinate ringf X.
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Remark3.3.2 In contrast to the affine case, the element§(@f) do not define functions

on X, because the homogeneous coordinates are only determined up to a common scalar.
Rather, to get well-defined functions, we have to take quotients of two homogeneous poly-
nomialsof the same degree Because then a rescaling of the homogeneous coordinates by

a factor\ € k\{0} gives a factor oAY in both the numerator and denominator, so that it
cancels out:

Definition 3.3.3. Let
SX) D= {1 f e S(X)}
be the degree-part of S(X). Note that this is well-defined: if € 1(X) then @ =0 by
lemma 3.1.8. We define ttield of rational functions to be
K(X) := {; ; f,ge S(X)9 andg;«éo}.

By remark 3.3.2, the elements Kf{X) give set-theoretic functions to the ground fiéld
wherever the denominator is non-zero. Now as in the affine case set

Oxp = {; eK(X); g(P) ;AO} and Ox(U):= [ Oxp

PcU
for P e X andU C X open. Itis easily seen that this is a sheakweflued functions.

Remark3.3.4 In the same way as for affine varieties (see exercise 2.6.9) one can show
that the function field& (X) defined above agrees with the definition for general varieties.

Remarlk3.3.5 Note thatOx (X) =k, i.e.every regular function on all of X is constarithis
follows trivially from the description oK (X): if the function is to be defined everywhere

g must be a constant. But thdnhas to be a constant too as it must have the same degree
asg. A (slight) generalization of this will be proved in corollary 3.4.10.

Proposition 3.3.6. Let X be a projective variety. ThéiX, Ox) is a prevariety.

Proof. We need to find an open affine coverxf Consider the open subset
Xo={(ag:+-:an) €X;a#0}=XNA"
(whereA" C P" as in remark 3.1.4). IK = Z(fy,..., f;) with f; € k[x, ...,X,] homoge-

neous, sed;i (Xq,-..,Xn) = fi(1,X1,...,%) €K[X1,...,%] and defin& =Z(g,...,qr) C A".
We claim that there is an isomorphism

a an
F:XNA" =Y, (ag:---:ay) — (,...,).
( ) 2’ 3

In fact, it is obvious that a set-theoretic inverse is given by
F7l:Y = XNA" (ag,...,an) — (1:a1:---: an).

Moreover,F is a morphism because it pulls back a regular function on (an open subset of)
Y of the form .

P, ..a) PG 5

q(a17~~~;an) q(%77%)7
which is a regular function oX N A" as it can be rewritten as a quotient of two homo-
geneous polynomials of the same degree (by canceling the fractions in the numerator and
denominator). In the same way; ! pulls back a regular function on (an open subset of)
XNA"

P(a,....an)  P(La,....an)

g(ao,---,an) q(l,a,...,an)’
which is a regular function o¥. SoF is an isomorphism.
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In the same way we can do this for the open 3¢ts {(xo: -+ : X) € X ; % # O} for
i =0,...,n. As thex; cannot be simultaneously zero, it follows that dedorm an affine
cover ofX. SoX is a prevariety. d

Remark3.3.7. Following the proof of proposition 3.3.6, it is easy to see that our “new”
definition of P! agrees with the “old” definition of example 2.4.5 (i) by glueing two affine
linesAl.

Remark3.3.8 Proposition 3.3.6 implies that all our constructions and results for preva-
rieties apply to projective varieties as well. For example, we know what morphisms are,
and have defined products of projective varieties. We have also defined the field of rational
functions for prevarieties in exercise 2.6.9; it is easy to check that this definition agrees
with the one in definition 3.3.3.

Although this gives us the definition of morphisms and products, we would still have to
apply our glueing techniques to write down a morphism or a product. So we should find a
better description for morphisms and products involving projective varieties:

Lemma 3.3.9. Let X C P" be a projective variety (or an open subset of a projective vari-
ety). Let i,..., fm € KXo, ..., %] be homogeneous polynomials of the same degree in the
homogeneous coordinatesi®¥f, and assume that for everydPX at least one of the floes

not vanish at P. Then the define a morphism

f:X—=P" PcXs (fo(P):---: fn(P)).

Proof. First of all note thatf is well-defined set-theoretically: we have assumed that the
image point can never @ : - - - : 0); and if we rescale the homogeneous coordingtes
get

(foAXo i+ i AXn) i+ fm(AXo i -+ 1 AXn))
=\ fo(xo %) - A (X0t - %)
= (fo(xo %) it fm(X0 2+ 1)),
whered is the common degree of thig To check thatf is a morphism, we want to use
lemma 2.4.10, i.e. check the condition on an affine open cover. S¥ilebe the affine
open cover oP™with Vi = {(yo:---:ym) ; ¥i # 0}, and let; = f ~1(V;). Then in the affine
coordinates oW, the mapf |y; is given by the quotients of polynomia% forj=0,...,n

with j # i, hence gives a morphism dgP) # 0 onU;. So f is a morphism by lemma
2.4.10. O

Remark3.3.1Q It should be noted however that not every morphism between projective
varieties can be written in this form. The following example shows that this occurs already
in quite simple cases. For a more precise statement see lemma 7.5.14.

Example 3.3.11.By lemma 3.3.9, the map

f:PL— P2 (s:it)— (x:y:2) = (s2:st:t?)
is @ morphism (as we must hage- 0 ort # 0 for every point ofP?, it follows thats® # 0
or t2 # 0; hence the image point is always well-defined).

Let X = f(P!) be the image off. We claim thatX is a projective variety with ideal
| = (xz—y?). In fact, it is obvious thaf (P1)  Z(l). Conversely, leP = (x:y: z) € Z(1).
As xz—y? = 0 we must havex # 0 orz# 0; let us assume without loss of generality that
x# 0. Then(x:y) € Pl is a point that maps to : xy: y?) = (X2 : xy: x2) = (X:y: 2).

It is now easy to show that : P — X is in fact an isomorphism: the inverse image
f~1:X — PLis given by

fix:y:2=(x:y) and fix:y:2)=(y:2).



3. Projective varieties 43

Note that at least one of the two poirfs: y) and(y : z) is always well-defined; and if they

are both defined they agree because of the equstiery?. By lemma 3.3.9 both equations
determine a morphism where they are well-defined; so by lemma 2.4.10 they glue to give
an inverse morphisni—1. Note thatf ~* is a (quite simple) morphism between projective
varieties that cannot be written globally in the form of lemma 3.3.9.

Summarizing, we have shown thitis an isomorphism: the curvixz=y?} c P? is
isomorphic taP*. This example should be compared to exercise 2.6.1 and example 3.1.13.
It is a special case of the Veronese embedding of 3.4.11.

Finally, let us analyze the isomorphisfgeometrically. LelQ =(1:0:0) € X, and
let L  P? be the line{x = 0}. For any pointP = (a: b: c) # Q there is a unique liN®Q
throughP andQ with equationyc = zh. This line has a unique intersection poP®nN L
with the lineL, namely(0 : b: c). If we identify L with P in the obvious way, we see that
the above geometric construction gives us exattly(P) = PQNL. We say thatf  is
theprojection from QtoL.

Q

/
/

¢ L
1P

Example 3.3.12. ConsiderP" with homogeneous coordinatgs . . ., X,, andP™ with ho-
mogeneous coordinatss,...,yn. We want to find an easy description of the product
P" x P™,

LetPN = P+ 1(M+)-1 he projective space with homogeneous coordinatg® < i <
n, 0< j <m. There is an obviously well-defined set-theoretic niaf®" x P™ — PN given
by z j = xyj.

Lemma 3.3.13.Let f: P"x P™ — PN pe the set-theoretic map as above. Then:

() The image X= f(PP" x P™) is a projective variety ifPN, with ideal generated by

the homogeneous polynomialsz j —z jz ; forall 0<i,i’ <nand0 < j, ' <
m.

(i) The map £ P"xP™— X is anisomorphism. In particulaB" x P is a projective
variety.

(iii) The closed subsets Bf' x P™ are exactly those subsets that can be written as
the zero locus of polynomials i, ..., %n, Yo, .., Ym|] that are bihomogeneous
inthe x and y.

The map f is called th8egre embedding

Proof. (i): It is obvious that the points of (P" x P™) satisfy the given equations. Con-
versely, letP be a point inPN with coordinateg; j that satisfy the given equations. At least
one of these coordinates must be non-zero; we can assume without loss of generality that
itis zpp. Let us pass to affine coordinates by setting = 1. Then we have; j = z 07 j;
so by setting; = 7z o andy; = 7g j we obtain a point oP" x P™ that is mapped t® by f.
(ii): Continuing the above notation, I& ¢ f(P" x P™) be a point withzgp = 1. If
f(x,y;) = P, it follows thatxg # 0 andyp # 0, so we can assumg = 1 andyp = 1 as the
x; andy;j are only determined up to a common scalar. But then it followsxhatz o and
Yj = 2,j; i-e. f is bijective.
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The same calculation shows thiaand f ~1 are given (locally in affine coordinates) by
polynomial maps; sd is an isomorphism.

(iii): 1t follows by the isomorphism of (ii) that any closed subseffdfx P™ is the zero
locus of homogeneous polynomials in the, i.e. of bihomogeneous polynomials in tke
andy; (of the same degree). Conversely, a zero locus of bihomogeneous polynomials can
always be rewritten as a zero locus of bihomogeneous polynomials of the same degree in
thex; andy; by remark 3.1.11. But such a polynomial is obviously a polynomial irethe
so it determines an algebraic setdrez P" x P™, O

Example 3.3.14.By lemma 3.3.13P! x P! is (isomorphic to) the quadric surface
X ={(200:21:210:211) ; 200211 = 2102021} C P°.
by the isomorphism
PEx Pt — X, (%01 %), (Yo : Y1) — (XoYo : Xoy1 : X1Yo : Xay1)-

In particular, the “lines’P! x P andP x P in P x P! where the first or second factor is
constant are mapped to lines ¥hc P3. We can see these two families of lines on the
quadric surface:

Pl O

P

Corollary 3.3.15. Every projective variety is a variety.

Proof. We have already seen in proposition 3.3.6 that every projective variety is a preva-
riety, so by lemma 2.5.3 and lemma 2.5.4 it only remains to be shown that the diagonal
A(P") C P" x P"is closed. We can describe this diagonal as

APT) ={((Xx0: %), (Yo -~ 1 ¥n)) ; Xiyj —Xjyi = O for alli, j},
because these equations mean exactly that the matrix

< XO Xl cen Xn >
Yo Y1 -+ Yn
has rank (at most 1), i.e. th@o: - :%n) = (Yo: - ¥n)-
In particular, it follows by lemma 3.3.13 (iii) th&¥(P") c P" x P" is closed. O

3.4. The main theorem on projective varieties. The most important property of projec-

tive varieties is that they are compact in the classical topology (if the ground fietd ().

We have seen this already for projective spaces in remark 3.1.5, and it then follows for pro-

jective algebraic sets as well as they are closed subsets (even in the classical topology) of

the compact projective spaces. Unfortunately, the standard definition of compactness does

not make sense at all in the Zariski topology, so we need to find an alternative description.
One property of compact sets is that they are mapped to compact sets under continu-

ous maps. In our language, this would mean that images of projective varieties under a
morphism should be closed. This is what we want to prove.
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Remark3.4.1 Note first that this property definitely does not hold for affine varieties:
consider e.g. the affine variedy = {(x,y) ; xy= 1} C A? and the projection morphism
f:X — AL (x,y) — x. The image off is A'\{0}, which is not closed im\!. In fact, we
can see from example 3.1.13 why it is not closed: the “vertical point at infinity”, which
would map tox = 0 € A and make the image closed, is missing in the affine vaXety

\f(X):Al\{O}

To prove the above mentioned statement we start with a special case (from which the
general one will follow easily).

Theorem 3.4.2. The projection mapt: P" x P™ — P" is closed, i.e. if X& P" x PMis
closed then so ig(X).

Proof. Let X ¢ P" x P™ be an algebraic set. By lemma 3.3.13 (iii) we can wKtas the
zero locus of polynomial$; (x,y),.. ., fr(x,y) bihomogeneous in the coordinateof P"
andy; of P™ (where we use the short-hand notatif(x,y) for fi(xo,...,%n,Y0,---,Ym))-
By remark 3.1.11 we may assume thatfalhave the same degreean they;.

Let P € P" be a fixed point. The® € T(X) if and only if the common zero locus of the
polynomialsfi(Py) in y is non-empty inP™, which by proposition 3.2.5 is the case if and
only if

Yo, -, Ym)* (fa(Py),..., fr(PY)) ()

forall s> 0. As(x) is obvious fors < d, it suffices to show that for arg> d, the set of all
P € P" satisfying(x) is closed, ast(X) will then be the intersection of all these sets and
therefore closed as well.

Note that the idealyo, . ..,ym)® is generated by th(é“rzs) monomials of degresgin the
yi, which we denote bi¥;(y) (in any order). Hencéx) is not satisfied if and only if there
are polynomialg; j(y) such thatMi(y) = 5;9i;(y) fj(Ry) for alli. As theM; and f; are
homogeneous of degre@ndd, respectively, this is the same as saying that such relations
exist with theg; j; homogeneous of degree- d. But if we letN;(y) be the collection of all
monomials in they; of degrees— d, this is in turn equivalent to saying that the collection
of polynomials{Ni(y)fj(Py) ; 1 <i < (™5%),1 < j <r} generates the whole vector
space of polynomials of degreeWriting the coefficients of these polynomials in a matrix
A= A(P), this amounts to saying thathas rank (at least)"}"®). Hence(x) is satisfied
if and only if all minors ofA of size (') vanish. But as the entries of the matiare
homogeneous polynomials in the coefficient$pit follows that the set of alP satisfying

(x) is closed. g

Remark3.4.3 Let us look at theorem 3.4.2 from an algebraic viewpoint. We start with
some equation$ (x,y) and ask for the image of the projection ma@py) — x, which can
be written as

{x; there is & such thatf;(x,y) = 0 for all i}.
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In other words, we are trying teliminatethe variablesy from the system of equations
fi(x,y) = 0. The statement of the theorem is that the set of all swetn itself be written as
the solution set of some polynomial equations. This is sometimes calledaimetheorem
of elimination theory

Corollary 3.4.4. The projection mapt: P" xY — Y is closed for any variety Y.

Proof. Let us first show the statement fgrC A™ being an affine variety. Then we can
regardY as a subspace &™ via the embedding\™ c P™ (Y is neither open nor closed
in P, but that does not matter). Now # c P" x Y is closed, letZ c P" x P™ be the
projective closure. By theorem 3.4.2(2) is closed inP™, wherett is the projection
morphism. Therefore

nZ)=nZN(P"xY))=mZ)NY
is closed inY.

If Y is any variety we can cover it by affine open subsets. As the condition that a
subset is closed can be checked by restricting it to the elements of an open cover, the
statement follows from the corresponding one for the affine open patches that we have just
shown. O

Remark3.4.5 Corollary 3.4.4 is in fact the property @&" that captures the idea of com-
pactness (as we will see in corollary 3.4.7). Let us therefore give it a name: we say that a
variety X is completeif the projection mapt: X xY — Y is closed for every variety.

(You can think of the name “complete” as coming from the geometric idea that it contains
all the “points at infinity” that were missing in affine varieties.) So corollary 3.4.4 says that
P" is complete. Moreover, any projective varigtyc P" is complete, because any closed
setinZ x Y is also closed ifP" x Y, so its image under the projection morphisn¥twill

be closed as well.

Remarl3.4.6 We have just seen that every projective variety is complete. In fact, whereas
the converse of this statement is not true, it is quite hard to write down an example of a
complete variety that is not projective. We will certainly not meet such an example in the
near future. So for practical purposes you can usually assume that the terms “projective
variety” and “complete variety” are synonymous.

Corollary 3.4.7. Let f: X — Y be a morphism of varieties, and assume that X is complete.
Then the image (X) C Y is closed.

Proof. We factorf asf : X & X xY 5 Y, wherel™ = (idx, f) (the so-calledyraph mor-
phism), andrtis the projection to.

We claim that™ (X) = {(P, f(P)) ; P € X} € X x Y is closed. To see this, note first that
the diagonalA(Y) C Y x Y is closed a¥ is a variety. Now (X) is just the inverse image
of A(Y) under the morphisnif,idy) : X xY — Y x Y, and is therefore also closed.

As X is complete, it follows thaf (X) = 1(I' (X)) is closed. O

Corollary 3.4.8. Let X C P" be a projective variety that contains more than one point, and
let f € K[xo,...,Xn] be a non-constant homogeneous polynomial. TherZXf) # 0.

Proof. Assume that the statement is false, i.e. th& non-zero on all oK. LetP,Q € X
be two distinct points oK and choose a homogeneous polynorgialk|xo, . . ., Xn] of the
same degree ab such thatg(P) = 0 andg(Q) # 0. LetF : X — P! be the morphism
defined byP — (f(P) : g(P)); this is well-defined ag is non-zero orX by assumption.
By corollary 3.4.7 the imagE (X) is closed inP!. Moreover,F (X) is irreducible asX
is. ThereforeF (X) is either a point or all of*. But by assumptiorfO : 1) ¢ F(X), so
F (X) must be a single point. But this is a contradictionf&®) = (f(P) : g(P)) = (1: 0)
andF (Q) = (f(Q) : g(Q)) # (1 : 0) by the choice of. O
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Remark3.4.9 Again this statement is false for affine varieties: consider ¥.¢ {x =
0} c A2 and f = x— 1, thenXNZ(f) = 0 althoughX is a line (and therefore contains
more than one point). This example worked becausi?ime can have parallel lines. In
P2 such lines would meet at infinity, so the intersection would be non-empty then.

Corollary 3.4.10. Every regular function on a complete variety is constant.

Proof. Let f : X — A be a regular function on a complete variéty Considerf as a
morphism taP! that does not assume the vakge In particular,f(X) € P, hence it is a
single point by corollary 3.4.7. |

Example 3.4.11. (This is a generalization of example 3.3.11 and exercise 3.5.2.) Let
fi(Xo,...,%),0<i <N = (“ﬁd) —1 be the set of all monomials kixo, . ..,%n] of degree
d, i.e. of the monomials of the forx¢ - --xir with ig+ - - - +in = d. Consider the map

F:P" PN (xo:-:%) — (for--: fn).

By lemma 3.3.9 this is a morphism (note that the monom@Js. .4, which cannot be
simultaneously zero, are among thg So by corollary 3.4.7 the imagé = F(P") is a
projective variety.

We claim thatF : X — F(X) is an isomorphism. All we have to do to prove this is to
find an inverse morphism. This is not hard: we can do this on an affine open cover, so
let us consider the open subset wheges 0 (and therefore(g # 0). We can then pass to

d—1
affine coordinates and sgf = 1. The inverse morphism is then given ky= % for
1<1<n.

The morphisnF is therefore an isomorphism and thus reali?@as a subvariety PN,
This is usually called the degreeVeronese embedding Its importance lies in the fact
that degread polynomials in the coordinates &f' are translated intbnear polynomials

when viewingP" as a subvariety aPN. An example of this application will be given in
corollary 3.4.12.

The easiest examples are the degiesnbeddings oP?, given by
P — P9 (sit) o (9?0220 ),
The special cases= 2 andd = 3 are considered in example 3.3.11 and exercise 3.5.2.

Note that by applying corollary 3.4.7 we could conclude thgX) is a projective variety
without writing down its equations. Of course, in theory we could also write down the
equations, but this is quite messy in this case.

Corollary 3.4.12. Let X C P" be a projective variety, and let € k[xo, . ..,xn] be a non-
constant homogeneous polynomial. The@Z¥f ) is an affine variety.

Proof. We know this already if is a linear polynomial (see the proof of proposition 3.3.6).
But by applying a Veronese embedding of degitee/e can always assume this. O

3.5. Exercises.

Exercise 3.5.1.Let L; andL, be two disjoint lines inP3, and letP € P3\ (L UL,) be a
point. Show that there is a unique lihec P® meetingLy, Lo, andP (i.e. such thaP € L
andLNL; #0fori=1,2).

Exercise 3.5.2.LetC c P2 be the “twisted cubic curve” given by the parametrization
PL—P? (s:t)— (x:y:z:w) = (sP:t:st2:td).
LetP=(0:0:1:0 € P?, and letH be the hyperplane defined lay= 0. Let¢ be the

projection fromP to H, i.e. the map associating to a po@tof C the intersection point of
the unique line througk andQ with H.
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(i) Show thatdp is a morphism.
(i) Determine the equation of the curgéC) in H = P2,
(ii) Is ¢ : C — ¢(C) an isomorphism onto its image?

Exercise 3.5.3.Let| C k[xg,...,Xn] be an ideal. Definé" to be the ideal generated by
{th; f 1} CKxo,...,%], where

(X0, ..., %) 1= deqf)-f(“,...f”)
(%o n) == Xg X0 X0

denotes the homogenization bivith respect tog. Show that:

(i) 1"is a homogeneous ideal.
(i) Z(1") c P"isthe closure oZ(1)  A"in P". We callZ(I") theprojective closure
of Z(1).
(iii) Let | = (fy,..., fk). Show by an example thalt  (fI',..., ) in general. (Hint:
You may consider (again) the twisted cubic curve of exercise 3.5.2.)

Exercise 3.5.4.In this exercise we will make the space of all linesPihinto a projective
variety.

Fix n > 1. We define a set-theoretic map
¢ : {linesinP"} — PN

with N = (”;1) —1 as follows. For every line. C P" choose two distinct point® =
(@:--:ay) andQ = (bp: --- : by) onL and defined(L) to be the point inPN whose
homogeneous coordinates are {fig") maximal minors of the matrix

a‘O cee an
bo -~ by )’

() The mapd is well-defined and injective.

(i) The image of¢ is a projective variety that has a finite cover by affine spaces
A2 (in particular, its dimension is(®— 1)). It is called theGrassmannian
G(1,n). Hint: recall that by the Gaussian algorithm most matrices (what does this
mean?) are equivalent to one of the form

in any fixed order. Show that:

( 10 aiz 31:1 >

0 1 b, -+ by
for somea;, b.

(i) G(1,1)is a point,G(1,2) = P?, andG(1,3) is the zero locus of a quadratic equa-
tion in S,

Exercise 3.5.5.LetV be the vector space ovkof homogeneous degree-2 polynomials in
three variablesg, x1, X2, and letP(V) = IP® be its projectivization.

() Show that the space of conics Bf can be identified with an open subsét

of P5. (One says that is a “moduli space” for conics ifP? and thatP® is a
“compactified moduli space”.) What geometric objects can be associated to the
points inP5\U?

(i) Show that itis a linear condition ift® for the conics to pass through a given point
in P2. More precisely, ifP € P? is a point, show that there is a linear subspace
L ¢ IP® such that the conics passing througlare exactly those ibh NL. What
happens ifP°\U, i.e. what do the points iP°\U) NL correspond to?

(iii) Prove that there is a unique conic through any five given poinfiras long as
no three of them lie on a line. What happens if three of them do lie on a line?
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Exercise 3.5.6.Show that an affine variety ovér is never compact in the classical topol-
ogy unless it is a single point. (Hint: Given an affine vari¥ty A", show that the image
of X under the projection map” — A’ onto the first coordinate is either a point or an open
subset (in the Zariski topology) @f*. Conclude that an affine variety with more than one
point is neverboundedi.e. is never contained in a bal(z,...,z,) ; |z 4+ |z|> <

R?} ¢ C", and therefore not compact.)

Exercise 3.5.7.Let G(1,n) be the Grassmannian of lineslifi as in exercise 3.5.4. Show
that:

(i) The set{(L,P); PeL} c G(1,n) x P"is closed.
(i) If Z C G(1,n) is any closed subset then the union of all lines P" such that
L € Zis closed inP".
(iii) Let X,Y C P" be disjoint projective varieties. Then the union of all linesPth
intersectingX andY is a closed subset @™. It is called thejoin J(X,Y) of X
andY.

Exercise 3.5.8.Recall that aconicis a curve inP? that can be given as the zero locus of
an irreducible homogeneous polynomfag k[xg, x1,%z] of degree 2. Show that for any 5
given pointsPy, ..., Ps € P2 in general positionthere is a unique conic passing through all
the P. This means: there is a non-empty open subset P2 x --- x P? such that there
is a unique conic through th@d whenever(Py,...,Ps) € U. (Hint: By mapping a conic
{a0Xg + a1x? + axX3 + agXoX1 + auXoXz + asxixz = 0} to the point(ap : --- : as) € P°, you
can think of “the space of all conics” as an open subs&®of
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4. DIMENSION

We have already introduced the concept of dimension of a variety. Now we develop
some methods that allow to compute the dimension of most varieties rigorously. We
show that the dimension of A" and P" is n. The dimension of a variety equals the
dimension of any of its non-empty open subsets. Every irreducible component of
the zero locus of a single function on an affine or projective variety X has dimension
dimX —1.

Two varieties are called birational if they contain isomorphic open subsets. As a
large class of examples of birational varieties we construct the blow-up of an affine
variety in a subvariety or an ideal. We study in detail the case of blowing up a single
point P in a variety X. In this case, the exceptional hypersurface is the tangent cone
Cx p.

For any point P in a variety X, the tangent space Tx p is the linear space dual to
M/ M2, where M C Ox p is the maximal ideal. The point P is called a smooth point
of X if Tx p = Cxp, i.e. if X “can be approximated linearly” around P. Smoothness
can easily be checked by the Jacobi criterion.

As an application of the theory developed so tar, we show that every smooth cubic
surface X has exactly 27 lines on it. We study the configuration of these lines, and
show that X is isomorphic to P2 blown up in 6 suitably chosen points.

4.1. The dimension of projective varieties. Recall that in section 1.3 we have introduced
the notion of dimension for every (Noetherian) topological space, in particular for every
variety X: the dimension dinX of X is the largest integan such that there is a chain of
irreducible closed subsets Xf

0AXCXe S X=X
For simplicity of notation, in what follows we will call this langest chairin X.
While this definition is quite simple to write down, it is very difficult to use in practice.
In fact, we have not even been able yet to compute the dimensions of quite simple varieties
like A" or P" (although it is intuitively clear that these spaces should have dimengion

In this section, we will develop techniques that allow us to compute the dimensions of
varieties rigorously.

Remark4.1.1 We will start our dimension computations by considering projective vari-
eties. It should be said clearly that the theory of dimension is in no way special or easier
for projective varieties than it is for other varieties — in fact, it should be intuitively clear
that the dimension of a variety is essentialljoaal concept that can be computed in the
neighborhood of any point. The reason for us to start with projective varieties is simply
that we know more about them: the main theorem on projective varieties and its corollar-
ies of section 3.4 are so strong that they allow for quite efficient applications in dimension
theory. One could as well start by looking at the dimensions of affine varieties (and most
textbooks will do so), but this requires quite some background in (commutative) algebra
that we do not have yet.

Remarl4.1.2 The main idea for our dimension computations is to compare the dimensions
of varieties that are related by morphisms with various properties. For examgle, if

X —Y is asurjectivemorphism, we would expect that d¥n> dimY. If f : X =Y isa
morphism with finite fibers, i.e. such that(P) is a finite set for allP € Y, we would
expect that dinX < dimY. In particular, if a morphism both is surjective and has finite
fibers, we expect that didd = dimY.

Example 4.1.3. The standard case in which we will prove and apply the idea of comparing
dimensions is the case of projections from a point. We have already seen such projections
in example 3.3.11 and exercise 3.5.2; let us now consider the general case.
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Let X C P" be a projective variety, and I& € P" be a point that is not ifX. By a
change of coordinates we can assume Fhat (0:---:0:1). LetH = P! c P" be a
linear subspace of codimension 1 that does not cofta@igain by a change of coordinates
we can assume that = {x, = 0}. We define gprojection map 1: X — H from P as
follows: for every pointQ € X let (Q) be the intersection point of the lirfeQ with H.
(Note that this is well-defined &3 # P by assumption.)

IPn

P
E gn(Q) HOPpr-1

This is in fact a morphism: iQ = (ag : - -- : ay) € X, the linePQis given parametrically by
PQ={(\ag:---:Aan_1:Aan+ W) €P"; (A:p) € P}

The intersection point of this line witH is obviously the pointag : - - - : an—1 : 0), which is

well-defined by the assumption th@t£ P. Hence the projectiomis given in coordinates

by

X —P" L (ag:---:an)— (@p:-:an 1).

In particular, this is a polynomial map and therefore a morphism.

Note that projections always have finite fibers: by construction, the inverse image
™ 1(Q) of a pointQ € H must be contained in the linBQ = P!, but it must also be
an algebraic set and cannot contain the pBirtience it must be a finite set.

Note also that we can repeat this process if the imagé isfnot all of P"~1: we can
then projectri(X) from a point inP"~! to P"2, and so on. After a finite number of such
projections, we arrive atsurjectivemorphismX — P™ for somemthat is the composition
of projections as above. In particular, as this morphism is surjective and has finite fibers,
we expect dinX = m. This is the idea that we will use for our dimension computations.

Let us start with some statements about dimensions that are not only intuitively clear
but actually also easy to prove.

Lemma 4.1.4.

(i) FO#AXo < - C Xy =X is alongest chainin X thedimX; =i for all i.
(i) IfY € X is a closed subvariety of the variety X tr#imY < dimX.
(i) Let f:X —Y be asurjective morphism of projective varieties. Then every longest
chain0#Yy C --- C YyinY can be lifted to a chai® # Xo C --- € X, in X
(i.e. the X are closed and irreducible with(¥;) =Y; for all i). In particular,
dimX > dimY.

Proof. (i): It is obvious that dinX; > i. If we had dimX; > i there would be a longer chain
in X than® # Xo C --- € X;. This chain could then be extended by tefor j > i to a
chain inX that is longer than the given one.

(i)): We can extend alongestchanZYo C Y1 C--- CYy=YinY toachaim#Yy ¢
Y1 C - C Yo=Y C Xin X which is one element longer.

(ii): We prove the statement by induction an= dimY; there is nothing to show if =
0. Otherwise leZy, . ..,Z, C X be the irreducible components le(Yn_l), sothatf (Z;)U
--U f(Z) = Ya—1. Note thatY,_1 is irreducible and the (Z;) are closed by corollary
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3.4.7, so on&; must map surjectively t8,_1. Applying the induction hypothesis to the
restrictionf|z : Zy — Yo_1 we get din¥, > dimY,_1 = n—1, so there is a chai®# Xy C
--- C Xp—1 = Zj. Extending this chain b¥X at the end, we thus obtain a chain{rof length
n lying over the given chain ii. O

Lemma 4.1.5. Let X C P" be a projective variety, and assume without loss of generality
thatP=(0:---:0:1) ¢ X.

(i) Any homogeneous polynomiakfk[x, ..., Xn] satisfies a relation of the form
fP4a P14 afP24...+ap =0 inX)=Kxo,...,xn]/1(X)

for some D> 0 and some homogeneous polynomials &[Xo, ..., Xn—1] that do
not depend on the last variablg.x

(i) Lettt: X — P"1 be the projection from P as in example 4.1.3. 1£YX is a
closed subvariety such thatY) = 1(X) then Y= X.

+a

Remark4.1.6 Before we prove this lemma let us give the idea behind these statements.
In (i), you should think off as being a polynomial containing the varialglg while the

g do not. So for given values ob,...,x,—1 the relation in (i) is a non-zero polynomial
equation inx, that therefore allows only finitely many values fgron X. As the projection

from P is just given by dropping the last coordinatg the statement of (i) is just that this
projection map has finite fibers.

We have argued in remark 4.1.1 that we then expect the dimensm{Xgfto be less
than or equal to the dimension ¥f To show this we will want to take a longest chairnXin
and project it down tat(X). Itis obvious that the images of the elements of such a chain in
X are again closed subvarietiesrifiX), but it is not a priori obvious that a strict inclusion
Xi € Xiy1 translates into a strict inclusian(X;) C 1(Xi+1). This is exactly the statement of

(ii).
Proof. (i): Let d be the degree of. Consider the morphism

FEX =P (Xo:- %) — (Yo:---i¥n) =0 X8 ;i f(Xo,...,%n))

(which is well-defined sinc® ¢ X). The image offt is closed by corollary 3.4.7 and is
therefore the zero locus of some homogeneous polynofials. , Fr € K[yo, . . .,Yn]. Note
that

Z(yOa"'ayn—l>Fla--'7Fl') :oc Pn
because thé&; require the point to be in the imag&X), while thexo,...,x,—1 do not
vanish simultaneously oK. So by the projective Nullstellensatz of proposition 3.2.5 (iv)
it follows that some power of, is in the ideal generated lyy, . .., yn—1,F1,...,F. In other
words,

n-1
Yo = ngi(yo,---,yn) Vi inS(T(X)) =Kyo, ...yl /(F1,....F)
i=
for someD. Substituting the definition di for they; thus shows that there is a relation
0 fP24...4+ap=0 inSX)

for some homogeneows € K[Xo, . . . , Xn—1].

(ii): Assume that the statement is false, i.e. taf X. Then we can pick a homoge-
neous polynomiaF € I (Y)\I(X) C K[xo,...,Xn] of some degree that vanishes ol but
not onX.

Now pick a relation as in (i) for the smallest possible valu®ofin particular we then
haveap # 0 in §(X), i.e.ap ¢ |(X). But we have chosehf such thatf € 1(Y), therefore
the relation (i) tells us thap € 1(Y) as well.

fol

+a1 +a
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It follows thatap € I (Y)\I(X). But note thatp € k[xo, . .., Xn—1], SOap is a function on
P"-1 that vanishes om(Y) but not onm(X), in contradiction to the assumption. O

Corollary 4.1.7. Let XC P" be a projective variety, and assume without loss of generality
thatP=(0:---:0:1) ¢ X. Letri: X — P"~1 be the projection from P as in example 4.1.3.
ThendimX = dimT(X).

Proof. Let0+# Xy C --- C X =X be alongestchain iK. Then0#£Yy, C --- C Y, =Y with

Y; = (%) is a chain in(X): note that théy; are closed by corollary 3.4.7, irreducible as
they are the images of irreducible sets, and no two of them can coincide by lemma 4.1.5.
It follows that dimmi(X) > dimX. But also dinti(X) < dimX by lemma 4.1.4 (iii), so the
statement follows. O

Corollary 4.1.8. The dimension dP" is n.

Proof. By lemma 4.1.4 (ii) we know that
dimP® < dimP! < dimP? < dimP3 < ... . (*)

Moreover, we have seen in example 4.1.3 that every projective vatiebn be mapped
surjectively to someéP" by a sequence of projections from points; it then follows that
dimX = dimP" by corollary 4.1.7. In other words, every dimension that occurs as the
dimension of some projective variety must occur already as the dimension of some projec-
tive space. But combining) with lemma 4.1.4 (i) we see that every non-negative integer
occurs as the dimension of some projective variety — and therefore as the dimension of
some projective space. So(ir) we must have dif" = n for all n. |

Proposition 4.1.9. Let X C P" be a projective variety, and let € k[xo, ..., X,] be a non-
constant homogeneous polynomial that does not vanish identically on X.dIthéd N
Z(f))=dimX —1.

Remark4.1.10 Note that in the statement of this propositi¥m Z(f) may well be re-
ducible; the statement is then that there is at least one component that has dimension
dimX — 1 (and that no component has bigger dimension). We will prove a stronger state-
ment, namely a statement abewerycomponent oX N Z(f), in corollary 4.2.5.

Proof. Let m= dimX. After applying a Veronese embedding of degree fdag in exam-
ple 3.4.11 we can assume thfats linear. Now construct linear functior, ..., fn and
algebraic set¥Xy, ..., Xm+1 C X inductively as follows: LeXg = X andfo = f. Fori >0

let X1 = X NZ(f;), and letfi 1 be any linear form such that

(i) fi;1 does not vanish identically on any componenXpf;, and
(i) firqislinearly independent from thf, ..., f;.

Itis obvious that (i) can always be satisfied. Moreover, (ii) is automaXc. if is not empty
(asfy,..., fi vanish onX; 1), and easy to satisfy otherwise (as then (i) is no condition).

Applying lemma 4.1.4 (ii) inductively, we see that no componenXidfias dimension
bigger thanm—i. In particular,Xn.1 must be empty. Hence the linear formfs.. ., f
do not vanish simultaneously ot} so they define a morphism: X — P™. As thef; are
linear and linearly independermt,is up to a change of coordinates the samd; as x; for
0<i<m, soitis just a special case of a continued projection from points as in example
4.1.3. In particular, dimy(X) = dimX = mby corollary 4.1.7. By lemma 4.1.4 (ii) it then
follows that(X) = P™, i.e.Ttis surjective.

Now suppose that every componentaf= X NZ(f) has already dimension at most
m-— 2, then by the above inductive argument alredglys empty and the form#, ..., fy_1
do not vanish simultaneously oX. But this means that0 : ---: 0: 1) ¢ 1(X), which
contradicts the surjectivity af. O
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4.2. The dimension of varieties. After having exploited the main theorem on projective
varieties as far as possible, let us now study the dimension of more general varieties. We
have already remarked that the dimension of a variety should be a local concept; in partic-
ular the dimension of any open subvariétyof a varietyX should be the same as that of

X. This is what we want to prove first.

Proposition 4.2.1. Let X be a variety, and let & X be a non-empty open subset of X.
ThendimU = dimX.

Proof. “<™ Let 0#Up C U1 C --- C Uy, =U be a longest chain ib. If X; denotes the
closure ofU; in X for all i, then® £ Xo C --- € X, = X is a chain inX.

“>": We will prove this in several steps.

Step 1: Letd # Xp C --- © X, = X be a longest chain iX, and assume tha§ C U.
Then setJ; = X;NU for all i; we claim thatd) £ Uy C --- C U, =U is a chain inJ (from
which it then follows that did > dimX). In fact, the only statement that is not obvious
here is that); £ U, 1 for all i. So assume that; = U;, 1 for somei. Then

Xir1= (X+1NU)U (Xip1N (X\U))
= (XNU)U KN (X\U))
=X U XN (X\U)),

where the last equality follows froig N (X\U) C Xi;1N(X\U). But this is a contradiction
to X1 being irreducible, a¥; is neither empty nor all 0K+ 1. So we have now proven
the proposition in the case where the eleni¢nof a longest chain iX lies inU.

Step 2: LetX be a projective variety. Then we claim that we can always find a longest
chain® #£ Xo C - -+ C X, (with n = dimX) such thatX, € U. We will construct this chain
by descending recursion on starting by setting<, = X. So assume thati C Xi11 C
-+ C X, = X has already been constructed such atU # 0. Pick any non-constant
homogeneous polynomidlthat does not vanish identically on any irreducible component
of X;\U. By proposition 4.1.9 there is a component®f Z(f) of dimensioni — 1; call
this X;_;. We have to show thati_1 NU # 0. Assume the contrary; the§_; must be
contained inX;\U. But by the choice off we know thatX;_; is not a whole component
of X{\U, so it can only be a proper subset of a componen{;g. But by lemma 4.1.4
(i) the components oX;\U have dimension at most- 1, and therefore proper subsets of
them have dimension at madst 2. This is a contradiction to didg_; =i — 1.

Combining steps 1 and 2, we have now proven the propositi#nisfa projective va-
riety. Of course the statement then also followifs an affine variety: leX be the
projective closure oK as in exercise 3.5.3, then by applying our result twice we get
dimU =dimX = dimX.

Step 3: LetX be any variety, and leb # Xo C --- C Xn = X be a longest chain iiX.
LetV C X be an affine open neighborhood of the poipt then dinV = dimX by step 1.

In the same way we can find an affine open sulbéeif U such that dinWW = dimU. As
V NW #£ 0, it finally follows from steps 1 and 2 that

dimX =dimV = dim(V NW) = dimW = dimU.
([l
In particular, as every variety can be covered by affine varieties, this proposition implies

that it is sufficient to study the dimensions of affine varieties. Let us first prove the affine
equivalent of proposition 4.1.9.

Example 4.2.2.
(i) As A"is an open subset @", it follows by corollary 4.1.8 that dil" = n.
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(i) As A™™"is an open subset & x P™, it follows by (i) that dim(P" x P™) = n+m.

(i) Let f €k[xs,...,X] be a non-constant polynomial. We claim ti#Z4t ) ¢ A" has
dimensionn — 1. In fact, letX C P" be the projective closure & f); by propo-
sition 4.1.9 there is a componenof X of dimensiom — 1. As the homogenized
polynomial f does not contairy as a factorX cannot contain the whole “infinity
locus”P"\ A" = P"~1, So the part oK in the infinity locus has dimension at most
n—2; in particular the componeivtof X has non-empty intersection witkl". In
other wordsZ(f) C A" has dimensiom— 1.

(iv) Let f € k[xq,...,Xn) be as in (iii); we claim that in fact the dimension e¥ery
irreducible component & (f) C A"isn— 1: in fact, ask[xs, ..., Xn] is a unique
factorization domain, we can writé as a productf - -- f, of irreducible poly-
nomials, so that the decomposition Bff) into its irreducible components is
Z(f1)U---UZ(f;). Now we can apply (iii) to the; separately to get the desired
result.

(v) The corresponding statements to (iii) and (iv) are true for the zero locus of a
homogeneous polynomial iP" as well (the proof is the same).

By (iv) and (v), there is a one-to-one correspondence between closed subvarietiés of
(resp.P") of dimensionn— 1 and non-constant irreducible polynomialskiixs, ..., Xq]
(resp. non-constant homogeneous polynomialkxg, ..., X]). Varieties that are of this
form are callechypersurfaces if the degree of the polynomial is 1 they are callggber-
planes

Remarld.2.3 Nextwe want to prove for general affine varietles” A" that the dimension
of (every component ofXNZ(f) is dimX — 1. Note that this doesot follow immediately
from the projective case as it did fr= A" in example 4.2.2 (jii) or (iv):

(i) As for example 4.2.2 (jii), of course we can still consider the projective closure
X of X in P" and intersect it with the zero locus of the homogenizatiorf ;of
but proposition 4.1.9 only gives us the existence of one component of dimension
dimX —1in XNZ(f). It may well be that there is a componentXfZ(f)
that is contained in the “hyperplane at infinitfP"\ A", in which case we get
no information about the affine zero locsNZ(f). As an example you may
consider the projective varie¥/ = {xox = X2} C P2 andf = x;: thenXNZ(f) =
(1:0:0U(0:0:1) contains a poin{0 : 0: 1) at infinity as an irreducible
component.

(i) As for example 4.2.2 (iv), note that a factorization bfas for A" is simply not
possible in general. For example, in the case just consideredt {i) intersects
X in two points, but there is no decomposition of the linear functidnto two
factors that vanish on only one of the points.

Nevertheless the idea of the proof is still to use projections from points:

Proposition 4.2.4. Let X C A" be an affine variety, and let € k[xy,...,xn] be a non-
constant polynomial that does not vanish identically on X. TdietXNZ(f)) =dimX —
1 (unless X0 Z(f) = 0).

Proof. We prove the statement by induction mnot on dimX!); there is nothing to show
for n=0. If X = A" the statement follows from example 4.2.2 (iv), so we can assume that
X C AN

Let X be the projective closure i"; we can assume by an affine change of coordi-
nates thaP = (0:---: 0: 1) ¢ X. Consider the projectiom: X — P"~! from P as in
example 4.1.3. Obviously, we can restrict this projection map to the affine gfaceP"
given byxg # 0; we thus obtain a morphism: X — 11(X) that is given in coordinates by

(a1,...,an) — (a1,...,an_1). Note thatr(X) is closed inA", asmi(X) = Ti(X) N A",
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By lemma 4.1.5 (i) applied to the functiof we see that there is a relation
P(%n) =% +ax, ‘+---ap=0 inAXX) ()

for someD > 0 and somey € K[x1,...,%,—1] that do not depend ox,. LetK be the field
K(X1,...,Xn—1) of rational functions im — 1 variables. Se¥ = K[xn]/p(xn); by (*) this is
a D-dimensional vector space ovir(with basis 1x,,...,x2~1). Obviously, every poly-
nomialg € K[xs, .. .,X,| defines a vector space homomorphigmV — V (by polynomial
multiplication), so we can talk about its determinantgletk. Moreover, it is easy to see
that deg € k[xq, . .., X,—1], @s the definition of the determinant does not use divisions. Note
also that deg = g if g € K[xq, ..., Xn_1].

Now go back to our original problem: describing the zero locus of the given polynomial
f onX. We claim that

(X NZ(f)) = (X)NZ((F)NK[Xq, ..., %1]) O T(X) N Z(detf)

(in fact there is equality, but we do not need this). The first equality is obvious from the
definition of Tt To prove the second inclusion, note that by the Nullstellensatz it suffices
to show that(f) NK[xq,...,xn—1] C y/(detf). Soletg € (f) Nk[xq,...,Xs—1]; in particular

g= f-bfor someb e K[xq,...,Xn]. It follows that

g = detg = detf - deth € (detf),

i.e.g € +/(detf), as we have claimed.
The rest is now easy:

dim(XNZ(f)) =dimm(XNZ(f)) by corollary 4.1.7 and proposition 4.2.1
> dim(T(X) N Z(detf)) by the inclusion just proven
=dimm(X) -1 by the induction hypothesis
=dimX -1 by corollary 4.1.7 and proposition 4.2.1 again.

The opposite inequality follows trivially from lemma 4.1.4 (ii). O

It is now quite easy to extend this result to a statement abeertycomponent oiX N
Z(f):

Corollary 4.2.5. Let XC A" be an affine variety, and letd k[x, . . .,X,] be a non-constant
polynomial that does not vanish identically on X. Then every irreducible component of
XNZ(f) has dimensioimX — 1.

Proof. LetXNZ(f)=2;U---UZ be the decomposition into irreducible components; we
want to show that dird; = dimX — 1. Letg € K[xs, ..., X] be a polynomial that vanishes
on Zy,...,Z; but not onZy, and letU = Xy = X\Z(g). ThenU is an affine variety by
lemma 2.3.16, antd NZ(f) has only one componei@ NU. So the statement follows
from proposition 4.2.4 together with proposition 4.2.1. O

Remark4.2.6 Proposition 4.2.1 and especially corollary 4.2.5 are the main properties of
the dimension of varieties. Together they allow to compute the dimension of almost any
variety without the need to go back to the cumbersome definition. Here are two examples:

Corollary 4.2.7. Let f: X —Y be a morphism of varieties, and assume that the dimension
of all fibers n= dim f ~%(P) is the same for all = Y. TherdimX = dimY +n.

Proof. We prove the statement by induction on dinthere is nothing to show far =0
(i.e. if Y is a point).
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By proposition 4.2.1 we can assume tifat A™is an affine variety. Lef € k[xq, ..., Xm]
be any non-zero polynomial in the coordinates\8fthat vanishes somewhere, but not ev-
erywhere orY, letY’ C Y be an irreducible component %N Z(f), and letx’ = f~1(Y’).
Then it follows by corollary 4.2.5 and the induction hypothesis that

dimX = dimX’' +1=dimY’+n+1=dimY +n.

O
Example 4.2.8.

(i) For any varietiesX, Y we have dinfX x Y) = dimX 4+ dimY (apply corollary
4.2.7 to the projection morphisix Y — X).

(i) Combining corollary 4.2.7 with proposition 4.2.1 again, we see that it is actually
sufficient thatf ~1(P) is non-empty and of the same dimension for Rlin a
non-empty open subsetof Y.

Corollary 4.2.9. Let X and Y be affine varieties id'. Then every irreducible component
of XNY c A" has dimension at leasmX +dimY —n.

Proof. Rewrite X NY as the intersection ok x Y with the diagonalA(A") in A" x A",
The diagonal is given by the zero locus of thdunctionsx; —y; for 1 <i < n, where
X1,...,%n,Y1,...,Yn are the coordinates df" x A". By corollary 4.2.5, every component
of the intersection of an affine varie® with the zero locus of a non-constant function
has dimension at least equal to dim 1 (it is dimZ if f vanishes identically o#, and
dimZ — 1 otherwise). Applying this statementimes to the functiong —y; on X x Y in
A" x A" we conclude that every componentofY has dimension at least diid x Y) —
n=dimX+dimY —n. O

Remark4.2.1Q (For commutative algebra experts) There is another more algebraic way
of defining the dimension of varieties that is found in many textbooks: the dimension of
a varietyX is the transcendence degree okef the field of rational function& (X) on

X. Morally speaking, this definition captures the idea that the dimension of a variety is the
number of independent coordinates Xn We have not used this definition here as most
propositions concerning dimensions would then have required methods of (commutative)
algebra that we have not developed yet.

Here are some ideas that can be used to show that this algebraic definition of dimension
is equivalent to our geometric one:

e If U C X is a non-empty open subset we h#@) ) = K(X), so with the algebraic
definition of dimension it is actually trivial that dibth = dimX.

e Itis then also obvious that dif” = tr degk(x1, ..., Xn) =n.

e Lettt: X — 1(X) be a projection map as in the proof of proposition 4.2.4. The
relation(x) in the proof can be translated into the fact tK&) is an algebraic
field extension oK (1(X)) (we add one variabl®,, but this variable satisfies a
polynomial relation). In particular, these two fields have the same transcendence
degree, translating into the fact that duX) = dimX.

4.3. Blowing up. We have just seen in 4.2.1 that two varieties have the same dimension if
they contain an isomorphic (non-empty) open subset. In this section we want to study this
relation in greater detail and construct a large and important class of examples of varieties
that are not isomorphic but contain an isomorphic open subset. Let us first make some
definitions concerning varieties containing isomorphic open subsets. We will probably not
use them very much, but they are often found in the literature.

Definition 4.3.1. Let X andY be varieties. Arational map f from X to Y, written f :
X --»Y, is a morphismf : U — Y (denoted by the same letter) from a non-empty open
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subsetJ ¢ X toY. We say that two such rational maps U — Y andg:V — Y with
U,V C X are the same if =gonUnNV.

A rational mapf : X --» Y is calleddominant if its image is dense itY, i.e. if f is
given by a morphisnf : U — Y such thatf (U) contains a non-empty open subseYoff
f:X--»Y andg:Y --» Z are rational maps, and if is dominant, then the composition
go f : X --» Zis a well-defined rational map.

A birational map from X toY is a rational map with an inverse, i.e. it is a (dominant)
rational mapf : X --» Y such that there is a (dominant) rational n@pY --» X with
go f =idx andf og = idy as rational maps. Two varietiesandY are callecbirational
if there is a birational map between them. In other woXlendY are birational if they
contain an isomorphic non-empty open subset.

We will now construct the most important examples of birational morphisms (resp.
birational varieties), namely blow-ups.

Construction4.3.2 Let X C A" be an affine variety, and Ief, ..., f; € K[xq,...,Xn] be
polynomial functions that do not vanish identically ¥n ThenU = X\Z(fo,..., f;) is a
non-empty open subset ®f and there is a well-defined morphism

f:U—=P P (fo(P):--: f(P)).
Now consider the graph
r={(Pf(P);PecU}CXxP'

which is isomorphic tdJ (with inverse morphisniP, Q) — P). Note thatl" is in general
not closed inX x P', because the points K\U where(fy: ---: f;) isill-defined as a point
in P" are “missing”.

The closure of in X x P" is called theblow-up of X in (fo,..., f;); we denote it byX.
It is a closed subset of x P", and it is irreducible a§ is; so it is a closed subvariety of
X x P'. In particular, there are projection morphismsX — X andp: X — P". Note that
X andX both containU as a dense open subset,X@nd the blow-upX have the same
dimension.

Let us now investigate the geometric meaning of blow-ups.

Example 4.3.3.1f r = 0 in the above notation, i.e. if there is only one functifyy the
blow-up X is isomorphic toX. In fact, we then havi&X ¢ X x PV = X, soX is the smallest
closed subvariety containing.

Example 4.3.4. Let X = A2 with coordinates,x:, and letfq = xo, f1 = x1. Then the
blow-up of X in (fo, f;) is a subvariety of\? x P1. The morphism(Xo,x1) — (X0 : X1) is
well-defined orlJ = X\ {(0,0)}; so on this open subset the graph is given by

M= {((x0.X1),(Yo: Y1) ; Xoy1 =Xayo} CU x P1.
The closure of™ is now obviously given by the same equation, consideretfin P*:

X = {((x0,%1), (Yo : Y1)) ; Xoy1 = Xayo} C A% x PL.
The projection morphisms t§ = A% andP* are obvious.

Note that the inverse image of a pot= (Xo, x1) € X\{(0,0) } underrtis just the single
point ((xo,X1), (%o : X1)) — we knew this before. The inverse image(6f0) € X however
is P, as the equatiorgy; = X1Yo imposes no conditions oy andy; if (Xo,x1) = (0,0).

To give a geometric interpretation of the pointsrint(0,0) let us first introduce one
more piece of notation. L&t C X be a closed subvariety that has non-empty intersection
with U. AsU is also a subset of, we can consider the closure ¥U in X. We call
this thestrict transform of Y. Note that by definition the strict transform ¥fis just the
blow-up ofY at (fo,..., f;); so we denote it by.
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Now letC c X = A? be a curve, given by the equation

g0%0,%) = ¥ & XX} = @00+ a1 0%+ 801X + L 1XoX1 +
]
Assume thatgo = 0, i.e. thatC passes through the origin 2, and that(ay 0,a0,1) #
(0,0), so thatC has a well-definedangent lineat the origin, given by the linearization
ajoXo+ag1xy =0 0f~g. Let us compute the strict transforé Of course, the points
((x0,%1), (Yo : y1)) of C satisfy the equation

a1,0%0 + 80,11 + a1.1X0X1 + 820X + 80 2X¢ + - -- = 0. (%)

But it is not true thatC is just the common zero locus #? x P! of this equation together
with Xgy1 = X1Yo, because this common zero locus contains the wholeﬁb’eﬂo, 0) = P!
— butC has to be irreducible of dimension 1, so it cannot containithidn fact, we have
forgotten another relation: on the open set wheret 0 andx; # 0 we can multiply(x)
with 32; using the relatior? = 3 we get

ay oYo +ap.1Y1 + a1,1YoX1 + a2, 0XoYo + 8g 2X1y1 +--- = 0.

This equation must then necessarily hold on the clo€u@. Restricting it to the origin
(X0,x1) = (0,0) we getay gYo + a0.1y1 = O, which is precisely the equation of the tangent
line toC at (0,0). In other wordsthe strict transfornC of C intersects the fiber1(0,0)
precisely in the point oP* corresponding to the tangent line of C {@,0). In this sense
we can say that the points af 1(0,0) correspond to tangent directionsXrat (0, 0).

The following picture illustrates this: we have two cun@s C, that intersect at the
origin with different tangent directions. The strict transfor@isandC; are then disjoint
on the blow-upX.

Let us now generalize the results of this example to general blow-ups. Note that in the
example we would intuitively say that we have “blown up the origin”, i.e. the zero locus
of the functionsfo,..., f;. In fact, the blow-up construction depends only on the ideal
generated by thé:

Lemma 4.3.5. The blow-up of an affine variety X @fy, ..., f;) depends only on the ideal
I € A(X) generated by ..., f,. We will therefore usually call it the blow-up of X at the
ideal I. If = 1(Y) for a closed subset ¥ X, we will also call it the blow-up of X in'Y.

Proof. Let(fo,..., fr) and(fg, ..., fs) be two sets of generators of the same idealA(X),
and letX andX’ be the blow-ups oK at these sets of generators. By assumption we have

relations inA(X)
fi = ZQLJ- fj/ and fj/ = Zg/j’kfk'
]
We want to define a morphisid — X’ by sending(P, (Yo : -~ ¥r)) to (P, (Y : -~ 1 Y4)),

wherey; = zkg’j,k(P)yk. First of all we show that this defines a morphismXox< PS,
i.e. that the)/j cannot be simultaneously zero. Note that the relafion zj,kgiﬂjg’j?kfk
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implies by lemma 4.3.6 (i) that = szgi’jg’j’kyk onX. Soify| = zkg’j_’kyk = 0 then also
¥i =¥ GijY; =0, which is a contradiction.

Hence we have defined a morphigfn— X x PS. By construction it maps the open
subsetX\Z(fo, ..., fr) € X to X\Z(f{,..., f{) < X', so it must map its closur¥ to X'
as well. By the same arguments we get an inverse morpKism X, soX andX’ are
isomorphic. O

Let us now study the variet{ itself, in particular over the locug(fo,..., fr) where
1: X — X is not an isomorphism.

Lemma 4.3.6. Let X C A" be an affine variety, and |& be the blow-up of X at the ideal
| = (fo,..., fr). Then:

(i) The blow-upX is contained in the set
{P(Yo:--:¥)); yifj(P)=y;fi(P)foralli,j=0,....,r} c X xP".

(i) The inverse image*(Z(fo,..., fr)) is of pure dimensiodimX — 1. It is called
theexceptional hypersurface

Proof. (i): By definition we must havéyp : --- : y;) = (fo(P) : --- : f,(P)) on the non-
empty open subsét\Z(1) c X. So these equations must be true as well on the closure of
this open subset, which ¥ by definition.

(ii): It is enough to prove the statement on the open subset whetd®, as these open
subsets for all coverX. Note that on this open subset the conditipfP) = 0 implies
fj(P) = 0 for all j by the equations of (i). So the inverse image!(Z(fo,...,f;)) is
given by one equatiorf; = 0, and is therefore of pure dimension dim- 1 =dimX —1
by corollary 4.2.5. O

Example 4.3.7.1n example 4.3.4X = A? has dimension 2, and the exceptional hypersur-
face was isomorphic tB*, which has dimension 1.

Remark4.3.8 The equations in lemma 4.3.6 (i) are in general not the only oneX for
Note that they do not impose any conditions over the zero I8¢5 .. ., f;) at all, so that
it would seem from these equations that the exceptional hypersurface is d@vayhis
must of course be false in general just for dimensional reasons (see lemma 4.3.6 (ii)).

In fact, we can write down explicitly the equations for the exceptional hypersurface. We
will do this here only in the case of the blow-up of (the ideal of) a p8&intvhich is the
most important case. By change of coordinates, we can then assurRaghhe origin in
AN,

For anyf € k[xq,..., %] we let f" be the “initial polynomial” off, i.e. if f = 3; {1} is
the splitting off such thatf () is homogeneous of degrégthen ™ is by definition equal
to the smallest non-zer&(). If |  k[xq, ..., %], we letl"™ be the ideal generated by the
initial polynomialsf™ for all f € I. Note that ™ is by definition a homogeneous ideal. So
its affine zero locug,(1™) C AMis a cone, and there is also a well-defined projective zero
locusZy(1'"). By exercise 4.6.8, the exceptional hypersurface of the blowup of an affine
variety X C A" in the origin is precisely(l (X)IM). (The proof of this statement is very
similar to the computation of in example 4.3.4.)

Let us figure out how this can be interpreted geometrically. By construdtin™ is
obtained from (X) by only keeping the terms of lowest degree, so it can be interpreted as
an “approximation” ofl (X) around zero, just in the same way as the Taylor polynomial
approximates a function around a given point. Note also Zhét(X)") has the same
dimension asX by lemma 4.3.6 (ii). Hence we can regag(I(X)") c A" asthe cone
that approximates X best around the pointlPis called thetangent coneof X in P and
denotedCy p. The exceptional locus of the blow-Upof X in P is then the “projectivized
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tangent cone”, i.e. it corresponds to “tangent directionsX throughP, just as in example
4.3.4.

Example 4.3.9. Here are some examples of tangent cones.

() Let X = {(x,y); y=x(x—1)} C A% The tangent cone oX in P = (0,0) is
given by keeping only the linear terms of the equatjoa x(x— 1), i.e.Cxp =
{(x,y) ; y = —x} is the tangent line tX in P. Consequently, the exceptional
hypersurface of the blow-up of in P contains only one point. In facK is
isomorphicto X in this case: note that oX, the ideal ofP is just given by the
single functionx, as(y — x(x— 1),x) = (x,y). So we are blowing up afy = x
only. It follows then by example 4.3.3 th&t= X.

(i) Let X = {(x,y) ; y¥* = x> +x3} C A% This time there are no linear terms in
the equation ofX, so the tangent cone i = (0,0) is given by the quadratic
termsCx p = {(x,y) ; y? = X%}, i.e. it is the union of the two tangent lings= x
andy = —x to X in P (see the picture below). The exceptional hypersurface
of the blow-up ofX in P therefore contains exactly two points, one for every
tangent direction irP. In other words, the two local branchesXfaroundP get
separated in the blow-up. Note that we cannot apply the argument of (i) here that
X should be isomorphic tX: the ideal ofP cannot be generated ot by one
function only. While it is true that the zero locus @t y? — x* — x3) is P, theideal
(x,y? —x% —x3) = (x,y?) is not equal td (P) = (x,y) — and this is the important
point. In particular, we see that the blow-up>in an ideall really does depend
on the ideal and not just on its zero locus, i.e. on the radical.of

(i) Let X = {(x,y) ; y> = x>} C A2, This time the tangent cone @ p = {y?> = 0},

i.e. it is only one line. So foK the pointP € X is replaced by only one single
point again, as in (i). But in this cagéandX arenotisomorphic, as we will see
in4.4.7.

(iii)

Remarkd.3.10 LetX be any variety, and &t C X be a closed subset. For an affine open
cover{U;} of X, letU; be the blow-up obJ; jn U;NY. Itis then easy to see that thle can
be glued together to give a blow-up variety

In what follows, we will only need this in the case of the blow-up of a point, where the
construction is even easier as it is local around the blown-up poinX ket a variety, and
let P € X be a point. Choose an affine open neighborhdod X of P, and letU be the
blow-up ofU in P. Then we obtairX by glueingX\P to U along the common open subset
U\P. In particular, this defines the tangent cabep to X at P for any varietyX: it is the
affine cone over the exceptional hypersurface of the blow-up iofP.

This sort of glueing currently works only for blow-ups at subvarieties, i.e. for blow-ups
at radical ideals. For the general construction we would need to patch ideals, which we do
not know how to do at the moment.

Note however that it is easy to see that for projective varieties, the blow-up at a homo-
geneous ideal can be defined in essentially the same way as for affine variefies: It
be a projective variety, and I8t C X be a closed subset. f,..., f; are homogeneous
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generators of(Y) of the same degree, the blow-upXfn Y is precisely the closure of
Fr={P(fo(P):---: f(P)); PeU}C X x P
in X x P' (this is easily checked on the affine patclieg 0).

Example 4.3.11.The following property of blow-ups follows trivially from the definitions,
yet it is one of their most important properties.

Let X C A" be an affine variety, and Idf, ..., f; be polynomials that do not vanish
identically onX. Note that the morphisnfi : P+ (fo(P) : ---: f,(P)) to P" is only well-
defined on the open sub&et= X\Z(fo, ..., f;) of X. In general, we can not expect that this
morphism can be extended to a morphism on akoBut we can always extend it “after
blowing up the idea( fo, ..., f;) of the indeterminacy locus”, i.e. there is an extensian
X — P' (that agrees withi on the open subskt), namely just the projection frotd c X x
P" — P". So blowing up is a way to extend morphisms to bigger sets on which they would
otherwise be ill-defined. The same is true for projective varieties and the construction at
the end of remark 4.3.10. Let us consider a concrete example of this idea in the next lemma
and the following remark:

Lemma 4.3.12.P x P! blown up in one point is isomorphic & blown up in two points.

Proof. We know from example 3.3.14 th&t x P! is isomorphic to the quadric surface

Q={(X0:X1:X2:Xa); XoXa = XX} C P2,
LetP=(0:0:0:12) € Q, and letQ c P® x P? be the blow-up of in the ideall (P) =
(X0,X1,%2).

On the other hand, l6®; = (0:1:0),R, = (0:0: 1) € P2, and letP? c P2 x P3 be
the blow-up of? in the ideall = (y3,Yoy1,YoY2,Y1Y2). Note that this is not quite the ideal
[(R1UR2) = (Yo,Y1Y2), but this does not matter: the blow-up is a local construction, so let
us check that we are doing the right thing arol®ad There is an open affine neighborhood
aroundR; given byy; # 0, and on this neighborhood the idéas just(y§7yo7yoy2,y2) =
(Yo,Y2), Which is precisely the ideal d®;. The same is true fdRy, so the blow-up of??
in | is actually the blow-up oP? in the two pointsR; andR,.

Now we claim that an isomorphism is given by

f:Q—P2 ((Xo:X1 X2 :X3),(Yo:y11¥2)) — ((Yo:Y1:y2),(Xo:XLiX: X))

In fact, this is easy to check: obviouslf/is an isomorphisn? x P* — P3 x P2, so we
only have to check that mapsQ to P2, and thatf ~* mapsP? to Q. Note that it suffices
to check thisaway from the blown-up points —*(IP?) is a closed subset @ x P?, so if
it contains a non-empty open subkett Q (e.g.Q minus the exceptional hypersurface), it
must contain all ofQ.

But this is now easy to check: (fhwe havexoxs = x1x2 and(Yo : y1:¥2) = (Xo : X1.: X2)
(where this is well-defined), so in the imagefoive get the correct equations

(X0 X1 X2 Xg) = (XG : XoX1 : XoXa  XoXa) = (X§ 1 XoX1  XoX2 1 X1X2) = (Y5 Yoy : Yoy2 : Y1Y2)
for the image point to lie ifP2. Conversely, ofP? we have(xo : X1 : X2 : X3) = (Y3 : Yoyx :
YoYz : y1y2) where defined, so we concluggs = xi3xX and(Yo:y1:Y2) = (X0 : X1 :X%2). O

Remark4.3.13 The proof of lemma 4.3.12 is short and elegant, but not very insightful.
Let us try to understand geometrically what is going on.

As in the proof, we think oP! x P! as the quadric

Q={(X0:X1:X2:%3) ; XoX3 = XX} C P°.

Consider the projection from P to P2, given in coordinates byi(Xo : X1 : X2 : X3) = (Xo :
X1 : X2). We have considered projections from points before, but so far the projection point
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P was always assumed not to lie on the given vari@tyThis is not the case here, and
consequentlyitis only well-defined orQ\P. To constructri(P) we would have to take
“the line throughP and P and intersect it with a giver®? c P that does not contain

P. Of course this is ill-defined. But there is a well-defined line throBgnd any point

P’ nearP which we can intersect witl#2. It is obvious thatr(P) should be the limit of
these projection points whe? tends toP. The lineP’P will then become a tangent line

to Q. But Q, being two-dimensional, has a one-parameter family of tangent lines. This is
why T(P) is ill-defined. But we also see from this discussion that blowingPum Q, i.e.
replacing it by the set of tangent lines throughwill exactly resolve the indeterminacy.

We have thus constructed a morphi§na- P! x P — P2 by projection fronP. If there
is an inverse morphism, it is easy to see what it would have to look like: pick a point
R e P? c P2. The points mapped tB by Tt are exactly those on the lirigR not equal to
P. In general, this line intersects the quadgén two points, one of which i®. So there
is exactly one point o® which maps tdR. This reasoning is false however if the whole
line PR= P! lies in Q. This whole line would then be mappedRpso that we cannot have
an isomorphism. But of course we expect again that this problem can be taken care of by
blowing upR in P2, so that it is replaced by B! that can then be mapped one-to-one to
PR

There are obviously two such lin®&; andPR;, given byR; = (0:1:0) andR; = (0:
0:1). If you think of Q asP! x P! again, these lines are precisely the “horizontal” and
“vertical” lines P* x {point} and{point} x P! passing througR. So we would expect that
Tt can be made into an isomorphism after blowingRijpandR,, which is what we have
shown in lemma 4.3.12.

#R, PTP) R, P2

4.4. Smooth varieties. Let X C A" be an affine variety, and I€ € X be a point. By a
change of coordinates let us assume tat (0,...,0) is the origin. In remark 4.3.8 we
have defined the tangent coneXin P to be the closed subset af' given by the initial
ideal of X, i.e. the “local approximation” oKX aroundP given by keeping only the terms of
the defining equations of of minimal degree. Let us now make a similar definition, but
where we only keep thinear terms of the defining equations.

Definition 4.4.1. For any polynomialf € k[xy,...,x,] denote byf (1) the linear part off.
For an ideal C k[xy,...,x,] denote byy(® = {f(); f 1} the vector space of all linear
parts of the elements &f this is by definition a vector subspace of thdimensional space
K[X1, ..., %]V of all linear forms

{aaxs +---+anxn s & €k}

The zero locugZ (1Y) is then a linear subspace &f'. It is canonically dual (as a vector
space) tk(xy, ..., %,V /1Y, since the pairing

KX, ... . %) D0 xz(1Dy Sk, (f,P)— f(P)
is obviously non-degenerate.
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Now let X C A" be a variety. By a linear change of coordinates, assumeRhat
(0,...,0) € X. Then the linear spacg(l (X)) is called thetangent spaceto X at P and
denotedTx p.

Remark4.4.2 Let us make explicit the linear change of coordinates mentioned in the
definition. IfP = (ay,...,an) € X, we need to change coordinates fromxh®y; = X, — &;.
By a (purely formal) Taylor expansion we can rewrite any polynorhialk[xs, ..., X,] as

f(X1,...,%) = f(P)+ z Z—L(P) -yi + (terms at least quadratic in tlyg,
|

so we see that the tangent spdge to any pointP = (ay,...,an) € X is given by the
equations

forall f € 1(X).
Here is an alternative description of the tangent space. For simplicity, we will assume
again that the coordinates have been chosen sucPthdD,...,0).
Lemma 4.4.3. Let X C A" be a variety, and assume thatP(0,...,0) € X. Then
K[Xz, ..., %] /1(X) D =M /M2,
where M= {¢ ; ¢(P) = 0} C Oxp is the maximal ideal in the local ring of X at P.

Proof. Recall that
f
OX,P = {6 ’ fvg € A(X)ag(P) 7& 0}7
and therefore ;
M={ 4 F.9€AX) {(P)=0g(P) £0}.
There is an obvious homomorphiskfxy, ..., x,]® /1 (X)) — M/M? of k-vector spaces.

We will show that it is bijective.

Injectivity: Let f € k[xl,...,xn]<1) be a linear function. Theé is zero inOx p if and
only if itis zero inA(X), i.e. if and only if f € | (X).

Surjectivity: Letd = é € M. Without loss of generality we can assume thd) = 1.
Set

09

r v

¢ - IZ ax| (P) le

which is obviously an element &fx, . .., x,](Y). We claim thath — ¢’ € M2. In fact,

o P)g(P) — X (P)f(P

=103 5P

=f-gP) z S—L(P) Xi (mod M?) (asg—g(P) andx; are inM)
of
=f-> OTQ(P) X;

= (mod M?) (as this is the linear Taylor expression for

Sop = ¢’ in M/M2. O



4. Dimension 65

Remark4.4.4 In particular, this lemma gives us a more intrinsic definition of the tangent
spaceTy p: we can say thaly p is the dual of thek-vector spaceM/MZ, whereM is the
maximal ideal in the local ringdx p. This alternative definition shows that the tangent
spaceTy p (as an abstract vector space) is independent of the chosen embedding of
affine space. It also allows us to define the tangent spagsdor any varietyX (that is not
necessarily affine).

Let us now compare tangent spaces to tangent cones.

Remarl4.4.5 Let X be an affine variety, and assume for simplicity that (0,...,0) € X.

For all polynomialsf € k[xy,...,Xs] vanishing aP, linear terms are always initial. Hence

the ideal generated byX)™ is contained in the ide&(X)™ defining the tangent cone (see
remark 4.3.8). So the tangent cdDep C A" is contained in the tangent spaep C A".

In particular, we always have dif p > dimCx p = dimX. Summarizing, we can say that,

in studying the local properties & aroundP, the tangent cone has the advantage that it
always has the “correct” dimension dky whereas the tangent space has the advantage
that it is always a linear space. We should give special attention to those cases when both
notions agree, i.e. whex “can be approximated linearly” aroui

Definition 4.4.6. A variety X is calledsmoothat the pointP € X if Tx p = Cx p, Or equiv-
alently, if the tangent spack p to X at P has dimension (at most) dixh It is called
singular at P otherwise. We say thaX is smooth if it is smooth at all pointB € X;
otherwiseX is singular.

Example 4.4.7. Consider again the curves of example 4.3.9:

() X={y=x(x-1)} C A?,
(i) X={y*=x2+x3} C A?,
(i) X ={y>=x3} Cc A2

In case (i), the tangent space{is= —x} C A2 and coincides with the tangent con¢is
smooth atP = (0,0). In the cases (ii) and (iii), there are no linear terms in the defining
equations ofX. So the tangent space ¥fat P is all of A2, whereas the tangent cone is
one-dimensional. Hence in these caXds singular aP.

In case (iii) let us now consider the blow-upXfin P = (0,0). Let us first blow up the
ambient spacé? in P; we know already that this is given by

A2 = {((xy),(X :¥)); xy =Xy} C AZx P
So local affine coordinates @f around the poin(0,0), (1 : 0)) are(u,v) € A2, where

u= % and v=x

so that((x,y), (X 1 ¥)) = ((v,uv), (1 :u)). In these local coordinates, the equatjén= x>
of the curveX is given by(uv)? = v3. The exceptional hypersurface has the local equation
v =0, so away from this hypersurface the cuiXés given by the equation = u?. By
definition, this is then also the equation of the blow>p

So we conclude first of all thahe blow-upX is smoothalthoughX was not. We say
that the singularity? € X got “resolved” by blowing up. We can also see that the blow-up
of the curve (with local equation= u?) is tangent to the exceptional hypersurface (with
local equatiorv = 0). All this is illustrated in the following picture (the blow-up &f is
the same as in example 4.3.4):
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It can in fact be shown that every singularity can be “resolved” in a similar way by succes-
sively blowing up the singular locus.

The good thing about smoothness is that is very easy to check:

Proposition 4.4.8.

(i) (Affine Jacobi criterion) Let X C A" be an affine variety with ideal(K) =
(f,..., fr), and let Pe X be a point on X. Then X is smooth at P if and only

if the rank of the rx n “Jacobi matrix” (%(P)) is (at least) n—dimX.
(i) (Projective Jacobi criteriofLet X C P" be a projective variety with idealK) =
(f1,...,fr), and let Pe X be a point on X. Then X is smooth at P if and only if

the rank of the 1< n Jacobi matrix(g—)g(P)) is (at least) n—dimX.

In particular, if the rank is r (the number of functions) then X is smooth of dimension n

Proof. (i): By remark 4.4.2, the linearization of the functiofisaround the poinP =
(a,...,an) is given by ; g—;}(P) - (% —&). By definition, X is smooth aP if these func-
tions define a linear subspace &f of dimension (at most) dif, i.e. if and only if the
linear subspace df[xy,...,x,]Y) spanned by the above linearizations has dimension (at
least)n — dimX. But the dimension of this linear space is exactly the rank of the matrix
whose entries are the coefficients of the various linear function.

(i): This follows easily by covering the projective spaE&by then+ 1 affine spaces
{X # 0} =2 A", and applying the criterion of (i) to theset 1 patches. O

Remark4.4.9 Note that a matrix has rank less thiaif and only if all k x k minors are
zero. These minors are all polynomials in the entries of the matrix. In particular, the
locus of singular points, i.e. where the Jacobi matrix has rank lessithalim X as in the
proposition, is closed.

It follows that the set
{P e X; Xis singular aP} C X

is closed. In other words, the set of smooth points of a variety is always open. One can
show that the set of smooth points is also non-empty for every variety (see e.g. [H] theorem
1.5.3). Hence the set of smooth points is always dense.

Example 4.4.10.
(i) For givenn andd, let X be the so-calleermat hypersurface
X={(x0::%); X3+ - +x3 =0}.

Then the Jacobi matrix has only one row, and the entries of this row e
fori =0,...,n. Assuming that the characteristic of the ground field is zero (or at
least not a divisor ofl), it follows that at least one of the entries of this matrix is
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non-zero at every point. In other words, the rank of the Jacobi matrix is always 1.
ThereforeX is smooth by proposition 4.4.8.
(ii) Let X be the “twisted cubic curve” of exercise 3.5.2

X={(s:t:st:t3); (s:t) e PL}.
We have seen earlier thdtcan be given by the equations
X ={(X0:X1:X2:X3) ; X2 — XoXo = X3 — X1X3 = XoX3 — X1X2 = O}.
So the Jacobi matrix is given by

—Xp 2%  —Xo 0
0 —X3 22X =X
X3 —X —X1 X

By proposition 4.4.8X is smooth if and only if the rank of this matrix is 2. (We
know already that the rank cannot be bigger than 2, which is also easily checked
directly).

The 2x 2 minor given by the last two rows and the first two columnx%is
The 2x 2 minor given by last two rows and the first and last colunmig = x%.
Similarly we find 2x 2 minors that are? andx3. These cannot all be simultane-
ously zero; henc& is smooth. (Of course we have known this before, side
just the degree-3 Veronese embeddin@b{see example 3.4.11. In particulr,
is isomorphic ta?! and therefore smooth.)

Remark4.4.11 The Jacobi criterion of proposition 4.4.8 gives us a direct connection to
complex analysis. Assume that we are givelmolomorphic functions ort"” (e.g. poly-
nomials), and that the matrix of the derivatives of théhas rankn — dimX at a point

P, whereX is the zero locus of thdi. Assume for simplicity that the square matrix

(%( )) of sizen—dimX is invertible. Then the inverse function
J 1<i<n—dimX,dimX<j<n

theorem states that the coordinatggx+1, - - -, Xn @re locally aroundP determined by the
other coordinatesy, ..., Xgimx. |.€. there is a neighborhoadl of P in C" (in the classical
topology!) and holomorphic functiorimx.1, - - -,9n Of X1,...,Xgimx such that for every
P=(x1,...,Xdimx) € U the functionsf; vanish atP if and only if x; = gi(X1, . . . , Xdimx ) for
i=dmX+1,....n.

So the zero locus of th§ is “locally the graph of a holomorphic map” given by the
gi. In other words, smoothness in algebraic geometry means in a sense the same thing as
differentiability in analysis: the geometric object has “no edges”.

Note however that the inverse function theorem is not true in the Zariski topology, be-
cause the open sets are too big. For example, consider the Xusvg(x,y) ; f(x,y) =
y—x2 =0} C C2 Then% # 0 say at the poinP = (1,1) € X. Consequently, in complex
analysis< can be expressed locally in termsyaroundP: it is just the square root gf But
any non-empty Zariski open subsebofvill contain pairs of pointgx, x?) and(—x,x?) for
somey, so the inverse function theorem cannot hold here in algebraic geometry.

4.5. The 27 lines on a smooth cubic surfaceAs an application of the theory that we
have developed so far, we now want to study lines on cubic surfacB3. inVe have
already mentioned in example 0.1.7 that every smooth cubic surface has exactly 27 lines
on it. We now want to show this. We also want to study the configuration of these lines,
and show that every smooth cubic surface is biration&Pto

The results of this section will not be needed later on. Therefore we will not give all the
proofs in every detail here. The goal of this section is rather to give an idea of what can be
done with our current methods.
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First let us recall some notation from exercise 3.5.4. Get G(1,3) be the Grass-
mannian variety of lines ifP3. This is a 4-dimensional projective variety. In this section
we will use local affine coordinates d: if Lo € G is the line inP® (with coordinates
Xo, - -, X3) given by the equationg = x3 = 0 (of course every line is of this form after a
linear change of coordinates), then there is an open neighborkfoads of Lg in G given
by sending a pointa, b) := (a, by, a3, bs) € A% to the line through the pointd, 0, ay, a3)
and(O, 1, bz,bg).

The cubic surfaces if*® are parametrized by homogeneous polynomials of degree 3
in Xo,X1,X2,X3 UP to scalars, which is a 19-dimensional projective sgatfe A cubic
surface given by the equatidig := 34 cax® = 0 (in multi-index notation, sa runs over
all quadruples of indice$ag, a1,02,03) with a; > 0 andy; a; = 3) corresponds to the
point in P*° with homogeneous coordinates- (c4). We denote the corresponding cubic
surface byX; = {f. = 0}.

To study lines in cubic surfaces, we consider the so-cafieidence correspondence

M:={(L,X);Lc X} cGxP¥

consisting of all pairs of a line and a cubic such that the line lies in the cubic. Let us start
by proving some facts about this incidence correspondence.

Lemma 4.5.1. With the above notation, the incidence correspondence M has an open
cover by affine spaces!®. In particular, M is a smooth 19-dimensional variety.

Proof. In the coordinatesa, b,c) = (ap,as,by,bs,cy) as above, the incidence correspon-
denceM is given by the equations

(a,b,c) e M < s(1,0,az,a3) +1(0,1,by,b3) € X for all st
= ans"otal(sag+tb2)“2(sa3+tbg)“3 =0forallst
a

—: Z§t3fiF.(a, b,c) =0 for all s t
I

<= F(a,b,c)=0for0<i<3.

Note that thes are linear in th&y. Moreoverg 3_i oo occurs only irf5 fori=0,...,3, and

it occurs there with coefficient 1. So these equations can be writ@r.ag o = Gi(a, b, c)
fori =0,...,3, where the5; depend only on thosg, wherea, > 0 oragz > 0. Therefore
the varietyA* x P1° (with coordinatesa, as, by, b3, and allcq with o > 0 or a3 > 0)

is isomorphic to an open subvariety Wi, with the isomorphism given by the equations
Cis-i00 = G(ab,c). It follows thatM has an open cover by affine spacggsx A =
AL, O

Lemma 4.5.2. Again with notations as above, 1é4,b,c) € M be a point such that the

corresponding cubic surface. X6 smooth. Then théx 4 matrix %’%m is invertible.

Proof. After a change of coordinates we can assume for simplicityakab = 0. Then

0 < ia, 9

E(th Fi)l(0.0.0) = aTiZfc(37t7332+tb27338+tb3)‘(0,0,c)
ot
756—)(2(5,t,0,0).

The (s,t)-coefficients of this polynomial are the first row in the matggi%(o, 0,c). The

other rows are obviouslyg—;;(s,t,o, 0),t g—iz(s,t,o, 0), andt g—;;(s,t,o, 0). So if the matrix
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a("aﬁb) (0,0,c) were not invertible, there would be a relation

(has 1) 218 (5.1,0,0) + (Aas+ pat) ¢ 5,£,0,0) = 0
0Xo 6X3

identically ins,t, with (A2, iz, As, ks) # (0,0,0,0). But this means thaf(s,t,0,0) and
%(sﬂ,o, 0) have a common linear factor, i.e. there is a p@nt (X, x1,0,0) € P2 such

that 3 (P) = $2(P) = 0. But as the lineLo lies in the cubicfc, we must havefe =

- 6X3
X2 - 92(X0, X1, X2,X3) + X3 - G3(X0, X1, X2, X3) for somegy,gs. Henceg—;g(P) = g—;z(P) =0

also, which means th#&tis a singular point of the cubi.. This is a contradiction to our
assumptions. O

Remarl4.5.3 Byremark 4.4.11, lemma 4.5.2 means that locally (in the classical topology)
around any pointa,b,c) € M such thatX; is smooth, the coordinates,az, by, bs are
determined uniquely iM by thecq. In other words, the projection map: M — P°is a
local isomorphism{again in the classical topology!) around such a péb,c) € M. So

the local picture looks as follows:

P19

SRY

As the number of lines in a given cubl¢ is just the number of inverse image points of
¢ € P° under this projection map, it follows th#tie number of lines on a smooth cubic
surface is independent of the particular cubic chasen

Theorem 4.5.4. Every smooth cubic surface X P® contains exactly 27 lines.

Proof. We have just argued that the number of lines on a smooth cubic surface does not
depend on the surface, so we can pick a special one. We take the sdrfgeen by

the equationf = x3 +x3 +x3 +x3 = 0 (which is smooth in characteristic not equal to

3). Up to a permutation of coordinates, every linéPthcan be writterxg = apXo + agxa,

X1 = boXo + bsxs. Substituting this in the equatiohyields the conditions

a+bd=-1, (1)
a+b3=-1, 2)
abag = —bsby, 3)
aga3 = —byhj. @)

Assume thaty, ag, by, bs are all non-zero. The(8B)?/(4) givesas = —b3, while (4)?/(3)
yieldsag = —bg. This is obviously a contradiction to (1) and (2). Hence at least one of the
ay,as, by, bg must be zero. Assume without loss of generality #at 0. Thenbz =0 and

a3 = b3 = —1. This gives 9 lines by settingy = —w andb, = —w’ for 0< i, j < 2 andw

a third root of unity. So by allowing permutations of the coordinates we find that there are
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exactly the following 27 lines oiX:
X0 +Xx10 =X +Xw =0, 0<i,j<2,
Xo+ X0 = X1 +X30 =0, 0<i,j<2,
Xo+ X =x1 +%w =0, 0<i,j<2
O
Remarkd4.5.5 We will now study to a certain extent tlwenfigurationof the 27 lines on a
cubic surface, i.e. determine which of the lines intersect. Consider the specialcuobic
the proof of theorem 4.5.4, and lete the line
L={x+x1=%x+x3=0}
in X. Then we can easily check thameets exactly 10 of the other linesXn namely
Xo+Xx10 =Xp+x300 =0, (i, ]) # (0,0)
Xo+X2 =X1+X3=0,
Xo+X3 =X1+ X% =0.
The same is true for every other line ¥ In fact, the statement is also true for every
smooth cubic surface, and not just for the special one that we have just considered. The

proof of this is very similar to the proof above that the number of lines on a smooth cubic
surface does not depend on the particular cubic chosen.

Now let L1 andL; be two disjoint lines on a smooth cubic surfae We claim that
there are exactly 5 lines ofithat intersect both; andL,. To show this, one can proceed
in the same way as above: check the statement directly on a special cubic surface, and then
show that it must then be true for all other smooth cubic surfaces as well.

Proposition 4.5.6. Any smooth cubic surface I is birational to[P2.

Proof. By remark 4.5.5 there are two disjoint linés, L, C X. The following mutually
inverse rational map% --» L1 x Lo andL; x L, --» X show thaiX is birational toP* x P!
and hence t®?:

“X --» L3 x Ly": By exercise 3.5.1, for every poif not onL; or L, there is a unique
line L(P) in P2 throughLy, L, andP. Take the rational map — (Ly NL(P),LoNL(P))
that is obviously well-defined away from UL,.

“Ly x Ly --+ X": Map any pair of pointgP, Q) € L3 x L, to the third intersection point
of X with the linePQ. This is well-defined whenevéQ is not contained ifX. O

Proposition 4.5.7. Any smooth cubic surface ¢ is isomorphic taP! x P blown up in
5 (suitably chosen) points, or equivalently®blown up in 6 (suitably chosen) points.

Proof. We will only sketch the proof. LeX be a smooth cubic surface, and fetX --»
L1 x Lo 2 P! x P! be the rational map as in the proof of proposition 4.5.6.

First of all we claim thatf is actually a morphism. To see this, note that there is a
different description forf: if P € X\Ly, letH be the unique plane iR® that containd 1
andP, and letf,(P) = H NLy. If one definesf1(P) similarly, thenf (P) = (f1(P), f2(P)).
Now if the pointP lies onlLy, letH be the tangent plane % at P, and again lef2(P) =
HNL,. Extendingfi similarly, one can show that this extenfis- ( 1, f) to a well-defined
morphismX — P! x P! on all of X.

Now let us investigate where the inverse niglpx P! --» X is not well-defined. As
already mentioned in the proof of proposition 4.5.6, this is the case if the (RiQ)
L1 x L is such thaPQ C X. In this case, the whole linéQ = P* will be mapped tqP,Q)
by f, and it can be checked théatis actually locally the blow-up of this point. By remark
4.5.5 there are exactly 5 such life® on X. Hencef is the blow-up of?! x P at 5 points.
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By lemma 4.3.12 it then follows théft is also the blow-up oP? in 6 suitably chosen
points. O

Remark4.5.8 It is interesting to see the 27 lines on a cubic surfdde the picture where
one thinks ofX as a blow-up of?? in 6 points. It turns out that the 27 lines correspond to
the following curves that we all already know (and that are all isomorpHi¢ Yo

¢ the 6 exceptional hypersurfaces,
o the strict transforms of thég) = 15 lines through two of the blown-up points,

o the strict transforms of th@ = 6 conics through five of the blown-up points (see
exercise 3.5.8).

In fact, it is easy to see by the above explicit description of the isomorphistwith the
blow-up of P? that these curves on the blow-up actually correspond to lines on the cubic
surface.

It is also interesting to see again in this picture that every such “line” meets 10 of the
other “lines”, as mentioned in remark 4.5.5:

e Every exceptional hypersurface intersects the 5 lines and the 5 conics that pass
through this blown-up point.
e Every line through two of the blown-up points meets
— the 2 exceptional hypersurfaces of the blown-up points,
— the (‘21) = 6 lines through two of the four remaining points,
— the 2 conics through the four remaining points and one of the blown-up
points.
e Every conic through five of the blown-up points meets the 5 exceptional hyper-
surfaces at these points, as well as the 5 lines through one of these five points and
the remaining point.

4.6. Exercises.

Exercise 4.6.1.Let X,Y C P" be projective varieties. Show th&tNY is not empty if
dimX+dimY >n.

On the other hand, give an example of a projective vadeind closed subseXsY c Z
with dimX +dimY > dimZ andXNY = 0.

(Hint: LetHy, Hy be two disjoint linear subspaces of dimensidn P2"1, and consider
X Cc P" > Hy c PP gndY ¢ P" 2 H, ¢ P21 as subvarieties dP2*t1. Show that the
join J(X,Y) c P21 of exercise 3.5.7 has dimension dim-dimY + 1. Then construct
XNY as a suitable intersection 8fX,Y) with n+ 1 hyperplanes.)

Exercise 4.6.2.(This is a generalization of corollary 4.2.7). Lt X — Y be a morphism
of varieties. Show that there is a non-empty open subbs#tY such that every component
of the fiberf ~1(P) has dimension din{ — dimY for all P € U.

(Hint: You can assum& C A" andY C A™ to be affine. By considering the graph
(P, f(P)) € A™™M, reduce to the case whefe A"! — A" is the projection map.)

Exercise 4.6.3.Let f : X — Y be a morphism of varieties, and I&tc X be a closed
subset. Assume thdt1(P) N Z is irreducible and of the same dimension forRIE Y.
Use exercise 4.6.2 to prove that thérs irreducible too. (This is a quite useful criterion
to check the irreducibility of closed subsets.)

Show by example that the conclusion is in general false ifthgP) N Z are irreducible
but not all of the same dimension.

Exercise 4.6.4.Let X be a variety, and lét C X a closed subset. For every element in an
open affine covefU;} of X, letVi = U;NY, and letU; be the blow-up olJ; atVi. Show
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that the spaces; can be glued together to give a variéy (This variety is then called the
blow-up of X atY.)

Exercise 4.6.5.A quadric inP" is a projective variety ifP" that can be given as the zero
locus of a quadratic polynomial. Show that every quadrie'iiis birational toP"~1.

Exercise 4.6.6.Show that for fourgenerallinesLy,...,Ls C P3, there are exactly two
lines inP3 intersecting all thekj. (This means: the subset 6(1,3)* of all (Ly,...,L4)
such that there are exactly two lineskA intersecting_1, ..., L4 is dense. You may want
to use the result of exercise 3.5.4 (jii) tf@¢1, 3) is a quadric irP®.)

Exercise 4.6.7.Let Py =(1:0:0,P,=(0:1:0,P3=(0:0:1) € P? and letU =
P2\ {Py,P>,P3}. Consider the morphism

f:U—P? (ap:ar:a) — (arap: apay : apay).
() Show that there is no morphisk: P? — P? extendingf.
(i) Let P2 be the blow-up of?? in the three point$y, P, Ps. Show that there is an
isomorphismf : P2 — P2 extendingf. This is called theCremona transforma-
tion.

Exercise 4.6.8.Let X C A" be an affine variety. For everf € k|xo,...,X,] denote by
fin the initial terms of f, i.e. the terms off of the lowest occurring degree (e.qg.fif=
X3 + 3X1 X3 — xzx§ then the lowest occurring degree fnis 2, so the initial terms are the
terms of degree 2, namely” = x3 + 3x;x3). Letl(X)" = {f"; f € 1(X)} be the ideal of
the initial terms inl (X).

Now letTt: X — X be the blow-up oK in the origin{0} = Z(x1,....,X,). Show that the
exceptional hypersurfage 1(0) c P" is precisely the projective zero locus of the homo-
geneous idedl(X)™".

Exercise 4.6.9.Let X C A" be an affine variety, and I& € X be a point. Show that the
coordinate ring\(Cx p) of the tangent cone t§ atP is equal tady-ol (P)¥/I (P)<*1, where
[ (P) is the ideal ofP in A(X).

Exercise 4.6.10.Let X C A" be an affine variety, and 1%, Y, C X be irreducible, closed
subsets, no-one contained in the other. Xete the blow-up ofX at the (possibly non-
radical, see exercise 1.4.1) idé&Y;) +1(Y2). Then the strict transforms &f andY; onX
are disjoint.

Exercise 4.6.11.LetC c P2 be a smooth curve, given as the zero locus of a homogeneous
polynomial f € k[Xo, X1,X2]. Consider the morphism

of _of _of
6xo(P) 0xq P): axz(P))'
The imagepc(C) C P? is called thedual curve to C.

(i) Find a geometric description d@f. What does it mean geometrically¢fP) =
$(Q) for two distinct point, Qe C ?
(i) If Cisaconic, prove that its dugl(C) is also a conic.
(iii) For any five lines inP? in general position (what does this mean?) show that
there is a unique conic i that is tangent to these five lines. (Hint: Use exercise
3.5.8)

Exercise 4.6.12.Resolve the singularities of the following curves by subsequent blow-ups
of the singular points. This means: starting with the given c@yvblow up all singular
points ofC, and replac€ by its strict transform. Continue this process until the resulting
curve is smooth.

Also, describe the singularities that occur in the intermediate steps of the resolution
process.

(])c:C—>}P’27 P»—>(
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(i) C={(xy);x*—x'—y*=0} C A?

(i) C={(xy); ¥y’ —x>=0} C A%,

(i) C={(xy); y¥?—x<=0} c A2 keN.
Exercise 4.6.13.Show that “a general hypersurfacefih is smooth”. In other words, for

n+d

any givend we can consideP("a) 1 as the “space of all hypersurfaces of degdeia
P™, by associating to any hypersurfa¢é(xo,...,xn) = 0} C P" with f homogeneous of
degreed the projective vector of al(”gd) coefficients off. Then show that the subset of

P(ngd)‘l corresponding temoothhypersurfaces is non-empty and open.
Exercise 4.6.14.(This is a generalization of exercises 3.5.8 and 4.6.11 (iii).) iFer

0,...,5, determine how many conics there aré@fthat are tangent togiven lines and in
addition pass through-5i given points.
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5. SCHEMES

To any commutative ring R with identity we associate a locally ringed space called
Sped, the spectrum of R. Its underlying set is the set of prime ideals of R, so if
R is the coordinate ring of an affine variety X over an algebraically closed field,
then SpeR as a set is the set of non-empty closed irreducible subvarieties of X.
Moreover, in this case the open subsets of SpeR are in one-to-one correspondence
with the open subsets of X, and the structure sheaves of Spe and X coincide via
this correspondence.

A morphism of locally ringed spaces is a morphism of ringed spaces that respects
the maximal ideals of the local rings. Locally ringed spaces of the form SpeR are
called affine schemes; locally ringed spaces that are locally of the form SpeR are
called schemes. Schemes are the fundamental objects of study in algebraic geometry.
Prevarieties correspond exactly to those schemes that are reduced, irreducible, and
of finite type over an algebraically closed field.

For any two morphisms of schemes X — S and Y — S there is a fiber product
X xgY; this is a scheme such that giving morphisms Z — X and Z — Y that commute
with the given morphisms to Sis “the same” as giving a morphism Z — X xgY. If X
and Y are prevarieties over k and we take S= Sped, we get back our old notion of
the product X XY of prevarieties.

For any graded ring R there is a scheme ProjR whose points are the homoge-
neous prime ideals of R that do not contain the irrelevant ideal. This construction
generalizes our earlier construction of projective varieties; if R is the homogeneous
coordinate ring of a projective variety X over an algebraically closed field then ProjR

I3pet}

is” just the projective variety X.

5.1. Affine schemes.We now come to the definition of schemes, which are the main

objects of study in algebraic geometry. The notion of schemes extends that of prevarieties
in a number of ways. We have already met several instances where an extension of the
category of prevarieties could be useful:

e We defined a prevariety to be irreducible. Obviously, it makes sense to also con-

sider reducible spaces. In the case of affine and projective varieties we called
them algebraic sets, but we did not give them any further structure or defined reg-
ular functions and morphisms of them. Now we want to make reducible spaces
into full-featured objects of our category.

e At present we have no geometric objects corresponding to non-radical ideals in

K[x1,...,Xn], Or in other words to coordinate rings with nilpotent elements. These
non-radical ideals pop up naturally however: e.g. we have seen in exercise 1.4.1
that intersections of affine varieties correspond to sums of their ideals, modulo
taking the radical. It would seem more natural to define the intersextionX;

of two affine varieties{;, Xo C A" to be a geometric object associated to the ideal
[(X1) +1(X2) C K[x1,...,X%]. This was especially obvious when we discussed
blow-ups: blowing upX; N X, in A" “separates’X; andX; (if none of these two

sets is contained in the other), i.e. their strict transfoXnsind X, are disjoint

in A", but this is only true if we blow-up at the ideg(lX; ) + I (X2) and not at its
radical (see exercise 4.6.10).

Recall that by lemma 2.3.7 and remark 2.3.14 we have a one-to-one correspon-
dence between affine varieties okeand finitely generateli-algebras that are
domains, both modulo isomorphism. We have just seen that we should drop the
condition on thek-algebra to be a domain. We can go even further and also drop
the condition that it is finitely generated — then we would expect to arrive at
“infinite-dimensional” objects. Moreover, it turns out that we do not even need a
k-algebra to do geometry; it is sufficient to start with any commutative ring with



5. Schemes 75

identity, i.e. we do not have to have a ground field. This can be motivated by
noting that most constructions we made with the coordinate ring of a variety —
defining the structure sheaf, setting up correspondences between points and max-
imal ideals, and so on — actually only used the ring structure of the coordinate
ring, and not thé-algebra structure.

All these generalizations are included in the definition of a scheme. Note that they apply
already toaffinevarieties; so we will start by defining aaffine scheme to be “an affine
variety generalized as above”. Later we will then say that a scheme is an object that looks
locally like an affine scheme, just as we did it in the case of prevarieties.

We are now ready to construct from any riRgwhich will always mean a commutative
ring with identity) an affine scheme, which will be a ringed space and which will be denoted
Spe, the spectrum oR.

Definition 5.1.1. Let Rbe a ring (commutative with identity, as always). We define $pec
to be the set of all prime ideals & (As usualR itself does not count as a prime ideal,
but (0) does ifR is a domain.) We call Spétthe spectrum of R, or theaffine scheme
associated t&. For everyp € Spe, i.e.p C Ra prime ideal, lek(p) be the quotient field
of the domairR/p.

Remark5.1.2 Let X = Spe® be an affine scheme. We should thinkoéas the analogue
of an affine variety, and dR as the analogue of its coordinate ring.

Remark5.1.3 Any elementf € R can be considered to be a “function” on Speo the
following sense: fop € SpedR, denote byf(p) the image off under the composite map
R— R/p — Kk(p). We call f(p) thevalue of f at the pointp. Note that these values will
in general lie in different fields. R=K[xq, ...,X,]/1(X) is the coordinate ring of an affine
variety X andp is a maximal ideal (i.e. a point iX), thenk(p) = k and the value of an
elementf € R as defined above is equal to the valuef @t the point corresponding o

in the classical sense. ¢fC Ris not maximal and corresponds to some subvaietyX,

the valuef (p) lies in the function fieldK(Y) and can be thought of as the restriction of the
functionf toY.

Example 5.1.4.

(i) If kis a field, then Spédcconsists of a single poir{D).

(i) The space Spe€[x] (that will correspond to the affine variety* overC) contains
a point(x — a) for everya € A, together with a point0) corresponding to the
subvarietyAl.

(iii) More generally, ifR= A(X) is the coordinate ring of an affine varieyover an
algebraically closed field, then the set SpPewontains a point for every closed
subvariety ofX (as subvarieties correspond exactly to prime ideals). This affine
scheme SpeR will be the analogue of the affine varie¥, So an affine scheme
has “more points” than the corresponding affine variety: we have enlarged the
set by throwing in an additional point for every closed subvarietyf X. This
point is usually called thgeneric point (or general point) of Y. In other words,
in the scheme corresponding to an affine variety with coordinateRing will
have a point for every prime ideal R, and not just for every maximal ideal.
These additional points are sometimes important, but quite often one can ignore
this fact. Many textbooks will even adopt the convention that a point of a scheme
is always meant to be a point in the old geometric sense (i.e. a maximal ideal).

(iv) In contrast to (i), the affine scheme SfR[x| contains points that are not of the
form (x—a) or (0), e.g.(x*+ 1) € SpedR[x].

(v) The affine scheme Sp#ccontains an element for every prime number, and in
addition the generic poir(D).



76 Andreas Gathmann

So far we have defined SpRa@s a set. This is not particularly interesting, so let us
move on and make SpBdnto a topological space. This is done in the same way as for
affine varieties.

Definition 5.1.5. Let Rbe a ring. For every subs8tC R, we define theero locusof Sto
be the set

Z2(S) :={p € SpedR; f(p) =0forall f € S} C SpeR,
wheref (p) is the value off atp as in remark 5.1.3. (ObviousI§and(S) define the same
zero locus, so we will usually only consider zero loci of ideals.)

Remark5.1.6 By the definition of the value of an elemeht Rat a pointp € Spedr, we
can also write the definition of the zero locus as

Z(S)={peSpeR; fepforall f € S}
={p e SpedR; p D S}.
Lemma5.1.7. Let R be aring.

(i) If {Ii} is a family of ideals of R thef; Z(l;) = Z(3; i) C SpeR.
(i) Iflq,l2 c Rthen Z11)UZ(l2) = Z(l1l2) C Spedr.
(iii) 1f11,12 c Rthen Z1;) C Z(Iy) if and only if /15 C /17.

Proof. The proof is literally the same as in the case of affine algebraic sets. d

Hence we can define a topology on SPdiy taking the subsets of the forf{S) as the
closed subsets. In particular, this defines the notions of irreducibility and dimension for
Spe, as they are purely topological concepts.

Remark5.1.8 Note that pointg in SpedR are not necessarily closed: in fact,

{p} =Z(p) = {g € SpeR; q D p}.
This is equal to{p} only if p is maximal. Hence the closed points of SReorrespond to
the points of an affine variety in the classical sense. The other points are just generic points
of irreducible closed subsets of Sge@s already mentioned in example 5.1.4.

Example 5.1.9. The motivation for the name “generic point” can be seen from the follow-
ing example. Lek be an algebraically closed field, and Rt Sped[x, x.] be the affine
scheme corresponding #. ConsidelZ(x;) C SpedR, which “is” just thex;-axis; so its
complement SpeR\Z(x,) should be the set of points that do not lie on iheaxis. But
note that the elememt= (x;) is contained in SpeR\Z(x»), although the zero locus af,
namely thexo-axis, does intersect thg-axis. So the geometric way to express the fact
that (x1) € SpeR\Z(x?) is to say that thgeneric pointof the x,-axis does not lie on the
X1-axis.

Remark5.1.10 Let R be a ring, letX = SpedR, and letf € R. As in the case of affine
varieties, we calX; := X\Z(f) thedistinguished open subse&ssociated td. Note that

any open subset of is a (not necessarily finite) union of distinguished open subsets. This
is often expressed by saying that the distinguished open subsets fageat the topology

of X.

Now we come to the definition of the structure sheaf of $peRecall that in the case
of an affine varietyX, we first defined the local rin@x p of the functions regular at a point
P € X to be the localization oA(X) at the maximal ideal corresponding ® and then
said that an element iox (U) for an open subsed C X is a function that is regular at
every pointP € U. We could accomplish that in the case of varieties just by intersecting
the local ringsOx p, as they were all contained in the function fi&d@X). But in the case
of a general affine scheme Sgiethe various local ring®, for p € SpedR do not lie inside
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some big space, so we cannot just take their intersection. The way around this problem is
to say that an element ok (U) (for X = SpedRandU C X open) is given by a collection

of elements in the various local ring$ for all p € U, and require that these elements can
locally be written as quotients of elementsRfrecall that we had a similar condition for
affine varieties in lemma 2.1.8):

Definition 5.1.11. Let R be a ring, and leX = SpedR. For every open subskt C X we
defineOx(U) to be

Ox(U) :={d = (¢p)peu With$p, e R, forallp €U
such that # is locally of the formé for f,ge R’}
={¢ = (¢p)peu With ¢, € R, forallp c U
such that for every € U there is a neighborhood inU andf,ge R

with g ¢ g and¢, = é eR;forallgeV.}

As the conditions imposed on the elementg{U) are local, it is easy to verify that
this defines a shedfy on X = Spe®R. The first thing to do is to check that this sheaf has
the properties that we expect from the case of affine varieties (see definition 2.1.5, remark
2.1.6, and proposition 2.1.10).

Proposition 5.1.12. Let R be a ring and X% Sped.
(i) Foranyp € X the stalkOx , of the sheabx is isomorphic to the local ring R

(ii) Forany fe R, the ringOx(Xs) is isomorphic to the localized ringRIn partic-
ular, Ox(X) =R.

Proof. (i): There is a well-defined ring homomorphism

P:Oxp — Ry, (U,9) — 0,
We have to show thap is a bijection.
Y is surjective: Any element &k, has the form{3 with f,g € Randg ¢ p. The function

é is well-defined onXg, so (X, é) defines an element i@ , that is mapped by to the
given element.

W is injective: Letd,¢2 € Ox(U) for some neighborhood of p, and assume that
(¢1)p = (¢2),. We have to show thali; and¢, coincide in a neighborhood @f so that
they define the same element@y ,. By shrinkingU if necessary we may assume that
i = & onU fori =12, wheref;,g € Randg; ¢ p. As ¢1 andd, have the same image
in Ry, it follows thath(fig> — f2g91) = 0 in R for someh ¢ p. Therefore we also have
% = % in every local ringR, such thags, gz, h ¢ q. But the set of such is the open set
Xg N Xg, N X, which containg. Hencep: = ¢» on some neighborhood ¢f as required.

(ii): There is a well-defined ring homomorphism

l]JZRf—>Ox(Xf), %H%
(i.e. we mapfg—r to the element 0Dx (X¢) that assigns to anythe image o% inRy).

W is injective: Assume thap(f%) = Y(F%), i.e. for everyp € X there is an element
h¢ p such thah(g; "2 —g,f"t) = 0. Letl C Rbe the annihilator of; f'2 — g, ", then we
have just shown thdtZ p, ash € | buth ¢ p. This holds for every € X, soZ(1)NX; =0,
or in other word<Z(l) c Z(f). By lemma 5.1.7 (jii) this means th&t € | for somer, so
fr(g1f'2—gzf") =0, henceft = % in Ry.

W is surjective: Letp € Ox(X¢). By definition, we can coveX; by open setd); on
which ¢ is represented by a quotie%t with f; ¢ p for allp € U, i.e.U; C Xy,. As the open
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subsets of the fornX,, form a base for the topology of, we may assume thik = Xy, for
someh.

We want to show that we can assurfie= h;. In fact, asX, C Xy, i.e. by taking
complements we gét(f;) C Z(h;), and therefordy; € \/f; by lemma 5.1.7 (iii). Hence
hf =cfi, so§ = %. Replacingh by h{ (asXy = Xx) andg; by cg we can assume that
Xt is covered by open subsets of the foXi, and thatp is represented b% on Xp,.

Next we prove thaks can actually be covered by finitely many suf. Indeed X C
Ui Xy, if and only if Z(f) > N Z(hi) = Z(3 (h)). By lemma 5.1.7 (jii) this is equivalent
to saying thatf" € 3 (h;) for somer. But this means that" can be written as a finite sum
f" = 3 bih;. Hence we can assume that we have only finitely nfany

OnXp NXn; = Xyh;, We have two elemen% andﬂ—} representing, so by the injectivity
proven above it follows tha%: = ﬁ—} in R, hence(hh;)"(gih; — gjhi) = O for somen.
As we have only finitely mani;, we may pick one that works for alli, j. Now replacey;
by gih' andh; by h{‘*l for all i, then we still have represented bﬂ;1 on Xy, and moreover
gihj —gjhi = 0 for alli, j.

Now write f" = bih; as above, which is possible since XgcoverXs. Letg=3 big;.
Then for everyj we have

gh; = 5 bigih; =} bihig; = f'gj,
| |

soé = g—j on Xy, Henceg is represented oX; by % € Ry, i.e. Y is surjective. O
Remarks.1.13 Note that a regular function is in general no longer determined by its values
on points. For example, I® = k[x]/(x?) andX = SpedR. ThenX has just one pointx).

On this point, the function € R= Ox (X) takes the value & x € (k[x]/(x?))/(x) = k. In
particular, the functions 0 arxhave the same values at all pointsXafbut they are not

the same regular function.

5.2. Morphisms and locally ringed spaces.As in the case of varieties, the next step after
defining regular functions on an affine scheme is to define morphisms between them. Of
course one is tempted to define a morphifmX — Y between affine schemes to be a
morphism of ringed spaces as in definition 2.3.1, but recall that for this definition to work
we needed a notion of pull-badk of regular functions. In the case of varieties we got
this by requiring that the structure sheaves be sheaviesalfied functions, so that a set-
theoretic pull-back exists. But this is not possible for schemes, as we do not have a ground
field, and the value$(p) of a regular functior lie in unrelated rings. Even worse, we
have seen already in example 5.1.13 that a regular function is not determined by its values
on points.

The way out of this dilemma is to make the pull-back méps Oy (U) — Ox(f~1(U))
part of the data required to define a morphism. Hence we say that a morphiXm- Y
between affine schemes is given by a continuous ma} — Y between the underlying
topological spaces, together with pull-back mdps= f; : Oy(U) — Ox(f~1(U)) for
every open subsét C Y. Of course we need some compatibility conditions among the
f(). The most obvious one is compatibility with the restriction maps, fijee puv =
Pi-1u),i-1v)© fj. But we also need some sort of compatibility betweenfthend the
continuous magf. To explain this condition, note that the mafy§ give rise to a map
between the stalks

f; : @,f(P) - OX,P7 (U7¢) = (fﬁl(u)’ f*q))

for every pointP € X (this is easily seen to be well-defined). These stalks are local rings,
call their maximal idealsny r(py and my p, respectively. Now the fact theft mapsP
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to f(P) should be reflected on the level of the pull-back mé&psy the condition that
(f5) L(mxp) = my ¢p). This leads to the following definition.

Definition 5.2.1. A locally ringed spaceis a ringed spacéX, Ox) such that at each point
P € X the stalkOx p is a local ring. The maximal ideal adx p will be denoted bymyx p,
and theresidue field Ox p/mx p Will be denotedk(P).

A morphism of locally ringed spaces frorfX, Ox) to (Y, Oy) is given by the following
data:

e acontinuous magp : X — Y,

e for every open subsét C Y a ring homomorphisnij : Oy (U) — Ox(f~1(U)),
such thatfy opyy = ps-1yy s-1v)© f§ forallvV cU CY (i.e. thef* are compatible with
the restriction maps) andz)*(mxp) = my ¢(p), Where thefs : Oy (p) — Oxp are the
maps induced on the stalks, as explained above. We will often omit the index of the various
pull-back mapds * if it is clear from the context on which spaces they act.

A morphism of affine schemes is a morphism as locally ringed spaces.

The following proposition is the analogue of lemma 2.3.7. It shows that definition 5.2.1
was “the correct one”, because it gives us finally what we want.

Proposition 5.2.2. Let R S be rings, and let X SpedR and Y= SpecS the corresponding
affine schemes. There is a one-to-one correspondence between morphismaKd ring
homomorphisms S R.

Proof. If ¢ : S— Ris aring homomorphism, we define a mapX — Y by f(p) = ¢~1(p).
For every ideal C Sit follows that f~1(z(1)) = Z(y(1)), sof is continuous. For eaghc
SpedR, we can localize) to get a homomorphism of local rings, : Oy () = Sy-1(,) —
R, = Ox, satisfying the conditionp;l(mxﬁp) = my (). By definition of the structure
sheaf, this gives homomorphisms of rinfys: Oy (U) — Ox(f~1(U)), and by construction
fy = Wy, S0 we get a morphism of locally ringed spaces.

If f:X —Y isamorphism, we get aring homomorphisin: S= Oy (Y) — Ox(X) =R
by proposition 5.1.12 (ii). By the above this again determines a morpgisiX — Y.
We leave it as an exercise to check that the various compatibility conditions imply that
f=o. |

Example 5.2.3. Let X = SpedR be an affine scheme. IfC Ris an ideal, then we can
form the affine schem¥ = Spe¢R/I), and the ring homomorphisiR — R/l gives us a
morphismY — X. Note that the prime ideals &/1 are exactly the idealsC Rwithp D1,
so the mapy — X is an inclusion with imagé&(l). So we can view as an affine “closed
subscheme” oK. For a precise definition of this concept see example 7.2.10.

Now letY; = Spe¢R/I1) andY, = Spe¢R/I,) be closed subschemesXf We define
the intersection schem@nY, in X to beY1NY, = SpedR/(l1+12).

For example, leX = SpedC|[x1, X2, Y1 = SpedC|x1,%2]/(X2), Y2 = SpedC[x1,X2]/ (X2 —
x2 +a?) for somea € C. Then the intersection scheteNY; is SpecC[x1]/((x1 — a) (X +
a)). Fora# 0we haveC[xq]/((x1—a)(x1+a)) 2 C[x1]/(x1—a) x C[x1]/(x1+a) 2 C x C,
soY1NY; is just the disjoint union of the two pointg, 0) and(—a,0) in C%. Fora=0
however we haver; NY, = SpecC[x]/(x2), which has only one point0,0). But in all
cases the rin@[x1]/((x1 —a)(x1 +a)) has dimension 2 as a vector space dieiVe say
thatY; NYz is a “scheme of length 2”, which consists either of two distinct points of length
1 each, or of one point of length (i.e. multiplicity) 2.

Note also that there is always a unique liné\fhthroughY; NY», even in the casa= 0
where the scheme has only one geometric point. This is because the séheMe—=
SpedC[x1,X2]/ (X2, (X1 — @) (X1 +a)) is a subscheme of the line= SpecC[x1,%2]/(C1X1 +
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Cox2) if and only if (Cix1 + CoX2) C (X2, (X1 — @) (X1 +a)), which is the case only if; = 0.

In particular, thex;-axis is the only line inA? that contains Spe@[x, Xz]/(x2,X3). One

can therefore think of this scheme as “the origin together with a tangent direction along the
X1-axis”.

X2

{2 y

\ | /Y2 |
B Xy >
h vﬂ N I

Y,

X1

| a#0 a=0

Example 5.2.4. Again letY; = Spec¢R/11) andY, = Spec¢R/I») be closed subschemes

of of the affine schem& = SpedR. Note that for affine varieties the ideal of the union

of two closed subsets equals the intersection of their ideals (see exercise 1.4.1 (i)). So
scheme-theoretically we judefinethe unionY; UY, to be Spe&/(11N15).

The following lemma is the scheme-theoretic analogue of lemma 2.3.16.

Lemma 5.2.5. Let X= SpeR be an affine scheme, and leeR. Then the distinguished
open subset Xis the affine schen®pedz;.

Proof. Note that bothX; and Spe®; have the descriptiogp € X ; f ¢ p}. So it only
remains to be checked that the structure sheave& @md Spe&; agree. Now leg € R

and consider the distinguished open sub&gt= (Sped¢)g. By proposition 5.1.12 (ii)
we have

Ox; (Xtg) = Ox(Xtg) = Rig
and  Ospe; ((SpeRf)g) = (Rf)g = Rg.

So the rings of regular functions are the sameXpand Spe®&; on every distinguished
open subset. But every open subset is the intersection of such distinguished opens, so the
rings of regular functions must be the same on every open subset. d

5.3. Schemes and prevarietiesHaving defined affine schemes and their morphisms, we
can now define schemes as objects that look locally like affine schemes — this is in parallel
to the definition 2.4.1 of prevarieties.

Definition 5.3.1. A schemes a locally ringed spacgX, Ox ) that can be covered by open
subsetdJ; C X such thatU;, Ox|y;) is isomorphic to an affine scheme Siredor all i. A
morphism of schemes is a morphism as locally ringed spaces.

Remark5.3.2 From the point of view of prevarieties, it would seem more natural to call

the objects defined above preschemes, and then say that a scheme is a prescheme having
the “Hausdorff” property, i.e. a prescheme with closed diagonal (see definition 2.5.1 and
lemma 2.5.3). This is in fact the terminology of [M1], but nowadays everyone seems to
adopt the definition that we gave above, and then say that a scheme having the “Hausdorff
property” is aseparatedscheme.

From our definitions we see that prevarieties are in a sense special cases of schemes
— if we have an affine varietX = Z(1) c A" with | C K[X,...,%,] an ideal, the scheme
Sped\(X) corresponds tX (whereA(X) = K[x1,...,X,] is the coordinate ring oX); and
any glueing along isomorphic open subsets that can be done in the category of prevarieties
can be done equally well for the corresponding schemes. Hence we would like to say that
every prevariety is a scheme. In the strict sense of the word this is not quite true however,
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because the topological space of a scheme contains a point for every irreducible closed
subset, whereas the topological space of a prevariety consists only of the geometric points
in the classical sense (i.e. the closed points). But of course there is a natural way to consider
every prevariety as a scheme, by throwing in additional generic points for every irreducible
closed subset. We give the precise statement and leave its proof as an exercise:

Proposition 5.3.3. Let k be an algebraically closed field, and let X be a prevariety over

k. Let %ch be the space of all non-empty closed irreducible subsets of X. ThgisX
scheme in a natural way. The open subsets of X correspond bijectively to the open subsets
of Xscry @nd for every open subset U of X (which can then also be considered as an open
subset of %) we haveOx,,(U) = Ox(U). Every morphism X- Y of prevarieties over k
extends to a morphismyf — Yscn 0f schemes in a natural way.

Let us now investigate the properties of schemes that arise from prevarieties in this way.
As we have mentioned already, the glueing of schemes from affine schemes is exactly the
same as that of prevarieties from varieties. Hence the special properties of schemes that
come from prevarieties can already be seen on the level of affine schemes. We have also
seen above that in an affine scheme $pte ringR corresponds to what is the coordinate
ring A(X) of an affine variety. Moreover we know by remark 2.3.14 that the coordinate
ring of an affine variety is a finitely generat&ehlgebra that is a domain. So we have to
write down conditions on a scheme that reflect the property that its local patcheR Spec
are not made from arbitrary rings, but rather from finitely gener&tatfjebras that are
domains.

Definition 5.3.4. Let Y be a scheme. Acheme overY is a schemeX together with a
morphismX — Y. A morphism of schemeX;, X, overY is a morphism of schemes

X1 — Xo such that
X —

commutes. IRis aring, a scheme ov&is a scheme over SpBc

A schemeX overY is said to beof finite type overY if there is a covering of by open
affine subset¥; = Sped; such thatf ~1(V;) can be covered by finitely many open affines
Ui,j = SpedA j, where eacld | is a finitely generate®;-algebra. In particular, a scheme
X over a fieldk is of finite type ovel if it can be covered by finitely many open affines
U; = Sped\;, where each is a finitely generatel-algebra.

A schemeX is calledreduced if the rings Ox(U) have no nilpotent elements for all
open subsetd C X.

Now it is obvious what these conditions mean for an affine schemeRSpec

e SpeRis a scheme ovekif and only if we are given a morphisin— R, i.e. if R
is ak-algebra. Moreover, a morphism Sgee» SpecSis a morphism of schemes
overk if and only if the corresponding ring homomorphign- Ris a morphism
of k-algebras.

e SpedRis of finite type ovek if and only if Ris a finitely generateli-algebra.

e SpeRis reduced and irreducible if and only if-g =0 in Rimplies f =0 or
g=0,i.e.ifand only ifRis a domain. To see this, assume thag= 0, butf #£0
andg # 0. If f andg are the same up to a power, thRris not nilpotent-free,
so Spe®is not reduced. Otherwise, we get a decomposition of Bpeto two
proper closed subseq f) andZ(g), so SpeRis not irreducible.
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As glueing affine patches is allowed for varieties in the same way as for schemes, we get
the following result:

Proposition 5.3.5. Let k be an algebraically closed field. There is a one-to-one correspon-
dence between prevarieties over k (and their morphisms) and reduced, irreducible schemes
of finite type over k (and their morphisms).

Hence, from now on a prevariety ovewill mean a reduced and irreducible scheme of
finite type overk.

Remark5.3.6 As in the case of prevarieties, schemes and morphisms of schemes can
(almost by definition) be glued together. As for glueing schemes lemma 2.4.7 holds in
the same way (except that one may now also glue infinitely many pa¥hesd the
isomorphic open subsety j C X; andU;; C Xj can be empty, which might give rise to
disconnected schemes). A morphism from the glued schétnesome schem¥ can then

be given by giving morphismX; — Y that are compatible on the overlaps in the obvious
sense.

The following generalization of proposition 5.2.2 is an application of these glueing
techniques.

Proposition 5.3.7. Let X be any scheme, and letYSped be an affine scheme. Then
there is a one-to-one correspondence between morphism¥Xand ring homomorphisms

R=0y(Y) — Ox(X).

Proof. Let {U;j} be an open affine cover of, and let{U; jx} be an open affine cover
of UyNnUj. Then by remark 5.3.6 giving a morphisi: X — Y is the same as giving
morphismsf; : Ui — Y such thatf; and f; agree orJiNUj, i.e. such thalfi|ui>j‘k = fJ‘|Ui,j,k
for all i, j,k. But as theU; andU; j are affine, by proposition 5.2.2 the morphisis
and fi\Ui‘,;k correspond exactly to ring homomorphis@g(Y) — Oy, (Ui) = Ox(U;) and
Ov(Y) = Qu; (Ui k) = Ox (Ui j k), respectively. Hence a morphisin X — Y is the same
as a collection of ring homomorphisnis : Oy(Y) — Ox(U;) such that the compositions
PULUL j« © £ Ov(Y) — Ox(Ujjx) and PU; UL jx © fj* S Ov(Y) — Ox(Ujjx) agree for all
i,j,k. But by the sheaf axiom fo©y, this is exactly the data of a ring homomorphism
Oy (Y) = Ox(X). O

Remark5.3.8 By the above proposition, every scheideadmits a uniqgue morphism to
Spe, determined by the natural m&— Ox(X). More explicitly, on points this map
is given by associating to every poiRtc X the characteristic of its residue fiekdP). In
particular, ifX is a scheme ove€ (or any ground field of characteristic O for that matter)
then the morphisnX — Spe maps every point to the zero ide@l).

5.4. Fiber products. In example 2.3.9 and exercise 2.6.13 we defined the protiucy

for two given prevarietieX andY by giving the product seX x Y a suitable structure

of a ringed space. The idea of this construction was that the coordinatd@g Y)
should beA(X) ® A(Y) if X andY are affine (see remark 2.3.13), and then to globalize this
construction by glueing techniques. The characteristic property of the pradust was
that giving a morphism to it is equivalent to giving a morphisnXtand a morphism t&

(see lemma 2.3.11 and exercise 2.6.13).

Now we want to do the same thing for schemes. More generally,ahdY are two
scheme®ver a third scheme 8.e. if morphismsf : X — Sandg:Y — Sare given) we
want to construct the so-called fiber produciksY, that should nively correspond to
the points(x,y) € X x Y such thatf (x) = g(y). As in the case of prevarieties this will be
done by first constructing this product in the affine case, and then glueing these products
together to obtain the fiber product of general schemes. We start by defining fiber products
using the characteristic property mentioned above.
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Definition 5.4.1. Let f : X — Sandg:Y — Sbe morphisms of schemes. We define the
fiber product X xsY to be a scheme together with “projection” morphisms X xsY —

X andTty : X xsY — Y such that the square in the following diagram commutes, and
such that for any schenmi& and morphism& — X andZ — Y making a commutative
diagram withf andg there is a uniqgue morphistgh— X xsY making the whole diagram
commutative:

X —>S

f

Let us first show that the fiber product is uniquely determined by this property:

Lemma 5.4.2. The fiber product X sY is unique if it exists. (In other words, if Bnd
F, are two fiber products satisfying the above characteristic property, theanfi £, are
canonically isomorphic.)

Proof. Let F; and, be two fiber products satisfying the characteristic property of the
definition. In particularf, comes together with morphisms ¥oandY. As F; is a fiber
product, we get a morphisgh: F, — F

X —S

so that this diagram commutes. By symmetry, we get a morptyism — F, as well. The
diagram

is then commutative by construction. But the same diagram is commutative too if we
replaced o Y by the identity morphism. So by the uniqueness part of the definition of a
fiber product it follows that) o Y is the identity. Of coursg o ¢ is then also the identity

by symmetry. Sd-, andF; are canonically isomorphic. O

Remark5.4.3 The following two properties of fiber products are easily seen from the
definition:
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(i) If SC U is an open subset, thetixsY = X xy Y (morphisms from any to X
andY commuting withf andg are then the same regardless of whether the base
scheme iSorU).

(ii) If U c XandV CY are open subsets, then the fiber product

U xsV =1 U) N1 t(V) € X xsY
is an open subset of the total fiber prodMcksY.

Now we want to show that fiber products always exist. We have already mentioned
that in the affine case, fiber products should correspond to tensor products in commutative
algebra. So let us define the corresponding tensor products first.

Definition 5.4.4. Let R be a ring, and leM andN be R-modules. For everyne M and
ne N let m® n be a formal symbol. We |ef be the “freeR-module generated by the
symbolsm®n”, i.e. F is theR-module of formalfinite linear combinations

F={>r(man);reRmeM,neN}.
|

Now we define thdensor product M @x N of M andN over R to be theR-moduleF
modulo the relations

(M +Mm) @N=m&n+man,
M® (N1 +Np) = MR N+ MR Ny,
r(men) = (rm)®n=me (rn)

forallmm € M, n,n; € N, andr € R. Obviously,M ®grN is anR-module as well.
Example 5.4.5.
(i) Letkbe afield. Therk[x] @k K[y] = K[X,y], where the isomorphism is given by
kD] @k kly] — kixyl, F() @g(y) — f(x)-9(y)
and
K[x,y] — kix] @xckly], ;ai,jX‘y" - %a,j(X‘ ®y)).
(i) Let Rbe aring, and lel; andl; be ideals. ThemR/l; andR/l; areR-modules,
and we hav&®/l1 ®@r R/l = R/(11+1). In fact, the isomorphism is given by
R/I1®@rR/l2 = R/(l1+12), r1®@r2+—=1r1-12
and
R/(I1+12) = R/11®@rR/l2, r —r(1®l) = (rel) = (1®r).
(iii) If M is anyR-module, therM @RR=R®rM =M.

Remark5.4.6 It is easy to see that the tensor product of modules satisfies the following
characteristic property (which is exactly the same as that of definition 5.4.1, just with all
the arrows reversed):

LetR, M, andN be rings, and assume that we are given ring homomorphisRs— M
andg: R— N (that makeM andN into R-modules). Then for every ring and homomor-
phismsM — A andN — A making a commutative diagram withandg there is a unique
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ring homomorphisnM ®rN — A making the whole diagram commutative:

whereM — M ®gN andN — M ®grN are the obvious mapa— m® 1 andn— 1®n. In
fact, ifa: M — Aandb: N — A are the two ring homomorphisms, ththorN — A is
given bym® n+— a(m)-b(n).

Using the tensor product of modules, we can now construct the fiber product of schemes.

Lemmab5.4.7.Let f: X — Sand g Y — S be morphisms of schemes. Then there is a fiber
product XxgY .

Proof. First assume that, Y, andSare affine schemes, 30= Sped\M, Y = Sped\, and
S=Spe®R. The morphism& — SandY — SmakeM andN into R-modules by propo-
sition 5.2.2. We claim that Spéd ®gr N) is the fiber producK xsY. Indeed, giving a
morphismZ — Spe¢M ®gN) is the same as giving a homomorphist®gN — Oz(Z) by
proposition 5.3.7. By remark 5.4.6, this is the same as giving homomorpMsmgz(Z)
andN — 0z(2) that induce the same homomorphism®nwhich again by proposition
5.3.7 is the same as giving morphiszis-» X andZ — Y that give rise to the same mor-
phism fromZ — S Hence SpgdM ®rN) is the desired product.

Now letX, Y andSbe general schemes. Co\&by open affines, then coverf ~1(S)
andg~%(S) by open affines j andy; i, respectively. Consider the fiber produg x g
Y; x that exist by the above tensor product construction. Note that by remark 5.4.3 (i) these
will then be fiber products oves as well. Now if we have another such prodgt; xs
Yir kv, both of them will contain the (unique) fiber produe§ ; N Xy ;1) xs(YikNYi k) as
an open subset by remark 5.4.3 (ii), hence they can be glued along these isomorphic open
subsets. It is obvious that the final schexhesY obtained by glueing the patches satisfies
the defining property of a fiber product. O

Example 5.4.8. Let X andY be prevarieties over a fielkkl Then the scheme-theoretic
fiber producX x spe Y is just the product prevarie® x Y considered earlier. In fact, this
follows from remark 2.3.13 in the affine case, and the glueing is done in the same way for
prevarieties and schemes.

Consequently, we will still use the notatighx Y to denote the fiber produdt x spe« Y
over Spe&. Note however that for general schemxeandY one also often defines x Y
to beX xspe Y (see remark 5.3.8). For schemes okeX xgpeq Y andX xspeg Y Will
in general be different (see exercise 5.6.10), so one has to make clear what is meant by the
notationX x Y.

Example 5.4.9. LetY; — X andY, — X be morphisms of schemes that are “inclusion
morphisms”, i.e. th&; might be open subsets &f, or closed subschemes as in example
5.2.3. Then ThelY; xx Y2 is defined to be the intersection schem&pandY; in X and is
usually writtenY; NY,. For example, iX = SpedR, Y; = Sped?/I1, andY, = Sped/I, as

in example 5.2.3, theW; NY; is Sped}/(I1+12), which is consistent with example 5.4.5
(ii).
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Example 5.4.10.LetY be a scheme, and IBte Y be a point. Lek = k(P) be the residue
field of P. Then there is a natural morphism Sgee Y that maps the unique point of
Sped to P and pulls back a sectiagpe Oy (U) (with P € U) to the element ifk(P) deter-
mined by the composition of magy (U) — Oyp — K(P).

Now letX — Y be a morphism. Then the fiber produciy Sped (with the morphism
Spedk — Y constructed above) is called the inverse imagibar of X — Y over the point
P €Y (hence the name “fiber product”).

As an example, consider the morphigm= AL — Y = Al given byx — y=x2. Over
the point Oc Y the fiber is then Spé€[X] @y C), where the maps are given py Cly] —

x?2 € C[x andy € C[y] — 0 C. This tensor product is equal @[x]/(x?), so the fiber over
0 is the double point Spétjx]/(x?); it is a non-reduced scheme and therefore different
from the set-theoretic inverse image of 0 as defined earlier for prevarieties.

S G

| |

0 0 v

)

Example 5.4.11.Continuing the above example, one might want to think of a morphism
X — Y as some sort of fibered object, giving a schexhey Sped(P) for every point

P €Y. (This is analogous to fibered objects in topology.) Nowflety’ — Y be any
morphism. Then the fiber produst = X xy Y’ has a natural projection morphismY6

and its fiber over a poir® € Y’ is equal to the fiber oK — Y over the pointP € Y. This

is usually called &ase extensiorof the morphismX — Y. (It corresponds to e.g. the
pull-back of a vector bundle in topology.)

e e
| |

Y’ Y

5.5. Projective schemes.We know that projective varieties are a special important class
of varieties that are not affine, but still can be described globally without using glueing
techniques. They arise from lookinglmdmogeneousieals, i.e. graded coordinate rings.

A completely analogous construction exists in the category of schemes, starting with a
graded ring and looking at homogeneous ideals in it.

Definition 5.5.1. Let R be agraded ring (think of the homogeneous coordinate rigg)

of a projective varietyX), i.e. a ring together with a decompositi®= Dy~ R into
abelian groups such thef? . R c R4+¢) An element oRY is called homogeneous of
degreed. An ideall C Ris called homogeneous if it can be generated by homogeneous
elements. LeR, be the ideatDy.oRY.

We define the set Pr&jto be the set of all homogeneous prime idgatsRwith R, ¢ p
(compare this to theorem 3.2.&, corresponds to the “irrelevant idealXo, ...,xn) C
K[Xo, . ..,X%n]). If I C Ris a homogeneous ideal, we defib@) = {p € ProjR; p D 1} to be
thezero locusof |.
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The proof of the following lemma is the same as in the case of affine or projective
varieties:

Lemma 5.5.2. Let R be a graded ring.
(i) If {l;} is a family of homogeneous ideals of R thigZ(l;) = Z(3; i) C ProjR.
(i) Ifl1,12 C R are homogeneous ideals thefl 2 UZ(I2) = Z(1112) C ProjR.

In particular, we can define a topology on ARdjy taking the subsets of the fori{l)
for somel to be the closed sets. Of course, the next thing to do is to define a structure of
(locally) ringed space on PrBj This is in complete analogy to the affine case.

Next we have to define the rings of regular functions on Rrdjhis is a mixture of the
case of affine schemes and projective varieties. We will more or less copy definition 5.1.11
for affine schemes, keeping in mind that in the projective (i.e. homogeneous) case our
functions should locally be quotients bbmogeneouslements oR of the same degree

Definition 5.5.3. Let Rbe a graded ring, and |2t = ProjR. For everyp € ProjR, let
Rip) = {; ;g¢pandf,geRY for somed}

be the ring of degree zero elements of the localizatidRwith respect to the multiplicative
system of all homogeneous element&dhat are not irp. (Of course, this will correspond
to the local ring at the point, see proposition 5.5.4 below.)

Now for every open subset C X we defineOx (U) to be
Ox(U) := {0 = (¢p)peu With ¢, € R, forallp €U
such that § is locally of the formé for f,g e R for somed”}
= {9 = (¢p)peu With ¢, € R, forallp € U
such that for every € U there is a neighborhodd in U and f,g € R
for somed with g ¢ q and¢, = % €Ry forallgeV.}

Itis clear from the local nature of the definition 6k (U) that Ox is a sheaf.

Proposition 5.5.4. Let R be a graded ring.

(i) Foreveryp € ProjR the stalkOx , is isomorphic to the local ring ).
(i) For every homogeneousd R, let X; C X be the distinguished open subset

Xe :=X\Z(f) = {p € ProjR; f ¢ p}.

These open sets cover X, and for each such open set we have an isomorphism of
locally ringed space$Xs, Ox|x; ) = Sped ¢, where

Rt = {fgr R R‘“'deg”}

is the ring of elements of degree zero in the localized ring R
In particular, ProjR is a scheme.

Proof. (i): There is a well-defined homomorphism

()X,p - R(p)a (an)) = q)(p)

The proof that this is an isomorphism is the same as in the affine case (see proposition
5.1.12 (i).

(i): Let p € X be a point. By definitionR, ¢ p, so there is & € R with f ¢ p. But
thenp € X;; hence the open subsets of the foXmcoverX.
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Now fix f € Ry; we will define an isomorphisng : X; — Sped ). For any homoge-
neous ideal C R, sety(l) := (IRf) NR). In particular, restricting this to prime ideals
gives a map of setXs — Sped(f), which is easily seen to be a bijection. Moreover,
if | C Ris any ideal thenp(p) D (1) if and only if p O I, sop : Xt — SpedRy) is a
homeomorphism. Note also that o X; the local rings

Oprojrp = Rip) = {% ; g andh homogeneous of the same degmagf,p}
and

Ospe 1) w(v) = (R(1)wie)

r

= { ﬁ;;s ; gandh homogeneous of degreesdegf ands- degf, h ¢ p}

are isomorphic forf ¢ p. This gives rise to isomorphisms between the rings of regular

functions O, (U) and Ospe,, (U) (as they are by definition made up of the local rings).
([l

Example 5.5.5.If kis an algebraically closed field, then by construction Kp@j . . . , Xn]
is the scheme that corresponds to projeatigpaceP) overk. More generally, the scheme
associated to a projective varieyis just Projs(X), whereS(X) = K[xo, ..., %n]/1 (X) is
the homogeneous coordinate ringaf

Of course, scheme-theoretically we can now also consider schemes that are of the form
Projk[xo, ..., Xa]/I wherel is any homogeneous ideal of the polynomial ring. This allows
projective “subschemes @ that are not necessarily irreducible or reduced. Let us turn
this into a definition.

Definition 5.5.6. Let k be an algebraically closed field. grojective subschemeof P is
a scheme of the form Prkix, .. .,xn]/l for some homogeneous iddal

As mentioned above, every projective variety is a projective subscheRie Bbwever,
the category of projective subscheme#®bfis bigger because it contains schemes that are
reducible (e.g. the union of the coordinate axes in the planekRgoki,X2]/ (X1x2)) or
non-reduced (e.g. the double point Pdep, x1]/(x3)).

As in the case of projective varieties, we now want to make precise the relation be-
tween projective subschemes®B¥and homogeneous idealskfxo, .. .,X,]. Note that the
existence of the irrelevant idegly, . .., xn) implies that this correspondence is not one-to-
one: the example Prkjxo, ..., %]/ (f) = Projk[xo, ..., Xa]/(fXo,..., fXn) of remark 3.1.11
works for schemes as well.

Definition 5.5.7. Let| € S=K|x,...,X:] be a homogeneous ideal. Thaturation | of I
is defined to be

| ={seS; x"-se| for somemand alli}.

Example 5.5.8.1f | = (fxo,..., fx) thenl = (f). So in this case the saturation removes
the ambiguity of the ideal associated to a projective subscherfi& affe will now show
that this is true in general:

Lemma5.5.9. Let I,J C S=Kxo,...,X:] be homogeneous ideals. Then

(i) 1is a homogeneous ideal.
(i) ProjS/1 = ProjS/I.. o
(iii) ProjS/I =ProjS/J if and only ifl =J.
(iv) 119 =11 for d > 0. Here and in the following we say that a statement holds
for d > 0 if and only if it holds for large enough d, i.e. if and only if there is a
number D> 0 such that the statement holds for albdD.
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Proof. (i): Let s€ | any (possibly non-homogeneous) element. Then by definiffonc |
for somemand alli. As| is homogeneous, it follows that the graded piex;-’éss(d) are
in | as well for alld. Therefore, by definition, it follows tha® < I for all i. Hencel is
homogeneous.

(ii): As the open affined); := {x # 0} C P" coverP", it suffices to show thalt); N
ProjS/I = U;NProjS/I. But this is obvious af|y—1 = Iy —1.
_ (iii): The direction =" is trivial. For “<" it suffices to show that the saturated ideal
| can be recovered from the projective scheXne ProjS/I alone. Thinking of projective
varieties,| should just be “the idedl(X) of X", i.e. the ideal of functions vanishing o%.
Now the elements dbdo not define functions oM, but after setting ong equal to 1 they
do define functions oX NU;. Hence we can recovéfrom X as

| ={seS; gx=1=0o0onXNU; forall i}

(note that the right hand side depends only on the sch¢@ed not on its representation
as Prop/I for a certainl.

(iv): The inclusionl @ c 11 is obvious (for alld) asl c I. So we only have to show
that! @ c 1@ ford > 0.

First of all note that is finitely generated, lety, ..., f be (homogeneous) generators.
Let D4 be the maximum degree of tHe Next, by definition of there is a numbeb, such
thatx!- fi e 1 forall 0< j <n, 1<i<m, andd > D,. SetD = D1+ (n+1)D>.

Now let f € 1@ be any homogeneous element in the saturation of defjre®. We
can writef asy;a fj, with thea; homogeneous of degree at least- 1)D,. This degree
bound implies that every monomial af contains at least orng with a power of at least
D,. But then this power multiplied witH; lies in | by construction. So it follows that
a fi €| for all i, and thereford € 19, O

Definition 5.5.10. If X is a projective subscheme &f', we let!(X) be the saturation

of any ideall C K[xo,...,Xn] such thatX = Projk|xo,...,xn]/I. (This is well-defined by
lemma 5.5.9 (iii) and generalizes the notion of the ideal of a projective variety to projective
subschemes df".) We defineS(X) to bek|xo,...,X]/I(X). As usual, we call (X) the

ideal of X andS(X) the homogeneous coordinate ring>af

Corollary 5.5.11. There is a one-to-one correspondence between projective subschemes

of Py and saturated homogeneous ideals ik ..,x,], given by X— I(X) and | —
Projkixo, ..., Xn]/I.

5.6. Exercises.

Exercise 5.6.1.Find all closed points of theeal affine planeA2. What are their residue
fields?

Exercise 5.6.2.Let f(x,y) = y> — x? —x3. Describe the affine schemé= Spe®/(f)
set-theoretically for the following ringg:

(i) R=C]x,y] (the standard polynomial ring),
(i) R=CIx,Y](xy (the localization of the polynomial ring at the origin),
(i) R=C[[x,y]] (the ring of formal power series).

Interpret the results geometrically. In which of the three cas¥diiseducible?

Exercise 5.6.3.For each of these cases below give an example of an affine scheritle
that property, or prove that such Zndoes not exist:

(i) X has infinitely many points, and dixh= 0.
(i) X has exactly one point, and din= 1.
(i) X has exactly two points, and di¥xh= 1.
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(iv) X =SpedRwith RcC C[x], and dinX = 2.

Exercise 5.6.4.Let X be a scheme, and [¥tbe an irreducible closed subsetXf If ny
is the generic point of, we write Ox y for the stalkOx n,. Show thatOx y is “the ring
of rational functions orX that are regular at a general point¥f, i.e. it is isomorphic to
the ring of equivalence classes of pajts, ¢), whereU C X is open withU NY #£ 0 and
$ € Ox(U), and where two such pai(8), ) and(U’,¢’) are called equivalent if there is
an open subsé&t C U NU’ with V NY # 0 such thath |y = ¢|y.
(In particular, ifX is a scheme that is a variety, théx , is the function field ofX
as defined earlier. Hence the stalks of the structure sheaf of a scheme generalize both the
concepts of the local rings and the function field of a variety.)

Exercise 5.6.5.Let X be a scheme of finite type over an algebraically closed keghow
that the closed points of are dense in every closed subsetXof Conversely, give an
example of a schem% such that the closed points ¥fare not dense iX.

Exercise 5.6.6.Let X = {(x,y,2) € C*; xy= xz=yz= 0} be the union of the three coor-
dinate lines inC3. LetY = {(x,y) € C?; xy(x—Y) = 0} be the union of three concurrent
lines inC2.

Are X andY isomorphic as schemes? (Hint: Define and compute the tangent spaces of
X andY at the origin.)

Exercise 5.6.7.Let X ¢ P2 the complex cubic surface

X ={(Xo:X1:X2:%3) ; X3 =Xy XoX3}.
(i) Show thatX is singular.

(ii) Let M C G(1,3) be the subset of the Grassmannian of lineBithat corresponds
to all lines inP? that lie inX. By writing down explicit equations fok, show
thatM has the structure of a scheme in a natural way.

(i) Show that the schem®! contains exactly 3 points, but that it has length 27 over
C, i.e. itis of the formM = SpedR with Ra 27-dimensionaC-algebra. Hence in
a certain sense we can say that even the singular cubic sxfemetains exactly
27 lines, if we count the lines with their correct multiplicities.

Exercise 5.6.8.Letk be an algebraically closed field. Anfold point (overk) is a scheme
of the form X = SpedR such thatX has only one point an® is a k-algebra of vector
space dimension overk (i.e. X has lengtm). Show that every double point is isomorphic
to Spe&(x]/(x?). On the other hand, find two non-isomorphic triple points dyeand
describe them geometrically.

Exercise 5.6.9.Show that for a schemx the following are equivalent:

(i) X is reduced, i.e. for every open subket X the ring Ox(U) has no nilpotent
elements.
(ii) For any open subsét; of an open affine covefU; } of X, the ringOx (U;) has no
nilpotent elements.
(iii) For every pointP € X the local ringOx p has no nilpotent elements.

Exercise 5.6.10.Show thath2 2 Al xgpeg AL.

Exercise 5.6.11.Let X = Z(xfxz +x1x§x3) c A3, and denote byt the projection to the
i-th coordinate. Compute the scheme-theoretic fibgrs, = 11 *(a) for all a € C, and
determine the set of isomorphism classes of these schemes.

Exercise 5.6.12 Let X be a prevariety over an algebraically closed flgldnd letP € X be

a (closed) point oK. Let D = Sped[x]/(x?) be the “double point”. Show that the tangent
spaceTy p to X at P can be canonically identified with the set of morphisins- X that
map the unique point dd to P.
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(In particular, this gives theetof morphismsD — X with fixed image poinP € X the
structure of a vector space overCan you see directly how to add two such morphisms,
and how to multiply them with a scalar kn?)

Exercise 5.6.13.Let X be an affine variety, lét be a closed subschemeXfdefined by
the ideall C A(X), and letX be the blow-up oK atl. Show that:
(i) X =Proj(@g=0!"), where we set® := A(X).
(i) The projection mapX — X is the morphism induced by the ring homomorphism
19— @gsol®.
(iii) The exceptional divisor of the blow-up, i.e. the fibéx x X of the blow-upX — X
overY, is isomorphic to PragDy-o19/19+1).

Exercise 5.6.14.Let X = SpedRandY = SpecSbe affine schemes. Show that the disjoint
unionX LIY is an affine scheme with
XUY = Spe¢Rx ),

where as usuaR x S= {(r,s) ; r € R se S} (with addition and multiplication defined
componentwise).
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6. FIRST APPLICATIONS OF SCHEME THEORY

To every projective subscheme of IP’E we associate the Hilbert function hy : Z —
Z., d — dim S(X)(¥). For large d the Hilbert function is a polynomial in d of degree
dimX, the so-called Hilbert polynomial Xx .

We define (dimX)! times the leading coefficient of Xx to be the degree of X;
this is always a positive integer. For zero-dimensional schemes the degree is just the
number of points in X counted with their scheme-theoretic multiplicities. The degree
is additive for unions of equidimensional schemes and multiplicative for intersections
with hypersurfaces (Bézout’s theorem).

We give some elementary applications of Bézout’s theorem for plane curves.
Among others, we give upper bounds for the numbers of singularities of a plane
curve and the numbers of loops of a real plane curve.

A divisor on a curve C is just a formal linear combination of points on C with
integer coefficients. To every polynomial or rational function on C we can associate
a divisor, namely the divisor of “zeros minus poles” of the polynomial or function.
The group of all divisors modulo the subgroup of divisors of rational functions is
called the Picard group PicC of C.

We show that the degree-0 part of PicC is trivial for C = P, whereas it is bijective
to C itself if C is a smooth plane cubic curve. This defines a group structure on such
cubic curves that can also be interpreted geometrically. In complex analysis, plane
cubic curves appear as complex tori of the form C/N\, where N is a rank-2 lattice in
C.

Finally, we give a short outlook to the important parts of algebraic geometry that
have not been covered yet in this class.

6.1. Hilbert polynomials. In this section we will restrict our attention to projective sub-
schemes oP" over some fixed algebraically closed field. Let us start by defining some
numerical invariants associated to a projective subscher® of

Definition 6.1.1. Let X be a projective subschemel®f}. Note that the homogeneous coor-
dinate ringS(X) is a graded ring, and that each graded §4x)(@ is a finite-dimensional
vector space ovek. We define theHilbert function of X to be the function

hx 1 — 7
d — hy (d) := dim S(X)(@.
(Note that we trivially havéix (d) = 0 for d < 0 andhx (d) > 0 for d > 0, so we will often
considethy as a functiorhy : N — N.)

Example 6.1.2. Let X = P" be projective space itself. The3{X) = Kxo,...,Xn], SO the
Hilbert functionhy (d) = (d?j”) is just the number of degre®monomials im+ 1 variables
X0, .-, In particular, note thaty (d) = LML (@HD) js 5 polynomial ird of degree

n with leading coefficienﬁ—! (compare this to proposition 6.1.5).

Example 6.1.3. Let us now consider some examples of zero-dimensional schemes.

() Let X ={(1:0),(0: 1)} c P! be two points inPL. Thenl(X) = (xox1). So a
basis ofS(X)(@ is given by{1} for d = 0, and{xg,xd} for d > 0. We conclude

that
1 ford=0
hy (d) = ’
x(d) {2 ford > 0.

(i) Let X=1{(1:0:0),(0:1:0),(0:0:1)} c P? be three points ifP? that are not
on aline. Ther (X) = (xoX1,XoX2,X1X2). S0 in the same way as in (i), a basis of
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S(X)(@ is given by{1} for d = 0 and{xd,x{,xd} for d > 0. Therefore

1 ford=0
hy (d) = ’
x(d) {3 ford > 0.

(i) Let X = {(1:0),(0:1),(1:1)} c P! be threecollinear points. Thenl (X) =
(%oX1(Xo — X1)). The relatiorxdx; = xox allows us to reduce the numbenxfin
a monomiabi,x} provided thai > 2 andj > 1. So a basis o§(X)(@ is given by
{1} ford =0, {x,x1} for d = 1, and{x3,xpx¢~1,x¢} for d > 1. Hence

1 ford=0,
hx(d)=<¢2 ford=1,
3 ford>1.

It is easy to see that we get the same result for three collinear poiits iBo
comparing this with (ii) we conclude that the Hilbert function does not only de-
pend on the schem¥ up to isomorphism, but also on the way the scheme is
embedded into projective space.

(iv) Let X C P! be the “double point” given by the ide&(X) = (x3). A basis of
S(X)(@ is given by{1} for d = 0 and{xox¢~1,x{} for d > 0, so it follows that

1 ford=0
hy (d) = ’
x(d) {2 ford > 0.

justasin (i). Sothe double point “behaves like two separate points” for the Hilbert
function.

So we see that in these examples the Hilbert function becomes constaierfge enough,
whereas its initial values for smallmay be different. We will now show that this is what
happens in generébr zero-dimensional schemes

Lemma 6.1.4. Let X be a zero-dimensional projective subscheni®'ofrhen

(i) X is affine, so equal t8pe® for some k-algebra R.

(ii) This k-algebra R is a finite-dimensional vector space over k. Its dimension is
called thelength of X and can be interpreted as the number of points in X
(counted with their scheme-theoretic multiplicities).

(iii) hx(d) =dimgR for d>> 0. In particular, hx(d) is constant for large values of d.

Proof. (i): As X is zero-dimensional, we can find a hyperplane that does not intefsect
ThenX = X\H is affine by proposition 5.5.4 (ii).

(ii): First assume thaX is irreducible, i.e. it consists of only one point (but may have
a non-trivial scheme structure). By a change of coordinates we can assume that this point
is the origin inA". If X = Sped(xy, ...,X,]/l we then must havéx,...,x,) = /1 by the
Nullstellensatz. It follows thastid € | for somed and alli. Consequently, every monomial
of degree at leadd :=d-nlies inl (as it must contain at least omgwith a power of at
leastd). In other wordsk[xi, . ..,%n]/l has a basis (as a vector space dyef polynomials
of degree less thad. But the space of such polynomials is finite-dimensional.

(iii): Note that I(X) is simply the homogenization df Conversely,| is equal to
1 (X)|x,=1. So ford > D an isomorphisn8®% — R as vector spaces ovkis given by

(K0, - .- X /1 XN @ = KX, . xa] /1, Fliget
and the inverse
KX, Xal /1 = (KXo, - X /1 (X)) (@), f 1 g1 5@
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where f denotes the homogenization of a polynomial as in exercise 3.5.3 (note that the
second map is well-defined &k, ..., xn) /I has a basis of polynomials of degree less than
D). O

We will now discuss the Hilbert function of arbitrary projective subschemé&® ¢that
are not necessarily zero-dimensional).

Proposition 6.1.5. Let X be a (non-empty) m-dimensional projective subschen. of
Then there is a (unique) polynomigk € Z[d] such that kg (d) = xx(d) for d >> 0. More-
over,

(i) The degree ofx is m.
(i) The leading coefficient ¢fx is % times a positive integer.

Remark6.1.6 As the Hilbert polynomial is defined in terms of the Hilbert functim
large d, it suffices to look at the graded partslgK) (or S(X)) for d >> 0. So by lemma
5.5.9 (iv) we do not necessarily need to take sheuratedideal of X for the computation
of the Hilbert polynomial. We have as well that

Xx (d) = dimg (KXo, ..., %] /)@ ford >0

for anyhomogeneous idealsuch thatX = Projk[Xo, ..., Xa]/I.
Proof. We will prove the proposition by induction on the dimensiorof X. The case
m = 0 follows from lemma 6.1.4, so let us assume that 0. By a linear change of
coordinates we can assume that no componehtlads in the hyperplanél = {xy = 0}.
Then there is an exact sequence of graded vector spacels over

0 — KXo, X /1(X) = KXo, .. X /1(X) — KlX0, . %] /(1(X) + (0)) — 0.

(if the first map was not injective, there would be a homogeneous polyndnsiath that

f ¢ 1(X) but fxo € 1(X). We would then havX = (XNZ(f))U(XNH). But as no irre-
ducible component lies iRl by assumption, we must hae= X NZ(f), in contradiction

to f ¢ 1(X)). Taking thed-th graded part of this sequence (and using remark 6.1.6 for the
ideall (X) + (Xo)), we get

hxen (d) = hy (d) — hy (d — 2).

for larged. By the induction assumptiotxy (d) is a polynomial of degreen— 1 for
larged whose leading coefficient chnf—l)l times a positive integer. We can therefore write

m-1 d
hxnn (d) = c() ford >0
n i; i

for some constants;, wherecy,_1 is a positive integer (note thf\ﬁf) is a polynomial of
degres in d with leading coefficienﬁ—!). We claim that

m-1 /d+1
hy(d) =c G| .
X() +i; |(|+1

for somec € Z. In fact, this follows by induction od, as
hx (d) = hxAH (d) + hy (d — 1)

~5o(0) g )
—er5a(iin)

) ford>0
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The statement of proposition 6.1.5 motivates the following definition:

Definition 6.1.7. Let X be a projective subscheme®t. ThedegreedegX of X is defined
to be(dimX)! times the leading coefficient of the Hilbert polynomijgd. (By proposition
6.1.5, this is a positive integer.)

Example 6.1.8.

(i) If X is a zero-dimensional scheme then deig equal to the length oX, i.e. to
“the number of points iXX counted with their scheme-theoretic multiplicities”.
(ii) degP" =1 by example 6.1.2.
(iii) Let X = ProjK[xo,...,Xa]/(f) be the zero locus of a homogeneous polynomial.
We claim that deX = degf. In fact, taking thed-th graded part o§(X) =
KXo, - -.,%n]/ T KXo, ...,%n] we get

hx (d) = dimck[xo, .., %] @ — dimick[xo, . ., X]¢

d+n d—degf +n
:< n >_( n )
:%((d+n)..‘(d+1)—(dfdegf+n)...(d,degf+1))

_ _dedf d"1 -+ lower order terms
(n—=1)!
Proposition 6.1.9. Let X and X% be m-dimensional projective subscheme®4fand
assume thadim(X; N X2) < m. Therdeg X; U Xy) = degX; + degX,.

d—degf)

Proof. For simplicity of notation let us s&= k[xo, . .., Xn]. Note that
X1NXo =ProjS/(1(X1) +1(X2)) and XgUXo = ProjS/(1(X1) N1(Xz)).
So from the exact sequence
0 — S/(K)NIX)) — SNX)®S1(%) — S/(1(X)+I(%) — O
f — (f, )

(f ) g) = f— g
we conclude that
by, (d)+ h, (d)= thsz(d) + i, (d)
for larged. In particular, the same equation follows for the Hilbert polynomials. Compar-
ing only the leading (i.ed™) coefficient we then get the desired result, since the degree of
Xxinx, 1S less tharm by assumption. O

Example 6.1.10.Let X be a projective subscheme®t. We call

9(X) := (=)™ (xx(0) ~ 1)
the (arithmetic) genusof X. The importance of this number comes from the following
two facts (that we unfortunately cannot prove yet with our current techniques):

(i) The genus oK is independent of the projective embedding, i.& &ndY are iso-
morphic projective subschemes thgiX) = g(Y). See section 6.6.3 and exercise
10.6.8 for more details.

(ii) If X is a smooth curve oveE, theng(X) is precisely the “topological genus”
introduced in example 0.1.1. (Compare for example the degree-genus formula of
example 0.1.3 with exercise 6.7.3 (ii).)

Remark6.1.11 In general, the explicit computation of the Hilbert polynomigl of a
projective subschem¥ = Projk[xo,...,%y]/I from the ideall is quite complicated and
requires methods of computer algebra.
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6.2. Bézout's theorem. We will now prove the main property of the degree of a projective
variety: that it is “multiplicative when taking intersections”. We will prove this here only

for intersections with hypersurfaces, but there is a more general version about intersections
in arbitrary codimension (see e.g. cite Ha theorem 18.4).

Theorem 6.2.1. (Bézout's theoremLet X be a projective subschemel®¥ of positive
dimension, and let & k|xo, ..., X,] be a homogeneous polynomial such that no component
of X is contained in Zf). Then

degXNZ(f)) =degX-degf.

Proof. The proof is very similar to that of the existence of the Hilbert polynomial in propo-
sition 6.1.5. Again we get an exact sequence

0 — K[X0s- . Yo /1 (X) 5 KXo, . %] /1 (X) — K[Xo, ., Xl /(1(X) + (£)) — O

from which it follows that

Xxnz(f) = Xx(d) — Xx (d — degf).
But we know that

Xx(d) = di?'x d™+ cm_1d™ ! + terms of order at most™ 2,

wherem= dimX. Therefore it follows that

degX
m!
+terms of order at most™ 2

= diﬁx -mdegf -d™! +terms of order at most™ 2.

We conclude that déX NZ(f)) = degX - degf. O

Xxnz(f) = (d™— (d —degf)™) +cm-1 (d™* — (d —degf)™?)

Example 6.2.2. Let C; andC, be two curves inP? without common irreducible com-
ponents. These curves are then given as the zero locus of homogeneous polynomials of
degreesl; anddy, respectively. We conclude that degNC,) = di - d» by Bézout's the-

orem. By example 6.1.8 (i) this means tRatandC; intersect in exactlyl; - d> points, if

we count these points with their scheme-theoretic multiplicities in the intersection scheme
C1NGC,. In particular, as these multiplicities are always positive integers, it followshat
andC; intersect set-theoretically iat most d - d» points, and inat leastone point. This
special case of theorem 6.2.1 is also often calléddit's theorem in textbooks.

Example 6.2.3. In the previous example, the scheme-theoretic multiplicity of a point in
the intersection schen@® NC, is often easy to read off from geometry: Rt C; NC; be
a point. Then:

(i) If C; andCy are smooth aP and have different tangent linesRthenP counts
with multiplicity 1 (we say: the intersection multiplicity &; andC, atP is 1).
(ii) If C; andC; are smooth a@® and are tangent to each othePahen the intersection
multiplicity at P is at least 2.
(iii) If Cq is singular andC; is smooth aP then the intersection multiplicity & is at
least 2.
(iv) If C; andC, are singular aP then the intersection multiplicity & is at least 3.

The key to proving these statements is the following. As the computation is local around
P we can assume that the curves are affinddnthatP = (0,0) is the origin, and that the
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two curves are given as the zero locus of one equation
Ci={f1=0} wheref; = a;x+ by -+ higher order terms
C,={f,=0} wherefy = apx+ by + higher order terms

If both curves are singular at the origin, their tangent spa&atist be two-dimensional,

i.e. all of A%, This means thas; = b; = a» = b, = 0. It follows that 1,x, andy are

three linearly independent elementk[r,y]/(f1, f2) (whose spectrum is by definition the
intersection scheme). So the intersection multiplicity is at least 3. In the same way, we get
at least 2 linearly independent elements (the constant 1 and one linear function) if only one
of the curves is singular, or both curves have the same tangent line (i.e. the linear parts of
their equations are linearly dependent).

Example 6.2.4. Consider again the twisted cubic curvePif
C={(s*:t:st?:t3); (s:t) e P}
= {(X0:X1:%2:X3) ; X2 — XoX2 = X3 — X1 X3 = XoX3 — X1 X2 = O}.

We have met this variety as the easiest example of a curi#é ihat cannot be written as
the zero locus of two polynomials. We are now able to prove this statement very easily
using Bezout’s theorem: assume tHé€) = (f,g) for some homogeneous polynomidls
andg. As the degree df is 3 by exercise 6.7.2, it follows that dégdegg = 3. Thisis only
possible if def = 3 and deg = 1 (or vice versa), i.e. one of the polynomials has to be
linear. ButC is not contained in a linear space (its ideal does not contain linear functions).
In particular we see th& cannot be the intersection of two of the quadratic polynomials
given above, as this intersection must have degree 4. In fact,

Z(X2 — XoX2, X5 — X1x3) = CU {x1 = X = 0}
in accordance with Bzout’s theorem and proposition 6.1.9 (note that= x; = 0} is a
line and thus has degree 1).

Let us now prove some corollaries o€Bout's theorem.

Corollary 6.2.5. (Pascal’s theorejiLet X C IP? be a conic (i.e. the zero locus of a ho-
mogeneous polynomial f of degree 2). Pick six poinB®,&,D,E,F on X that form the
vertices of a hexagon inscribed in X. Then the three intersection points of the opposite
edges of the hexagon (i.e2PABNDE, Q= BCNEF, and R=CDNFA) lie on a line.

AN

Proof. Consider the two reducible cubié§ = ABUCDUEF andX, = BCUDE UFA,
and letf; = 0 andf, = 0 be the equations of; andX,, respectively. In accordance with
Bézout's theoremX; andX; meet in the 9 point&, B,C,D,E,F,P,Q,R.
Now pick any pointS e X not equal to the previously chosen ones. Of course there are
A 1€ ksuch that f; + pf, vanishes aB. SetX’ = Z(A f; + uf,); this is a cubic curve too.
Note thatX’ meetsX in the 7 pointsA,B,C,D, E,F, S, although deX’ - degX = 6. We
conclude by Bzout's theorem thaX’ and X have a common component. For degree

reasons the only possibility for this is that the culids reducible and contains the conic
X as a factor. Therefor®’ = X UL, whereL is a line.
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Finally note thatP,Q,R lie on X’ as they lie onX; andX,. ThereforeP,Q,Re X UL.
But these points are not ofy so they must be on the line |

Corollary 6.2.6. Let Cc IP? be an irreducible curve of degree d. Then C has at r(u?);jt)
singular points.

Remark6.2.7. Ford = 1 C must be a line, so there is no singular point. A conic is either
irreducible (and smooth) or a union of two lines, so b 2 the statement is obvious
too. Ford = 3 the corollary states that there is at most one singular point on an irreducible
curve. In fact, the projectivization of the singular cubic affine cyire: X2+ x3 is such an
example with one singular point (namely the origin).

Proof. Assume the contrary and IBt,. .., P(d£1)+l be distinct singular points &. More-
over, pick arbitrary further distinct poing®y,...,Qq4—3 on C (we can assumd > 3 by
remark 6.2.7). We thus have a total@5') +1+d - 3= d—zz — 9 —1 pointsP andQ;.

We claim that there is a curv@ of degreed — 2 that passes through & and Q;.
In fact, the space of all homogeneous dege-2) polynomials in three variables is a

(‘2’) -dimensional vector space ovkr so the space of hypersurfaces of degilee? is a

projective spac®\ of dimensionN = (g) — 1, with the coefficients of the equation as the

homogeneous coordinates. Now the condition that such a hypersurface passes through a
given point is obviously a linear condition in th&. As N hyperplanes iPN always
have a non-empty intersection, it follows that there is a hypersurface passing through any
N given points. BuN = (‘2’) —-1= d—zz — % — 1 is precisely the number of points we have.
(Compare this argument to exercise 3.5.8 and the parametrization of cubic surfaces at the
beginning of section 4.5.)

Now compute the degree of the intersection sch€meC’. By Bézout's theorem, it
must be de@ - degC’ = d(d — 2). Counting the intersection points, we see that we have
thed — 3 pointsQ;, and the(dgl) + 1 pointsP; that count with multiplicity at least 2 as
they are singular points of Gsee example 6.2.3). So we get

degCnC’) > (d—3)+2 <(d;1> +1> =d?—-2d+1> degC-degC'.

By Bézout's theorem it follows that andC’ must have a common component. Blis

irreducible of degree de&g> degC/, so this is impossible. We thus arrive at a contradiction

and conclude that the assumption of the existenc(é’ﬁf) + 1 singular points was false.
O

The following statement abougal plane curves looks quite different from corollary
6.2.6, yet the proof is largely identical. Note that every smooth real plane curve consists of
a certain number of connected components (in the classical topology); here are examples
with one real component (the left two curves) and with two real components (the right
curve):

- o (

§f+y2—4:0 yz_xz_x;_lzo y2—x2—§+1:0

We want to know the maximum number of such components that a real smooth curve of
degreed can have. One way of constructing curves with many components is to start with
a singular curve, and then to deform the equation a little bit to obtain a smooth curve. The
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following example starts with a reducible quartic curve and deforms it into a smooth curve
with two and four components, respectively.

0D
N\
(2 +y2—4)( 4 = (€ +y?—4)( 4 = (§+y2—4)(x2+§—4):—1

As in the complex case, it is more convenient to pass tq)rb}zectiveplanePD% instead

of AZ. This will add points at infinity of the curves so that every component becomes
a loop (i.e. it has no ends). For example, in the two cubic curves above one point each
is added to the curves, so that the components extending to infinity become a loop. We
are therefore asking for the maximum number of loops thabgctivesmooth real plane
curve of degreel can have.

There is an extra topological twist % that we have not encountered before. As usual,
we constructP? by taking A2 (which we will draw topologically as an open disc here)
and adding a point at infinity for every direction mﬁ This has the effect of adding a
boundary to the disc (with the boundary point corresponding to the point at infinity). But
note that opposite points of the boundary of the disc belong to the same directign in
and hence are the same poinﬂPifg. In other wordslP’D% is topologically equivalent to a
closed disc with opposite boundary points identified:

RA

identify

It is easy to see that this isreon-orientablesurface: if we start with a small circle and
move it across the boundary of the disc (i.e. across the infinity IocuIE’%Q @fien it comes
out with opposite orientation:

Consequently, we have two different types of loops. A “type 1 loop” is a loop such that
its complement has only one component (which is topologically a disc). A “type 2 loop”

is a loop such that its complement has two components (an “interior” and “exterior” of the
loop). Itis interesting to note that of these two components one is a disc, and the other is a
Mobius strip.
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A
Type 1 loop Type 2 loop

(Those of you who know some algebraic topology will note that the homology group
H1(P2) is isomorphic tdZ/27Z; so the two types of curves correspond to the two elements
of Z/27.)

With these prerequisites at hand, we can now prove the following statement (modulo
some topology statements that should be intuitively clear):

Corollary 6.2.8. (Harnack’s theoren) A real smooth curve iﬁ’é of degree d has at most
(%51 + 1 loops.

Remark6.2.9 Aline (d = 1) has always exactly one loop. A non-empty comic=(2) is

a hyperbola, parabola, or ellipse, so in every case the number of loops is d =F8ithe
corollary gives a maximum number of 2 loops, anddot 4 we get at most 4 loops. We

have just seen examples of these numbers of loops above. One can show that the bound
given in Harnack’s theorem is indeed sharp, i.e. for edeope can find smooth real curves

of degreead with exactly(dgl) +1 loops.

Proof. Assume that the statement is false, so that there(%gj@ + 2 loops in a smooth

real plane curve&C. Note that any two type 1 loops must intersect (which is impossible
for a smoothcurve), so there can be at most one type 1 loop. Hence assume that the first
(%51) +1 loops are of type 2, and pick one po.. .,P(d;l)_HL on each of them. By

remark 6.2.9 we can assume tat 3, so pickd — 3 further distinct point®,...,Qq_3
on the last loop (which can be of any type). We thus have a totéﬂgﬂf) +1+d-3=
d—; — 41 pointsP, andQ;.

As in the proof of corollary 6.2.6 there is a cul@eof degreed — 2 that passes through
all B andQ;. Compute the degree of the intersection schém€’. By Bézout’s theorem,
it must be de@ - degC’ = d(d — 2). Counting the intersection points, we see that we have
thed — 3 pointsQ;, and the(dgl) + 1 pointsP; that count with multiplicity at least 2 as
every type 2 loop divides the real projective plane in an interior and exterior region; so if
C’ enters the interior of a type 2 loop it must exit it again somewh@tenay also be that
C' is tangent to the loop or singular at the intersection point, but in this case the intersection
multiplicity must be at least 2 too.)

So we get

degCNC’) > (d—3) 42 ((d;1> +1) =d?—2d+ 1> degC-degC'.
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By Bézout's theorem it follows that andC’ must have a common component. Blis
irreducible of degree de&g> degC/, so this is impossible. We thus arrive at a contradiction
and conclude that the assumption of the existenc(é‘ﬁf) + 2 loops was false. O

Corollary 6.2.10. Every isomorphism fP" — P"is linear, i.e. itis of the form fx) = A-x,
where x= (Xo,...,X,) and A is an invertibldn+ 1) x (n+ 1) matrix with elements in the
ground field.

Proof. LetH C P" be a hyperplane, and Ietc P" be a line not contained iH. Of course,

H NL is scheme-theoretically just one reduced point.fAsan isomorphismf (H) N (L)
must also be scheme-theoretically one reduced point, i.g.fddgn f(L)) = 1. As
degrees are always positive integers, it follows b§z8ut's theorem that ddgH) =
degf(L) = 1. In particular,f maps hyperplanes to hyperplanes. Applying this to all hy-
perplanes{x; = 0} in turn, we conclude that maps all coordinate functions to linear
functions, sof (x) = A-x for some scalar matriA. Of courseA must be invertible iff has

an inverse. O

6.3. Divisors on curves. Bézout's theorem counts the number of intersection points of a
projective curve with a hypersurface. For exampleCif- P? is a plane cubic then the
intersection ofC with any line consists of 3 points (counted with their scheme-theoretic
multiplicities). But of course not every collection of three points®oan arise this way,

as three points will in general not lie on a line. So by reducing the intersections of curves
to just the number of intersection points we are losing information about the possible con-
figurations of intersection schemes. In contrast, we will now present a theory that is able
to keep track of the configurations of (intersection) points on curves.

Definition 6.3.1. Let C € P" be a smooth irreducible projective curve. divisor on C

is a formal finite linear combinatioB = a;P; + - - - + amPy of pointsP, € C with integer
coefficientsa;. Obviously, divisors can be added and subtracted. The group of divisors on
Cis denoted Di.

Equivalently, DiC is the free abelian group generated by the points.of

ThedegreedegD of a divisorD = a;P; + - - - + amPn, is defined to be the integes +
---+am. Obviously, the degree function is a group homomorphism degCBZ.

Example 6.3.2. Divisors on a curv&€ can be associated to several objects:

(i) LetZ c P" be a zero-dimensional projective subschemB"ofand letPy, ..., Py
be the points irZ. Each of these points comes with a scheme-theoretic multiplic-
ity & (the length of the component @ at B) which is a positive integer. If the
pointsk, are onC, thena Py + - - - amPr is a divisor orC which we denote byZ).
It is called the divisor associated o

(i) Let f eKxo,...,X:] be ahomogeneous polynomial such i not contained in
Z(f). ThenCNZ(f) is a zero-dimensional subschemePdfwhose points lie in
C, so by (i) there is an associated divige@nZ(f)) onC. It is called the divisor
of f and denotedf); we can think of it as the zeros df on C counted with
their respective multiplicities. By &out’s theorem, the number of such zeros is
deqg f) = degC-degf.

(iii) Note that the intersection schen@N Z(f) and therefore the divisgif) do not
change if we add td an element of the ide&(C). Hence there is a well-defined
divisor (f) for every non-zerd € S(C)@.

(iv) Assume thaC c P2, and thatC’ = Z(f’) c P? is another (not necessarily irre-
ducible) curve that does not contdinas a component. Then the divisdr) is
also called théntersection product of C andC’ and denote€ - C’ € DivC.
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Lemma 6.3.3. Let CC P" be a smooth irreducible curve, and letgfe S(C) be non-zero
homogeneous elements in the coordinate ring of C. Tligh= (f) + (g).

Proof. Let (fg) = a;P1 + --- + amPm. It is obvious that set-theoretically the zeros faf
are the union of the zeros df andg, so f andg vanish at most at the poin§. Let
(f) =biP1+ -+ byPy and(g) = ¢1P1 + - - - cmPm. We have to show that = b; +¢; for
alli=1,....m

Fix a certaini and choose an affine open subdet Spe® C C that containd?, but
no other zero offg. Then by definition we have; = dimyR/(fg), b = dim¢R/(f), and
¢ = dimgR/(g). The statement now follows from the exact sequence

0— R/(f) -% R/(fg) -5 R/(g) — O.
O

Definition 6.3.4. LetC C P" be a smooth irreducible curve, anddet K(C) be a non-zero
rational function. By definition we can writlp = é for some non-zerd,g e S(C)(@. We
define the divisor ofh to be(¢) = (f) — (g) (this is well-defined by lemma 6.3.3). It can
be thought of as the zeros minus the poles of the rational function.

Remark6.3.5 Note that the divisor of a rational function always has degree zedx)::i%
with f,g e S(C)(@, then

deg¢) =deq f) —degg) =ddegC—ddegC =0
by Bézout's theorem.

Example 6.3.6.LetC = P!, and consider the two homogeneous polynomidig, x;) =
Xox1 andg(xo,X1) = (Xo —x1)?. Then(f) = P+ P, with P, = (1:0) andP, = (0: 1),
and(g) =2P; with P; = (1:1). The quotien% defines a rational functiof on P with
(¢) = PL+ P> — 2P;. We have deff) = degg) = 2 and deg¢p) = 0 (in accordance with
remark 6.3.5).

Remark6.3.7. By lemma 6.3.3, the mag(C)\{0} — DivC that sends every rational
function ¢ to its divisor (¢) is a group homomorphism, if we regakdC)\{0} as an
abelian group under multiplication. In particular, the subset ofof all divisors of the
form (¢) is a subgroup of DIC.

Definition 6.3.8. The Picard group (or divisor class group PicC of C is defined to be
the group DiC modulo the subgroup of all divisors of the forfh) for ¢ € K(C)\{0}.
If f € S(C) ¥, we will usually still write (f) for the divisor class in PiC associated td.
Two divisorsD1 andD> are said to bdinearly equivalent if D; — D, = 0 € PicC, i.e. if
they define the same divisor class.

Remark6.3.9 By remark 6.3.5, the degree function deg : Div» Z passes to a group
homomorphism deg : P& — Z. So it makes sense to talk about the degree of a divisor
class. We define PI€ c PicC to be the group of divisor classes of degree 0.

Remark6.3.10 The divisor group DI is a free (and very “big”) abelian group and there-
fore not very interesting. In contrast, the divisteissgroup PicC has quite a rich structure
that we want to study now in some easy examples.

Lemma 6.3.11. PicP! = Z (with an isomorphism being the degree homomorphism). In
other words, orP? all divisors of the same degree are linearly equivalent.
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Proof. LetD = a1 P, + - - - amPm be a divisor of degree zero, i@+ - -- +an = 0. We have
to show thaD is the divisor of a rational function. In fact, assumeEhbave homogeneous
coordinategx; : i); then

m
¢ =[xy —yx)®
o
is a rational function such tha) = D. O

Let us now move on to more complicated curves. We know already that smooth conics
in P2 are isomorphic td?!, so their Picard group is isomorphic to the integers too. Let
us therefore consider cubic curvesBA. We will compute Pi€ and show that it isiot
isomorphic toZ (thereby showing that cubic curves are not isomorphi®tp Let us
prove a lemma first.

Lemma 6.3.12. Let C= Z(f) c P? be a smooth cubic curve, and let € Z(g) with

ge k[xo,x1,xz](d) be another curve that does not have C as a component. Assume that
“three points of G C' lie on a line”, i.e. that C.C' contains three pointsiPP,, P; (that

need not be distinct) such that there is a line-IZ(l) with C-L = P; + P, + Ps. Then there

is a polynomial g€ k[xo,x1, %]~V such that g=1 - ¢ in S(C).

Proof. By Bézout's theorem we hav@® -L = P, + - -- + Py for some pointd (that need
not be distinct, but they must contain the first three given pdmt,Ps). Letae
k[X0,X1,%2]3) be a homogeneous polynomial such td&h) - L = P+ --- + Py (it is
obvious that this can always be found). Th&@af) L =Py +--- P4 too.

Now pick any pointQ € L distinct from theR. As g andaf do not vanish a, we can
find aA € ksuch thag+Aaf vanishes a®. It follows thatg+ Aaf vanishes oh at least at
thed + 1 pointsPy,...,Py,Q. So it follows by Bezout’s theorem that(g+ Aaf) contains
the lineL, or in other words thag+ Aaf = Ig’ for someg’. Passing to the coordinate ring
S(C) = k[xo, x1,X%2] /I (C) we get the desired result. O

Proposition 6.3.13. Let C  P? be a smooth cubic curve, and lei@be distinct points on

C. Then P-Q = 0in PicC. In other words, there is no rational functigne K(C)\{0}

with (¢) = P—Q, i.e. no rational function that has exactly one zero which is at P, and
exactly one pole which is at Q.

Remark6.3.14 It follows from this proposition already that a smooth plane cubic curve is
not isomorphic tdP! (as the statement of the proposition is falseFbby lemma 6.3.11).

Proof. Assume the contrary. Then there is a positive inteband homogeneous polyno-
mials f,g € S(C)(@ such that

(i) There are point®,...,Psq_1 andP # Q such that
(f)=Pi+-+Pyg-1+P and (g)=Pi+-+Px-1+Q
(hence() = P—Qfor ¢ = 1).

(i) Among thePy,... Psy_; there are at leasi2- 1 distinct points. (If this is not the
case in the first place, we can repldcby f -1 andg by g-1 some linear function
| that vanishes o at three distinct points that are not among BheThis raises
the degree of the polynomials by 1 and the number of distinct points by 3, so by
doing this often enough we can get at leat-21 distinct points.)

Pick d minimal with these properties.

If d=1then(f)=P;+P,+Pand(g) =P+ P,+Q, so bothf andg define the unique
line throughP; andP, (or the tangent t€ at Py if P, = P). In particular, it follows that
P = Q as well, which is a contradiction. So we can assumedhatl. We can rearrange
theR such thaP, £ P3, and such tha®; = P, if there are any equal points among e
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Now consider curves given by linear combinatidrfs+ pg. These curves will intersect
C at least in the pointB,...,Psq_1 (asZ(f) andZ(g) do). Note that for any poirR e C
we can adjush andp so that(A f + pg)(R) = 0. Such a curve will then have intersection
divisor P; + - - - + Psg—1 + Rwith C. In other words, by passing to linear combinations of
f andg we can assume that the last poiRtandQ in the divisors off andg are any two
points we like. We choose to be the third intersection point &P, with C, andQ to be
the third intersection point d Ps with C.

By lemma 6.3.12, it now follows that = | - f" andg=1"-¢ in SC) for some linear
functionsl andl’ that have intersection divisoPs + P, + P andPy + P34+ Q with C. Hence

(f)=Pst--+Pg1+Ps and (¢)=Ps+-+Psu1+P

Note that thesd’ andg' satisfy (i) ford replaced byd — 1, asP, # P; by assumption.
Moreover, f’ andd’ satisfy (ii) because if there are any equal points amondPttae all,
then by our relabeling of th|g there are only two distinct points amoRg, P,, P;, so there
must still be at least(@ — 1) — 1 distinct points amon@y, . .., Psq_1.

This contradicts the minimality af and therefore proves the proposition. O

Corollary 6.3.15. Let C be a smooth cubic curve, and IgtdPC be a point. Then the map
C—PIidC, P—P—P

is a bijection.

Proof. The map is well-defined and injective by proposition 6.3.13. We will show that it
is surjective. LeD =Py +---+Pn— Q1 —--- — Qm be any divisor of degree 0.

If m> 1 let P be the third intersection point d# P, with C, and letQ be the third
intersection point 0Q1 Q> with C. ThenP;, 4+ P, + P andQ; + Q> + Q are both the divisors
of linear forms orC. The quotient of these linear forms is a rational function whose divisor
P.+P,+P—-Q1— Qo —Qis therefore 0 in Pi€. It follows thatD = P3+---+Pn+Q—
Q3 — - — Qm— P. We have thus reduced the numipeof (positive and negative) points
in D by 1. Continuing this process, we can assume hat 1, i.e.D = P — Q for some
P,QeC.

Now let P’ be the third intersection point &Ry with C, and letQ be the third in-
tersection point o’Q with C. ThenP' +P+Py =P +Q+ Q' in PicC as above, so
D=P-Q=Q — Py, as desired. O

6.4. The group structure on a plane cubic curve.Let C c P? be a smooth cubic curve.
Corollary 6.3.15 gives a canonical bijection between the vafletynd the abelian group
Pic’C, so between two totally different mathematical objects. Using this bijection, we can
give C a group structure (after choosing a base pBiras in the corollary) and Pi€ the
structure of a smooth projective variety.

We should mention that PIE can be made into a variety (the so-called Picard variety)
for every smooth projective cun& it is in general not isomorphic 1@ however. (IfC is
not P! one can show that the mdp— P — Py of corollary 6.3.15 is at least injective, so
we can think ofC as a subvariety of the Picard variety.)

In contrast, the statement thatcan be made into an abelian group is very special to
cubic plane curves (or to be precise, to curves of genus 1). Curves of other types do not
admit such a group structure.

Example 6.4.1. Let us investigate the group structure Grgeometrically. IfP andQ
are two points orC (not necessarily distinct), we denote ByP, Q) the third point of
intersection of the lin@Q with C, i.e. the unique point of such that+ Q-+ ¢(P,Q) is
linearly equivalent to the divisor of a linear function. We will denote the group structure
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onC by &, to distinguish it from the addition of points in Dvor PicC. Consequently,
we write SP for the inverse oP, andn© P for P® --- ® P (ntimes).

Of course, the zero element of the group structur€ ajustPy.

By constructionP & Q is the unique point o€ such thatP —Py) +(Q—Py) = (P&
Q) —Pyin PicC, i.e. P+ Q= (P®Q) +P. Now letR=¢(P,Q). ThenP+Q+R=
(P®Q)+Py+Re PicC, so

PoQ=0(RP)=0(¢(RPQ),P).
In other words, to construct the poiRtd Q we draw a line through? andQ. Then we
draw another line through the third intersection p&trf this line withC and the poin®,.
The third intersection point of this second line wighis P& Q (see the picture below on
the left).
Similarly, to constructP we are looking for a point such thé® — Py) + ((©P) — Py) =
0, soP+ (6P) = 2R. In the same way as above we conclude

SP=9¢(¢(Po,Po),P).

In other words, to construct the invers® we draw the tangent 6 throughPy. Then we
draw another line through the (scheme-theoretic) third intersection Raifithis tangent
with C and the poinP. The third intersection point of this second line withs ©P:

Of special geometric importance are the (tangent) lines that @éeta point with
multiplicity (at least) 3. In analogy with the real analysis case such points will be called
inflection points:

Definition 6.4.2. Let C ¢ P2 be a smooth curve. A poi® € C is called aninflection
point of C if the tangent line t&C at P intersectsC in P with multiplicity at least 3. Such a
tangent line is then calledfiex.

//flex
4 C

inflection point

For cubic curve£, any line intersect€ in three points, s® € Cis a flex if and only if
3P is the divisor of a linear function. Let us first prove that there are some inflection points
on every smooth cubic curve.

Lemma 6.4.3. Let C= Z(f) C P? be a smooth curve of degree d. Then

2
h:det( o7t )
0% 0X] 0<i,j<2

is a homogeneous polynomial of degB#d — 2). (It is called theHessian polynomiabf
C. The corresponding curve H Z(h) c P? is called theHessian curveof C.)

Then Pe C is an inflection point of C if and only if B H.
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Proof. By a linear change of coordinates we can assumeRkat(1: 0 : 0) and that the

tangent line taC atPisL = {x, = 0}. Let f = 3, | 4—q & jkXox{X5. In inhomogeneous
coordinatesxp = 1) the restriction off to L is

d .
f(1,%1,0) = ag-ij oX-
I; 1,1 1

As f passes through and is tangent th there, f||_(x1) must have a zero of order at least
2 atP, soag 00 = a4-1,1,0 = 0. Now note that

2 2
5¢(P)=dd-Dagoo. 5 (P) = (d-1)as 110,

2 f 2f
o3 (P) = (d—Dag 101, ZTi(P) =2ag-220.
So the Hessian polynomial Bthas the form
0 0 (d—1)ag-101
h(P) = det 0 284-220 *
(d—1)ag-101 * *

In the same way, note that

of of of

(

which must be a non-zero vector by the Jacobian criterion of proposition 4.4.8 Qi)sas
smooth atP. Soaq_101 # 0, and thereforéa(P) = 0 if and only ifag_220 = 0. This is
the case if and only iff|_(x1) vanishes to order at least 3Rti.e. if and only ifP is an
inflection point. O

ax ax o, (P = - _101) = (0,0,a4-
axo’éxl’axz)( ) = (da4,00,2d-1,1,0,8d-101) = (0,0,84-1,01),

Corollary 6.4.4. Every smooth cubic curve iP? has exactly 9 inflection points.

Proof. By lemma 6.4.3 the inflection points 6f are precisely the points @& NH c P?,
whereH is the Hessian curve @. But by Bezout’s theorem, dégNH)=d-3(d—2)=9
for d = 3. So we only have to check that every pointdm H occurs with intersection
multiplicity 1.

Let us continue with the notation of the proof of lemma 6.4.3, and assum® thatn
inflection point, so thaéizgpo = a21,0 = a120 = 0. We will show that the Hessian curve
H is smooth atP and has a tangent line different from that@f(i.e. its tangent line is
notL = {x; = 0}. Both statements follow if we can prove tHatl, x1,%;) contains the
monomialx; with a non-zero coefficient, i.e. thatcontains the monomiat%xl with a
non-zero coefficient. But note that

0 0 22p01X0+a1,1,1%1
h(xp = 0) = det 0 6ag 3, 0X1 * )
28301X0+81,1,1%1 * *

so thex3x; -coefficient othis —24a3 , ;a03,0. The corollary now follows from the following
two observations: '

(i) the Jacobian matrix of atP is (3a30,0,821,0,820,1). AsC is smooth this matrix
must have rank 1 by proposition 4.4.8 (ii). Bagoo anday 10 are zero already,
SO0az 0,1 7é 0.

(i) We know already thaf|_ = a0’310X?. As L cannot be a component Gf it follows
thatao_gyo #0.

O
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Remarl6.4.5 If Cis a smooth curve of degredn P2, we would still expect from Bzout’s
theorem tha€ has 3I(d — 2) inflection points. This is indeed the “general” number, but for
d > 3 it may occur tha€ and its Hessial do not intersect at all points with multiplicity
1, so that there are fewer thad(8 — 2) inflection points.

Lemma 6.4.6. Let C C P? be a smooth cubic curve, and choose an inflection pajratsP
the zero element of the group structure on C. Then a poiat®Pis an inflection point if
and only if3® P = Py. In particular, there are exactly 9 3-torsion points RicC, i.e. 9
points Pe C such thaBo P = F.

Proof. Assume thaB, is an inflection point, i.e. B is the divisor of a linear function on
C. ThenP is an inflection point if and only if B is the divisor of a linear function too,
which is the case if and only ifB— 3Py = 3(P — ) is the divisor of a rational function

(a quotient of two linear functions). This in turn is by definition the case if and only if
3® P = PR,. It then follows by corollary 6.4.4 that there are exactly 9 3-torsion points in
PicC. O

Corollary 6.4.7. Let Cc IP? be a smooth cubic curve. Then any line through two inflection
points of C passes through a third inflection point of C.

Proof. Choose an inflection poiriy € C as the zero element for the group structure on
C. Now letP andQ be two inflection points, and I&®® = ¢ (P, Q) be the third intersection
point of PQ with C. ThenP+ Q+ Ris the divisor of a linear function and hence equal to
3P, in PicC. It follows that

3(R—Py) =3(2Py—P—-Q) =3(Ph—P) +3(Py — Q) =0 € PicC.
So 3 R= Py, i.e.Ris an inflection point by lemma 6.4.6. O

Example 6.4.8. There is an interesting application of the group structure on a cubic curve
to cryptography. The key observation is that “multiplication is easy, but division is hard".
More precisely, assume that we are given a specific cubic €liared a zero poinPy € C

for the group structure. (For practical computations one will usually do this over a finite
field to avoid rounding errors. The group structure exists in these cases too by exercise
6.7.10.) Then:

(i) Given any pointP and a positive integen, the pointn® P can be computed

quickly, even for very larga (think of numbers with hundreds of digits):
(a) By repeatedly applying the operatiBr— P& P, we can compute all points
2@ P for all k such that < n.
(b) Now we just have to add these points:2P for all k such that thé-th digit
in the binary representation afis 1.
This computes the poimt® P in a time proportional to log (i.e. in a very short
time).

(i) On the other hand, given a poiRtand a positive integen, it is essentially im-
possible to compute a poiR such than® Q = P (assuming that such a point
exists). This is not a mathematically precise statement; there is just no algorithm
known to exist that can perform the “inverse” of the multiplicati®m- n© P
in shorter time than a simple trial-and-error approach. Of course, if the ground
field is large andC contains enough points, this is practically impossible. In the
same way, given two poinf8 andQ onC, there is no way to find the (smallest)
numbern such thah® Q = P except trying out all integers in turn. Again,rif
has hundreds of digits this is of course practically impossible.

Using this idea, assume that Alice wants to send a secret message to Bob. We can think
of this message as just a numiér(every message can be converted into a sequence of
numbers, of course). There is an easy way to achieve this if they both know a secret
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key numberNp: Alice just sends Bob the numbét+ Np in public, and then Bob can
reconstruct the secrét by subtracting the keiy from the transmitted numbey + Np.
Any person who observed the numidér- Ny in transit but does not know the secret key
Np is not able to reconstruct the mess&ge

The problem is of course that Alice and Bob must first have agreed on a secids,key
which seems impossible as they do not have a method for secure communication yet.

This is where our cubic curve can help. Let us describe a (simplified) version of what
they might do. Alice and Bob first (publicly) agree on a ground field, a specific cubic
curveC, a zero point?y € C, and another poinP € C. Now Alice picks a secret (very
large) integer, and Bob picks a secret intedgerThey are not telling each other what their
secret numbers are. Instead, Alice compated® and sends (the coordinates of) this point
to Bob. In the same way, Bob computes P and sends this point to Alice. Now the point
ab® P can be used as a secret key numigr

(i) Alice gotthe information about® P from Bob and knows her own secret number
a, so she can computho P =a® (bo P).

(i) Inthe same way, Bob knowsb®P =b® (a® P).

(iii) The only information that Alice and Bob exchanged was the data of the cubic
curve choser?, a® P, andb® P. But we have just noted that there is no practical
way to reconstruca andb from this information, so anybody else will not be able
to determine the secret keyp® P from this data.

6.5. Plane cubic curves as complex tori.We will now restrict our attention to the ground
field k = C and see how smooth plane cubic curves arise in complex analysis in a totally
different way. We will only sketch most arguments; more details can be found e.g. in [K]
section 5.1 (and many other books on complex analysis).

LetU c C be an open séh the classical topologyRecall that a (set-theoretic) function
f:U — C is calledholomorphic atzp € U if it is complex differentiable aty, i.e. if the
limit

f'(2) .= lim 12 = H(z)
- Z-2
exists. A functionf : U\{z} — C is calledmeromorphic if there is a numben € Z and
a holomorphic functiorf : V — C in a neighborhoo® of zp in U such that

f(2)=(z—2)"-f(z) and f(z)#0
onV. Note that the numbaeris then uniquely determined; it is called tbeder of f atzg
and denoted oggl f. If n> 0 we say thaff (z) has a zero of order atz. If n < 0 we say

that f (z) has a pole of ordern atz. A function that is meromorphic & is holomorphic
atzp if and only if its order is non-negative.

Example 6.5.1. Any regular function oM\ (i.e. any polynomial irg) is a holomorphic
function onC. Similarly, any rational functiop on A}C is a meromorphic function of.
The notion of zeros and poles ¢fas a meromorphic function agrees with our old one of
definition 6.3.4, so the multiplicity of a poiate C in the divisor of¢ is precisely the order
of g atz

Conversely, there are holomorphic (resp. meromorphic) function§€ ¢imat are not
regular (resp. rational), e.§(z) = €~

Remark6.5.2 Although the definition of holomorphic, i.eomplexdifferentiable func-
tions is formally exactly the same as thatreél differentiable functions, the behavior of
the complex and real cases is totally different. The most notable differences that we will
need are:

(i) Every holomorphic function is automatically infinitely differentiable: all higher
derivativesf (¥ exist fork > 0 and are again holomorphic functions.
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(i) Every holomorphic functiorf is analytic, i.e. it can be represented locally around
every pointzgp by its Taylor series. The radius of convergence is “as large as
it can be”, i.e. if f is holomorphic in an open baB aroundz,, then the Tay-
lor series off at zy converges and representsat least orB. Consequently, a
meromorphic functiorf of ordern atzy can be expanded inlaaurent seriesas
f(2) = Sk=nCk(z— 20)*. The coefficient_; of this series is called thesidue of
f atzp and denoted rggf.

(iii) (Liouville’s theorem) Every functionf that is holomorphic and bounded on the
whole complex plan€ is constant.

(iv) (Identity theorem) Let f andg be holomorphic functions on @nnectedpen
subset C C. If f andg agree on any open subdétC U then they agree od.

By (ii) this is e.g. the case if their Taylor series agree at some poidt i©One
should compare this to the algebro-geometric version of remark 2.1.9.
(v) (Residue theorem If yis a closed (positively oriented) contour@andf is a

meromorphic function in a neighborhoodyénd its interior that has no poles on
yitself, then

/vf(z)dz: 2mi ;reslo f(2),

with the sum taken over ally in the interior ofy (at which f has poles). In
particular, if f is holomorphic then this integral vanishes.

In this section we will study a particular meromorphic function @rassociated to
a lattice. Let us describe the construction. Fix once and for all two complex numbers
w1, € C that are linearly independeaterRR, i.e. that do not lie on the same real line in
C through the origin. Then the subset

N=Zw+Zwp={mwm+nwy; mneZ} cC

is called alattice in C. Obviously, the same lattice i@ can be obtained by different
choices ofw; andwyp. The constructions that we will make in this section will only depend
on the latticeA and not on the particular choice of baeig wy.
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Proposition and Definition 6.5.3. Let A = Zw; + Zuwy, be a lattice inC. There is a
meromorphic functiofll (z) on C defined by

1 1 1
W5t 3 (T w)

It is called theWeierstral@1-function. It has poles of order 2 exactly at the lattice points.

Proof. It is a standard fact that an (infinite) sum of holomorphic functions is holomorphic
at zg provided that the sum converges uniformly in a neighborhoozh.ofWe will only
sketch the proof of this convergence: #g C\A be a fixed point that is not in the lattice.
Then every summand is a holomorphic function in a neighborhoag. dfhe expansions
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of these summands for largeare

1 1 1 1 2

— - — == —5—1) == +terms of order at leask
-0 @ mz<1_g ) a i

so the summands grow like®. Let us add up these values according to the absolute

value ofw. As the number of lattice points with a given absolute value (approximately)

equal toN grows linearly withN, the final sum behaves likgy N - 35 = S 7, which is

convergent.

Note that the sum would not have been convergent without subtraction of the constant
é in each summand, as then the individual terms would grow;!;ﬁgeand therefore the

final sum would be of the typg % which is divergent. |

Remark6.5.4 It is a standard fact that in an absolutely convergent series as above all
manipulations (reordering of the summands, term-wise differentiation) can be performed
as expected. In particular, the following properties offfh&unction are obvious:

(i) TheO-function is arevenfunction, i.ed(z) =0(—z) forall z€ C. In particular,

its Laurent series at 0 contains only even exponents.

(ii) Its derivative is0'(2) = ¥ gen ﬁ It is anoddfunction, i.e’(z) = —0'(—2).
In particular, its Laurent series at 0 contains only odd exponents. It has poles of
order 3 exactly at the lattice points.

(ii) TheO-function is doubly periodic with respectfq i.e.00(z) =0 (zp+ w) for all
75 € C andw € A. To show this note first that it is obvious from (i) tHat(zp) =
0'(zo + w). Now integrate1’(z) along the closed contoyr=y1 + Y2 + VY3 + Ya
shown in this picture:

° . ® °
2z A It @
° ° °
Y
Y4
Y3
° — @ — °
W @ o @ 0w
2 2
[ ] [ ] [ ]

Of course, the result is 0, sinEeis an integral ofl’. But also the integral along
y2 cancels the integral along asl’(z) is periodic. The integral along is equal
tod(—%)—0(%) and hence vanishes too @$z) is an even function. So we
conclude that
0= | 0'(2)dz=0(z2+w) -0(2),
Y1
i.e.0d(2) is periodic with respect té too.

Lemma 6.5.5. Thel-function associated to a lattiok satisfies a differential equation
0/(2)? = cd0(2)* + 20 (2% + a0 (2) + co
for some constants € C that depend or\.

Proof. By remark 6.5.4 (ii)J’(2)? is an even function with a pole of order 6 at 0. Hence

its Laurent series around O is
ae a4
0'@2)%= =+ —
2°=—% +—

for some constanta g,a 4,a » € C. The functiond](2)3, 0(2)?, 0(2), and 1 are also
even, and they have poles of order 6,4,2, and 0, respectively. Hence there are constants

C_6,C_4,C_2,Cp € C such that the series of the linear combination
f(2):=0'(2%-c0(2°*—c(2?—c0(2) — co

a
+ 2—22 +ap + terms of ordez”?
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has only positive powers af We conclude that (z) is holomorphic around 0 and vanishes
at 0. By the identity theorem of remark 6.5.2 (iv) it then follows that 0 everywhere. O

Remark6.5.6 An explicit computation shows that the coefficientsn lemma 6.5.5 are
given by
1

co=—140 z —.

:4 = = —
C3 , C2 07 C1 60 &

1
weA\{0} w*’ we\{0}

Proposition 6.5.7. Let /A C C be a given lattice, and let € IF% be the cubic curve
C={(%:%1: %) ; X3%0 = C3)X5 + CXEX0 + C1X1X§ + CoX3 }
for the constantsjc= C of lemma 6.5.5. Then there is a bijection
®:C/AN—C, z— (1:0(2):0(2).

Proof. Asl(z) andd’(z) are periodic with respect #h and satisfy the differential equation
of lemma 6.5.5, it is clear thap is well-defined. (Strictly speaking, fa= 0 we have to

note that(z) has a pole of order 2 arid’(z) has a pole of order 3, 46(z) = %22) and

0'(2) = %Z) locally around 0 for some holomorphic functiofisg around O that do not
vanish at 0. Then

(1:0(0):0°(0)=(£:21(2): 9(2))|2~0 = (0:0: ),
so® is well-defined at 0 too.)

Now let (X : X1 : X2) € C be a given point; we will show that it has exactly one inverse
image point undef. By what we have just said this is obvious for the “point at infinity”
(0:0: 1), so let us assume that we are not at this point and hence pass to inhomogeneous
coordinates whergy = 1.

We will first look for a numbee € C such thafl (z) = x;. To do so, consider the integral

0'(2)
————dz
/yD (2 —x1
over the boundary of any “parallelogram of periodicity” as in the following picture:

‘Imz
[ ] [ ) [ ]
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The integrals along opposite sides of the parallelogram vanish because of the periodicity

of 0 andO’, so the integral must be 0. So by the residue theorem of remark 6.5.2 (v) we
get

0'(2)
0= reg, ——. (*)
& %D(z)—xl
Now note that ifF (z) is any meromorphic function of orderaround 0 then
F'(2) nan 2" 1+
re =re =n,
YFp " et

so we conclude fronfx) that y , cc/a 0rdg, (0 (2) — 1) = 0: the functiond (z) —x; has
as many zeros as it has polesGiiA, counted with multiplicities. (This is a statement
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in complex analysis corresponding to remark 6.3.5.Y748) has a pole of order 2 in the
lattice points, it thus follows that there are exactly two pomtg, € C/A such thafl(z) =
x1. Since thd]-function is an even function, these two points are obviously negatives of

each other. Now a’ is an odd function, it follows thafl’(z) = —0’(z). So if we
specify(](z) and)’(z) there is exactly one poite C/A leading to the given image point
inC. O

Remarl6.5.8 We are again in a similar situation as in corollary 6.3.15: we have a bijection
between a grouf/A and a varietyC. In fact, one can show that the group structure of
C/N is precisely the same as that of ®@; so we have just rediscovered our old group
structure on a plane cubic curve. But the group structure is a lot more obvious in this new
picture: e.g. the-torsion points ofC are easily read off to be

1. . .
{n(|w1+1u>2);0§|,j<n}.

In particular, there are exactly? pointsP € C such than® P = 0, in accordance with
exercise 6.7.11 and lemma 6.4.6.

It should be said however that the bijection of proposition 6.5.7 differs from that of
corollary 6.3.15 in that botl /A andC can independently be made int@amplex man-
ifold (which you should roughly think of as a variety whose structure sheaf consists of
holomorphicfunctions instead of jugbolynomialfunctions). The mapb of the above
proposition is then an isomorphism between these two complex manifolds.

Remark6.5.9 The topology of a plane cubic curve becomes very clear from proposition
6.5.7: it is just a parallelogram with opposite sides identified, i.e. a torus. This agrees
with our earlier statements that a smooth plane cubic curve has genus 1, and that the genus
should be thought of as the number of “holes” in the (real) surface.

6.6. Where to go from here. After having discussed some basic algebraic geometry we
now want to sketch which important parts of the general theory are still missing in our
framework.

Example 6.6.1. Intersection theoryLet X C P" be a projective variety of dimensian

and letXy,..., X c P" ber hypersurfaces. If the hypersurfaces are in sufficiently general
position, the intersectiok; N---N X N X will be zero-dimensional. 8zout's theorem then
tells us that the intersection consists of exactlyXeg-: - - - degX; - degX points, counted
with multiplicities.

There is obvious room for generalizations here. Assume that we do not Heyper-
surfacesXy,..., X, but rather closed subvarieti¥s, . .., Xs of X whose codimensions
add up tar. If these subvarieties are in sufficiently general position then we still expect the
intersectionX; N---NXsN X to be zero-dimensional. So we can still ask for the number of
points in the intersection and expect a finite answer.

If X =P" is projective space itself, then the answer is still justXeg - - -degXs: in P’
the degree is multiplicative when taking intersections. For genéthk situation is a lot
more subtle though — there is no single number that can be associated to any subvariety
of X and that is just multiplicative with respect to intersections. This is easy to see: if e.g.
X = P! x P! and we consider the three 1-dimensional subvarietiés of

Xp =Pl x {0}, Xo=Plx{1}, Xs={0} xP?,

then X1 N Xz is empty, so if there were numbers associatedt@and X, whose product

gives the number of intersection points (hamely zero), then one of these two numbers (say
for X;) must obviously itself be zero. But then the product of the numberXif@and X3

would also be zero, althougfy andX;s intersect in precisely one point.
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It turns out however that there idfiaite collectionof numbers that can be associated to
any subvariety oK such that the number of points ¥a N--- N Xs is given by an explicit
multilinear form in these collections of numbers. For example, irffthe P! case above,
curves (likeXy, X2, X3 given above) are characterized by tHagtegreg(i.e. the bidegree of
the defining equation). In our example, the bidegree§ pX», andXs are(1,0), (1,0), and
(0,1), respectively. Two curves of bidegregi, e;) and(dy, &) then intersect in exactly
die; + dze; points.

Setting up a corresponding theory fomyvariety X is the object ofntersection theory
It is essentially a well-established theory that can be set up both in algebraic geometry and
(for the ground fieldC) topology. In the latter case it is a part aligebraic topology In
both cases the theory allows you to answer most questions concerning numbers of inter-
section points quite effectively (and without the need for computer algebra technigues).
Intersection theory is used in one form or the other in virtually every geometric field of
mathematics.

Example 6.6.2. Sheaves and vector bundlest us illustrate the idea behind vector bun-
dles by an example. In section 4.5 we have shown that every smooth cubic surfce in
has exactly 27 lines on it. We did this by first proving that the number of lines does not
depend on the particular cubic chosen, and then calculating the number for a specific cubic
for which the answer happened to be directly computable.

Now let us consider a slightly more difficult setting. Létc P* be a (3-dimensional)
smooth hypersurface of degree 5. We will see momentarily that we again expect there to
be a finite number of lines iX. So again we ask for the number of such lines. Compared
to the cubic surface case it is still true that the answer does not depend on the particular
quintic hypersurface chosen. There is no specific quintic any more however for which we
can read off the answer by simply writing down all the lines explicitly. So we need to apply
a different technique to obtain the answer.

As before, we first consider again the Grassmannian va@éty4) of lines inP* (see
exercise 3.5.4). The dimension®{1,4) is 6. Now define the set

E:={(L,f); LeG(1,4), fisahomogeneous polynomial of degree 3.08 P},

so elements oE are pairs of a line if?* and a quintic equation on this line. There is an
obvious projection map: E — G(1,4) given by forgettingf .

We claim thatE is a variety in a natural way. In fact, as in exercise 3.5.4 consider the
open subsdll C G(1,4) isomorphic taA® (with coordinatesy, by, ag, bz, ay, bs) where the
line L € U can be represented by the matrix

1 0 ap a3 &
(o 1 b, bs b4>' @

For every such line we can obviously takgandx; as homogeneous coordinateslof

P!, so every quintic equation on is of the formy; cixioxff' for somecy,...,cs. Then
1(U) can obviously be thought of as a 12-dimensional affine space with coordinates
ap,as,a4,bp,b3,ba, Co, ..., C5. As E can be covered by these spaces, it is a 12-dimensional
variety.

Note that the fibersr2(L) for L € G(1,4) are all 6-dimensional vector spaces, namely
the spaces of degree-5 homogeneous polynomials drhey are not just 6-dimensional
affine spaces but rathéinear affine spaces in the sense that it is meaningful to add two
polynomials orlL, and to multiply them with a scalar. So two pointskrthat map to the
same base point i5(1,4) can be “added”, just by summing up their coordinatesin
contrast, it doesot make much sense to add the coefficiemtandb; in two matrices as
in (1), as the resulting line is not related to the two original lines in any obvious way. So
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although the coordinates, as, as, b»,bs,bs in U live in an affine spacé\®, it does not
make sense to think of this® as avectorspace.

Note also thakE is not just the direct product @(1,4) with a constant 6-dimensional
vector spac#|Xp, X1 (9, as the coordinates that we can use on thellimary with the line.
Only thefibersof mare all 6-dimensional vector spaces. We say Ehat avector bundle
of rank 6 onG(1,4).

Now let us return to our original question: to count the linexXothet f € k|xo, .. ., X4] ®)
be the polynomial whose zero locusXs There is an obvious morphism

0:G(1,4) - E, L (L f|) )

such thaito 0 =idg(1,4). Such a morphismis calledsectionof E: it assigns to every point
L in the base5(1,4) an element in the vector spame?(L) “sitting over” L. Note that this
can indeed be thought of as a section in the sheaf-theoretic sense: suppose that we have an
open covefU;} of G(1,4) and morphisms; : U; — 1 %(U;) such thatto g; = idy; (i.e.on
everyU; we associate to any poiate U; an element in the vector spame(L)). If o; = Oj
onU;NUj for all i, j, then there is obviously a global sectionU — E that restricts to the
o; on theU;. In other words, we can think of the vector bun8l@s asheaf with E(U) (in
the sense of definition 2.2.1) being the space of all morphisms — 1 (U) such that
TloO = IdU .

Finally, return to our specific sectianin (2). As the fibers oftare vector spaces, there
is also a well-definedero section

00:G(1,4) »E, L (L,0).

Obviously, a lineL lies in the quintic hypersurfac¥ if and only if f|_ = 0, i.e. if and

only if a(L) = op(L). So the number of lines we are looking for is simply the number

of intersection points 06(G(1,4)) and 0p(G(1,4)). As these are both 6-dimensional
varieties in the 12-dimensional variefy; we expect a finite number of such intersection
points, showing that we expect a finite number of lineXirTheir number is now given by
intersection theory methods as explained in example 6.6.1. It can be computed explicitly
and the result turns out to be 2875. (To mention the corresponding keywords: we need
the 6th Chern class of the vector bun@l®en G(1,4), and the result can be obtained using
Schubert calculus, i.e. the intersection theory on the GrassmaBfiad).)

Another example of a vector bundle on a smastlimensional varietyX is thetangent
bundle it is just the rankr vector bundle whose fiber over a poidte X is the tangent
spaceTx p. The dual vector bundle (i.e. the rankbundle whose fiber over a poiRte X
is the dual vector space T p) is called thecotangent bundland denote®y p. It can be
thought of as the vector bundle differential formson X.

Any operations that can be done with vector spaces can be done with vector bundles as
well, just by performing the corresponding operation in every fiber. So there are e.g. direct
sums of vector bundles, tensor products, symmetric products, exterior products, and so on.

If X is a smoothr-dimensional variety, the-th exterior power\' Qx of the cotangent
bundle is called theanonical bundleand denotedky. Obviously it is a vector bundle of
rank 1: such bundles are calléde bundles Its importance (and name) stems from the
fact that it is canonically given for any smooth variéty

Vector bundles (and corresponding sheaves) occur in almost any branch of algebraic
geometry, as well as in topology and differential geometry.

Example 6.6.3. Sheaf cohomologyl.et X be a variety, and IeE be a vector bundle on
X. By the remark above, (global) sectioos X — E can be added and multiplied with a
scalar, so the space of global sections is in fact a vector space over the groukdIfiedd
denotedH%(X, E).
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As an example, leX c P? be a curve, and letbe an integer. For an open subdet X
define

EU)= {; ; T,9€ S(X) homogeneous with defg— degg=n, g(P) A0 forallPc U } .

These data form a she& that can be thought of as the sheaf of regular “functions”
$(x0,%1,X%2) on X that satisfyd (Axg, Axg,Ax2) = A"$ (X0, X1,X%2) under rescaling of the ho-
mogeneous coordinates. An element in the fibeg ofver a pointP is then just given by a
number ink that rescales with". SoE is a line bundle. We will usually denote it liy(n).
Forn = 0 we obviously just get the ordinary structure sh@af

The spacesi®(X, O(n)) of sections are easily written down:

S(X)(™  forn>0,
0 forn<O0.

HO(X, 0(n)) = {

In particular, their dimensions (usually denoté{X, O(n))) are just the valueby (n) of
the Hilbert function. So the Hilbert function can be thought of as the dimension of the
space of global sections of a line bund¥én).

In our study of Hilbert polynomials we have seen that Hilbert functions and polynomials
are usually computed using exact sequences (of graded vector spaces). In the same way,
the spaces of sectiorts°(X,E) are usually computed using exact sequences of vector
bundles. For example, ¥ is a smooth subvariety of a smooth variétythen there is an
exact sequence of vector bundlesXn

0—Ty — Txly = Ny)x — 0,

whereNy /x is thenormal bundleof Y in X — it is by definition simply the vector bundle
whose fibers are the normal spadgs /Ty p. The sequence is then exact by definition (i.e.
it is exactlocally at every fiber). This does not mean however that the spacgklodl
sections necessarily form an exact sequence

0 — HOY, Ty) — HO(Y, Txly) — HO(Y.Ny x) — 0.
In fact one can show that one always gets an exact sequence
0— HO(Y, Ty) — HO(Y, Tx|v) — HO(Y, Ny %),

but exactness need not be preserved in the last term: a surjectivE map of vector
bundles need not give rise to a surjective nk#{X,E) — HO(X,F) of global sections.
An example is easily found: consider the morphism of vector bundles

0®0— 0(2), (01,02) — X501 +XC02

onPL. This is obviously surjective in every fiber — for every pofit= (xo : x1) € P at
least one of the coordinates is non-zero, so by picking suitafgle) and$,(P) we can get
any number f0|x(2)¢1(P) +x§¢2(P). But the corresponding morphism of global sections

HO(PY, 0@ 0) — HO(PL, 0(2))
cannot be surjective simply for dimensional reasons, as the dimensions of these vector

spaces are 2 and 3, respectively.

It turns out however that there are canonically defioedomology groups HX, E) for
i > 0 and every vector bundlg (in fact even for more general sheaves) such that every
exact sequence

0O—-E1—E—E3—0
of the bundles gives rise to an exact sequence of cohomology groups
0— HO(X,E1) — HO(X,E2) — HO(X,Eg) — HY(X,Eq) — HY(X,E2) — HY(X,E3) — H2(X,E1) — ---.
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So every such sequence of vector bundles gives rise to a relation between the (dimensions
of the) cohomology groups: if we set

h'(X,E) =dimH'(X,E) and X(X,E)=Y (~1)'h(X,E)

I
then
X(X,E2) = X(X,E1) + X(X,Ez3).

It can be shown that the sums in the definitionx¢K, E) are always finite. In fact, the
higher cohomology groups vanish in many cases anyway (there are a lot of so-called “van-
ishing theorems”), so that the above long sequence between the cohomology groups is
usually by far not as complicated as it seems to be here.

The problem of computing these numbéféx, E) (or ratherx(X,E)) is solved by the
Riemann-Roch theorenexpressed in simple terms this theorem statest(4tE) can
always be computed using the intersection-theoretic data of the vector bundle (namely the
Chern classes mentioned above in example 6.6.2). It is an explicit multilinear function in
these Chern classes that is usually easily computable. In partig(¥ar(n)) turns out to
be a polynomial im — it is just the Hilbert polynomial oK. There is a vanishing theorem
that impliesh' (X, O(n)) = 0 fori > 0 andn > 0, so we arrive at our old characterization
of the Hilbert polynomial as the polynomial that agrees with the Hilbert function for large
n.

In particular, we see that the arithmetic genus of a variety (see example 6.1.10) is just
(—1)9mX (x(X, 0) — 1), which obviously doesiot depend on the embedding Xfin pro-
jective space.

The easiest case of the Riemann-Roch theorem is that of line bundles on smooth curves.
If E is a line bundle on a curvk (e.g. a bundle of the forn®(n) if X is projective), we
can associate to it:

(i) intersection-theoretic datagiven a (rational) section &, how many zeros and
poles does this section have? This number is called¢heseof E. For example,
the degree oD(n) on a plane curve of degrekis d - n, as every global section
of O(n) (i.e. a polynomial of degres) vanishes orX atd - n points by Bezout's
theorem.

(i) cohomological datahow many sections dE are there? Ideally we would like
to know h%(X,E), but the Riemann-Roch theorem will only give xéX,E) =
ho(X,E) — h'(X,E).

The Riemann-Roch theorem then states that
X(X,E) =dege+1—g,

whereg is the genus of the curvé. For example, foX = P! we getx(X, O(n)) =n+1-0,
which is indeed the Hilbert polynomial @

Example 6.6.4. Moduli spaces. We have now met several instances already where it
proved useful to make thget of all geometric objects of a certain type intosaheme
(or maybe a variety):

(i) The GrassmanniaB(1,n) is a variety that can be thought of as the set of all lines
in PN,
(i) The affine spacé\N = kxo, .., %@ (with N = ("}%)) can be thought of as the
set of all degreet hypersurfaces if".
(ii) The vector bundle€E of example 6.6.2 can be thought of as the set of gir$),
whereL is a line inP* and f is a quintic polynomial or..
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Schemes whose points describe geometric objects in this sense arenadieli spaces
So we say e.g. th&(1,n) is the moduli space of lines . There are many other moduli
spaces one may want to consider. The most prominent ones are:

(i) moduli spaces of curves (with a fixed given genus),
(ii) moduli spaces of projective subscheme®bfwith a fixed given Hilbert polyno-
mial (the so-calledHilbert schemes
(iif) moduli spaces of vector bundles over a given variety,

but you can try to give more or less every set of geometric objects a scheme structure. Such
a scheme structure may or may not exist, and it may or may not behave nicely.

Moduli spaces come into play when you want to consfdetiliesof geometric objects,
e.g. families of varieties. For example, a family of linesHf over a base schenig
is simply a morphisnf : B — G(1,n) to the moduli space of lines. This assigns to every
point of Ba line inP" in a continuously varying way (as a morphism is given by continuous
functions). For example, if the ground field@sand you have a sequence of poiRtén B
converging to a poinP € B, then we get a corresponding sequence of li@) in P" that
converges td (P). We can thus talk about convergence, limits, or “small deformations” of
the objects for which we have a moduli space. Deformations are often a powerful tool to
make complicated objects into easier ones. For example, in example 0.1.3 we computed
the genus of a plane curve by deforming it into a union of lines, for which the genus could
be read off easily.

Example 6.6.5. Classification theoryClosely related to the study of moduli spaces is the
desire to “classify all algebraic varieties” (or other objects occurring in algebraic geome-
try). For smooth curves the result is quite easy to state:

(i) Every smooth curve has a genus (see e.g. example 0.1.1 and 6.1.10) that is a
non-negative integer.

(i) The moduli space of all smooth curves of a given gegus an irreducible pro-
jective variety (with only mild singularities). Its dimension is 0 fpe= 0, 1 for
g=1and -3 forg> 1.

So this result says that curves are characterized bylisoesteinvariant, namely its genus.

Once the genus is fixed, every curve of this genus can be deformed continuously into any
other curve of the same genus. In contrast, curves cannot be deformed into each other if
their genera are different.

For higher-dimensional varieties the situation is a lot more complicated. As above, one
first looks for discrete invariants, i.e. “integers that can be associated to the variety in a
natural way” and that are invariant under deformation. In a second step, one can then ask
for the dimension (and other properties) of the moduli space of varieties with the given
fixed discrete invariants.

Examples of discrete invariants are:
(i) the dimension (of course),

(i) cohomological or intersection-theoretic properties of the tangent bundle and re-
lated bundles, e.d' (X, Tx), h'(X,Qx), the Chern classes of the tangent bundle,

(iii) the genus(—1)3mX(x(X,0) —1),
(iv) various intersection-theoretic data, e.g. the collection of numbers and the multi-
linear functions describing intersection products as in example 6.6.1.

For surfaces, this classification problem is solved, but the result is quite complicated. For
higher-dimensional varieties, the problem is still largely unsolved.

6.7. Exercises.
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Exercise 6.7.1.Let X be a collection of four distinct points in soni®. What are the
possible Hilbert functionby ?

Exercise 6.7.2.Compute the Hilbert function and the Hilbert polynomial of the “twisted
cubic curve’C = {(s*: €t :st?:t3); (s:t) € P} C PS.

Exercise 6.7.3.Let X C P" be a projective scheme with Hilbert polynomjal As in
example 6.1.10 define tragithmetic genusf X to beg(X) = (—1)4mX. (x(0) — 1).

(i) Show thatg(P") =0.
(i) If X'is a hypersurface of degredn P", show thaig(X) = (dgl). In particular, if
C c P?is a plane curve of degrak theng(C) = %(d —1)(d —2) (compare this
to example 0.1.3).
(iii) Compute the arithmetic genus of the union of the three coordinate axes

Z(X1X2, X1X3, XoX3) C P2,

Exercise 6.7.4.ForN = (n+1)(m+1) — 1 letX c PN be the image of the Segre embed-
dingP" x P™ — PN. Show that the degree &fis ("-™).

Exercise 6.7.5.Let X be an ellipse in the real plaf®?, and letP be a given point oiX.
Using only a ruler with no markings, construct the tangent lin¥ &t P.

(In other words: start with a piece of paper which has only the ellipaad the marked
pointP € X on it. The only thing you are now allowed to do is to repeatedly draw straight
lines through two points that have already been constructed (theRdintersection points
of previously drawn curves, or arbitrarily chosen points). No measuring of lengths or
angles is permitted. Give an algorithm that finally allows you to draw the tangent IliXe to
atP this way.)

Exercise 6.7.6.LetC C P" be an irreducible curve of degree Show thaC is contained
in a linear subspace @" of dimensiond.

Exercise 6.7.7.Let X andY be subvarieties P}, that lie in disjoint linear subspaces of
Pr. Recall from exercises 3.5.7 and 4.6.1 that the J§),Y) C P} of X andY is defined

to be the union of all linePQwith Pc X andQ € Y.

(i) Show thatS(J(X,Y)) D =2 @;, ;g S(X)1 @4 S(X) ).
(ii) Show that ded(X,Y) = degX - degy.

Exercise 6.7.8.Let C; = {f; = 0} andC, = {f, = 0} be affine curves im?2, and let
P € C; NGy be a point. Show that the intersection multiplicity®f andC, atP (i.e. the
length of the component & of the intersection schen@® NC,) is equal to the dimension
of the vector spac@,. »/(f1, f2) overk.

Exercise 6.7.9.Let C;,C, C P? be distinct smooth cubic curves, and assumeGhatnd
C, intersect in 9 (distinct) pointBy, ..., Py. Prove that every cubic curve passing through
Pi,...,Ps also has to pass througb.

Can you find a stronger version of this statement that applies in the case that the inter-
section multiplicities inrC; NC, are not all equal to 1 ?

Exercise 6.7.10.Let C be a smooth cubic curve of the form

C={(x:y:2); yz=x+axZ+bZ} c P2
for some givera,b € k. (It can be shown that every cubic can be brought into this form
by a change of coordinates.) Pick the pdigt= (0: 1: 0) as the zero element for the
group structure o€. For given pointd; = (X1 : y1: 1) andP, = (X2 : y2 : 1) compute
explicitly the coordinates of the inverseP; and of the sunP, ® P,. Conclude that the
group structure of is well-defined even ik is not necessarily algebraically closed.
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Exercise 6.7.11.LetC C P2 be a smooth cubic curve, and RE C be an inflection point
of C. Show that there are exactly 4 tangent&dhat pass througR. Conclude that there
are exactly 4 divisor class&in PicC such that ® = 0.

Exercise 6.7.12.LetC c P? be a smooth cubic curve, and RRQ e C be two points. Show
that there is an isomorphisiin: C — C with f(P) = Q. Is this isomorphism unique?

Exercise 6.7.13.Check that the cubic curve C P2 defined by a lattice\ C C as in
proposition 6.5.7 is smooth.

Exercise 6.7.14.Using the complex analysis methods of section 6.5, reprove the statement
of proposition 6.3.13 that there is no rational functipon a smooth plane complex cubic
curveC with divisor (¢) = P— Qif P andQ are two distinct points o@.

Exercise 6.7.15.LetC C P2 be a smooth cubic curve arising from a lattite- C. Show
that the group structure of I%c’ts isomorphic to the natural group structure@®fA.

Exercise 6.7.16.Let A C C be a lattice. Given a poirt € C/A and anyn € Z, it is
obviously very easy to find a poimt € C/A such thain-w = z (in the group structure of
C/N). Isn't this a contradiction to the idea of example 6.4.8?
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7. MORE ABOUT SHEAVES

We present a detailed study of sheaves on a scheme X, in particular sheaves of Ox -
modules. For any presheaf F' on X there is an associated sheaf F that describes “the
same objects as F' but with the conditions on the sections made local”. This allows
us to define sheaves by constructions that would otherwise only yield presheaves. We
can thus construct e.g. direct sums of sheaves, tensor products, kernels and cokernels
of morphisms of sheaves, as well as push-forwards and pull-backs along morphisms
of schemes.

A sheaf of Ox-modules is called quasi-coherent if it is induced by an R-module
on every affine open subset U = Spe@ of X. Almost all sheaves that we will con-
sider are of this form. This reduces local computations regarding these sheaves to
computations in commutative algebra.

A quasi-coherent sheaf on X is called locally free of rank r if it is locally iso-
morphic to O‘)q(}r. Locally free sheaves are the most well-behaved sheaves; they
correspond to vector bundles in topology. Any construction and theorem valid for
vector spaces can be carried over to the category of locally free sheaves. Locally free
sheaves of rank 1 are called line bundles.

For any morphism f : X — Y we define the sheaf of relative differential forms
Qx vy on X relative Y. The most important case is when Y is a point, in which case
we arrive at the sheaf Qx of differential forms on X. It is locally free of rank dimX
if and only if X is smooth. In this case, its top alternating power ADMX 0y is a line
bundle wyx called the canonical bundle. On a smooth projective curve it has degree
29— 2, where g is the genus of the curve.

On every smooth curve X the line bundles form a group which is isomorphic to
the Picard group PicX of divisor classes. A line bundle together with a collection
of sections that do not vanish simultaneously at any point determines a morphism to
projective space.

If f : X =Y is a morphism of smooth projective curves, the Riemann-Hurwitz for-
mula states that the canonical bundles of X andY are related by wx = f*wy ® Ox(R),
where R is the ramification divisor. For any smooth projective curve X of genus g
and any divisor D the Riemann-Roch theorem states that h°(D) — h%(Kx — D) =
degD + 1 —g, where hO(D) denotes the dimension of the space of global sections of
the line bundle O(D) associated to D.

7.1. Sheaves and sheafificationThe first thing we have to do to discuss the more ad-
vanced topics mentioned in section 6.6 is to get a more detailed understanding of sheaves.
Recall from section 2.2 that we defined a sheaf to be a structure on a topologicakspace
that describes “function-like” objects that can be patched together from local data. Let us
first consider an informal example of a sheaf that is not just the sheaf of regular functions
on a scheme.

Example 7.1.1. Let X be a smooth complex curve. For any open sublset X, we have
seen that the ring of regular functiofg (U ) onU can be thought of as the ring of complex-
valued functiong) : U — C,P — ¢(P) “varying nicely” (i.e. as a rational function) with
P.

Now consider the “tangent sheaf, i.e. the sheaf “defined” by
Tx(U) ={0 = (¢(P))pecu ; ¢(P) € Tx p“varying nicely withP"}
(of course we will have to make precise what “varying nicely” means). In other words, a

sectiond € Tx(U) is just given by specifying a tangent vector at every poirtlinAs an
example, here is a picture of a sectiorTpf(P1):
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As the tangent spacdg p are all one-dimensional complex vector spa¢g®,) can again

be thought of as being specified by a single complex number, just as for the structure sheaf
Ox. The important difference (that is already visible from the definition above) is that
these one-dimensional vector spaces vary WRitind thushave no canonical identification

with the complex number&or example, it does not make sense to talk about “the tangent
vector 1” at a pointP. Consequently, there is no analogue of “constant functions” for
sections of the tangent sheaf. In fact, we will see in lemma 7.4.15 that every global section
of Tp1 has two zeros, so there is really no analogue of constant functions. (In the picture
above, the north pole of the sphere is a point where the sectign @fould be ill-defined

if we do not choose a section in which the lengths of the tangent vectors approach zero
towards the north pole.) Hence we have seen that the tangent shHhfsof sheaf that

is not isomorphic to the structure sheaf although its sections are given locally by “one
complex number varying nicely”.

(We should mention that the above propertyPdfis purely topological: there is not
even a continuous nowhere-zero tangent field on the unit b&PirThis is usually called
the “hairy ball theorem” and stated as saying that “you cannot comb a hedgehog (i.e. a
ball) without a bald spot”.)

Let us now get more rigorous. Recall that a presheaf of rifgs a topological space
X was defined to be given by the data:

o for every opensdtl Cc X aring ¥ (U),
o for every inclusior C V of open sets iiX a ring homomorphisrpyy : F (V) —
F (V) called the restriction map,

such that

e 7(0)=0,
e pyu is the identity map for alU,
e for any inclusiord C V C W of open sets irX we havepyy o pwy = pwu-

The elements off (U) are then called the sections $foverU, and the restriction maps
pvu are written ad — f|y. The space of global sectiofs(X) is often denoted (7).
A presheaf of rings is called a sheaf of rings if it satisfies the following glueing
property: iftU C X is an open sefU; } an open cover dff andf; € # (U;) sections for alll
such thatfi|uimuj = fjluimuj for alli, j, then there is a uniquee ¥ (U) such thatf |y, = fi
for alli. In other words, sections of a sheaf can be patched from compatible local data.
The same definition applies equally to categories other than rings, e.g. we can define
sheaves of Abelian groupk;algebras, and so on. For a ringed spéseOx), e.g. a
scheme, we can also defisheaves ofOx-modulesin the obvious way: everyf (U) is
required to be ax (U)-module, and these module structures have to be compatible with
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the restriction maps in the obvious sense. For example, the tangent sheaf of example 7.1.1
on a curveX is a sheaf ofOx-modules: “sections of the tangent sheaf can be multiplied
with regular functions”.

Example 7.1.2.Let X c PN be a projective variety over an algebraically closed fieland
let S(X) = S= @y S? be its homogeneous coordinate ring. For any integéet K (n)
be then-th graded piece of the localization 8fat the non-zero homogeneous elements,
ie.
f
K(n) = {g  f € 84 ge SY for somed > 0 andg # 0} .

Now for anyP € X and open sat) C X we set

f
Oclrle = { £ <K(; a(P) 20} and Ox()(U) = ) Ox(e
PeU
Forn = 0 this is precisely the definition of the structure sheafpg@0) = Ox. In general,
Ox (n) is a sheaf ofDx-modules whose sections can be thought of as “functions” of degree
nin the homogeneous coordinatesxfFor example:

(i) Every homogeneous polynomial of degredefines a global section @l (n).
(ii) There are no global sections 6% (n) for n < 0.
(i) In P! with homogeneous coordinates x1, we have

< €On(-D(U)

forU = {(xo:%1) ; Xo # O}.

Note that on the distinguished open subXgt(wherex; are the coordinates @) the
sheafOx (n) is isomorphic to the structure sheak: for every open subsél C Xy the
maps

0x(U) = Ox()(U). 0 = 4 and Ox(m(U) = Ox(U). &
give an isomorphism, henagx (n)|x, = Ox|x,. S0 Ox(n) is locally isomorphic to the
structure sheaf, but ngflobally. (This is the same situation as for the tangent sheaf of a
smooth curve in example 7.1.1.)

The sheave®)(n) on a projective variety (or more generally on a projective scheme)
are called thawisting sheaves They are probably the most important sheaves after the
structure sheaf.

If we want to deal with more general sheaves, we certainly need to set up a suitable
category, i.e. we have to define morphisms of sheaves, kernels, cokernels, and so on. Let
us start with some simple definitions.

Definition 7.1.3. Let X be a topological space. morphism f : ¥1 — > of presheaves
of abelian groups (or rings, sheaves@{-modules etc.) orX is a collection of group
homomorphisms (resp. ring homomorphisi®s,(U )-module homomorphisms etcfj, :
F1(U) — F»(U) for every open subsét C X that commute with the restriction maps, i.e.
the diagram

Puv

AWU) —— F(V)

is required to be commutative.



7. More about sheaves 123

Example 7.1.4.1f X ¢ PN is a projective variety andl € K[xo, ..., %y] is @ homogeneous
polynomial of degreel, we get morphisms of sheaves@{-modules

Ox(n) — Ox(n+d), ¢—f-¢
for all n.

Definition 7.1.5. If f : X — Y is a morphism of topological spaces afidis a sheaf on
X, then we define thpush-forward f, ¥ of F to be the sheaf oM given by f. F (U) =
F(f~1(U)) for all open subsets C Y.

Example 7.1.6. By definition, a morphisnt : X — Y of ringed spaces comes equipped
with a morphism of sheavead, — f,Ox. This is exactly given by the data of the pull-back
morphismsOy (U) — Ox(f~1(U)) for all open subsets C Y (see definition 5.2.1).

Definition 7.1.7. Let f : 1 — %> be a morphism of sheaves of e.g. Abelian groups on a
topological spacX. We define thé&ernel kerf of f by setting

(kerf)(U) =ker(fy : Fa(U) — F2(U)).

We claim that kef is a sheaf orK. In fact, it is easy to see that kewith the obvious
restriction maps is a presheaf. Now {&1;} be an open cover of an open subdet X,
and assume we are givéne ker(71(U;) — #2(U;)) that agree on the overlapsnU;. In
particular, thep; are then in#1(U;), so we get a uniqué € F1(U) with ¢|y, = ¢; as‘A
is a sheaf. Moreover,(¢;) =0, so(f(¢))|u, = O by definition 7.1.3. Agf, is a sheaf, it
follows thatf(¢) =0, sod € kerf.

What the above argument boils down to is simply that the property of being in the

kernel, i.e. of being mapped to zero under a morphismJaésa property — a function is
zero if it is zero on every subset of an open cover. So the kernel is again a sheaf.

Remark7.1.8 Now consider the dual case to definition 7.1.7, namely cokernels. Again let
f: %1 — %> be a morphism of sheaves of e.g. Abelian groups on a topological ¥pace
As above we define a presheaf cdKeby setting

(cokef f)(U) =coker(fy : F2(U) — F2(U)) = F(U)/im fy.
Note however that cokéf is nota sheaf. To see this, consider the following example. Let
X = AN\{0}, Y = A2\{0}, and leti : X — Y be the inclusion morphisrfx;) — (x1,0).
Let i* : Oy — i,Ox be the induced morphisms of sheavesYonf example 7.1.6, and

consider the presheaf cokéronY. Look at the cover ol by the affine open subsets
Ui = {x1 # 0} C Y andUz = {x2 # 0} C Y. Then the maps

1 1
k [XL Xl,Xz} = Oy(U1) — Ox(U1nX) =Kk |:X17Xl]

and k l:X]_,Xz, )3.:| = Oy(Uz) — Ox(UanX) =0
2
are surjective, hendeokefi”)(U;) = (cokefi*)(Up) = 0. But on global sections the map
1
k[x1,%2] = Oy (Y) — Ox(X) =k {xl, Xl]

is not surjective, hencgcokefi*)(Y) # 0. This shows that cokéf cannot be a sheaf —
the zero section on the open coféh,U,} has nouniqueextension to a global section on
Y.

What the above argument boils down to is simply that being in the cokernel of a mor-
phism, i.e. of being a quotient ifi,(U)/im fy, is nota local property — it is a question
about finding a global section gf, onU that cannot be answered locally.
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Example 7.1.9. Here is another example showing that quite natural constructions involv-
ing sheaves often lead to only presheaves because the constructions are not local. Let
X c PN be a projective variety. Consider the tensor product presheaf of the sh@aiigs
andOx(—1), defined by

(0x(1) & Ox(=1))(U) = 0x(1)(U) @0y u) Ox(—1)(V).
As Ox (1) describes “functions” of degree 1 aot (—1) “functions” of degree-1, we ex-
pect products of them to be true functions of pure degree 0 in the homogeneous coordinates
of X. In other words, the tensor product@ (1) with Ox(—1) should just be the structure
sheafOx. However,Ox (1) ®' Ox(—1) is not even a sheaf: consider the cXse- P! and

the open subsetdy = {xg # 0} andU; = {x; # 0}. On these open subsets we have the
sections

Xo®% € (0x(1) &' Ox(~1))(Uo)

and xl®x—1l € (0x(1) ® Ox(—1))(U1).

Obviously, both these local sections are the constant function 1, so in particular they agree
on the overlapoNU;. But there is no global section i (1) (X) @0, (x) Ox (—1)(X) that
corresponds to the constant function 1(&g—1) has no non-zero global sections at all.

The way out of this trouble is called sheafification. This means that for any presheaf
F’ there is an associated shegfthat is “very close” toF’ and that should usually be
the object that one wants. Intuitively speaking, if the sections of a presheaf are thought
of as function-like objects satisfying some conditions, then the associated sheaf describes
the same objectwith the conditions on them made locah particular, if we look atF’
locally, i.e. at the stalks, then we should not change anything; it is just the global structure
that changes. We have done this construction quite often already without explicitly saying
S0, e.g. in the construction of the structure sheaf of schemes in definition 5.1.11. Here is
the general construction:

Definition 7.1.10. Let ¥’ be a presheaf on a topological spateThe sheafificationof
F', or the sheafissociated tahe presheaf’, is defined to be the shegf such that

F(U):={¢ = (¢p)pcu With ¢p € F¢ forall Pc U
such that for every? € U there is a neighborhood in U
and a sectioy’ € F'(V) with g = ¢ € F4 forallQeV.}

(For the notion of the stalk} of a presheaff’ at a pointP € X see definition 2.2.7.) Itis
obvious that this defines a sheaf.

Example 7.1.11.Let X C AN be an affine variety. Le® be the presheaf given by
o4 (V) :{¢ :U — k; there aref,g € K[xq, ..., xn] with g(P) #0

and(P) = £} forall P e u}

for all open subsetd C X, i.e. the “presheaf of functions that are (globally) quotients of
polynomials”. Then the structure she@ is the sheafification o), i.e. the sheaf of
functions that are locally quotients of polynomials. We have seen in example 2.1.7 that in
general0l differs from O, i.e. itis in general not a sheaf.

Example 7.1.12.1f X is a topological space anl the presheaf of constant real-valued
functions onX, then the sheafification ¢f is the sheaf ofocally constant functions oKX
(see also remark 2.2.5).

The sheafification has the following nice and expected properties:
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Lemma 7.1.13. Let ' be a presheaf on a topological space X, andfebe its sheafifi-
cation.

(i) The stalksfp and 7 agree at every point B X.
(i) If ¥'is a sheaf, thelF = 7.

Proof. (i): The isomorphism between the stalks is given by the following construction:

e An element of7p is by definition represented biJ, ), whereU is an open
neighborhood of and¢ = (¢g)ocu is a section off overU. To this we can
associate the elemep € F5.

e An element of 7} is by definition represented KW, $), where¢p € 7'(U). To
this we can associate the eleméfib)gcu in F (U), which in turn defines an
element offp.

(i): Note that there is always a morphism of presheafé¢s— F given by 7'(U) —
FU), 0 (dp)peu-

Now assume thaf’ is a sheaf; we will construct an inverse morphigm— ¥’. Let
U C X be an open subset agd= (¢p)pcu € F (U) a section of-. For everyP € U the
germdp € 73 is represented by sont¥, $) with ¢ € F'(V). As P varies ovetd, we are
thus getting sections gf’ on an open cover dfl that agree on the overlaps. A5 is a
sheaf, we can glue these sections together to give a global sectfdifun. |

Using sheafification, we can now define all the “natural” constructions that we would
expect to be possible:

Definition 7.1.14. Let f : 5 — 9, be a morphism of sheaves of e.g. Abelian groups on a
topological spac.

() The cokernel cokerf of f is defined to be the sheaf associated to the presheaf
cokef f.
(i) The morphismf is calledinjective if ker f = 0. Itis calledsurjective if cokerf =
0.
(iii) If the morphism f is injective, its cokernel is also denotégd/ 71 and called the
quotient of 7, by 7.
(iv) As usual, a sequence of sheaves and morphisms

o Fia— Fi— Fir—
is calledexactif ker(Ff — Fiy1) =im(F-1— %) for alli.

Remark7.1.15 Let us rephrase again the results of definition 7.1.7 and remark 7.1.8 in
this new language:

(i) A morphism f : 3 — %, of sheaves is injective if and only if the mafg :
F(U) — F2(U) are injective for alU.

(ii) If a morphismf : 73 — %> of sheaves is surjective, this doest imply that all
mapsfy : F1(U) — F2(U) are surjective. (The converse of this is obviously true

however: if all mapsfy : F1(U) — #2(U) are surjective, then coKefr = 0, so
cokerf =0.)

This very important fact is the basis of the theory of cohomology, see chapter 8.

Example 7.1.16.Let X = PL with homogeneous coordinateg,x;. Consider the mor-
phism of sheave$ : Ox(—1) — Ox given by the linear polynomiag, (see example 7.1.4).
We claim thatf is injective. In fact, every section @¥x (—1) over an open subset &f

has the forrr% for some homogeneous polynomigl$ with degg— degh = —1. But
f(%) = % is zeroon an open subset of Kand only if g = 0 (note that we are not asking
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for zeros of%, but we are asking whether this function vanishes on a whole open subset).
As this means thaﬁ itself is zero, we see that the kernelfofs trivial, i.e. f is injective.

We have seen already in example 7.1.2 thetin fact an isomorphism when restricted
to U = X\{P} whereP := (0:1). In particular, f is surjective when restricted 1d.
However,f is not surjective ofX (otherwise it would be an isomorphism, which is not true
as we already know). Let us determine its cokernel.

First we have to compute the cokernel presheaf ¢dkeConsider an open subdétc
X. By the above argumentcokef f)(U) =0 if P ¢ U. So assume th&® € U. Then we
have an exact sequence@®@f (U )-modules

0 —- Ox(-1)U) — V) — k — 0
L 9%

0=3 — o(P)

as the functions in the image 6k (—1)(U) — Ox are precisely those that vanishBnSo
we have found that

jmy (o}

k ifPeU,

(cokef f)(U) = {0 1PeU.

It is easily verified that cokéf is in fact a sheaf. It can be thought of as the ground field
k “concentrated at the poift”. For this reason it is often calledskyscraper sheafand
denotedkp.

Summarizing, we have found the exact sequence of sheawswiodules
0— Ox(—1) 2 Ox — kp — 0.

Example 7.1.17.Let #1, F» be two sheaves aPx-modules on a ringed spa&e Then we
can define the direct sum, the tensor product, and the dual sheaf in the obvious way:

(i) Thedirect sum 71 @ 7, is the sheaf oDx-modules defined byF, & %2)(U) =
F(U) @ F2(U). (Itis easy to see that this is a sheaf already, so that we do not
need sheafification.)

(i) Thetensor product 71 ® %> is the sheaf 0Ox-modules associated to the presheaf
U — F1(U) @0y ) F2(U).

(iii) The dual 7" of 7 is the sheaf oDx-modules associated to the preshgaf-
F1(U)" = Homg, ) (F2(U), Ox (V).

Example 7.1.18. Similarly to example 7.1.16 consider the morphi$mOx(—2) — Ox
of sheaves oX = IP’& given by multiplication withxgx; (instead of withxg). The only
difference to the above example is that the funckign vanishes at two point® = (0: 1),
P. = (1:0). So this time we get an exact sequence of sheaves

0— OX(_Z) .Xi)fl OX —>kP0@kP1 _)07

where the last morphism is evaluation at the poatandP;.

The important difference is that this time the cokernel presheadtiequal to the co-
kernel sheaf: if we consider our exact sequence on global sections, we get

0—T(0x(—2)) =T (Ox) — kak,

wherel (Ox(—2)) = 0, andl" (Ox) are just the constant functions. But the last morphism

is evaluation aP andQ, and constant functions must have the same valffeaatd Q. So

the last mag (Ox) — k@ k is not surjective, indicating that some sheafification is going
on. (In example 7.1.16 we only had to evaluate at one point, and the corresponding map
was surjective.)
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Example 7.1.19.0nX = PN, we haveOx (n) @ Ox (m) = Ox (n+m), with the isomorphism
given on sections by

fi _fo  fifs

— Q== —.

g O 0o
Similarly, we haveOx (n)¥ = Ox(—n), as theOx (U)-linear homomorphisms froriy (n)
to Ox are precisely given by multiplication with sections@f (—n).

7.2. Quasi-coherent sheavesilt turns out that sheaves of modules are still too general
objects for many applications — usually one wants to restrict to a smaller class of sheaves.
Recall that any rind? determines an affine scheme= SpedR together with its structure
sheafOx. Hence one would expect that aRymoduleM determines a shedfl of Ox-
modules onX. This is indeed the case, and almost any sheabpmodules appearing

in practice is of this form. For computations, this means that statements about this sheaf
M on X are finally reduced to statements about BamoduleM. But it does not follow

from the definitions that a sheaf df-modules has to be induced by soRenodule in

this way (see example 7.2.3), so we will say that it is quasi-coherent if it does, and in most
cases restrict our attention to these quasi-coherent sheawéss H general scheme, we
accordingly require that it has an open cover by affine schemesR5peer which the

sheaf is induced by aR;-module for alli.

Let us start by showing how aR-moduleM determines a sheaf of modul&s on
X = Sped. This is essentially the same construction as for the structure sheaf in definition
5.1.11.

Definition 7.2.1. Let R be a ring,X = SpedR, and letM be anR-module. We define a
sheaf ofOx-modulesM on X by setting
M(U) = {¢ = (¢y)peu With ¢, € M, forallp €U
such that § is locally of the formT forme M,r e R'}
={¢ = (¢p)peu With ¢, € M,, for all p € U
such that for every € U there is a neighborhodd in U andme M,r € R
withr ¢ gandd, =T € M, forall g e V}.

It is clear from the local nature of the definition thdtis a sheaf.

The following proposition corresponds exactly to the statement of proposition 5.1.12
for structure sheaves. Its proof can be copied literally, replaBity M at appropriate
places.

Proposition 7.2.2. Let R be a ring, X= Spe, and let M be an R-module.

(i) Foreveryp € X the stalk oM at p is M,. )
(i) Forevery fe R we haveM(Xs) = Ms. In particular, M(X) = M.

Example 7.2.3. The following example shows that not all sheave®)pfmodules orX =
Spe have to be of the fornM for someR-moduleM.
Let X = Al, and let¥ be the sheaf associated to the presheaf

U {oxw) itogu,
0 ifocU.

with the obvious restriction maps. Thénis a sheaf oDx-modules. The stally is zero,
whereasfp = Ox p for all other points € X.
Note that¥ has no non-trivial global sections: ¢f € F(X) then we obviously must

havedo = 0 € o, which by definition of sheafification means tigeis zero in some neigh-
borhood of 0. But aX is irreducible,¢ must then be the zero function. Hence it follows
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that 7 (X) = 0. So if 7 was of the formM for someR-moduleM, it would follow from
proposition 7.2.2 (ii) thaM = 0, henceF would have to be the zero sheaf, which it obvi-
ously is not.

Definition 7.2.4. Let X be a scheme, and Igt be a sheaf 0Ox-modules. We say that
is quasi-coherentif for every affine open subsét = Spe®R C X the restricted shedf |y
is of the formM for someR-moduleM.

Remark7.2.5 It can be shown that it is sufficient to require the condition of the definition
only for every open subset in an affine open coveX ¢éee e.g. [H] proposition 11.5.4). In
other words, quasi-coherence is a local property.

Example 7.2.6. On any scheme the structure sheaf is quasi-coherent. The sh®@g&ves

are quasi-coherent on any projective subschen&No#s they are locally isomorphic to

the structure sheaf. In the rest of this section we will show that essentially all operations
that you can do with quasi-coherent sheaves yield again quasi-coherent sheaves. Therefore
almost all sheaves that occur in practice are in fact quasi-coherent.

Lemma 7.2.7. Let R be aring and X SpeR.

(i) Forany R-modules M there is a one-to-one correspondence
{morphisms of sheavéé — N} — {R-module homomorphisms M N}.

(i) A sequence of R-modul8s— M; — My — M3 — 0 is exact if and only if the
sequence of sheav@s— M; — M, — Mz — Qs exact on X.

(iiiy For any R-modules W we haveM &N = (M@ N)™.

(iv) For any R-modules MW we haveM @ N = (M@ N)™.

(v) For any R-module M we havé/)" = (MV)".

In particular, kernels, cokernels, direct sums, tensor products, and duals of quasi-coherent
sheaves are again quasi-coherent on any scheme X.

Proof. (i): Given a morphisnM — N, taking global sections gives &module homomor-
phismM — N by proposition 7.2.2 (ii). Conversely, &module homomorphisif — N
gives rise to morphisms between the staéks— N, for all p, and therefore by definition
determines a morphismil — N of sheaves. It is obvious that these two operations are
inverse to each other.

(ii): By exercise 7.8.2, exactness of a sequence of sheaves can be seen on the stalks.
Hence by proposition 7.2.2 (i) the statement follows from the algebraic fact that the se-
quence G- My — Mz — M3z — 0'is exact if and only if 0— (M1), — (M2), — (M3), — 0
is for all prime idealg € R.

(i), (iv), and (v) follow in the same way as (ii): the statement can be checked on
the stalks, hence it follows from the corresponding algebraic fact about localizations of
modules. O

Example 7.2.8.Let X = P! andP = (0: 1) € X. The skyscraper she&p of example
7.1.16 is quasi-coherent by lemma 7.2.7 as it is the cokernel of a morphism of quasi-
coherent sheaves. One can also check explicitlykpas quasi-coherent: o = {Xo #

0} = P1\{P} andU; = {x # 0} = Spek[xo] = A! thenkp|y, = O (SO it is the sheaf
associated to the zero module) dady, = M whereM = k is thek[xo]-module with the
module structure

k[Xo] x k— k
(f,A) — £(0)-A.
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Proposition 7.2.9.Let f: X — Y be a morphism of schemes, andfelbe a quasi-coherent
sheaf on X. Assume moreover that every open subset of X can be covénitgllpymany

affine open subsets (this should be thought of as a technical condition that is essentially
always satisfied — it is e.g. certainly true for all subschemes of projective spaces). Then
f. ¥ is quasi-coherentonY.

Proof. Let us first assume that andY are affine, s = SpedR, Y = SpecS, and ¥ =

M for someR-moduleM. Then it follows immediately from the definitions that¥ =

(M as anS-modulg”, hence push-forwards of quasi-coherent sheaves are quasi-coherent if
X andY are affine.

In the general case, note that the statement is locd,®o we can assume thétis
affine. But it is not local orK, so we cannot assume thatis affine. Instead, coveX by
affine opendJ;, and coveltJ; NU; by affine opensJ; j . By our assumption, we can take
these covers to be finite.

Now the sheaf property fof says that for every open sétC Y the sequence

= F(FHV) = P F(FHV)NU) - P F(FHV)NUijk)
i ij.k
is exact, where the last map is given by..s,...) — (..., Su,jx — Sjlu,jx:---)- This
means that the sequence of sheave¥ on h

0— f*,‘]: — @ f*(T|U|) - @f*(f|u|1k)

i,j.k

is exact. But as we have shown the statement already for morphisms between affine
schemes and as finite direct sums of quasi-coherent sheaves are quasi-coherent, the last two
terms in this sequence are quasi-coherent. Hence the Kerhas also quasi-coherent by
lemma 7.2.7. O

Example 7.2.10.With this result we can now define (and motivate) what a closed embed-
ding of schemes is. Note that for historical reasons closed embeddings are usually called
closed immersions in algebraic geometry (in contrast to differential geometry, where an
immersion is defined to belacal embedding).

We say that a morphisrh: X — Y of schemes is alosed immersionif

(i) fisahomeomorphism onto a closed subséf,aind
(i) the induced morphisndy — f, Ox is surjective.

The kernel of the morphisroy — f.Ox is then called thédeal sheafZy v of the immer-
sion.

Let us motivate this definition. We certainly want condition (i) to hold on the level
of topological spaces. But this is not enough — we have seen that even isomorphisms
cannot be detected on the level of topological spaces (see example 2.3.8), so we need some
conditions on the structure sheaves as well. We have seen in example 5.2.3 that a closed
immersion should be a morphism that is locally of the form $péc— Sped for some
ideall C R. In fact, this is exactly what condition (ii) means: assume that we are in the
affine case, i.eX = SpecSandY = SpedR. As Oy andf, Ox are quasi-coherent (the former
by definition and the latter by proposition 7.2.9), so is the kerneéhof> f,Ox by lemma
7.2.7. So the exact sequence

O0—Iyy— O — f.0x—0
comes from an exact sequenceRafodules

0—-1—-R—S—0
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by lemma 7.2.7 (ii). In other words$,C Ris an ideal ofR, andS= R/I. So indeed the
morphismf is of the form SpeR/I — Spe® and therefore corresponds to an inclusion
morphism of a closed subset.

Example 7.2.11.Having studied push-forwards of sheaves, we now want to consider pull-
backs, i.e. the “dual” situation: given a morphigmX — Y and a sheaff onY, we want

to construct a “pull-back” shedf*# on X. Note that this should be “more natural” than
the push-forward, as sheaves describe “function-like” objects, and for functions pull-back
is more natural than push-forward: given a “functign’yY — k, there is set-theoretically

a well-defined pull-back functiog o f : X — k. In contrast, a functiog : X — k does not

give rise to a functioty — kin a natural way.

Let us first consider the affine case: assume ¥hat Sped?, andY = SpecS so that
the morphismf corresponds to a ring homomorphiS$a- R. Assume moreover that the
sheafF onY is quasi-coherent, so that it corresponds t&@anoduleM. ThenM ®sRis
a well-definedr-module, and the corresponding sheaboshould be the pull-back* F .
Indeed, ife.gM =S i.e. ¥ = Oy, thenM ®sR=S®sR =R, so f*¥ = Ox: pull-backs
of regular functions are just regular functions.

This is our “local model” for the pull-back of sheaves. To show that this extends to the
global case (and to sheaves that are not necessarily quasi-coherent), we need a different
description though. So assume now tRaly, and ¥ are arbitrary. The first thing to do is
to define a sheaf of abelian groups X¥rfrom #. This is more complicated than for the
push-forward constructed in definition 7.1.5, becafid¢) need not be open @ is.

We let f~1 7 be the sheaf o)X associated to the preshéhf— limy~w) F(V), where
the limit is taken over all open subséfswith f(U) C V C Y. This notion of limit means
that an element in liga, ;) F (V) is given by a paifV,¢) withV 5 f(U) andd € 7 (V),
and that two such pair®/,¢) and(V’,¢’) define the same element if and only if there is
an open subs&V¥ with f(U) c W c V NV’ such thathjyy = ¢'|w. This is the best we can
do to adapt definition 7.1.5 to the pull-back case. It is easily checked that this construction
does what we want on the stalks: we ha¥e! 7 )p = ¢ p) for all P € X.

Note thatf—1# is obviously a sheaf o(f*loy)-modules, but not a sheaf @d-
modules. (This corresponds to the statement that in the affine case consideredvaibove,
is anS-module, but not af-module.) We have seen in our affine case what we have to
do: we have to take the tensor product ovet Oy with Oy (i.e. overSwith R). In other
words, we define thpull-back f*# of ¥ to be

f*F =71 F @10, Ox,

which is then obviously a sheaf @l-modules. As this construction restricts to the one
given above ifX andY are affine andF quasi-coherent, it also follows that pull-backs of
guasi-coherent sheaves are again quasi-coherent.

It should be stressed that this complicated limit construction is only needed to prove
the existence of * F in the general case. To compute the pull-back in practice, one will
almost always restrict to affine open subsets and then use the tensor product construction
given above.

Example 7.2.12.Here is a concrete example in which we can see again why the tensor
product construction is necessary in the construction of the pull-back. Consider the mor-
phismf : X = P! — Y = P! given by(s:t) — (x:y) = (s? : t?). We want to compute the
pull-back sheaff*Oy (1) on X.

As we already know, local sections 6§ (1) are of the form%, with g andh homo-
geneous such that dgg- degh = 1. Pulling this back just means inserting the equations
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x =& andy = t2 of f into this expression; so the sheaf' Oy (1) has local section gg; ,
where now defp(s?,t?)) — degh(,t?)) = 2.

But note that these sections do not even describe a sheaf-ofodules: if we try to
multiply the sectiors? with the functionls (i.e. a section oDx) on the open subset where

s# 0, we getst, which is not of the formﬁ%. We have just seen the solution to this

problem: consider the tensor product widk. So sections of *Oy (1) are of the form
g(s*t?) _ g(st)
h(2,t2) = H(st)
with degg(s?,t?)) — degh(s*,t?)) = 2 and deg/ — degh’ = 0. It is easy to see that this
describes precisely all expressions of the fc%% with degg” — degh” = 2, so the result
we getisf*Oy(1) = Ox(2).
In the same way one shows th&itOy (n) = Ox(dn) for all n € Z and any morphism

f : X — Y between projective schemes that is given by a collection of homogeneous poly-
nomials of degred.

We have seen now that most sheaves occurring in practice are in fact quasi-coherent.
So when we talk about sheaves from now on, we will usually think of quasi-coherent
sheaves. This has the advantage that, on affine open subsets, sheaves (that form a somewhat
complicated object) are essentially replaced by modules, which are usually much easier to
handle.

7.3. Locally free sheaves.We now come to the discussion of locally free sheaves, i.e.
sheaves that are locally just a finite direct sum of copies of the structure sheaf. These are
the most important and best-behaved sheaves one can imagine.

Definition 7.3.1. Let X be a scheme. A sheaf df-modules¥ is calledlocally free of
rank r if there is an open covelU; } of X such thatf |y, = O for all i. Obviously, every
locally free sheaf is also quasi-coherent.

Remark7.3.2 The geometric interpretation of locally free sheaves is that they correspond
to “vector bundles” as known from topology — objects that associate to everypoiird
spaceX a vector bundle. For example, the “tangent sheafPbin example 7.1.1 is such

a vector bundle (of rank 1). Let us make this correspondence precise.

A vector bundle of rankr on a schemeX over a fieldk is a k-schemeF and ak-
morphismTt: F — X, together with the additional data consisting of an open covering
{U;} of X and isomorphismsg; : T[_l(Ui) — U; x A} overU;, such that the automorphism
Wi o qufl of (UiNUj) x A" is linear in the coordinates df" for all i, j. In other words,
the morphismrt: F — X looks locally like the projection morphistd x Aj — U for
sufficiently small open subsdts C X.

A
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We claim that there is a one-to-one correspondence
{vector bundlest: F — X of rankr} « {locally free sheave§ of rankr on X}

given by the following constructions:
(i) Lettt: F — X be a vector bundle of rank Define a sheafr on X by

F(U) = {k-morphismss: U — F such thattos=idy }.

(This is called the sheaf of sectionsef) Note that this has a natural structure
of a sheaf ofOx-modules (over every point iX we can multiply a vector with
a scalar — doing this on an open subset means that we can multiply a section in
F (U) with a regular function irox (U)).

Locally, on an open subsét on whichttis of the formU x Al — U, we
obviously have

F(U) = {k-morphismss: U — A} },

so sections are just given biyindependent functions. In other wordg)|y is
isomorphic toQj". So ¥ is locally free by definition.

(ii) Conversely, letf be a locally free sheaf. Take an open cofdi} of X such that
there are isomorphismis : 7 |y, — Oﬁ’ Now consider the schemé x A} and
glue them together as follows: for allj we glueU; x Al andUj x A} on the
common open subsét; NUj) x A} along the |som0rph|sm

(UiNUj) x Al = (UinU)) x A, (Rs) — (Rwioy; ).

Note thaty; o qu‘l is an isomorphism of sheaves 6%-modules and therefore
linear in the coordinates af}.
It is obvious that this gives exactly the inverse construction to (i).

Remark7.3.3 Lettt: F — X be a vector bundle of rank and letP € X be a point. We call

1 1(P) thefiber of F overP; itis anr-dimensional vector space. # is the corresponding
locally free sheaf, the fiber can be realized”as wherei : P — X denotes the inclusion
morphism (note thatt* # is a sheaf on a one-point space, so its data consists only of one
k-vector spacéi* ¥ )(P), which is precisely the fibefp).

Lemma 7.3.4. Let X be a scheme. If and G are locally free sheaves @l-modules of
rank r and s, respectively, then the following sheaves are also locally ffee:G (of rank
r+s), F® G (of rank r-s), and ¥V (of rank r). If f: X — Y is a morphism of schemes
and 7 is a locally free sheaf on'Y, theri ¥ is a locally free sheaf on X of the same rank.
(The push-forward of a locally free sheaf is in general not locally free.)

Proof. The proofs all follow from the corresponding statements about vector spaces (or
free modules over a ring): for example Mf andN are freeR-modules of dimensionand
srespectively, theM & N is a freeR-module of dimension +s. Applying this to an open

affine subset) = SpedRin X on which 7 and G are isomorphic t@)j" = M and0j° = N

gives the desired result. The statement about tensor products and duals follows in the same
way. As for pull-backs, we have already seen tha®, = Ox, so f*F will be of the form

O?L(U) on the inverse imagé~1(U) c X of an open subsé! C Y on which ¥ is of the

form Q. 4

Remark7.3.5 Lemma 7.3.4 is an example of the general principle that any “canonical”
construction or statement that works for vector spaces (or free modules) also works for
vector bundles. Here is another example: recall that for any vector $pacerk (or any

free module) one can define timeth symmetric product SV and then-th alternating
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product A"V to be the vector space of formal totally symmetric (resp. antisymmetric)
products

Vi- - V€SV and Vi A--AVpEATV.

If V has dimensiom, thenSV andA™V have dimensior{(""" ") and ([), respectively.
More precisely, if{vi, ...,V } is a basis oV, then

{vij- -+ Viy; i1 <---<in} isabasisoBV, and
{Viy A\ ==+ AV, ;i1 <---<in} Iisabasis o\"V.

Using the same construction, we can get symmetric and alternating pr&gcendA" F
on X for every locally free sheaf on X of rankr. They are locally free sheaves of ranks
("1 and([), respectively.

Here is an example of a linear algebra lemma that translates directly into the language
of locally free sheaves:

Lemma 7.3.6.Let0 — U —V — W — 0 be an exact sequence of vector spaces of dimen-
sions a, a+ b, and b, respectively. Thex? PV = A2U @ APw/ .

Proof. Denote the two homomorphisms byU — V andp:V — W. Then there is a
canonical isomorphism

AU ® APW — N3PV
(ULA - AlUg) @ (Wp A= AWp) = i(Ug) A=~ Ai(Ua) AP H(wp) A--- A pt(wp).

The key remark here is that thE*(w;) are well-defined up to an element Gf by the
exact sequence. But if the above expression is non-zero at ally the , uy, must form

a basis ofU, so if we plug in any element df in the lastb entries of the alternating
product we will get zero. Therefore the ambiguity in ghie*(w;) does not matter and the
above homomorphism is well-defined. It is obviously not the zero map, and it is then an
isomorphism for dimensional reasons (both sides are one-dimensional vector spates).

Corollary 7.3.7. Let0 — F1 — F> — F3 — 0be an exact sequence of locally free sheaves
of ranks g,ay,az on a scheme X. Thek2 % = A% F @ A® I3,

Proof. Immediately from lemma 7.3.6 using the above principle. O

7.4. Differentials. We have seen in proposition 4.4.8 that (formal) differentiation of func-
tions is useful to compute the tangent spaces at the (closed) points of a S¢h&évaenow

want to introduce this language of differentials. The idea is that the various tangent spaces
Tp for P € X should not just be independent vector spaces at every point, but rather come
from a global object orX. For example, iX is smooth ovelC, so that it is a complex
manifold, we know from complex geometry théthas a cotangent bundle whose fiber at

a pointP is just the cotangent space, i.e. the dual of the tangent spaee Vii¢ want to

give an algebro-geometric analogue of this construction. So let us first define the process
of formal differentiation. We start with the affine case.

Definition 7.4.1. Let f : X = SpedR — Y = SpecS be a morphism of affine schemes,
corresponding to a ring homomorphiSh- R. We define th&k-moduleQg/s, themodule

of relative differentials, to be the fre&®-module generated by formal symbéldr ; r € R},
modulo the relations:

e d(ri+rp)=dri+dryforry,rs €RR,
e d(rirp) =ridra+rodry forry,r; € R,
e ds=0forse S
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Example 7.4.2.Let S=kbe afield anR=Kk[xy, . .., Xy], S0 that we consider the morphism
f 1 A — pt. Then by the relations iQg, which are exactly the rules of differentiation

with the elements ok being the “constant” functions, it follows theltf = 3 ; g—;idx for all
f €KXy,...,%]. SOQg/ is just the freeR-module generated by the symbadlg, . .., dx,.

Again letS=k, but now letR = K[xa,...,Xn]/(f1,..., fm) be the coordinate ring of an
affine variety. By the same calculation as abdvg;s is still generated as @a-module by
dx,...,dx%, but the relationd; give rise to relations fi = 0 in Qg/s. It is easy to see that
these are all relations Qr/s, so we have

afj
QR/S:(Rd>q+--~+Rd>h)/(za7:quJ =1,...,m).
I

In particular, if X = Spedr, k is algebraically closed, and € X is a closed point oKX
corresponding to a morphisR— k, then by definition 4.4.1 we see that

of; _
Qrjs@rk = (dxe,....d%) /(Y a—X:(P)d)q,j =1,...,m)
|

is just the duaTI'%P of the tangent space ¥ atP.

Example 7.4.3.1f Y is not a point, then the difference in the module of differentials is just
that all elements o (i.e. all differentials that come from) are treated as “constants”. So
thenQg/s can be thought of as “the differentials ®hmodulo pull-backs of differentials
onY”. We will probably not need this very often.

Of course, iff : X — Y is a morphism of general (not necessarily affine) schemes, we
want to consider the relative differentials of every restrictiorf ¢d affine opens oK and
Y, and glue them together to get a quasi-coherent sgaf. To do this, we have to give
a different description of the relative differentials, as the construction given above does not
glue very well.

Lemma 7.4.4. Let S— R be a homomorphism of rings. Consider the maR®sR— R
given byd(r; ®r2) =rir> and let | R®@sR be its kernel. Thery1? is an R-module that
is isomorphic tdQgs.

Proof. TheR-module structure df/12is given byr - (r; @) :=rr1@r, = r; @11, where
the second equality follows from

Mir—r1@re=(r1®r)-rel-—1xr)el-|

if r@ra €1. Define a map oR-modulesQg/s — 1/12 by dr — 1®r —r®1. Now
we construct its inverse. The-moduleE := R® Qg/s is a ring by settingr; ©dry) -
(ra@drf) :=rira@ (r1dry, +rodry). Itis easy to check that the mépx R — E given by
(r1,r2) — (rirz,ridr2) is anS-hilinear ring homomorphism, hence gives rise to a rgap
R®sR— E. Asg(l) C Qg/s by definition andy(12) = 0, this induces a maly1% — Qg/s.
Itis easy to see that this is in fact the inverse of the faps — 1 /1 2 given above. [

Remark7.4.5 It is easy to translate this lemma into the language of scheme¥X 4et
SpedRandY = SpecS, so that the ring homomorphisg— Rcorresponds to amap—Y.
Then Spe®R®sR = X xy X, andd : R®sR — R corresponds to the diagonal morphism
X — X xy X. Hencel C R®gRis the ideal of the diagon&l(X) C X xy X. This motivates
the following construction.

Definition 7.4.6. Let f : X — Y be a morphism of schemes. L&t X — X xy X be the
diagonal morphism, and I&t = Z,x)/x <, x Pe its ideal sheaf. Then tieheaf of relative
differentials Qy v is defined to be the sheaf (Z/7?) onX. If X is a scheme over a field
kandY = Spedis a point, then we will usually writ@y y asQx.
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Remark7.4.7. Here we assume that the diagonal morphisima closed immersion, which
is the case if the schemes in question are separated (this is the analogue of lemma 2.5.3 for
schemes). We will always assume this here to avoid further complications.

Remark7.4.8 It should be stressed that definition 7.4.6 is essentially useless for practical
computations. Its only use is to show that a global ob&gty exists that restricts to the

old definition 7.4.1 on affine open subsets. For applications, we will always use definition
7.4.1 and example 7.4.2 on open subsets.

Remark7.4.9 The sheafl)y v is always quasi-coherent: on affine open subsets it restricts
to the sheaf associated to the mod@jg s constructed above.

Remark7.4.1Q0 Any morphismf : X — Y of schemes over a field induces a morphism of
sheaved *Qy — Qx on X that is just given byd¢ — d(f*¢) = d(¢ o f) for any function
¢ onY.

Proposition 7.4.11. An n-dimensional scheme X (of finite type over an algebraically
closed field, e.g. a variety) is smooth if and onlQif is locally free of rank n. (Actu-
ally, this is a local statement: B X is a smooth point of X if and only @ is (locally)
free in a neighborhood of P.)

Proof. One direction is obvious: if2x is locally free of rankn then its fibers at any point
P, i.e. the cotangent spac&g ,, have dimensiom. By definition this means tha is a
smooth point ofX. '

Now let us assume that is smooth (at?). As the proposition is of local nature we
can assume that = SpedRwith R=K[xq,...,%]/(f1,..., fm). By example 7.4.2 we then
have

T)Xp=<dxl,~~ , Zax, Ydx, j=1,...,m).

As this vector space has dimensiopwe know that the matrix of differentiaB(P) =
(S—Q(P)) at the pointP has rankr — n. Without loss of generality we can assume that the
submatrix ofD given by the first —n columns and rows has non-zero determinant. This
means thatlx _n.1,...,dX% form a basis oﬂ'XV_P.

But the condition for a determinant to be non-zero is an “open condition”, i.e. the set on
which it is satisfied is open. In other words, there is a neighborkboflP in X such that
the submatrix 0D (Q) given by the first —n columns and rows has non-zero determinant
for all Q € U. Consequently, the differentiadis¢ _py1,...,dx% generatérxvQ forallQeU.

In particular, the dimension o/ o Is at mostn. But the opposite inequality dﬂ;(v >n
is always true; so we conclude that the differentas . 1,...,dx actually form a basis
of the cotangent space at all poifs= U. So

Qxlu = QWdXn1@--- @ Qudx,

i.e. Qyx is locally free. O

Remark7.4.12 There is a similar statement for any quasi-coherent sfiedf says that:

(i) The dimension of the fibers is arpper semi-continuous functiorThis means
that if the dimension of the fiber ¢f at a pointP is n, then it is at moshin some
neighborhood oP.

(i) If the dimension of the fibers is constant on some open subsehen ¥y is
locally free.

The idea of the proof of this statement is very similar to that of proposition 7.4.11.
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Definition 7.4.13. Let X be a smootim-dimensional scheme over an algebraically closed
field. The dual bundl€y of the cotangent bundle is called ttengent bundle and is
denotedTx. It is a locally free sheaf of rank. The top exterior poweA"Qyx of the
cotangent bundle is a locally free sheaf of rank 1; it is calleccrnical bundlewx of

X.

Remark7.4.14 The importance of the cotangent / canonical bundles stems from the fact
that these bundles aanonically definedhence the name) for any smooth scheme

This gives e.g. a new method to show that two varieties are not isomorphic: if we have
two varieties whose canonical bundles have different properties (say their spaces of global
sections have different dimensions), then the varieties cannot be isomorphic.

As an example, let us now compute the cotangent / tangent / canonical bundles of some
easy varieties.

Lemma 7.4.15. The cotangent bundle &f is determined by the exact sequence
0— Qpn — 0(—1)®Y L 00

(This sequence is usually called tRaller sequenceg Consequently, the tangent bundle
fits into the dual exact sequence

0— 0— 0(1)*™D _ Tp — 0,
and the canonical bundle igpn = O(—n—1).
Proof. We know already from example 7.4.2 that the cotangent budghés generated on
the standard open subséts= {x; # 0} = A" by the differentialsd(%) . .,d(xﬁi) of the

affine coordinates. Therefore the differentid(_%;), where defined, generate all Ofn.
By the rules of differentiation we have to require formally that

d(x.) _ de)q—)(jde.

Note that thedx are not well-defined objects, as there not functions. But if we formally
let the symbolglx, ..., dx, be the names of the generatorﬂ(f—l)ﬁ“/mm, the morphism
of sheaves

s O(—1) @) X 1ok — X dx
Qp o(-1) , d(xj>n—>xj dx XJZ dx;

is obviously well-defined and injective. It is now easily checked that the sequence of the
lemma is exact, with the last morphism given by

O(—l)@<n+l> — 0, dX+— X.

The sequence for the tangent bundle is obtained by dualizing. The statement about the
canonical bundle then follows from corollary 7.3.7. O

Lemma 7.4.16.Let X C P" be a smooth hypersurface of degree d, and:I&t i~ P" be the
inclusion morphism. Then the cotangent bur@jeis determined by the exact sequence

0— Ox(—d) — i"Qpn — Qx — 0.
Consequently, the tangent bundle is determined by the exact sequence
0— Tx — i"Tpn — Ox(d) — 0,
and the canonical bundle tox = Ox(d —n—1).
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Proof. We claim that the exact sequence is given by
0 — Ox(-d) — i"Qp — Qx — 0

¢ = d(f-¢),
dp  — d(¢lx),

wheref is the equation definink. In fact, the second map is just the usual pull-back of
differential forms as in remark 7.4.10 (which is just a restriction in this case). Itis surjective
because functions ok arelocally of the form% for some homogeneous polynomigland

h of the same degree, so they are locally obtained by restricting a functii mnX. It

is not an isomorphism though, because we have the idehtity0 on X. Consequently,
differentialsd¢ are zero when restricted ¥ if and only if ¢ containsf as a factor. This
explains the first map of the above sequence.

As in the previous lemma, the statements about the tangent and canonical bundles are
obtained by dualizing and applying corollary 7.3.7, respectively. |

Remark7.4.17 In general, ifi : X — Y is a closed immersion of smooth schemes over a
field, there is an injective morphisitx — i*Ty of sheaves oX. In other words, at points

in X the tangent spaces &f are just subspaces of the tangent spacés ofhe quotient
Ty,p/Tx p is called the normal space, and consequently the quotient bN;ay:l}(t i*Ty /Tx

is called thenormal bundle. This is the same construction as in differential geometry.
Thus lemma 7.4.16 just tells us that the normal bundle of a dedjhggersurface ifP" is

Nx /pn = Ox (d).

Example 7.4.18.Let us evaluate lemma 7.4.16 in the simplest cases, namely for curves
X c P? of low degrees.

() d=1: Alinear curve inP? is just isomorphic td*. We getQx = wx = O(1—
2—1)=0(-2) by lemma 7.4.16. This is consistent with lemma 7.4.15fer1.

(i) d=2: We know from example 3.3.11 that a smooth plane conic is again just
isomorphic taP* by means of a quadratic mdp P* — X ¢ P2, Our formula of
lemma 7.4.16 givesx = Ox(2—2—1) = Ox(—1). By pulling this back viaf
we obtainwy = Op1(—2) by example 7.2.12. So by applying the isomorphism to
case (i) we get the same canonical bundle back — which has to be the case, as the
cotangent bundle is canonically defined and cannot change with the embedding
in projective space.

(i) d=3: Here we getox = O(3—2—1) = O, i.e. the canonical bundle is simply
isomorphic to the sheaf of regular functions. We can understand this from our
representation in proposition 6.5.7 of cubic curves as complex tori of the form
C/N for some latticeA C C. If zis the complex coordinate of, note that the
differential formdzis invariant under shifts il\, asd(z+a) = dzfor allae C.
Thereforedzdescends to a global differential form ¥n= C/A without zeros or
poles. It follows that we have an isomorphigh — wx given by — ¢ -dz

7.5. Line bundles on curves. We now want to specialize even further and consider vector
bundles of rank 1 (also called “line bundles”, because their fibers are just lines) on smooth
curves. This section should be compared to section 6.3 where we considered divisors on
such curves. We will show that divisor classes and line bundles are essentially the same
thing.

Recall that the group PX of divisor classes on a smooth cuiXéhas a group structure
in a natural way. So let us first make the set of all line bundleX amto a group as well.
In fact, this can be done for any scheme:

Definition 7.5.1. Let X be a scheme. Ane bundle on X is a vector bundle (i.e. a locally
free sheaf) of rank 1. We denote the set of all line bundleX dry Pic X. This set has a
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natural structure of Abelian group, with multiplication given by tensor products, inverses
by taking duals, and the neutral element by the structure sheaf.

We will now restrict our attention to smooth curves. To set up a correspondence between
line bundles and divisors, we will have to define the divisor of a (rational) section of a line
bundle. This is totally analogous to the divisor of a rational function in definition 6.3.4.

Definition 7.5.2. Let £ be a line bundle on a smooth cur¥e and letP € X be a point.
Assume that we are given a secti®a £(U) of £L on some neighborhodd of P. As £

is a line bundle, there is an isomorphigm L|y — Oy (possibly after shrinkingy). The
order of vanishing orgls of the sectiors at P is defined to be the order of vanishing of the
regular functionp(s) atP.

Remark7.5.3 Note that this definition does not depend on the choiag:of §/ : L|y —
Oy is another isomorphism, then the compositige =1 : 0y — Oy is an isomorphism
of the structure sheaf, which must be given by multiplication with a funafidhat is
nowhere zero (in particular not B). So we have an equation of divisors

W(s) = WP P(s) = (6-W(9) = (0) + (W(s)) = (W(9)),
which shows that orsis is well-defined.

Definition 7.5.4. Let £ be aline bundle on a smooth cur¥e A rational section of £ over

U is a section of the shedf ® o, Xx, whereXx denotes the “sheaf of rational functions”
whose value at every open subset X is justK(X). In other words, a rational section of

a line bundle is given by an ordinary section of the line bundle, possibly multiplied with a
rational function.

Now let P € X be a point, and les be a rational section of in a neighborhood of.
With the same isomorphism as in definition 7.5.2, the order grdof satP is defined to
be the order of the rational functiap(s) at P. (This is well-defined for the reason stated
in remark 7.5.3.)

If sis a global rational section of, we define the divisofs) of sto be
()= ordes-PeDivX.
2,

Example 7.5.5. Let X = P! with homogeneous coordinates x;.

(i) Consider the global secti@= xox; of Ox(2). It vanishes at the poin8= (0: 1)
andQ = (1 : 0) with multiplicity 1 each, sqs) =P+ Q.
(ii) The divisor of the globatational sections = % of Ox(—1)is(s) = —P.

To show that PicX = PicX for smooth curves we need the following key lemma (which
is the only point at which smoothness is needed).

Lemma 7.5.6. Let X be a curve (over some algebraically closed field), and letPbe a
smooth point. Then there is a functidp in a neighborhood of P such that

(i) ¢p vanishes at P with multiplicity 1, i.e. its divisor contains the point P with
multiplicity 1.
(ii) ¢pis non-zero at all points distinct from P.

Proof. We can assume that = SpedRis affine, withR= k[xq, ..., %]/(f1,..., fm) being
the coordinate ring oK. As P is a smooth point 0K, its cotangent space

of; .
Tp = (dxe,....d%) /(5 a—X:(P)dxi for all j)
|

is one-dimensional. Lepp be any linear function such thatpp generates this vector
space. Thempp vanishes aP with multiplicity 1 by construction. We can now pick a
neighborhood oP such thathp does not vanish at any other point. O
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Remark7.5.7. If the ground field isC and one thinks oK as a complex one-dimensional
manifold, one can think of the functiopp of lemma 7.5.6 as a “local coordinate” ¥f
aroundP, i.e. a function that gives a local isomorphism>ofvith C, with P mapping to

0 € C. Note however that this igot true in the algebraic category, as the Zariski open
subsets are too big.

We are now ready to prove the main proposition of this section.

Definition 7.5.8. A divisor D = S papP on a smooth curviX is calledeffective (written
D > 0)if ap > O for all P.

Proposition 7.5.9. Let X be a smooth curve. Then there is an isomorphism of Abelian
groups
PidcX — PicX
L — (s) forany rational section s af.

Its inverse is given by

PicX — PidX

D ~ 0(D),

whereO(D) is the line bundle defined by

0(D)(U) = {$ €K(X): (4)+D >0onU}.

Proof. We have to check a couple of things:

(i) If Lisaline bundle, then there is a rational secai L: This is obvious, aL
is isomorphic toO on an open subset of. So we can find a section & on this
open subset (corresponding to the constant function 1). This will be a rational
section of£ on all of X.

(i) The divisorclass(s) of a rational sectios of £ does not depend on the choice of
s. If we have another sectiosi, then the quotien§ will be a rational function,
which has divisor class zero by definition of RicSo(s) = (§-S) = (3)+(s) =
(8) in PicX.

(i) If D is a divisor thenO(D) is actually a line bundle: IeP € X be a point and
choose a neighborhoddl of P such that no point df) \P is contained irD. Let
n be the coefficient oP in D. Then an isomorphisnp : O(D) — O onU is
given by multiplication withpp, wheregp is the function of lemma 7.5.6. In fact,

a rational functionp in K(X) is by definition a section o®(D) if and only if
orde +n > 0, which is the case if and only ¢f - §3 is regular af.

(iv) If the divisorsD andD’ define the same element in RithenO(D) = O(D’): By
assumption we hav® — D’ = (¢) in PicX for some rational functiop. Obvi-
ously, this induces an isomorphist(D) — O(D’) through multiplication with
.

We have now shown that the maps stated in the proposition are well-defined. Let us now
check that the two maps are inverse to each other.

(v) Pid X — PicX — Pic X: Let 5o be a rational section of a line bundlg, and
considerO((so)) = {¢ € K(X) ; (¢) + (so) > 0}. We have an isomorphism

S
L— 0((s0)), s+ -

(vi) PicX — Pid X — PicX: The (constant) rational function 1 defines a rational sec-
tion of O(D). To determine its order at a poift we have to apply the local
isomorphism withO constructed in (iii): the order of this rational sectiorPais
just the order of 1¢p, which isn. This is exactly the multiplicity oP in D, so
the divisor of our section is precisel.
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Finally, we have to check that the map is a homomorphism of groups. But this is clear:
if sands are rational sections of and L', respectively, thess is a rational section of

L® L', and(ss) = (s)+(s). Hence tensor products of line bundles correspond to addition
of divisors under our correspondence. O

Definition 7.5.10. Let X be a smooth curve. From now on we will identify line bundles
with divisor classes and call both groups Ricln particular, this defines the degree of a

line bundle (to be the degree of the associated divisor class). The divisor class associated
to the canonical bundl@y is denotedKy; it is called thecanonical divisor (class)

Example 7.5.11.We have seen in lemma 6.3.11 that Pic= Z, i.e. there is exactly one
divisor class in every degree. Consequently, there is exactly one line bundle for every
degreen, which is of course jusD(n). On the other hand, K C P? is a smooth cubic
curve we know from corollary 6.3.15 that P{cconsists of a copy oX in every degree.

So on a cubic curve there are (many) more line bundles than just the bundles of the form
o(n).

Remark7.5.12 The correspondence of proposition 7.5.9 allows us to define the pull-back
f*D of a divisor clas® onY for any (surjective) morphism of smooth curvesX — Y:
it is just given by pulling back the corresponding line bundle.

In fact, we can even define a pull-ba€kD for anydivisor D € DivY that induces this
construction on the corresponding divisor classPlet X be any point, and 1) = f(P)
be its image, considered as an element of\DiThen the subschemie(Q) of X has a
component whose underlying pointR®s We define theamification index ep of f atP to
be the length of this component subscheme. In more down to earth terms, this means that
we take a functio®g as in lemma 7.5.6 that vanishestvith multiplicity 1, and define
ep to be the order of vanishing of the pull-back functitipg = g o f atP.

The ramification index has a simple interpretation in complex analysis: in the ordinary
topology the curveX andY are locally isomorphic to the complex plane, so we can pick
local coordinateg on X aroundP andw onY aroundQ. Every holomorphic map is now
locally of the formz+— w = uZ" for somen > 1 and an invertible function (i.e. a function
that is non-zero aP). The numben is just the ramification index defined above. Itis 1 if
and only if f is a local isomorphism & in complex analysis. We say thétis ramified at
Pif n=ep > 1, and unramified & otherwise.

Y _——e_ Y
Q Q
&,:l %:2
If we now consider a poinf as an element of Di¥, we simply define
f'Q= 5 &P
P:f(P)=Q

and extend this by linearity to obtain a homomorphismDivY — Div X. In other words,
f*D is just obtained by taking the inverse image points of the poink with the appro-
priate multiplicities.

Using the correspondence of proposition 7.5.9 it is now easily checked that the induced
map f* : PicY — PicX on the Picard groups agrees with the pull-back of line bundles.
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Example 7.5.13.Let f : X = P — Y = P! be the morphism given bixg : X1) — (X3 : X3).
Thenf*(1:0)=2-(1:0)andf*(1:1)=(1:1)+(1:-1) as divisors inX.

As an application of line bundles, we will now see how they can be used to describe
morphisms to projective spaces. This works for all schemes (not just curves).

Lemma 7.5.14. Let X be a scheme over an algebraically closed field. There is a one-to-
one correspondence

line bundlesZ on X together with global
{morphisms £ X - P'} — { sectionsg,...,s € '(X, L) such that:
for all P € X there is some with §(P) # 0

Proof. “«—": Givenr + 1 sections of a line bundlé on X that do not vanish simultane-
ously, we can define a morphisft X — P' by settingf (P) = (so(P) : --- : 5(P)). Note
that the values; (P) are not well-defined numbers, but their quotie?jn(?) are (as they are
sections ofL ® LY = 0, i.e. ordinary functions). ThereforgP) is a well-defined point in
projective space.

“—": Given a morphismf : X — P', we setL = f*Opr (1) ands = f*x;, where we
consider the as sections 0D(1) (and thus thes as sections of *O(1)). O

Remark7.5.15 One should regard this lemma as a generalization of lemma 3.3.9 where
we have seen that a morphismRbcan be given by specifying+ 1 homogeneous poly-
nomials of the same degree. Of course, this was just the special case in which the line
bundle of lemma 7.5.14 i®(d). We had mentioned already in remark 3.3.10 that not all
morphisms are of this form; this translates now into the statement that not all line bundles
are of the formo(n).

7.6. The Riemann-Hurwitz formula. Let X andY be smooth projective curves, and let
f: X —Y be a surjective morphism. We want to compare the sheaves of differentils on
andY. Note that every projective curve admits a surjective morphisittdy definition

it sits in someP" to start with, so we can find a morphism by repeated projections
from points not inX. So if we know the canonical bundle Bt (which we do by lemma
7.4.15: itis justOp1 (—2)) and how canonical bundles transform under morphisms, we can
at least in theory compute the canonical bundles of every curve.

Definition 7.6.1. Let f : X — Y be a surjective morphism of smooth projective curves. We
define theramification divisor of f to beR= Yp.x(ep —1)- P € Div X, whereep is the
ramification index off at P defined in remark 7.5.12. So the divideicontains all points

at which f is ramified, with appropriate multiplicities.

Proposition 7.6.2. (Riemann-Hurwitz formulg Let f: X — Y be a surjective morphism
of smooth projective curves, and let R be the ramification divisor of f. Thea KKy +R
(or equivalentlywx = f*wy ® Ox(R)) in PicX.

Proof. LetP € X be any point, and le) = f(P) be its image point. Choose local functions
¢p and¢q aroundP (resp.Q) that vanish aP (resp.Q) with multiplicity 1 as in lemma
7.5.6. Then by the definition of the ramification index we have

f'do=u-og

for some local functiomn on X with no zero or pole a@. Now pick a global rational section
a of wy. Ifits divisor (a) contains the poin® with multiplicity n, we can write locally

a =v-$3ddo,
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wherev is a local function or¥ with no zero or pole a®. Inserting these equations into
each other, we see that

fra = f*v- (F*0R)d(f*dq) = U F*v- op® - (o du+ uedF dop).

This vanishes aP to orderner +ep — 1. Summing this over all pointB € X we see
that the divisor off “a is f*(a) + R. AsKx = (f*a) and f*Ky = f*(a), the proposition
follows. u

We will now study the same situation from a topological point of view (if the ground
field isC). ThenX andY are two-dimensional compact manifolds.

For such a spack, we say that aell decompositionof X is given by writingX as a
finite disjoint union of points, (open) lines, and discs. This decomposition should be “nice”
in a certain topological sense, e.g. the boundary points of every line in the decomposition
must be points of the decomposition. It takes some work to make this definition (and
the following propositions) bullet-proof. We do not want to elaborate on this, but only
remark that every “reasonable” decomposition that one could think of will be allowed. For
example, here are three valid decompositions of the Riemann sphere

0] (i) (iii)

(In (i), we have only one point (the north pole), no line, and one “disc”, na&liyinus
the north pole). We denote by, 01,02 the number of points, lines and discs in the
decomposition, respectively. So in the above examples we (@ve1,02) = (1,0,1),
(2,2,2), and(6,8,4), respectively.

Of course there are many possible decompositions for a given guriait there is an
important number that is invariant:

Lemma 7.6.3. The numbeoy — 01 + 62 depends only on X and not on the chosen decom-
position. It is called thé€topological) Euler characteristig(X) of X.

Proof. Let us first consider the case when we move from one decomposition to a “finer”
one, i.e. if we add points or lines to the decomposition. For example, in the above pictures
(iii) is a refinement of (i), which is itself a refinement of (i). Note that every refinement is
obtained by applying the following steps a finite number of times:

(i) Adding another point on a line: In this case we rageand o; by 1, so the
alternating sunwp — 01 + 02 does not change (see the picture below).

LA A4

add a point add aline

(i) Adding another line in a disc: In this case we rasegando; by 1, so the alter-
nating sunog — 01 + 02 again does not change (see the picture above).
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So we conclude that the alternating sog+ 01 + 02 does not change under refinements.
But it is easily seen that any two decompositions have a common refinement (which is
essentially given by taking all the points and lines in both decompositions, and maybe
add more points where two such lines intersect. For example, the common refinement
of decomposition (ii) above and the same decomposition rotated clockwise by 90 degrees
would be (iii)). It follows that the alternating sum is independent of the decompositian.

We have already noted in example 0.1.1 that a smooth complex curve is topologically a
(real) closed surface with a certain numbesf “holes”. The numbeg is called the genus
of the curve. Let us compute the topological Euler characteristic of such a curve of genus

(o)
Lemma 7.6.4. The Euler characteristic of a curve of genus g is equél to2g.

Proof. Take e.g. the decomposition illustrated in the following picture:

It has 3+ 2 points, 4+ 4 lines, and 4 discs, so the result follows. |

Let us now compare the Euler characteristics of two cukesdY if we have a mor-
phismf : X —Y:

Lemma 7.6.5. Let f: X — Y be a morphism of complex smooth projective curves. Let n
be the number of inverse image points of any point of Y under f. As in proposition 7.6.2
let R be the ramification divisor of f. Therx(X) = —n-X(Y) +degR.

Proof. Choose “compatible” decompositionsXfandy, i.e. loosely speaking decomposi-
tions such that the inverse images of the points / lines / discs of the decompositianef
(finite) unions of points / lines / discs of the decompositiorXofand such that all points
/ lines / discs of the decomposition ¥f arise in this way. Moreover, we require that all
ramification points off are points of the decomposition ¥f (It is easily seen that this
can always be achieved.) Denoteds, o5, 05 the number of points / lines / discs of the
decomposition oK, and similarly forY.

As every point ofY that is not the image of a ramification point hagwerse images
underf, it follows thato} = na” ando} = nay. We do not have} = na§ however: ifP
is a ramification point, i.eep > 1, thenf is locally ep-to-one aroundp, i.e. P counts forep
in no},(, whereas it is actually only one point in the decompositioX oHence we have to
subtracter — 1 for any ramification poinP from nay to get the correct value afy. This
means that} = no} —degRand hence-x(X) = —nx(Y) + degR. O

Corollary 7.6.6. Let X be a (complex) smooth projective curve. THegkx = 29— 2.

Proof. As we have already remarked, any such cotvadmits a surjective morphisiinto
P! by projection. Using that dég,1 = —X(P') = —2 (by lemma 7.4.15 and lemma 7.6.4)
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and applying lemma 7.6.5 together with the Riemann-Hurwitz formula 7.6.2, we see that
degKx = —x(X). The result therefore follows from lemma 7.6.4. d

7.7. The Riemann-Roch theorem.As in the last section leX be a smooth projective
curve of genugy over an algebraically closed field. For any line bundleve want to
compute the dimensions of the vector spdcges) of global sections of.. We will denote
this dimension byn®( L) (the reason for this notation will become obvious when we dis-
cuss cohomology in chapter 8). By abuse of notation we will also wfit®) instead of
h%(O(D)) for any divisorD.

We should remark that this is a classical question that was one of the first problems
studied in algebraic geometry: given a smooth projective cMryeesp. a compact one-
dimensional complex manifold), poin®s, ..., P, € X, and numbersy,...,a >0, what is
the dimension of the space of rational (resp. meromorphic) functiostbat have poles
of order at mosg; at the pointd? and are regular (resp. holomorphic) everywhere else? In
our language, this just means that we are looking for the nuiigagP; + - -- +a;Py).

Example 7.7.1. Let D be a divisor onX with negative degree. Recall that sections of
O(D) are just rational functiong on X such thai$) + D is effective. Taking degrees, this
certainly implies that dg@) + degD > 0. But ded$) = 0 by remark 6.3.5 and dé&y< 0

by assumption, which is a contradiction. Hence we concludert{&t) = 0 if degD < O:
there are no global sections 6fD) in this case.

Example 7.7.2. Let £ be the line bundlex (n) for somen € Z. Recall that sections of
are of the formé with f andg homogeneous such that dieg degg = n. Now for global
sectionsg must be a constant function (otherwise we would have a pole somewhere), so
we conclude thaft (L) is simply then-th graded piece of the homogeneous coordinate ring
S(X).In other wordsh®( £) is by definition equal to the valug (n) of the Hilbert function
introduced in section 6.1. We have seen in proposition 6.1.5ha) is equal to a linear
polynomialxx (n) in nfor n>> 0. Moreover, the linear coefficient gf (n) is the degree
of Ox(n), and the constant coefficient is-1g by definition ofg (see example 6.1.10). So
we conclude that

h%(D) = degD+1—g
if D is the divisor class associated to a line bundgn) for n>> 0.

Theorem 7.7.3.(Riemann-Roch theorem for line bundles on curjdset X be a complex
smooth projective curve of genus g. Then for any divisor D on X we have

h%(D) —h?(Kx — D) = degD +1—g.
Proof. Step 1. Recall that for any poinP € X and any divisorD we have the exact
“skyscraper sequence” by exercise 7.8.4
0— O(D)— O(D+P) —kp —0

where the last morphism is given by evaluation at the pBinFrom this we get an exact
sequence of global sections

0—Tr(o(D))—Tr(o(b+P))—C
(where the last map is in general not surjective, see example 7.1.18). Then&fore
P) —ho(D) is either O or 1. If we denote the left hand side of the Riemann-Roch theorem
by x(D) = h%(D) — h°(Kx — D), we conclude that
X(D+P)—x(D) = (h°(D+P) —h’(D)) + (h°(Kx — D) —h’(Kx ~D—P))

is either 0, 1, or 2. (Of course, what we want to prove is }{& + P) — x(D) is always
equalto 1.)
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Step 2.We want to rule out the case thatD + P) — x(D) = 2. For this we actually
have to borrow a theorem from complex analysis.

So assume th& (D +P) —h%(D) = 1 andh®(Kx — D) —h%(Kx — D —P) = 1. The fact
thath(D + P) —h%(D) = 1 means precisely that there is a global sectiaf Ox (D + P)
that is not a global section afx (D), i.e. thatd is a rational section 0bx (D) that has a
simple pole aP and is regular at all other points. Similarly, there is a global sedio
Ox (Kx — D) that is not a global section @« (Kx — D — P). In other wordsg is a global
section ofwy ® £ that does not vanish & By multiplication we see tha-a is a rational
section of L ® (wx @ L) = wx that has a simple pole Btand is regular at all other points.
In other wordsg - a is a global rational differential form with just a single pole which is
of order 1. But this is a contradiction to the residue theorem of complex analysis: the sum
of the residues of any rational (or meromorphic) differential form on a compact Riemann
surface is zero, but in our case we hgug-x resp(¢ - a) = res (¢ -a) # 0.

Step 3.We claim that

X(D) >degD+1-g

for all divisorsD. Note that we can choose poiis,...,P suchthaD+ Py +---+ B is
precisely the intersection divisor of with a certain numben of hyperplanes: for every
point in D we just choose a hyperplane through that point and add all other intersection
points withX to theR. This then means tha?(D + P, +--- + ) = O(n). By possibly
adding more intersection points ¥fwith hyperplanes we can makearbitrarily large. So
by example 7.7.2 we find that

hO(D+P+---+P)=degD+r+1-g.

Moreover, ifn (and thug') is large enough we see by example 7.7.1 HéKyx — D — Py —
---—P) =0 and therefore

X(D+Pi+---4+P)=degD+r+1—g.

But by step 2 we know that subtracting a point from the divisor will decrgégeby O or
1. If we apply thisr times to the point$,..., P we conclude thag(D) > (degD +r +
1—g)—r, as we have claimed.

Step 4.ReplacingD by Kx — D in the inequality of step 3 yields
—x(D) = h%(Kyx — D) —h%(D) > degkyx —degD +1—g
=—degD—-1+g

as dedx = 2g— 2 by corollary 7.6.6. Combining the two inequalities of steps 3 and 4
proves the theorem. |

Remark7.7.4 If D is the divisor associated to the line bund¥én) (for anyn), note that
X(D) is just the value(x (n) of the Hilbert polynomial. So for these line bundles we can
reinterpret our main proposition 6.1.5 about Hilbert polynomials as follows: the difference
betweenhy (n) and xx(n) is simply h%(wx ® Ox(—n)). As this vanishes for larga by
degree reasons, it follows thiag (n) = xx (n) for largen.

Example 7.7.5.SettingD = 0 in the Riemann-Roch theorem yielf¥Ky ) = g. This gives

an alternate definition of the genus of a smooth projective curve: one could define the genus
of such a curve as the dimension of the space of global differential forms. This definition
has the advantage that it is immediately clear that it is well-defined and independent of the
projective embedding (compare this to example 6.1.10).

Remark7.7.6 In general one should think of the Riemann-Roch theorem as a formula to
computeh®(D) for any D, modulo an “unwanted” correction terh®(Kx — D). In many
applications one can make this correction term vanish, e.g. by making the defrérgé
enough so that déix — D) becomes negative.
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Remark7.7.7. There are numerous generalizations of the Riemann-Roch theorem. In fact,
there are whole books on Riemann-Roch type theorems. Let us mention some of the gen-
eralizations without proof:

(i) The requirement that the ground field Gas not essential. The very same state-
ment holds over any algebraically closed ground field (the proof has to be changed
though at step 2 where we invoked complex analysis).

(ii) The requirement that the curve be projective is not essential either, it only needs
to be complete (i.e. “compact”).

(i) Instead of a line bundle one can take a vector bundlef ils any vector bundle
on X of rankr then

hO(F) —h(wx @ F) = deg\' F +r(1-g)
(see example 10.4.7).

(iv) There are versions of the Riemann-Roch theoremsfogular curves as well.
(Note that in the singular case we do not have a canonical bundle, so one needs a
new idea here.)

(v) There are also versions of the Riemann-Roch theorem for varieties of dimension
bigger than 1 (see theorem 10.4.5).

(vi) Finally, the same theorem can be proven (with the same proof actually) in com-
plex analysis, wherg®(D) then denotes the dimension of the spaceefomor-
phic functions with the specified zeros and poles. As the resulting dimension
does change we conclude that on a projective smooth complex ewevg mero-
morphic function is in fact rational This is an example of a very general result
that says that complex analysis essentially reduces to algebraic geometry in the
projective case (in other words, we “do not gain much” by allowing holomorphic
functions instead of rational ones in the first place).

As an application of the Riemann-Roch theorem let us consider again morphisms to
projective spaces. Let be a smooth projective curve, and [@tbe a divisor onX. Let
%,-.-,S be a basis of the spa€¢ O(D)) of global sections oD(D). Then we have seen
in lemma 7.5.14 that we get a morphism

X—=P', P (s(P): - :5(P))

provided that the sectiongdo not vanish simultaneously at any poibising the Riemann-

Roch theorem we can now give an easy criterion when this is the case. Note first however
that picking a different basis of section would result in a morphism that differs from the
old one simply by a linear automorphism®Bf. Thus we usually say that the divisbr(or

its associated line bundle) determines a morphisi top to automorphisms di' .

Proposition 7.7.8. Let X be a smooth projective curve of genus g, and let D be a divisor
on X.

(i) If degD > 2g then the divisor D determines a morphism-XP" as above.
(i) If degD > 2g+ 1 then moreover this morphism is an embedding (i.e. an isomor-
phism onto its image).

Proof. (i): By what we have said above we simply have to show that for every poinX
there is a global sectiomie I'(O(D)) that does not vanish &

By the degree condition we know that d&g — D) < 2g—2—2g < 0 and de@Kx —
D+P) <2g—2-2g+1<0. So by example 7.7.1 we get from the Riemann-Roch theorem
that

h°(D) =degD+1—-g and h°(D—P)=(degD—1)+1—g.
In particular we havé®(D) —h%(D —P) = 1, i.e. there is a sectia®e ['(O(D)) that is not
a section ofo(D — P), i.e. that does not vanish Bt
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(ii): The idea of the proof is the same as in (i). However, as we have not developed
enough powerful techniques yet to prove that a morphism has an inverse, we will restrict
ourselves to proving that the morphism determinedbig bijective. So letP andQ be
distinct points ofX. To prove that they are mapped to different points it suffices to show
that there is a sectiosc I'(O(D)) with s(P) = 0,5(Q) # 0: the morphisnR+— (s(R) :
S(R):---) then maps to a point with the first coordinate 0, while the first coordinate is
non-zero for the image point &J.

To find this sectiors, simply apply the argument of (i) 0 — P and the poinQ: we get
ho(D—P) —h%(D - P—Q) = 1, i.e. there is a secticg I'(O(D — P)) that is not a section
of O(D—P—Q), i.e. itis a section 0D(D) that vanishes & but not atQ. O

Example 7.7.9.1f X is a smooth projective curve of gengs> 2 we get acanonical
embeddingX — P into a projective space (up to automorphismsmy by taking the
morphism associated to the divisdf;3 This follows by part (ii) of proposition 7.7.8 as
3(29—2) > 2g+1if g> 2. By remark 7.7.7 (ii) the same is true for any complete (i.e.
“compact”) curve that is not necessarily given initially as a subvariety of projective space.

7.8. Exercises.

Exercise 7.8.1.Let ¥’ be a presheaf on a topological spageand let be its sheafifica-
tion as in definition 7.1.10. Show that

(i) There is a natural morphisé: ¥ — F.
(i) Any morphism from¥’ to a sheaf factors uniquely throu@h

Exercise 7.8.2.Let f : F — G be a morphism of sheaves of abelian groups on a topological
spaceX. Show thatf is injective / surjective / an isomorphism if and only if all induced
mapsfp : Fp — Gp on the stalks are injective / surjective / isomorphisms.

Exercise 7.8.3.Let f : 1 — F» be a morphism of locally free sheaves on a sch&meger
a fieldk. Let P € X be a point, and denote kyF; )p the fiber of the vector bundié; over
P, which is ak-vector space. Are the following statements true or false:

() If 71 — %, is injective then the induced mdp1)p — (F2)p is injective for all
PeX.

(i) If 12— Fois surjective then the induced még )p — (F2)p is surjective for all
PeX.

Exercise 7.8.4.Prove the following generalization of example 7.1.16XIfs a smooth
curve over some fiel#, £ a line bundle orX, andP € X a point, then there is an exact
sequence

0— L(—P)— L —-kp—0,
wherekp denotes the “skyscraper sheaf”

k ifPeU
kp(U) = ’
P(U) {o ifP¢U.

Exercise 7.8.5.If X is anaffinevariety over a fieldkk and # a locally free sheaf of rank
onX, is then necessarilff = 05" ?

Exercise 7.8.6.Let X be a scheme, and | be a locally free sheaf oK. Show that
(FV)V = F. Show by example that this statement is in general fal$g i§ only quasi-
coherent but not locally free.

Exercise 7.8.7.Figure out what exactly goes wrong with the correspondence between line
bundles and divisor classes on a cuXve X is singular. Can we still associate a divisor to
any section of a line bundle? Can we still construct a line bundle from any divisor?
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Exercise 7.8.8.What is the line bundle off" x P™ leading to the Segre embeddifg x
P™ — PN by the correspondence of lemma 7.5.14? What is the line bundle leading to the
degreed Veronese embeddirig® — PN?

Exercise 7.8.9.Show that any smooth projective curve of genus 2. ..

(i) can be realized as a curve of degree B
(i) admits a two-to-one morphism . How many ramification points does such a
morphism have?

Exercise 7.8.10.Let X be a smooth projective curve, and Rt X be a point. Show that
there is a rational function oX that is regular everywhere exceptrat
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8. COHOMOLOGY OF SHEAVES

For any quasi-coherent sheaf F on a scheme X we construct the cohomology groups
Hi (X, F) fori > 0 using the Cech complex associated to an affine open cover of X.
We show that the cohomology groups do not depend on the choice of affine open
cover. The cohomology groups H' (X, F) vanish fori > 0 if X is affine, and in any
case fori > dimX.

For any short exact sequence of sheaves on X there is an associated long exact
sequence of the corresponding cohomology groups.

If L is a line bundle of degree at least 2g— 1 on a smooth projective curve of genus
g then the cohomology group Hl(X, L) is zero. Using this “vanishing theorem” we
reprove the Riemann-Roch theorem in a cohomological version. Comparing this to
the old version yields the equality dimHO(Kx — D) = dimHY(D) for any divisor D,
which is a special case of the Serre duality theorem. As an application we can now
define the genus of a possibly singular curve to be dimH(X, Ox).

We compute the cohomology groups of all line bundles on projective spaces. As a
consequence, we obtain the result that the cohomology groups of coherent sheaves on
projective schemes are always finite-dimensional vector spaces, and that H' (X, ¥ ®
Ox(d)) =0foralli >0andd>> 0.

8.1. Motivation and definitions. There are numerous ways to motivate the theory of co-
homology of sheaves. Almost all of them are based on the observation that “the functor of
taking global sections of a sheaf is not exact”, i.e. given an exact sequence of sheaves of
Abelian groups

0—F—Fo—F3—0
on a scheme (or topological spaeg)by taking global sections we get an exact sequence
0—T (1) =T () —-T(Fs)
of Abelian groups in which the last md #2) — I'(¥3) is in general not surjective. We
have seen one example of this in example 7.1.18. Here is one more example:

Example 8.1.1.Let X C P" be a smooth hypersurface of degdasith inclusion morphism
i : X — P". We know from lemma 7.4.15 that the cotangent sheddits into an exact
sequence of vector bundles

0— Qpn — O(—=1)®M™D _, 0 0.

Pulling this sequence back lhyand taking global sections, we see that we have an exact
sequence

0— [ (i*Qpn) — F(Ox(=1)2(MD)y ...
But Ox(—1) has no global sections, so we conclude th@n has no global sections either.
Now consider the exact sequence of lemma 7.4.16

0— Ox(—d) —i"Qpn — Qx — 0,
from which we deduce the exact sequence
0—T(Ox(—d)) =T (i"Qpn) — ' (Qx).

We have just seen that the first two groups in this sequence are trivial.l B) is
not trivial in general (e.qg. for a cubic curve It we haveQy = Ox and thus™ (Qx) = k).
Hence the last map in the above sequence of global sections cannot be surjective in general.

We have however already met a case in which the induced map on global séstions
exact: ifX = SpedR is anaffinescheme andi = M; for someR-modulesM; arequasi-
coherentsheaves oiX then by lemma 7.2.7 (ii) the sequence

O—-F—Fo— F3—0
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is exact if and only if the sequence
0—=T(F1)—=T(F2) —T(F)—0

is exact (note thaft (%) = M; by proposition 7.2.2 (ii)). We have mentioned already that
essentially all sheaves occurring in practice are quasi-coherent, so we will assume this from
now on for the rest of this chapter.

The conclusion is that we know that taking global sections is an exact functor if the
underlying scheme is affine. The goal of the theory of cohomology is to extend the
global section sequence to the right for all scheei the following sense: for any
(quasi-coherent) sheaf on X we will define natural cohomology groups (X, F) for
all i > 0 satisfying (among other things) the following property: given any exact sequence
0— Ff1 — F» — F3 — 0 of sheaves oiX, there is an induced long exact sequence of
cohomology groups

0— () —T(F) —(F) —HYX, F1) — HY(X, ) — HL(X, Fa) — HA(X, F1) — -~

If X is an affine scheme thett' (X, #) = 0 for alli > 0, so that we arrive again at our old
result that the sequence of global sections is exact in this case.

Let us now give the definition of these cohomology groups. There are various ways to
define these groups. In these notes we will use the approach of so€attadohomology.
This is the most suitable approach for actual applications (but maybe not the best one from
a purely theoretical point of view). The ideaGéch cohomology is simple: we have seen
above that the global section functor is exact (i.e. does what we finally waXtjsifan
affine scheme. So K is any scheme we will just choose an affine open cqigt of X
and consider sections of our sheaves on these affine open subsets and their intersections.

Definition 8.1.2. Let X be a scheme, and 6t be a (quasi-coherent) sheaf ¥n Fix an
affine open covefU;}ic| of X, and assume for simplicity thatis an ordered set. For all
p > 0 we define the Abelian group

Cp(_‘}—): |_| T(Uioﬂ"'ﬂuip)‘

i0<~'-<ip

In other words, an elementc CP( ) is a collectiona = (aiy,....i,) Of sections ofF over
all intersections op+ 1 sets taken from the cover. These sections can be totally unrelated.

For everyp > 0 we define a “boundary operatai® : CP(F) — CPH1(F) by

p+1
k
(dpa)i07~-~:ip+l = z (-1 ai07-~-7ik—1=ik+17-~-7ip+1|Ui0ﬂ”'ﬂUip+1'

Note that this makes sense as mg,_,vik%’ikﬂ_jpﬂ are sections off onUj;N---NU;,_, N
Uiy, N---NUi,,,, which containdJi, N---NU; ., as an open subset.

By abuse of notation we will denote all these operators simply Kyt is clear from
the context on whicleP(F) they act.

Lemma 8.1.3. Let 7 be a sheaf on a scheme X. ThetttodP : CP(F) — CP*2(F) is
the zero map for all p> 0.
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Proof. This statement is essentially due to the sign in the definitiosooffor everya e
CP(¥) we have

p+2
(dp+ldpa)io,»-»-,ip+2 = k;)(f1)k(da)|0-~-~=ik717ik+17<~7ip+2
p+2k—1
= % Z (_1)k+mai0:~-~:im—1=im+1a---aik—l~,ik+lw---aip+2
k=0m=0
p+2 p+2
+y (=D ™ iy iy bt i imetoipi2
k=0m=k+1
=0
(omitting the restriction maps). O

We have thus defined a sequence of Abelian groups and homomorphisms
0 1 2
co(F) -Lclir) Locqr) L
such thatdP*1 o dP = 0 at every step. Such a sequence is usually callednaplex of
Abelian groups. The mam are then called thboundary operators.

Definition 8.1.4. Let ¥ be a sheaf on a schenXe Pick an affine open covelt;} of X
and consider the associated gro@¥ ) and homomorphismgP : CP(F) — CP+1(F)
for p > 0. We define thep-th cohomology groupof ¥ to be

HP(X, ) =kerd?/imdP!
with the convention thaEP(#) anddP are zero forp < 0. Note that this is well-defined
as imdP~1 ¢ kerdP by lemma 8.1.3. IiX is a scheme over a fiekithen the cohomology

groups will be vector spaces ovier The dimension of the cohomology groulds(X, F)
as ak-vector space is then denotedX, 7).

Remark8.1.5 The definition of the cohomology groups as it stands depends on the choice
of the affine open cover of. Itis a very crucial (and non-trivial) fact that the (X, F)
actually donot depend on this choice (as we have already indicated by the notation). It is
the main disadvantage of oGech approach to cohomology that this independence is not
obvious from the definition. There are other constructions of the cohomology groups (for
example the “derived functor approach” of [H] chapter IIl) that never use such affine open
covers and therefore do not face this problem. On the other hand, these other approaches
are essentially useless for actual computations. This is why we have givéedheap-
proach here. We will prove the independence of our cohomology groups of the open cover
in section 8.5. For now we will just assume this independence and rather discuss the prop-
erties and applications of the cohomology groups.

Example 8.1.6. The following examples follow immediately from the definition and the
assumption of remark 8.1.5:

() For anyX and ¥ we haveH?(X, #) = T'(F). In fact, we haveH%(X, F) =
ker(d?: CO(F) — CL(¥)) by definition. But an element € CO(¥) is just given
by a sectiorn; € ¥ (U;) for every element of the open cover, and the rd8is
given by (ai — aj)|ynu;- By the sheaf axiom this is zero for alland j if and
only if the a; come from a global section gf. HenceH®(X, ) =T (¥). (In
particular, our definition oh®(£) in section 7.7 is consistent with our current
definition ofh%(X, £).)

(i) If X is an affine scheme theti (X, F) = 0 fori > 0. In fact, if X is affine we can
pick the open cover consisting of the single elenm¥nin which case the groups
C'(#) and hence thel' (X, ¥) are trivially zero fori > 0.
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(i) If X is a projective scheme of dimensiorthenH' (X, #) = 0 wheneveii > n.
In fact, by proposition 4.1.9 we can pick homogeneous polynonfils ., f,
such thatX N Z(fo,..., fn) = 0. We thus get an open cover ¥f by then+ 1
subsets<\Z(f;) which are all affine by proposition 5.5.4. Using this open cover
for the definition of the cohomology groups, we see thadhi&) and hence the
H' (X, F) are zero foi > n. Note that the same is true for any scheme that can be
covered byn+ 1 affine open subsets.

Note that for (i) we did not need the independence of the cohomology groups of the open
cover, but for (i) and (i) we did. In fact, the last two statements are both highly non-trivial
theorems about cohomology groups. They only follow so easily in our setup because we
assumed the independence of the cover.

Example 8.1.7.LetX =P* and¥ = O. By example 8.1.6 (i) we know th&t®(P!, 0) >~k

is simply the space of (constant) global regular functions, and by part (iii) we know that
H'(P,0) =0 fori > 1. So let us determinel(P,0). To compute this cohomology
group let us pick the obvious affine open colgre= {x; # 0} fori = 0,1. Then

Ccl(0) = 0(UyNUy)

f
= ¢ ——; f homogeneous of degreet b}
{ngl

o

=( 5 Mm+n=a+bandmn,ab>0).
XoX1

Of course the conditiom+n = a+ b implies that we always hava >aorn>b. So

every such generator is regular on at least one of the open silsatsiU;. It follows
that every such generator is in the image of the boundary map

d°:C°%(0) = 0(Up) x O(U1) — O(UpNUyz), (0o, A1) — A1 — Uolugnu; -
ConsequentlyH! (P!, 0) = 0 by definition of the cohomology groups.

Example 8.1.8.1n the same way as in example 8.1.7 let us now compute the cohomology
groupH*(P!, 0(—2)). With the same notations as above we have now

C(0(=2)) = 0(—2)(UoNU1)

X3

:<@@

Xo%

The conditionm+n=a+b— 2 implies thatm>a—1 orn>b—1. If one of these
inequalities is strict, then the corresponding gener%ér is regular onJg or U; and is

= {f ; f homogeneous of degrcae+b—2}

.m+n:a+b—2>.

therefore zero in the cohomology groi (P!, 0(—2)) as above. So we are only left
with the functionﬁ where neither inequality is strict. A8%(0(—2)) = 0 and so the
boundary operatai! is trivial, we conclude thaitl*(P%, O(—2)) is one-dimensional, with

the functiony . as a generator.

8.2. The long exact cohomology sequencelhe main property of the cohomology groups
is that they solve the problem of finding an exact sequence of sections associated to a short
exact sequence of sheaves:
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Proposition 8.2.1.Let0 — F;, — %> — F3 — 0be an exact sequence of sheaves on a (sep-
arated) scheme X. Then there is a canonical long exact sequence of cohomology groups
0— HO(X, A1) — HO(X, o) — HO(X, %3)
— HY(X, 1) = HY(X, F2) — HY(X, Fa)
—H2(X, F)— .

Proof. Consider the diagram of Abelian groups and homomorphisms

0— > CP(f) — > CP(Fo) — %~ CP(F3) — >0

The columns of this diagram are complexes (@e.d = O at all places) by lemma 8.1.3.

We claim that the rows of this diagram are all exact: by lemma 7.2.7 (ii) and what we have
said in section 8.1 we know that the sequences @1 (U) — (U) — F3(U) — 0 are

exact on evenaffineopen subsdt) of X. But the intersection of two (and hence finitely
many) affine open subsets X¥fis again affine abl NV = Ax N (U x V) is a closed subset

of an affine scheml xV (whereAyx C X x X denotes the diagonal &). As theCP( %)

are made up from sections on such open subsets, the claim follows. Moreover, note that all
squares in this diagram are commutative by construction.

The statement of the proposition now follows from a basic lemma of homological alge-
bra: O

Lemma 8.2.2. Any short exact sequence of complexes

f
0 —>cp1l—>pp1_—9s gp1 0
d d d
f g
0 cP DP EP 0
d d d
0 —— cptt 4f> pPt+l 9 EP+1 0
d d d
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(i.e. the @,DP, EP are Abelian groups, the diagram commutes, the rows are exact and the
columns are complexes) gives rise to a long exact sequence in cohomology

... —HPYE) - HP(C) — HP(D) — HP(E) — HP*}(C) — ---

where HP(C) = ker(CP — CP*1) /im(CP~1 — CP), and similarly for D and E.

Proof. The proof is done by pure “diagram chasing”. We will give some examples.

(i) Existence of the morphismg: HP(C) — HP(D): leta € HP(C) be represented
by an element irCP (which we denote by the same letter by abuse of notation).
Thenda = 0 € CP*L. Sety(a) = f(a). Note thatdy(a) = f(da) = 0, so
W(a) is a well-defined cohomology element. We still have to check that this
definition does not depend on the representative choséR.igo if a = da’ for
somea’ € CP~1 (so thata = 0 in HP(C)) theny(a) = f(da’) = d f(a’) (so that
W(a) =0inHP(D)).

(i) The existence of the morphisnit®(D) — HP(E) follows in the same way: they
are simply induced by the morphisrgs

(iii) Existence of the morphismg: HP(E) — HP*1(C): The existence of these “con-
necting morphisms” is probably the most unexpected part of this lemmat. thet

a (representative of a) cohomology elemerif so thada = 0. Asg: DP — EP

is surjective, we can pick B € DP such thatg(B) = a. Consider the element

dB € DP*1, We haveg(dB) = dg(B) = da = 0, sodB is in fact of the formf (y)

for a (unique)y € CP*1, We setp(a) = y.
We have to check that this is well-defined:

(a) dy = 0 (so thaty actually defines an element in cohomology): we have
f(dy) = df(y) = d(dB) = 0 as the middle column is a complex, dp= 0
as thef are injective.

(b) The construction does not depend on the choidg @f we pick another’
with g(B') = a theng(B—p') =0, soB — B’ = f(d) for somed € CP as the
p-th row is exact. Now ify andy are the elements such thity) = dp and
f(y)=p thenf(y—y)=d({B—p)=df(d) = f(dd). As f is injective we
conclude thay—y = d&, soy andy define the same elementktP+1(C).

(c) If a = da’ for somea’ € EP~? (so thata defines the zero element in co-
homology) then we can pick an inverse img8jewith g(f’') = o’ asg is
surjective. For3 we can then takep’. But thendp = d(df’) = 0 as the
middle column is a complex, so the resulting elemert i1 (C) is zero.

Summarizing, we can say that the morphistf(E) — HP+1(C) is obtained by
going “left, down, left” in our diagram. We have just checked that this really
gives rise to a well-defined map.

We have now seen that there is a canonical sequence of morphisms between the cohomol-
ogy groups as stated in the lemma. It remains to be shown that the sequence is actually
exact. We will check exactness at thi?(D) stage only (i.e. show that ke4P(D) —
HP(E)) = im(HP(C) — HP(D)) and leave the other two checks {4P(C) andHP(E))
that are completely analogous as an exercise.
im(HP(C) — HP(D)) c ker(HP(D) — HP(E)): Leta € HP(D) be of the formo = f(B)
for somep € HP(C)). Theng(a) = g(f(B)) = 0 as thep-th row is exact.
ker(HP(D) — HP(E)) C im(HP(C) — HP(D)): Leta € HP(D) be a cohomology ele-
ment (i.e.da = 0) such thag(a) = 0 in cohomology, i.eg(a) = dp for someEP~1. Asg
is surjective we can pick an inverse image DP~* of B. Then

g(a —dy) = g(a) —g(dy) = g(a) —dB =0,
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so there is & € CP such thatf (d) = a — dy as thep-th row is exact. Note thal defines
an element irHP(C) asf(dd) = d(a —dy) = 0— 0= 0 and thusdd = 0 asf is injective.
Moreover,f(d) = a in HP(D) by construction, sa € im(HP(C) — HP(D)). O

Example 8.2.3. Consider the exact sequence of sheaveX enP*
0— 0(—2) 2% 0 —kpakg — 0
from example 7.1.18, whee= (0: 1) andQ = (1: 0), and the last map is given by evalu-

ation atP andQ. From proposition 8.2.1 we deduce an associated long exact cohomology
sequence

0— H(X,0(-2)) — H%(X,0) — H(X,kp © kg) — HY(X,0(-2)) = H}(X,0) — ---.

Now HO(X, O(—2)) = 0 by example 7.7.1 and*(X, O) = 0 by example 8.1.7. Moreover,

HO(X, 0) is just the space of global (constant) functioH8(X, ke @ kq) is isomorphic to

k x k (given by specifying values at the poirfsandQ), andH(X,0(-2)) = <ﬁ> is

1-dimensional by example 8.1.8. So our exact sequence is just
0—-k—kxk—k—0.

We can actually also identify the morphisms. The first morphism in this sequence is
(a,a) as it is the evaluation of the constant funct®at the points® andQ. The second
morphism is given by the “left, down, left” procedure of part (iii) of the proof of lemma
8.2.2 in the following diagram:

0 —— CY%0(-2)) ——= C%(0) ——= Cokpdkg) — 0

| | |

0 —— CY0(-2)) ——= CY0) ——= Clkpkg) —= 0

Starting with any elemer(ta, b) € C%(kp ® ko) we can find an inverse image @?(0) =
O(Up) x O(U1) (with U; = {x; # 0}, namely the pair of constant functiofts a) (asP € U;
andQ € Up). Going down in the diagram yields the functian- b € O(UynNU;) by the
definition of the boundary operator. Recalling that the morphism f&¢m?2) to O is given
by multiplication withxgx;, we find thati.%)g is the element ilC(O(—2)) that we were

looking for. In terms of the basis vect%lx—l of H1(X, 0(—2)) this function has the single
coordinatea— b. So in this basis our exact cohomology sequence becomes

0 - k — kxk — k — 0
a — (aa
(aab) = a*ba
which is indeed exact.

8.3. The Riemann-Roch theorem revisited.Let us now study the cohomology groups
of line bundles on smooth projective curves in some more detail. Sobetsuch a curve,
and let£ be aline bundle oX. Of course by example 8.1.6 (i) and (jii) the only interesting
cohomology group i$4%(X, £). We will show that this group is trivial if is “positive
enough”™

Proposition 8.3.1. (Kodaira vanishing theorem for line bundles on curveket X be a
smooth projective curve of genus g, and febe a line bundle on X such thdegs >
29— 1. Then H(X, £) = 0.

Proof. We computeH*(X, £) using our definition of cohomology groups. Solgtc X
be an affine open subset ¥t It must be of the fornX\{Py,...,P } for some point
on X. Now pick any other affine open sub&ét C X that contains the poinf3. ThenU;
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is of the formX\{Qy,...,Qs} with B # Q; for all i, j. So we have an affine open cover
X =UpgUUj1.

By definition we haved (X, £) = £L(UpNU;)/(L(Uo) + L£(U1)). Note thatZ(UpNUy)
is precisely the space of rational sections'ahat may have poles at the poifgsandQ);,
and similarly for£(Ug) and £(U;1). In other words, to prove the proposition we have to
show that any rational sectianof £ with poles at thd> andQ; can be written as the sum
of two rational sectionsig anday, whereag has poles only at thig anday only at theQ;.

So leta be such a rational section. It is a global sectioLaf Ox (a1Py + -+ a P +
b1Q1 + - +bsQs) for somea;, b > 0.

Let us assume that; > 1. Note that then the degree of the line bundie® £¥ ®

Ox(—ayP1 —--- —&/P) is at most—2 by assumption and corollary 7.6.6. Hence by the
Riemann-Roch theorem 7.7.3 (and example 7.7.1) it follows that

h(L® Ox(aaPi+---+aP)) =degl +ai+--+a +1-g.
In the same way we get
(L@ Ox((ar—1)PL+---+aP)) =degl +a1 —14+ap+---+a +1—g.
We conclude that
(L& Ox(@Pi+ - +aP)) - (Lo O0xk((@m—1)Pi+ +aR)) =1

So we can pick a rational sectiofjin I'(L® Ox (a1Py+--- +aP;)) thatis notin (h°(L®
Ox((aa—1)PL+---+aP))), i.e. a section that has a pole of order exaailytP;.
Now a andag are both sections of the one-dimensional vector space

ML®Ox(aPi+-+a&R))/M(L&Ox((aa—1)PL+- - +aP)),

and moreoveqy is not zero in this quotient. So by possibly multiplyiag with a constant
scalar we can assume that- g is inlM(L® Ox((a1 —1)Pi+--- +aP)).

Note now thati has poles only at th, whereas the total order of the polesoof- aj,
at theR is at mosta; +--- +a — 1. Repeating this process we arrive aftgr - -- + a;
steps at a rational sectiay with poles only at thd} such thati; ;= o — ap has no poles
any more at th&. This is precisely what we had to construct. O

Remark8.3.2 As in the case of the Riemann-Roch theorem there are vast generalizations
of the Kodaira vanishing theorem, e.g. to higher-dimensional spaces. One version is the
following: if X is a smooth projective variety thét (X, wx © Ox(n)) = 0 for alli > 0 and

n> 0. Note that in the case of a smooth curve this follows from our version of proposition
8.3.1, as de@ux ® Ox(n)) =2g—2+1>2g—1.

In general cohomology groups “tend to be zero quite often”. There are many so-called
vanishing theorems that assert that certain cohomology groups are zero under some condi-
tions that can hopefully easily be checked. We will prove one more vanishing theorem in
theorem 8.4.7 (ii). Of course, the advantage of vanishing cohomology groups is that they
break up the long exact cohomology sequence of proposition 8.2.1 into smaller pieces.

Using our Kodaira vanishing theorem we can now reprove the Riemann-Roch theo-
rem in a “cohomological version”. In analogy to the notation of section 7.7 let us denote
H(X, 0x(D)) also byH(D) for any divisorD, and similarly forh}(D).

Corollary 8.3.3. (Riemann-Roch theorem for line bundles on curves, second version
Let X be a smooth projective curve of genus g. Then for any divisor D on X we have

h%(D) —h'(D) = degD +1—g.
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Proof. From the exact skyscraper sequence
0— Ox(D) — Ox(D+P) - ke —0
for any pointP € X we get the long exact sequence in cohomology
0— H%D) - H%D+P) - k—HYD) - H(D+P)—0

by proposition 8.2.1. Taking dimensions, we conclude i@+ P) — x(D) = 1, where
X(D) :=ho(D) — h'(D). It follows by induction that we must have

h°(D) — h'(D) = degD + ¢

for some constart (that does not depend @). But by our first version of the Riemann-
Roch theorem 7.7.3 we have

h%(D) — h?(Kx — D) = degD +1—g.

So to determine the constantwe can pick a divisoD of degree at leastg?— 1: then
h'(D) vanishes by proposition 8.3.1 ahf(Kyx — D) by example 7.7.1. So we conclude
thatc = 1—g, as desired. O

Remark8.3.4 Comparing our two versions of the Riemann-Roch theorem we see that we
must haveh®(wx @ £") = ht(£) for all line bundlesZ on a smooth projective curvé. In

fact, this is just a special case of tBerre duality theorem that asserts that for any smooth
n-dimensional variet)X and any locally free sheaf there are canonical isomorphisms

HY(X, F) = H" (X,ax @ F )"
for all i = 0,...,n. Unfortunately, these isomorphisms cannot easily be written down.

There are even more general versions for singular vari¥teasd more general sheavgs
We refer to [H] section I11.7 for details.

Note that our new version of the Riemann-Roch theorem can be used to define the genus
of singular curves:

Definition 8.3.5. Let X be a (possibly singular) curve. Then thenusof X is defined to
be the non-negative integbt(X, Ox). (This definition is consistent with our old ones as
we can see by setting = Ox in corollary 8.3.3.)

Let us investigate the geometric meaning of the genus of singular curves in two cases:

Example 8.3.6.Let Cq,...,Cy be smooth irreducible curves of gengga. . .,gn, and de-
note byC = Cy U--- UC, their disjoint union. Now pick pairs of pointsP,Q; € € that
are all distinct, and denote I the curve obtained fror by identifying everyR with

the corresponding; fori =1,...,r. Curves obtained by this procedure are caliedal

curves

To compute the genus of the nodal cu€/gve consider the exact sequence
0— Oc — @il 0 — Bi_tkn — 0
where the last mapsi ; Oc, — kg are given by evaluation & minus evaluation a®;.
The sequence just describes the fact that regular functio@sase precisely functions on
C that have the same valueRtandQ; for all i.
By proposition 8.2.1 we obtain a long exact cohomology sequence

0— HO(C,0c) — #[L4H(Ci, 0g) — K™ — HY(C, 0c) — &{L4H'(Ci, 0g) — 0.

Taking dimensions, we get-dn-+r —h'(C, 0c) + ¥; gi = 0, so we see that the genus®f

is ¥igi+r+1—n. If Cis connected, note that- 1 —nis precisely the number of “loops”

in the graph ofC. So the genus of a nodal curve is the sum of the genera of its components
plus the number of “loops”. This fits well with our topological interpretation of the genus
given in examples 0.1.2 and 0.1.3.
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O

|

A\ -

genus=g;+ g, genus=g;+ g,+ gs+1 genus=g, +1

Proposition 8.3.7. Let X C P? be a (possibly singular) curve of degree d, given as the
zero locus of a homogeneous polynomial f of degree d. Then the genus of X is equal to
1

z(d=1)(d-2).

Proof. Let xg, x1, X be the coordinates d#2. By a change of coordinates we can assume
that the point(0 : 0 : 1) is not onX. Then the affine open subsets = {xg # 0} and
Ui = {x1 # 0} coverX. So in the same way as in the proof of proposition 8.3.1 we get

HY(X, 0x) = Ox(UoNU1)/(Ox (Uo) + Ox (U1)).

Moreover, the equation df must contain an3-term, so the relatiori = 0 can be used to
restrict the degrees ixp of functions onX to at mostd — 1. Hence we get

i
Ox(UoNUy) =4 22 :0<i<d—1landi=]+k
XoX

and

i
Ox(Up)=1{ -2 ;0<i<d-1,k<0,andi=j+k
XoX1
(and similarly forOx (U1)). We conclude that
i

Hl(X,Ox):{ %2 'Ogigd—l,j>0,k>0,andi:j+k}.

-
To compute the dimension of this space note that for a given valu@wbiich can run from
0tod — 1) we geti — 1 choices ofj andk (namely(1,i — 1), (2,i —2),...,(i—1,1)). So
the total dimension ig!(X,0x) = 1+2+---+(d—2) = 3(d - 1)(d - 2). O

Remark8.3.8 The important point of proposition 8.3.7 is that the genus of a curve is
constant in familiesif we degenerate a smooth curve into a singular one (by varying the
coefficients in its equation) then the genus of the singular curve will be the same as the
genus of the original smooth curve. This also fits well with our idea in examples 0.1.2 and
0.1.3 that we can compute the genus of a plane curve by degenerating it into a singular one,
where the result is then easy to read off.

Remark8.3.9 Our second (cohomological) version of the Riemann-Roch theorem is in
fact the one that is needed for generalizations to higher-dimensional varietdéss Hn
n-dimensional projective variety anfl a sheaf orX then the generalized Riemann-Roch
theorem mentioned in remark 7.7.7 (v) will compute Ehder characteristic

S5

XX F) = Y (~1) (X, F)
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in terms of other data that are usually easier to determine than the cohomology groups
themselves.

8.4. The cohomology of line bundles on projective spaced.et us now turn to higher-
dimensional varieties and compute the cohomology groups of the line budig{e$ on
the projective spack = P".

Proposition 8.4.1. Let X=P", and denote by S k[xg, ..., X,] the graded coordinate ring
of X. Then the sheaf cohomology groups of the line bur@g€d) on X are given by:

() @DgezHO(X,0x(d)) =S as graded k-algebras,
(i) DgezH"(X, 0x(d)) = S as graded k-vector spaces, whefeSS with the grad-
ing givenby $=S n_1-4.
(i) H'(X,0x(d)) = 0whenever i 0and i# n.

Remarlk8.4.2 By splitting up the equations of (i) and (ii) into the graded pieces one obtains
the individual cohomology grougs' (X, Ox(d)). So for example we have
(4 ifd<-n-1,

n

h"(x,ox(d))hO(x,ox(nld)){o ifd>-n_1.

(Note that the equality of these two dimensions is consistent with the Serre duality theorem
of remark 8.3.4, sincexx = Ox(—n—1) by lemma 7.4.15.)

Proof. (i) is clear from example 8.1.6 (i).

(i1): Let {U;} for 0 <i < nbe the standard affine open covedgfi.e.U; = {x # 0}. We
will prove the proposition for altl together by computing the cohomology of the quasi-
coherentgradedsheaf Fx = @y Ox (d) while keeping track of the grading (note that
cohomology commutes with direct sums). This is just a notational simplification.

Of course we hav®i, i, = {Xig---- X # 0}. S0 F(Uj,,..i,) is just the localization
&io...)qk. It follows that the sequence of grou@( #x) reads
I._l S“o - |_| S(ioxil — e |_| S<o-'-Xj71Xj+1“‘Xn — S (*)
io 1<y ]

Looking at the last term in this sequence, we compute that
H'(X, F) = cokel(r' S X _1Xj 1% Sxn)
j

— (XX e zy /(o Xl s i > 0 for somei)
— (x...xJn; ji < O foralli)
1
= ———kxgh .t
XO"‘Xn [XO b 7Xn ]a
so up to a shift of degp - - - xn = n+ 1 these are just the polynomialsXrwith non-positive
exponents. This shows (ii).
(iii): We prove this by induction om. There is nothing to show far=1. LetH =

{x, = 0} = P"~1 be a hyperplane. Note that there is an exact sequence of sheaXes on

0— Ox(d—1) — Ox(d) — O4(d) — 0

for all d, where the first map is given by multiplication wiij, and the second one by
settingx, to 0. Taking these sequences together fod&lZ we obtain the exact sequence

0—F(-1) B F - Fy —0
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where we setf (—1) = ¥ ® Ox(—1). From the associated long exact cohomology se-
guence and the induction hypothesis we get the following exact sequences:
0— HO(X, F(~1)) = HO(X, F) — HO(H, ) — HY(X, F (1)) — H(X, F) — 0,
0—H(X,F(-1)) - HI(X,¥)—0 forl<i<n-—1,
0— H" (X, F(-1)) = H" (X, F) = H" Y (H, Fy) — H"(X, F (=1)) — H"(X, F) — 0.

So first of all we see thatl' (X, 7 (—1)) = H' (X, F) forall 1 < i < n— 1. We claim that
this holds in fact for I<i < n— 1. To see this for = 1 note that the first exact sequence
above starts with

0— k[xo7...,xn]ﬁ‘> [X0,---s%n] — K[X0, -+, Xn—1] — -+,

which is obviously exact on the right, so it follows that(X, F (-1)) = H(X,F). A
similar analysis of the third exact sequence above, using the explicit description of the
proof of part (i), shows thaH" (X, F(—1)) = H" (X, ¥). So we see that the map
HI(X, F(—1)) 22 Hi(X, F) is an isomorphism for all X i <n—1. (Splitting this up
into the graded parts, this means thtX, Ox (d — 1)) = H'(X, O (d)) for all d, i.e. the
cohomology groups do not depend @nWe still have to show that they are in fact zero.)

Now localize theCech complexx) with respect tox,. Geometrically this just means
that we arrive at the complex that computes the cohomologl oh U, = {x, # 0}. As
U, is an affine scheme and therefore does not have higher cohomology groups by example
8.1.6 (i), we see that

H'(X, F)x, = H'(Un, F|u,) = 0.
So for anya € H'(X, F) we know that< - a = 0 for somek. But we have shown above

that multiplication withx, in H'(X, F) is an isomorphism, sa = 0. This means that
H'(X, ) =0, as desired. O

Example 8.4.3. As a consequence of this computation we can now of course compute the
cohomology groups of all sheaves Bhthat are made up of line bundles in some way. Let
us calculate the conomology groul$(X, Qx) as an example. By the Euler sequence of
lemma 7.4.15

0— Qpn — O(—l)ée(ml) —-0—0
we get the long exact cohomology sequence
0 HO(Qsn) — H(O(~1)*™? — H(0)
= HY(Qen) — HY(0(-1)*"Y — HY(0)
— H%(Qpn) — - .

By proposition 8.4.1 the cohomology groups@(f-1) are all zero, while the cohomology
groupsH'(0) are zero unlesis= 0, in which case we hay&(0) = 1. So we conclude that

i (P, Qpn) = {1 ifi = 1,_
0 otherwise.

As an application of our computation of the cohomology groups of line bundles on pro-
jective spaces, we now want to prove in the rest of this section that the cohomology groups
of certain “finitely generated” quasi-coherent sheaves on projective schemes are always
finite-dimensional. Let us first define what we mean by this notion of finite generation.

Definition 8.4.4. Let X be a scheme. A shedf on X is calledcoherentif for every affine
open subsdtl = Sped C X the restricted shegf |y is the sheaf associated tdinitely
generated Rmodule in the sense of definition 7.2.1.
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Remark8.4.5 Except for the finite generation condition this definition is precisely the
same as for quasi-coherent sheaves. Consequently, our results that essentially all operations
that one can do with quasi-coherent sheaves yield again quasi-coherent sheaves carry over
to coherent sheaves without much change.

To show that the cohomology groups of coherent sheaves on projective schemes are
finite-dimensional we need an auxiliary lemma first.

Lemma 8.4.6. Let X be a projective scheme over a field, andAidbe a coherent sheaf on
X. Then there is a surjective morphisi (—d)®" —  for some d and n.

Proof. Let X C P = Projk[xo, . ..,%| and consider the standard affine open subidets
Sped® C X given byx; # 0. As ¥ is coherent,¥ |y, is of the formM;, whereM; is a
finitely generated®-module. Lets 1,...,S x be generators. Then tisg; define sections
of F overU;, and their germs generate the stalkfoft every point ofJ;.

Thesj do not need to extend to global sectionsfofbut we will now show that after
multiplying with x for somed we get global sections j - x% € [(F @ Ox(d)). As X\Uj
is covered by the affine open subskEksfor k #£ i, it is sufficient to show that we can
extends j to all Uy in this way. But (Ux) = Mk and # (U; NUk) = (My)x by proposition
7.2.2 (ii), sos,j € F(UiNUy) € (M) obviously gives an element iff (Ux) = My after
multiplying with a sufficiently high power of;.

Hence we have shown that for someve get global sections j € ' (F ® Ox(d)) that
generate the stalk gf ® Ox(d) at all points ofX. So these sections define a surjective
morphismO — F ® Ox (d)®" (wheren is the total number of sections chosen) and hence
a surjective morphisnwy (—d)®" — F. O

Theorem 8.4.7. Let X be a projective scheme over a field, andfiebe a coherent sheaf
on X.

(i) The cohomology groups'kX, ¥ ) are finite-dimensional vector spaces for all i.
(i) We have (X, F ® Ox(d)) =0foralli > 0and d>> 0.

Proof. Leti: X — P" be the inclusion morphism. As¥ is coherent by proposition 7.2.9
(or rather its analogue for coherent sheaves) and the cohomology grodpsodi. 7
agree by definition, we can assume tKat P'.

We will prove the proposition bylescendingnduction oni. By example 8.1.6 (iii)
there is nothing to show fdr> r. By lemma 8.4.6 there is an exact sequenee ® —
Ox(—d)®" — F — 0 for somed andn, whereg is a coherent sheaf ot by lemma 7.2.7.
Tensoring withOx (e) for somee € Z and taking the corresponding long exact cohomology
sequence, we get

= HI(X, Ox (e~ d)™") — H'(X, F © Ox(8)) = HH (X, R ® Ox () — -~

(i): Takee= 0. Then the vector space on the left is always finite-dimensional by the
explicit computation of proposition 8.4.1, and the one on the right is finite-dimensional by
the induction hypothesis. Henet (X, F) is finite-dimensional as well.

(ii): For e>> 0 the group on the left is zero again by the explicit calculation of proposi-
tion 8.4.1, and the one on the right is zero by the induction hypothesis. HiEikeF @
Ox(e)) =0fore> 0. O

Remark8.4.8 Of course the assumption of projectivity is essential in theorem 8.4.7, as for
exampleH%(A, 0,1) = K[ is not finite-dimensional as a vector space duer
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For a more interesting example, consider= A2\{(0,0)} and computeH*(X, Ox).
Using the affine open covet = U; UU, with U; = {x # 0} fori = 1,2, we get

HY(X, Ox) = Ox(U1NUz)/(Ox(U1) + Ox(U2))
:<xi1x£; 0] €Z>/<xi1x£; j>0ori 20>
:<xi1x£; iy <0>,
which is not finite-dimensional. So we conclude tiats not projective (which is obvi-

ous). But we have also reproven the statementXxhiatnot affine (see remark 2.3.17), as
otherwise we would have a contradiction to example 8.1.6 (ii).

8.5. Proof of the independence of the affine coverTo make our discussion of sheaf
cohomology rigorous it remains to be proven that the cohomology groups as of definition
8.1.4 do not depend on the choice of affine open cover. So let us go back to the original
definitions 8.1.2 and 8.1.4 that (seem to) depend on this choice. For simplicity let us
assume that all affine covers involved are finite.

Lemma 8.5.1.Let ¥ be a quasi-coherent sheaf on an affine scheme X. Thea ) =0
for alli > 0 and every choice of affine open coék }.

Proof. Let us define a “sheafified version” of tich complex as follows: we set
Cp(ff) = I_l i*_‘}—|UiOﬂ---ﬂUip

lp<--<lp
wherei : Uj, n---NU;, — X denotes the various inclusion maps. Then tH ) are
guasi-coherent sheaves &nhby proposition 7.2.9. Their spaces of global sections are
I (CP(F)) =CP(¥) by definition. There are boundary morphisd®s CP(F) — CP*1(F)
defined by the same formula as in definition 8.1.2, giving rise to a complex

CUF) = CHF) = CA(F) — . ()
Note that it suffices to prove that this sequence is exact: as taking global sections of quasi-

coherent sheaves on affine schemes preserves exact sequences by proposition 7.2.2 (ii) it
then follows that the sequence

CoF)—CHF) = CHF)— -

is exact as well, which by definition means tiH{X, ) = 0 fori > 0.

The exactness df«) can be checked on the stalks. SoRet X be any point, and let
U;j be an affine open subset of the given cover that conRing/e define a morphism of
stalks of sheaves &

k:ck— &t amka
by (kO()io,...,ip,l = Ojjig,..ip 17 where we make the following convention: if the indices
j,io,...,ip—1 are not in sorted order amal € Sy,1 is the permutation such that(j) <
o(ig) < --- < 0(ip-1) then byaj.io,...i, , We mean—1)° - O(}).0(ip).-0(ip_1)-
We claim thakd+dk: ¢§ — (¥ is the identity. In fact, we have

p

k
ig,ip = Qlig,....ip —kzl(—l) O gk 1k s 1onip

and
P
K=1
from which the claim follows.
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Finally we can now prove that the sequer(eg is exact at any poinP: we know
already that ind“~1 c kerd® asd“o d“~1 = 0. Conversely, ifx € kerd, i.e.da = 0, then
o = (kd+dk)(a) = d(ka), i.e.a € imd<L, O

Lemma 8.5.2. Let ¥ be a quasi-coherent sheaf on a scheme X. Pick an affine open cover
U ={Uq,...,Uc}. Let W C X be any other affine open subset, and denotélm;le affine

open coverUy,...,Ux}. Then the cohomology groups determined by the open cavers
and 7/ are the same.

Proof. LetCP(F) andHP(X, ¥) be the groups ofech cycles and the cohomology groups
for the cover?l, and denote by:P(F) andHP(X, F) the corresponding groups for the
coverl.

Note that there are natural morphis@®(F) — CP(F) andHAP(X, F) — HP(X, ¥)
given by “forgetting the data that involves the open sublgéti.e. by

a%,_wipfl = B0jjy,....i,_;- Moreoverdd = 0 if and only if
da=0 1)
(these are the equatio(rs!aﬁ()ioﬁ,,,’ip+1 =0forip>0)and
ajy, —da®=0 (2)
(these are the equatiofdd )i, .i,,, = 0 forig = 0).

We have to show that the morphig® (X, ) — HP(X, ¥ ) is injective and surjective.

(@) HD(X,T) — HP(X, ) is surjective: Letn € HP(X, ¥) be a cohomology cycle,
i.e.da = 0. We have to find an® € CP~1(Ug, F|u,) such thati = (a,a°) satis-
fiesdd = 0, i.e. by (2) such thada® = a|y,. Butd(aly,) = (da)|y, = 0, so by
lemma 8.5.10y, = da® for somea®.

(i) HP(X,F) — HP(X, F) is injective: Letd € HP(X, ) be a cohomology cycle
(i.e.dd = 0) such that = 0 € HP(X, ¥), i.e. a = dp3 for somef € CP1(¥).
We have to show thall = 0 € HP(X, %), i.e. we have to find 8 = (B,p°) €
CP-Y(¥) such thatdB = &. By (2) this means that we nedy, — dp® = a®.
But d(B|u, — 0°) = a|y, — &|u, = O, so by lemma 8.5.1 there isf such that
Blu, —a® = dp°.

([l

Corollary 8.5.3. The cohomology groups of quasi-coherent sheaves on any scheme do not
depend on the choice of open affine cover.

Proof. Let F be a quasi-coherent sheaf on a schetndet U = {Us,...,U¢} and U =
{U],...,U}} be two affine open covers of. Then the cohomology grougs! (X, 7)
determined byl are the same as those determinediby U’ by (a repeated application
of) lemma 8.5.2, which in turn are equal to those determinetitlyy the same lemma.

8.6. Exercises.

Exercise 8.6.1.Let X be a smooth projective curve. For any polht X consider the
exact skyscraper sequence of sheaveX on

0—wx > wWx®O0x(P)—kp—0

as in exercise 7.8.4. Show that the induced sequence of global sections is not exact, i.e. the
last mapl (wx @ Ox (P)) — I (kp) is not surjective.
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Exercise 8.6.2.Complete the proof of lemma 8.2.2, i.e. show that the sequence of mor-
phisms of cohomology groups
- = HPYE) - HP(C) - HP(D) - HP(E) — HP™L(C) — - --

associated to an exact sequence of complexes®— D — E — 0 is exact at théiP(C)
andHP(E) positions.

Exercise 8.6.3.Compute the cohomology groupt (P! x P*, p* Op1(a) @ q* Op1 (b)) for
all a,b € Z, wherep andq denote the two projection maps frdm x P! to PL.

Exercise 8.6.4.Give an example of a smooth projective cuX/end line bundles, £,
on X of the same degresich thah®(X, £1) # hO(X, £p).

Exercise 8.6.5.Let X C P’ be acomplete intersectionof dimensionn > 1, i.e. it is the
scheme-theoretic zero locusrof n homogeneous polynomials. Show tiais connected.

(Hint: Prove by induction om that the natural mapl®(P", Opr (d)) — HO(X, Ox(d)) is
surjective for alld € Z.)
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9. INTERSECTION THEORY

A k-cycle on a scheme X (that is always assumed to be separated and of finite type
over an algebraically closed field in this section) is a finite formal linear combination
Yini[Vi] with nj € Z, where the V; are k-dimensional subvarieties of X. The group of
k-cycles is denoted Zy(X). A rational function ¢ on any subvariety Y C X of dimen-
sion K+ 1 determines a cycle div($) € Zx(X), which is just the zeroes of ¢ minus the
poles of ¢, counted with appropriate multiplicities. The subgroup By(X) C Zy(X)
generated by cycles of this form is called the group of K-cycles that are rationally
equivalent to zero. The quotient groups Ay(X) = Zx(X)/Bk(X) are the groups of
cycle classes or Chow groups. They are the main objects of study in intersection
theory. The Chow groups of a scheme should be thought of as being analogous to
the homology groups of a topological space.

A morphism f : X — Y is called proper if inverse images of compact sets (in the
classical topology) are compact. Any proper morphism f gives rise to push-forward
homomorphisms f. : A.(X) — A.(Y) between the Chow groups. On the other hand,
some other morphisms f : X — Y (e.g. inclusions of open subsets or projections from
vector bundles) admit pull-back maps T* : A.(Y) — A.(X).

If X is a purely n-dimensional scheme, a Weil divisor is an element of Zp_1(X).
In contrast, a Cartier divisor is a global section of the sheaf Ky /O%. Every Cartier
divisor determines a Weil divisor. On smooth schemes, Cartier and Weil divisors
agree. On almost any scheme, Cartier divisors modulo linear equivalence correspond
exactly to line bundles.

We construct bilinear maps PicX x A(X) — Ag_1(X) that correspond geomet-
rically to taking intersections of the divisor (a codimension-1 subset of X) with the
k-dimensional subvariety. If one knows the Chow groups of a space and the above
intersection products, one arrives at Bézout style theorems that allow to compute the
number of intersection points of k divisors on X with a k-dimensional subspace.

9.1. Chow groups. Having discussed the basics of scheme theory, we will now start with
the foundations of intersection theory. The idea of intersection theory is the same as that of
homology in algebraic topology. Roughly speaking, what one does in algebraic topology
is to take e.g. a real differentiable manifolcbf dimensiom and an integek > 0, and con-

sider formal linear combinations of rdaldimensional submanifolds (with boundary) ¥n

with integer coefficients, called cycles.Zf(X) is the group of closed cycles (those having

no boundary) an8y(X) C Z(X) is the group of those cycles that are boundarigk ef1)-
dimensional cycles, then the homology grddyiX,Z) is the quotieni(X)/Bk(X).

There are (at least) two main applications of this. First of all, the gréiyX,Z) are
(in contrast to th&y (X) andBy (X)) often finitely generated groups and provide invariants
of the manifoldX that can be used for classification purposes. Secondly, there are inter-
section products: homology classesHp «(X,Z) andHn-(X,Z) can be “multiplied” to
give a class iHp_k_| (X, Z) that geometrically corresponds to taking intersections of sub-
manifolds. Hence if we are for example given submanifaidsf X whose codimensions
sum up ton (so that we expect a finite number of points in the intersegijon), then this
number can often be computed easily by taking the corresponding products in homology.
Our goal is to establish a similar theory for schemes. For any scheme of finite type
over a ground field and any integer O we will define the so-called Chow groupg(X)
whose elements are formal linear combinationk-dfmensional closed subvarietiesXf
modulo “boundaries” in a suitable sense. The formal properties of these gkpUpswill
be similar to those of homology groups; if the ground fiel@igou might even want to
think of theAx(X) as being “something likeM (X, Z), although these groups are usually
different. But there is always a maj(X) — Hx(X,Z) (at least if one uses the “right”
homology theory, see [F] chapter 19 for details), so you can think of elements in the Chow
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groups as something that determines a homology class, but this map is in general neither
injective nor surjective.

Another motivation for the Chow group(X) is that they generalize our notions of
divisors and divisor classes. In factXfis a smooth projective curve thég(X) will be by
definition the same as Pxc In general, the definition of the groupg(X) is very similar
to our definition of divisors: we consider the free Abelian grodps<) generated by the
k-dimensional subvarieties &f. There is then a subgrot(X) C Z(X) that corresponds
to those linear combinations of subvarieties that are zeros minus poles of rational functions.
The Chow groups are then the quotieAt$X) = Z(X) /Bk(X).

To make sense of this definition, the first thing we have to do is to define the divisor of a
rational function (see definition 6.3.4) in the higher-dimensional case. This is essentially a
problem of commutative algebra, so we will only sketch it here. The important ingredient
is the notion of the length of a module.

Remark9.1.1 (For the following facts we refer to [AM] chapter 6 and [F] section A.1.)
Let M be a finitely generated module over a Noetherian Rnghen there is a so-called
composition seriesi.e. a finite chain of submodules

0=MoCM1C---CM =M (%)

such thatVl; /M;_1 = R/p; for some prime idealg; € R. The series is not unique, but for
any prime ideap C R the number of timep occurs among thg; does not depend on the
series.

The geometric meaning of this composition series is easiest explained in the case where
Ris an integral domain ankll = R/I for some ideal C R. In this case Spéd is a closed
subscheme of the irreducible scheme Fpéxee examples 5.2.3 and 7.2.10). The prime
idealsp; are then precisely the ideals of the irreducible (and maybe embedded) components
of SpedM, or in other words the prime ideals associated to all primary ideals in the primary
decomposition ol. The number of timeg occurs among the; can be thought of as
the “multiplicity” of the corresponding component in the scheme. For examplesif
radical ideal (so Spéd is reduced) then thg; are precisely the ideals of the irreducible
components of Spéd, all occurring once.

We will need this construction mainly in the case whiete (f) C Ris the ideal gener-
ated by a single (non-zero) function. In this case all irreducible components oVSpme
codimension 1. Ip C Ris a prime ideal corresponding to any codimension-1 subvariety
of SpedR we can consider a composition series as above for the localized middueer
R,. As the only prime ideals iR, are(0) andpR, (corresponding geometrically to Sgec
and Sped, respectively) and does not vanish identically on Spéc¢ the only prime
ideal that can occur in the composition seried/gfis pR,. The number of times it occurs,
i.e. the lengttr of the composition series, is then called teegth of the moduleM,, over
Ry, denotedg, (My). Itis equal to the number of timgsoccurs in the composition series
of M overR. By what we have said above, we can interpret this number geometrically as
the multiplicity of the subvariety correspondingitdn the scheme Sp&y(f), or in other
words as the order of vanishing dfat this codimension-1 subvariety.

We should rephrase these ideas in terms of general (not necessarily affine) schemes.

So letX be a scheme, and gt C X be a subvariety of codimension 1. Note tWatan

be considered as@oint in the schemeX, so it makes sense to talk about the st@jky

of the structure sheafx atV. If U = Spe®R C X is any affine open subset with non-
empty intersection with thenOx v is just the localized ringr, wherep is the prime ideal
corresponding to the subvarieynU of U (see proposition 5.1.12 (i)). So ffe Oxy is

a local function around then its order of vanishing at the codimension-1 subvakiety

simply the length o, (Oxv/(f)). To define the order of a possibly rational functipon

X we just have to observe that the field of fractions of the kg, is equal to the field of
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rational functions orX. So we can writep asé for somef,g € Oxyv and simply define
the order ofp atV to be the difference of the orders bfandg atV.

With these prerequisites we can now define the Chow groups in complete analogy to the
Picard group of divisor classes in section 6.3. For the rest of this section by a scheme we
will always mean a scheme of finite type over some algebraically closed field (that is not
necessarily smooth, irreducible, or reduced). A variety is a reduced and irreducible (but
not necessarily smooth) scheme.

Definition 9.1.2. Let X be a variety, and lef C X be a subvariety of codimension 1, and
setR= Oxy. For every non-zerd € R C K(X) we define theorder of f atV to be the
integer org (f) ;= Ir(R/(f)). If $ € K(X) is a non-zero rational function we write= é
with f g € Rand define the order d@f atV to be

ordy (¢) := ord,(f) —ordy(g).

To show that this is well-defined, i.e. that orél = ordy ;—: wheneverfg = gf’, one uses
the exact sequence
0—R/(a) 2 R/(ab) — R/(b) — 0
and the fact that the length of modules is additive on exact sequences. From this it also

follows that the order function is a homomorphism of groupsotd(X)* := K(X)\{0} —
Z.

Example 9.1.3. Let X = A = Sped[x] and letV = {0} C X be the origin. Consider the
functiond = x" for r > 0. ThenR = Ox v = K[X|(x), andR/(x) = k. So asR/(X") = {ap+
ayx+---+a,_1X 1} has vector space dimensiomverk we conclude that ogdx') =r,
as expected. By definition, we then have the equalitg@fd = r for all r € Z.

Definition 9.1.4. Let X be a scheme. Fdc> 0 denote byz(X) the free Abelian group
generated by thie-dimensional subvarieties &f. In other words, the elementsgf(X) are
finite formal sumss; ni[Vi], wheren; € Z and theV; arek-dimensional (closed) subvarieties
of X. The elements afy(X) are callectyclesof dimensiork.

For any(k+ 1)-dimensional subvariety/ of X and any non-zero rational functignon
W we define a cycle of dimensidnon X by

div(p) = 3 ord (D)) € Z(X),

called thedivisor of ¢, where the sum is taken over all codimension-1 subvaristie$
W. Note that this sum is always finite: it suffices to check this on a finite affine open cover
{Ui} of W and for¢ € Oy, (U;), where it is obvious a&(¢) is closed andl; is Noetherian.

Let Bx(X) C Z(X) be the subgroup generated by all cycles of the forntddivor all
W C X andp € K(W)* as above. We define the groupkeflimensionatycle classeto be
the quotientd(X) = Z(X)/Bk(X). These groups are usually called tBeow groups of
X. Two cycles inZg(X) that determine the same elemenfji{X) are said to beationally
equivalent

We setZ, (X) = By=0Zk(X) andA, (X) = By Ac(X).

Example 9.1.5. Let X be a scheme of pure dimensionThenBy(X) is trivially zero, and
thusAn(X) = Z,(X) is the free Abelian group generated by the irreducible components of
X. In particular, ifX is ann-dimensional variety theA,(X) = Z with [X] as a generator.

In the same wayZy (X) andAy(X) are trivially zero ifk > n.

Example 9.1.6. Let X be a smooth projective curve. Th&p(X) = DivX andAg(X) =
PicX by definition. In fact, the 1-dimensional subvaridé of X in definition 9.1.4 can
only beX itself, so we arrive at precisely the same definition as in section 6.3.
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Example 9.1.7.Let X = {x;x; = 0}  IP? be the union of two projective line$ = X; UX,
that meet in a point. Thefyy (X) = Z[X1] © Z[X2] by example 9.1.5. Moreovehy(X) = Z
is generated by the class of any pointdn In fact, any two points orX; are rationally
equivalent by example 9.1.6, and the same is trueforAs bothX; andX, contain the
intersection poiniX; N Xz we conclude that all points iX are rationally equivalent. So
Ao(X) 2 Z.

Now let Py € X1\ X2 andP; € X\ X1 be two points. Note that the line bundl&g(P;)
and Ox(P,) (defined in the obvious wayOx (P) is the sheaf of rational functions that
are regular away frony and have at most a simple pole R} are not isomorphic: if
i 1 Xy — X is the inclusion map of the first component, théax (P1) = Op1(1), whereas
i*Ox (P2) = Op1. So we see that for singular curves the one-to-one correspondence between
Ao(X) and line bundles no longer holds.

Example 9.1.8. Let X = A". We claim thatAs(X) = 0. In fact, if P € X is any point,
pick a lineW = A® ¢ A" throughP and a linear functiop onW that vanishes precisely
atP. Then di$) = [P]. It follows that the class of any point is zeroAg(X). Therefore
Ao(X) =0.

Example 9.1.9.Now letX = P"; we claim that’o(X) 2 Z. In fact, if P andQ are any two
distinct points inX letW = P ¢ P" be the line throug® andQ, and letd be a rational
function onW that has a simple zero Btand a simple pole @. Then di$) = [P] — [Q],
i.e. the classes iy(X) of any two points inX are the same. It follows thafo(X) is
generated by the clagB] of any point inX.

On the other hand, W C X = P" is any curve and@ a rational function oW then we
have seen in remark 6.3.5 that the degree of the divisdriefalways zero. It follows that
the class- [P] € Ag(X) for n € Z can only be zero ifi= 0. We conclude thato(X) = Z
with the class of any point as a generator.

Example 9.1.10.Let X be a scheme, and [¥tC X be a closed subscheme with inclusion
morphismi : Y — X. Then there are canonigalish-forward mapsi.. : Ac(Y) — Ax(X) for
anyk, given by[Z] — [Z] for anyk-dimensional subvarietf C Y. It is obvious from the
definitions that this respects rational equivalence.

Example 9.1.11.Let X be a scheme, and let C X be an open subset with inclusion
morphismi : U — X. Then there are canonicpull-back mapsi* : A¢(X) — Ac(U) for
any k, given by[Z] — [ZNU] for any k-dimensional subvarietZ C X. This respects
rational equivalence a@sdiv(¢) = div(¢|y) for any rational functiord on a subvariety of
X.

Remark9.1.12 If f : X — Y is any morphism of schemes it is an important part of in-
tersection theory to study whether there are push-forward map#.(X) — A.(Y) or
pull-back mapsf* : A.(Y) — A.(X) and which properties they have. We have just seen
two easy examples of this. Note that neither example can be reversed (at least not in an
obvious way):

(i) if Y C X is a closed subset, then a subvarietyXa$ in general not a subvariety of
Y, so there is no pull-back morphisi (X) — A.(Y) sending[V] to [V] for any
subvarietyV C X.

(i) if U C X is an open subset, there are no push-forward mdafld) — A, (X): if
U = A' andX = P! then the class of a point is zero &.(U) but non-zero in
A.(P) by examples 9.1.8 and 9.1.9.

We will construct more general examples of push-forward maps in section 9.2, and more
general examples of pull-back maps in proposition 9.1.14.



9. Intersection theory 169

Lemma9.1.13.Let X be a scheme, letd X be a closed subset, and lettJX\Y . Denote
the inclusion maps by:iY — X and j: U — X. Then the sequence

A(Y) 2 A(X) 55 A(U) = 0
is exact for all k> 0. The homomorphism is in general not injective however.

Proof. This follows more or less from the definitions. Zf C U is any k-dimensional
subvariety then the closueof Z in X is ak-dimensional subvariety of with j*[Z] = [Z].
So j* is surjective.

If ZCcY thenZNU =0, soj*oi, = 0. Conversely, assume that we have a cycle
Y & [Vi] € Ac(X) whose image il (U) is zero. This means that there are rational functions
$s on (k+ 1)-dimensional subvarietiéds of U such thaty div(¢s) = 5 a,[Vy NU] onU.
Now theds are also rational functions on the closure¥\gfin X, and as such their divisors
can only differ from the old ones by subvarietiésthat are contained iX\U =Y. We
conclude thaf div(ds) = ¥ a [Vi] — 3 br [V/] on X for someb;. Soy & [Vi] =i. Y by [V/].

As an example that is in general not injective I&f be a smooth cubic curve ¥ = P2,
If P andQ are two distinct points ol then[P] — [Q] # 0 € Ag(Y) = PicX by proposition
6.3.13, bufP] — [Q] = 0 € Ag(X) = Z by example 9.1.9. O

Proposition 9.1.14. Let X be a scheme, and lat E — X be a vector bundle of rank r
on X (see remark 7.3.2). Then for allkO0 there is a well-defined surjective pull-back
homomorphisnm* : Ac(X) — Ay, (E) given on cycles by [V] = [T (V)]

Proof. Itis clear thatt* is well-defined: it obviously mapedimensional cycles t(k+r)-
dimensional cycles, antt* div(¢) = div(rt"¢) for any rational functionp on a (k+ 1)-
dimensional subvariety of.

We will prove the surjectivity by induction on diX. LetU C X be an affine open
subset over whiclk is of the formU x A", and lety = X\U. By lemma 9.1.13 there is a
commutative diagram

A(Y) —— A(X) AU)

i I |
Acst Ely) —= Acr(E) —= Ak (U X AT) — 0

with exact rows. A diagram chase (similar to that of the proof of lemma 8.2.2) shows that
in order fort* to be surjective it suffices to prove that the left and right vertical arrows
are surjective. But the left vertical arrow is surjective by the induction assumption since
dimY < dimX. So we only have to show that the right vertical arrow is surjective. In other
words, we have reduced to the case whére SpedRis affine ancE = X x A" is the trivial
bundle. Asrtthen factors as a sequence

E=XxA" 5 XxA™ 1. .. s XxAt =X

we can furthermore assume that 1, so thaE = X x Al = SpedRlt].
We have to show that* : Ag(X) — Ax(X x Al) is surjective. So le¥ c X x Al be a
(k+ 1)-dimensional subvariety, and Mt = (V). There are now two cases to consider:

e dimW =k. ThenV =W x Al, so[V] = 1 |W].

e dimW = k+1. As it suffices to show thgV] is in the image of the pull-back
map Ac(W) — A, r (W x Al) we can assume th&ly = X. Consider the ideal
(V) ®rK C K[t], whereK = K(W) denotes the quotient field &. It is not
the unit ideal as otherwise we would be in case (i). On the other Kdrds a
principal ideal domain, stV) ®rK is generated by a single polynomda& Kt].
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Consideringd as a rational function oX x A we see that the divisor df is
precisely[V] by construction, plus maybe terms of the fopna; t*[W] for some
W C X corresponding to our tensoring with the field of rational functiifX).
So [V] = (3 a[W]) (plus the divisor of a rational function), i.8/] is in the
image ofTt*.

O

Remark9.1.15 Note that the surjectivity part of proposition 9.1.14 is obviously false on
the cycle level, i.e. for the pull-back ma@&(X) — Z«(E): not every subvariety of a
vector bundleE over X is the inverse image of a subvarietyXh So this proposition is

an example of the fact that working with Chow groups (instead of with the subvarieties
themselves) often makes life a little easier. In fact one can show (see [F] theorem 3.3 (a))
that the pull-back maps* : Ac(X) — Ak, (E) are always isomorphisms.

Corollary 9.1.16. The Chow groups of affine spaces are given by

Ad(AM) = {Z fork=n,

0 otherwise

Proof. The statement fdk > n follows from example 9.1.5. Fdtr < n note that the homo-
morphismAg(A™ %) — A (A") is surjective by proposition 9.1.14, so the statement of the
corollary follows from example 9.1.8. O

Corollary 9.1.17. The Chow groups of projective spaces aggl) = Z forall 0< k<n,
with an isomorphism given Y] — degV for all k-dimensional subvarieties ¥ P".

Proof. The statement fok > n follows again from example 9.1.5, so let us assume that
k < n. We prove the statement by induction on By lemma 9.1.13 there is an exact
sequence

AP ) — A(P") — Ak(A") — 0.
We haveAy(A") = 0 by corollary 9.1.16, so we conclude thagP"~1) — A (P") is sur-
jective. By the induction hypothesis this means thgtP") is generated by the class of
ak-dimensional linear subspace. As the morph&P" 1) — Z(PP") trivially preserves
degrees it only remains to be shown that any cygk(Vi] that is zero inAc(P") must
satisfy y g degv; = 0. But this is clear from Bzouts theorem, as deg@p) = 0 for all
rational functions on any subvariety Bf. |

Remark9.1.18 There is a generalization of corollary 9.1.17 as follows. Xé&te a scheme
that has a stratification by affine spaces, Xehas a filtration by closed subschenfes
X 1 CXgC--- C X, = X such that\ X¢_1 is a disjoint union ofy affine spacea\X for
all k. For exampleX = P" has such a stratification with, = 1 for 0 < k < n, namely
0CcPPcPlc...cP"=X.

We claim that ther\y(X) is isomorphic td&Z% modulo some (possibly trivial) subgroup,
whereZ is generated by the classes of the closures ofatheopies of Ak mentioned
above. We will prove this by induction on diXj the case of dimension 0 being obvious.
In fact, consider the exact sequence of lemma 9.1.13

Ak(Xn-1) = A(X) = & A(A") — 0.
Note thatX,_; itself is a scheme with a filtratioh = X_1 C Xg C --- C X,_1 as above. So
it follows that:

(i) For k < nwe haveA((A") = 0, soA(X) is generated by (X,—1). Hence the
claim follows from the induction hypothesis.

(ii) For k > nwe haveAc(X,-1) = 0, S0A(X) = @™ A(A") is generated by the
classes of the closures of thgcopies ofA" in X\ Xn_1.
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This proves the claim. In fact, one can show thAgtX) is always isomorphic t&@% if X
has a stratification by affine spaces as above (see [F] example 1.9.1).

In particular, this construction can be applied to compute the Chow groups of products
of projective spaces and Grassmannian varieties (see exercise 3.5.4).

Remark9.1.19 Using Chow groups, 8zout’s theorem can obviously be restated as fol-
lows: we have seen in corollary 9.1.17 thha{(P") = Z for all k < n, with the class of a
k-dimensional linear subspace as a generator. Using this isomorphism, define a product
map

An,k(IP’n) X An_| (Pn) — Ak (Pn), (a,b)— ab
for k+1 < n. This “intersection pairing” has the following property: X,Y C P" are
two subvarieties that intersect in the expected dimension (i.e. ¢¥dinY) = codimX +
codimY) then[X NY] = [X]-[Y]. So “intersections of subvarieties can be performed on
the level of cycle classes”. As we have mentioned in the introduction to this section, the
existence of such intersection pairing maps between the Chow groups will generalize to
arbitrary smooth varieties. It is one of the most important properties of the Chow groups.

9.2. Proper push-forward of cycles. We now want to generalize the push-forward maps
of example 9.1.10 to more general morphisms, i.e. given a morphistn— Y of schemes

we will study the question under which conditions there are induced push-forward maps
f. : Al(X) — Ac(Y) for all kthat are (roughly) given by, [V] = [f (V)] for ak-dimensional
subvarietyv of X.

Remark9.2.1 We have seen already in remark 9.1.12 (ii) that there are no such push-
forward maps for the open inclusia* — P1. The reason for this is precisely that the
point P = PY\ Al is “missing” in the domain of the morphism: a rational function 4vh
(which is then also a rational function @) may have a zero and / or pole at the pdmt
which is then present dit but not onA®. As the class oP is not trivial in the Chow group
of P1, this will change the rational equivalence class. Therefore there is no well-defined
push-forward map between the Chow groups.

Another example of a morphism for which there is no push-forward for Chow groups
is the trivial morphismf : A — pt: again the class of a point is trivial #p(A®) but not
in Ag(pt). In contrast, the morphisrh: P — pt admits a well-defined push-forward map
f. 1 Ag(PY) = Z — Ag(pt) = Z sending the class of a point Bt to the class of a point in
pt.

These counterexamples can be generalized by saying that in general there should be no
points “missing” in the domain of the morphisi: X — Y for which we are looking for
a push-forwardf,. For example, ifY is the one-pointed space, by “no points missing”
we mean exactly that should be compact (in the classical topology), i.e. complete in the
sense of remark 3.4.5. For generalie need a “relative version” of this compactness (resp.
completeness) condition. Morphisms satisfying this condition are cphgaer. We will
give both the topological definition (corresponding to “compactness”) and the algebraic
definition (corresponding to “completeness”).

Definition 9.2.2. (Topological definition:) A continuous map: X — Y of topological
spaces is calledroper if f~1(Z) is compact for every compact s2t_ Y.

(Algebraic definition:) Letf : X — Y be a morphism of “nice” schemes (separated, of
finite type over a field). For every morphisgt Z — Y from a third schem& form the
fiber diagram

XxyZ —= X
AR
z—2>v.
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The morphismf is said to beproper if the induced morphisni’ is closed for every such
g:Z—Y,i.e.if f" maps closed subsetsXfxy Z to closed subsets &. This condition is
sometimes expressed by saying thas required to be “universally closed”.

Remark9.2.3 Note that the two definitions look quite different: whereas the topological
definition places a condition dnverse imagesf (compact) subsets by some morphism,
the algebraic definition places a condition iomagesof (closed) subsets by some mor-
phism. Yet one can show that for varieties over the complex numbers the two definitions
agree if we apply the topological definition to the classical (not the Zariski) topology. We
will only illustrate this by some examples below. Note however that both definitions are
“obvious” generalizations of their absolute versions, i.e. properness of a map in topology is
a straightforward generalization of compactness of a space, whereas properness of a mor-
phism in algebraic geometry is the expected generalization of completeness of a variety
(see remark 3.4.5). In particular¥f= pt is a point then the (trivial) morphismh: X — pt

is proper if and only iX is complete (resp. compact).

Example 9.2.4.If X is complete (resp. compact) then any morphisnX — Y is proper.
We will prove this both in the topological and the algebraic setting:

(i) Intopology, letZ C Y be a compact subset ¥t In particularZ is closed, hence
so is the inverse imagé=1(Z) as f is continuous. It follows thaf ~%(Z) is a
closed subset of a compact spacehence compact.

(ii) Inalgebra, the fiber produeét xy Z in definition 9.2.2 is isomorphic to the closed
subschem@~1(Ay) of X x Z, wherep = (f,g) : X xZ =Y xY andAy C Y xY
is the diagonal. So ¥ C X xy Z is any closed subset, th&his also closed in
X x Z, and hence its image ihis closed aX is complete.

This is the easiest criterion to determine that a morphism is proper. Some more can be
found in exercise 9.5.5.

Example 9.2.5.LetU C X be a non-empty open subset of a (connected) scherniéen
the inclusion morphism: U — X is not proper. This is obvious for the algebraic definition,
asi is not even closed itself (it maps the closed sulset U to the non-closed subset
U C X). In the topological definition, leZ C X be a small closed disc around a point
P < X\U. Its inverse imagé %(Z) = ZNU is Z minus a closed non-empty subset, so it is
not compact.

Example 9.2.6.1f f : X — Y is proper then every fiber—1(P) is complete (resp. compact).
Again this is obvious for the topological definition, f8} C Y is compact. In the algebraic
definition letP € Y be a point, leZ be any scheme, and form the fiber diagram

Zx fY(P) — f}(P) —= X

)

y4 P Y.

If f is proper then by definition the morphisfhis closed for all choices d? andZ. By
definition this means exactly that all fibefs*(P) of f are complete.

The converse is not true however: every fiber of the morphism- P! is complete
(resp. compact), but the morphism is not proper.

Remark9.2.7. It turns out that the condition of properness of a morphismX — Y is
enough to guarantee the existence of well-defined push-forward fnapg(X) — Ax(Y).

To construct them rigorously however we have to elaborate further on our ided.that
should map ank-dimensional cycléV| to [f (V)], as the following two complications can
occur:
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(i) The imagef (V) of V may have dimension smaller thinso thatf (V) does not
define ak-dimensional cycle. It turns out that we can consistently deffif\é] to
be zero in this case.

(i) It may happen that dinfi(V) = dimV and the morphisnf is amultiple covering
map i.e. that a general point ifi(V) hasd > 1 inverse image points. In this case
the imagef (V) is “coveredd times byV”, so we would expect that we have to
setf,[V] =d-[f(V)]. Let us define this “order of the covering’rigorously:

Proposition 9.2.8. Let f: X — Y be a morphism of varieties of the same dimension such
that f(X) isdenseinY. Then:

() K(X) is a finite-dimensional vector space ovef¥. Its dimension is called the
degreeof the morphism f, denotedkgf. (One also says that () : K(Y) is a
field extensionof dimensiorfK (X) : K(Y)] = degf.)

(i) The degree of f is equal to the number of points in a general fiber of f. (This
means: there is a non-empty open setl¥ such that the fibers of f over U
consist of exactlgegf points.)

(i) 1f moreover f is proper themvery zero-dimensiondiber of f consists of exactly
degf points if the points are counted with their scheme-theoretic multiplicities.

Proof. (i): We begin with a few reduction steps. As the fields of rational functions do
not change when we pass to an open subset, we can assuredh@at andY c A™ are
affine. Next, we factor the morphisi: X — Y asf =moywithy: X =T C X xY the
graph morphism antt: X x Y — Y the projection. Ag/is an isomorphism it is sufficient

to show the statement of the proposition for the projection mapinally, we can factor

the projectionrt (which is the restriction of the obvious projection map™ — A™ to

X xY) into n projections that are given by dropping one coordinate at a time. Hence we
can assume that c A™* andY c A", and prove the statement for the nrapX — Y that

is the restriction of the projection mdRgo, ..., X%,) — (X1,...,X,) to X.

In this case the fieldK(X) is generated oveK(Y) by the single elementy. Assume
thatxg € K(X) is transcendental ové(Y), i.e. there is no polynomial relation of the form

Faxg+Fa-1X§ '+ +Fo=0, ()

for K € K(Y) andFyq # 0. Then for every choice ofxy,...,xn) € Y the value ofxg in
X is not restricted, i.e. the general fiber bfis not finite. But then dinX > dimY in
contradiction to our assumption. 8pc K(X) is algebraic oveK(Y), i.e. there is a relation
(%). It follows thatK (X) is a vector space ovét(Y) with basis{1,xo, ...,x3"1}.

(ii): Continuing the proof of (i), note that on the non-empty open subsét where
all i are regular andfy is non-zero every point in the target has exadtiywerse image
points (counted with multiplicity). Restricting the open subset further to the open subset
where the discriminant of the polynomi@l) is non-zero, we can in fact show that there is
an open subset of on which the inverse images 6fconsist set-theoretically of exacttly
points that all count with multiplicity 1.

(iif): We will only sketch this part, using the topological definition of properness. By

(ii) there is an open subsket C Y on which all fibers off consist of exactiy points. Let

P €Y be any point, and choose a small closed disc U U {P} aroundP. If A is small
enough then the inverse image*(A\{P}) will be a union ofd copies ofA\{P}. As f

is proper, the inverse image (A) has to be compact, i.e. all the holes in theopies of
A\{P} have to be filled in by inverse image pointsRfSo the fiberf ~1(P) must contain

at leastd points (counted with multiplicities). But we see frofm) above that every fiber
contains at mostl points unless it is infinite (i.e. all; are zero aP). This shows part
iii). O
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We are now ready to construct the push-forward mapsAx(X) — Ac(Y) for proper
morphismsf : X — Y.

Construction9.2.9 Let f : X — Y be a proper morphism of schemes. Then for every
subvarietyZ C X the imagef(Z) is a closed subvariety of dimension at most dnOn
the cycle level we define homomorphistis Z(X) — Z(Y) by

¢ 71— JK@ K@) [£(2)] ifdim f(Z) = dimZ,
A4 = 0 if dim f(Z) < dimZ.

By proposition 9.2.8 this is well-defined and corresponds to the ideas mentioned in remark
9.2.7.

Remark9.2.10 By the multiplicativity of degrees of field extensions it follows that the
push-forwards are functorial, i.égo f),. = g. f. for any two morphismdg : X — Y and
g:Y —Z.

Of course we want to show that these homomorphisms pass to the Chow groups, i.e.
give rise to well-defined homomorphisnfis: Ax(X) — Ak(Y). For this we have to show
by definition that divisors of rational functions are pushed forward to divisors of rational
functions.

Theorem 9.2.11.Let f: X — Y be a proper surjective morphism of varieties, and let
¢ € K(X)* be a non-zero rational function on X. Then

0 if dimY < dimX

fodiv(p) =< - .
®) {dlv(N(q))) if dimY = dimX

in Z.(Y), where N¢) € K(Y) denotes the determinant of the endomorphism of thé K
vector space KX) given by multiplication by (this is usually called theorm of ¢).

Proof. The complete proof of the theorem with all algebraic details is beyond the scope
of these notes; it can be found in [F] proposition 1.4. We will only sketch the idea of the
proof here.

Case 1: dinY < dimX (see the picture below). We can assume thatflimdimX — 1,
as otherwise the statement is trivial for dimensional reasons. Note that we must have
f.div(¢) = n-[Y] for somen € Z by example 9.1.5. So it only remains to determine the
numbem. By our interpretation of remark 9.2.7 (ii) we can compute this number on a gen-
eral fiber off by counting all points in this fiber with the multiplicity with which they occur
in the restriction of to this fiber. In other words, we have= Y p.¢p)—qOrde(¢|;-1(q))
for any pointQ € Y over which the fiber off is finite. But this number is precisely the
degree ofp|; 1) on the complete curvé—1(Q), which must be zero. (Strictly speaking
we have only shown this for smooth projective curves in remark 6.3.5, but it is true in the
general case as well. The important ingredient is here that the fiber is complete.)

Case 2: dinY = dimX (see the picture below). We will restrict ourselves here to show-
ing the stated equatioset-theoreticallyi.e. we will assume thab is (locally around a
fiber) a regular function and show th&tZ(¢)) = Z(N(¢)), whereZ(-) denotes as usual
the zero locus of a function.

Note first that we can neglect the fibers fothat are not finite: these fibers can only
lie over a subset of of codimension at least 2 (otherwise the non-zero-dimensional fibers
would form a component of for dimensional reasons, in contras®doeing irreducible).

So asf.div(¢) is a cycle of codimension 1 i¥ these higher-dimensional fibers cannot
contribute to the push-forward.
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ord @ =2

ord @ =—1

Case 1 Case 2

Now letQ € Y be any point such that the fibér'(Q) is finite. Thenf~1(Q) consists of
exactlyd = [K(X) : K(Y)] points by proposition 9.2.8 (iii). Let us assume for simplicity that
all these points are distinct (although this is not essentialj, $6Q) = {Py,...,P4}. The
space of functions on this fiber is then ji8t corresponding to the value at tHepoints.

In this basis, the restriction of the functidnto this fiber is then obviously given by the
diagonal matrix with entrieg(Py), ..., $(Py), o its determinant il ($)(Q) = 1%, ¢ ().
Now it is clear that

Qe f(Z(¢p)) — thereis & overQwith ¢(R)=0
— Qe Z(N(¢)).

We can actually see the multiplicities arising as well: if therelapwints among thé&
whered vanishes, then the diagonal matqikfl(Q) containsk zeros on the diagonal, hence
its determinant is a product that contakseros, so it should give rise to a zero of orlder
in accordance with our interpretation of remark 9.2.7 (ii). O

Corollary 9.2.12. Let f: X — Y be a proper morphism of schemes. Then there are well-
defined push-forward maps fA(X) — Ac(Y) for all k > 0 given by the definition of
construction 9.2.9.

Proof. This follows immediately from theorem 9.2.11 applied to the morphism from a
(k4 1)-dimensional subvariety of to its image inY. O

Example 9.2.13.Let X be a complete scheme, and fetX — pt be the natural (proper)
map. For any O-dimensional cycle class Aq(X) we define thelegreeof a to be the
integer f.a € Ap(pt) = Z. This is well-defined by corollary 9.2.12. More explicitly, if
a = 3;ni[R] for some point$, € X then deg = 3 n;.

Example 9.2.14. Let X = P2 be the blow-up ofP? with coordinategxo : X : X2) in the
pointP = (1:0:0), and denote bf C X the exceptional hypersurface. In this example
we will compute the Chow groups &f using remark 9.1.18.

Note thatP? has a stratification by affine spacesigfsU AU AC. Identifying A° with
P and recalling that the bIow-u]%2 is obtained fromP? by “replacing the poinP with a
line P1” we see thalX has a stratificatiod> UA* U AU A°. By remark 9.1.18 it follows
that the closures of these four strata genefaieX). More precisely, these four classes
are [X] € Ax(X), [L] € A1(X) whereL is the strict transform of a line i?? throughP,
the exceptional hypersurfadg] € A1(X), and the class of a point iap(X). It follows
immediately that\x(X) = Z andAg(X) =2 Z. Moreover we see tha; (X) is generated by
[L] and[E].

We have already stated without proof in remark 9.1.18 fhaand [E] form in fact a
basis ofA;(X). Let us now prove this in our special case at hand. So assume that there is
arelationn[L] + m[E] = 0 in A;(X). Consider the following two morphisms:
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(i) Lett: X — P2 be the projection to the base of the blow-up. This is a proper map,
and we havet.[L] = [H] andTi.[E] = 0 where[H] € Ay (P?) is the class of a line.
So we see that

0=11(0) =m(n[L + ME]) = n[H] & Ay(P?).
from which we conclude that= 0.

(i) Now let p: X — P! be the morphism that is the identity &) and sends every
point Q € X\E to the unique intersection point & with the strict transform of
the line throughP andQ. Again this is a proper map, and we hawglL] = 0 and
p.[E] = [P!]. So again we see that

0= p.(0) = p.(n[L]+ m[E]) = mP'] € Ay (PY),
from which we conclude thah = 0 as well.

Combining both parts we see that there is no non-trivial relation of therfitid- m[E] = 0
in Al(X).

Now let[H] be the class of a line iX that does not intersect the exceptional hypersur-
face. We have just shown thigt] must be a linear combination {if] and[E]. To compute
which one it is, consider the rational functié@ on X. It has simple zeros alorigandE,
and a simple pole alon (with coordinates fot. andH chosen appropriately). So we

conclude thafH] = [L] + [E] in A¢(X).

9.3. Weil and Catrtier divisors. Our next goal is to describe intersections on the level of
Chow groups as motivated in the beginning of section 9.1. We will start with the easiest
case, namely with the intersection of a variety with a subset of codimension 1. To put
it more precisely, given a subvariety C X of dimensionk and another on® c X of
codimension 1, we want to construct amersection cycldV] - [D] € A_1(X) with the
property thatV] - [D] = [V N D] if this intersectionv N D actually has dimensiok — 1.

Of course these intersection cycles should be well-defined on the Chow groups, i.e. the
product cycldV] - [D] € Ac_1(X) should only depend on the classed/oéindD in A.(X).

Example 9.3.1. Here is an example showing that this is too much to hope for in the gener-
ality as we stated it. LeX = P2 Upt P2 be the union of two projective planes glued together
along a common line. Ldt;,L,, L3 C X be the lines as in the following picture.

L

Their classes i\ (X) are all the same sinoky (X) = Z by remark 9.1.18. But note that
L1NL; is empty, whereak; NLs is a single poinP. But 0+ [P] € Ag(X), so there can be
no well-defined product mafy (X) x A1 (X) — Ag(X) that describes intersections on this
spaceX.

The reason why this construction failed is quite a subtle one: we have to distinguish
between codimension-1 subspaces and spaces that can locally be written as the zero locus
of a single function. In general the intersection product exists only for intersections with
spaces that are locally the zero locus of a single function. For most spaces this is the
same thing as codimension-1 subspaces, but notably not in example 9.3.1 above: neither
of the three lined; can be written as the zero locus of a single functionX: there is a
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(linear) function on the verticat? that vanishes precisely dn, but we cannot extend it
to a function on all oiX that vanishes at the poi@but nowhere else on the horizonE.
(We can write the; as the zero locus of a single function a component of Xout this is
not what we need.)

So for intersection-theoretic purposes we have to make a clear distinction between
codimension-1 subspaces and spaces that are locally the zero locus of a single function.
Let us make the corresponding definitions.

Definition 9.3.2. Let X be a scheme.

(i) If X has pure dimension a Weil divisor on X is an element o¥,_1(X). Ob-
viously, the Weil divisors form an Abelian group. Two Weil divisors are called
linearly equivalent if they define the same classAqa_1(X). The quotient group
An_1(X) is called the group diVeil divisor classes

(i) Let %x be the sheaf of rational functions & and denote byky the subsheaf
of invertible elements (i.e. of those functions that are not identically zero on any
component ofX). Note thatXy is a sheaf of Abelian groups, with the group
structure given by multiplication of rational functions. Similarly, @} be the
sheaf of invertible elements @l (i.e. of the regular functions that are nowhere
zero). Note that); is a sheaf of Abelian groups under multiplication as well. In
fact, O is a subsheaf ofy.

A Cartier divisor onX is a global section of the she&f; / Ox. Obviously, the
Cartier divisors form an Abelian group under multiplication, denotedXDivn
analogy to Weil divisors the group structure on Biiis usually written additively
however. A Cartier divisor is called linearly equivalent to zero if it is induced
by a global section ofk;. Two Cartier divisors aréinearly equivalent if their
difference (i.e. quotient, see above) is linearly equivalent to zero. The quotient
group PicX :=T (% /Ox) /T (Ky) is called the group ofartier divisor classes

Remark9.3.3 Let us analyze the definition of Cartier divisors. There is an obvious exact
sequence of sheaves ¥n
0— Ox — Ax — K/ Ox — 0.

Note that these ameot sheaves 0Ox-modules, so their flavor is slightly different from the
ones we have considered so far. But it is still true that we get an exact sequence of global
sections

0—T(0x) = M%&) — (K« / %)
that is in general not exact on the right. More precisely, recall that the quotient sheaf
Ky / O% is notjust the sheaf that i&y (U )/ Ox (U) for all open subseld C X, but rather the
sheaf associated to this presheaf. Therefdi& /Ox) is in general not just the quotient
F(%<)/T(0%)-

To unwind the definition of sheafification, an element of Riw ' (X5 /0%) can be
given by a (sufficiently fine) open coveridd);} and elements ofy (U;)/ Ox (U;) repre-
sented by rational functiorgs for all i such that their quotient%_ are in0x (Ui nU;) for
alli, j. So a Cartier divisor is an object that is locally a (non-zero) rational function mod-
ulo a nowhere-zero regular function. Intuitively speaking, the only data left from a rational
function if we mod out locally by nowhere-zero regular functions is the locus of its zeros
and poles together with their multiplicities. So one can think of Cartier divisors as objects
that are (linear combinations of) zero loci of functions.

A Cartier divisor is linearly equivalent to zero if it gdobally a rational function, just the
same as for Weil divisors. From cohomology one would expect that one can think of the
quotient group PiX as the cohomology groug!(X, 0%). We cannot say this rigorously
because we have only defined cohomology for quasi-coherent sheaves (¥hisimot).
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But there is a more general theory of cohomology of arbitrary sheaves of Abelian groups
on schemes, and in this theory the statement that Ridtd1(X, 0%) is correct.

Lemma 9.3.4. Let X be a purely n-dimensional scheme. Then there is a natural homo-
morphismDiv X — Z,_1(X) that passes to linear equivalence to give a homomorphism
PicX — An_1(X). In other words, every Cartier divisor (class) determines a Weil divisor
(class).

Proof. Let D € Div X be a Cartier divisor oiX, represented by an open coverifig } of
X and rational functiong; onU;. For any(n— 1)-dimensional subvariety of X define
the order ofD atV to be org D := ordy~y, i, wherei is an index such that NV #
0. This does not depend on the choice afs the quotientg?r} are nowhere-zero regular
functions, so the orders @¢f and¢; are the same where they are both defined. So we get
a well-defined map DiX — Z,_1(X) defined byD — 3y, ordyD- [V]. It is obviously a
homomorphism as ovd¢; - ¢;) = ordy ¢; + ordy ¢;.

Itis clear from the definition that a Cartier divisor that is linearly equivalent to zero, i.e. a
global rational function, determines a Weil divisorBa_1(X). Hence the homomorphism
passes to linear equivalence. O

Lemma 9.3.5. Let X be a smooth projective curve. Then Cartier divisors (resp. Cartier
divisor classes) on X are the same as Weil divisors (resp. Weil divisor classes). In partic-
ular, our definition 9.3.2 (ii) oDiv X andPicX agrees with our earlier one from section
6.3.

Proof. The idea of the proof is lemma 7.5.6 which tells us that every poiit isflocally
the scheme-theoretic zero locus of a single function, hence a Cartier divisor.

To be more precise, I1& ; aR € Zo(X) be a Weil divisor. We will construct a Cartier
divisor D € Div X that maps to the given Weil divisor under the correspondence of lemma
9.3.4. To do so, pick an open neighborhagdf R for alli =1,...,n such that

(i) P ¢U;forj=#i,and
(i) there is a functiorpp onU; such that diwp = 1-PB onU; (see lemma 7.5.6).

Moreover, setd = X\{Py,...,P,}. Then we define a Cartier divis@r by the open cover
{U,Us,...,Un} and the rational functions

() 1onu,

(i) g onU;.
Note that these data define a Cartier divisor: no intersection of two elements of the open
cover contains one of the poinB, and the functions given on the elements of the open

cover are regular and non-vanishing away fromBheBy construction, the Weil divisor
associated t® is preciselyy ' ; aR, as desired. O

Example 9.3.6. In general, the map from Cartier divisors (resp. Cartier divisor classes)
to Weil divisors (resp. Cartier divisor classes) is neither injective nor surjective. Here are
examples of this:

(i) not injective: This is essentially example 9.1.7. Rét= X3 U X, be the union
of two linesX; = P! glued together at a poiit € X; N X,. Let Q be a point on
X1\Xo. Consider the open cov&r=U UV with U = X\Q andV = X;\P.

We define a Cartier divis@ on X by choosing the following rational functions
onU andV: the constant function 1 dd, and the linear function ov = A that
has a simple zero &. Note that the quotient of these two functions is regular
and nowhere zero dd NV, soD is well-defined. Its associated Weil divisi@]

is Q).
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By symmetry, we can construct a similar Cartier divifdiwhose associated
Weil divisor is the class of a poifd € X\ X;.

Now note that the Cartier divisor classesfandD’ are different (because
D — D’ is not the divisor of a rational function), but their associated Weil divisors
[Q] and[Q'] are the same by example 9.1.7.

(i) not surjective: This is essentially example 9.3.1. The clafisésf this example

are Weil divisors but not Cartier divisors.

Another example on an irreducible spatés the cone

X={g=x3+x3} C P>

LetLs = Z(x2,X1 +%3) andLy = Z(x2, X1 — X3) be the two lines as in the picture.
We claim that there is no Cartier divisor éhcorresponding to the Weil divisor
[L1]. In fact, if there was such a Cartier divisor, defined locally around the origin
by a functiond, we must have an equality of ideals

(XJZ_ + X% - X%a q)) = (XZ, X1 +)Q3)
in the local ringOps . This is impossible since the right ideal contains two lin-
early independent linear parts, whereas the left ideal contains only one. But note
that the sectionx; of the line bundleOx (1) defines a Cartier divisor dix;) on
X whose associated Weil divisor [ik;] + [L2], and the sectiom; + x3 defines a
Cartier divisor whose associated Weil divisor {£2. So[L1] and[L,] are not
Cartier divisors, whered&1] + [Lo], 2[L4], and 4L,] are. In particular, there is in
general no “decomposition of a Cartier divisor into its irreducible components”
as we have it by definition for Weil divisors.

There is quite a deep theorem however that the two notions agree on smooth schemes:

Theorem 9.3.7. Let X be a smooth n-dimensional scheme. TharX = Z,_1(X) and
PicX 22 Aq_1(X).

Proof. We cannot prove this here and refer to [H] remark 11.6.11.1.A for details. One has
to prove the analogue of lemma 7.5.6, i.e. that every codimension-1 subvarigtysof
locally the scheme-theoretic zero locus of a single function. This is a commutative algebra
statement as it can be shown on the local rini @it the subvariety.

(To be a little more precise, the property Xfthat we need is that its local rings are
unique factorization domains: if this is the case ®nd X is an subvariety of codimension
1, pick any non-zero (local) functioh € Ox v that vanishes ol. As Oxy is a unique
factorization domain we can decompogénto its irreducible factorsf = f1--- f,. Of
course one of thd; has to vanish ol. But asfj is irreducible, its ideal must be the ideal
of V, soV is locally the zero locus of a single function. The problem with this is that it
is almost impossible to check that a ring (that one does not know very well) is a unique
factorization domain. So one uses the result from commutative algebra thatreyelar
local ring (i.e. “the local ring of a scheme atsanoothpoint”) is a unique factorization
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domain. Actually, we can see from the above argument that it is enougK tkdsmooth
in codimension 17, i.e. that its set of singular points has codimension at least 2 — or
to express it algebraically, that its local ringl vy at codimension-1 subvarieti&s are
regular.) O

Example 9.3.8. Finally let us discuss the relation between divisors and line bundles as
observed for curves in section 7.5. Note that we have in fact used such a correspondence
already in example 9.3.6 where we defined a Cartier divisor by giving a section of a line
bundle. The precise relation between line bundles and Cartier divisors is as follows.

Lemma 9.3.9. For any scheme X there are one-to-one correspondences
{Cartier divisors on ¥ < {(L,s); L aline bundle on X and s a rational section.o}
and

{Cartier divisor classes on X« {line bundles on X that admit a rational sectjon

Proof. The proof of this is essentially the same as the correspondence between divisor
classes and line bundles on a smooth projective curve in proposition 7.5.9. Given a Cartier
divisorD = {(U;, $i) } on X, we get an associated line bund¥D) by taking the subsheaf

of Ox-modules ofXx generated by the functlor?'}s onU;. Conversely, given a line bundle

with a rational section, this section immediately defines a Cartier divisor. The proof that
the same correspondence holds for divisor classes is the same as in proposition [715.9.

Remark9.3.10 We should note that almost any line bundle on any schEnagimits a
rational section. In fact, this is certainly true for irreduciblgas the line bundle is then
isomorphic to the structure sheaf on a dense open sub3ebpfdefinition), and one can
show that it is true in most other cases as well (see [H] remark 6.14.1 for more information).
Most books actuallylefinethe group PiX to be the group of line bundles ot

Summarizing our above discussions we get the following commutative diagram:

together with a line bundles

rational secti T

Cartier divisors DiX —— Cartier divisor classes Px¢

| l

Weil divisorsZ,_1(X) —— Weil divisor classe#\y,_1(X)

where

(i) the bottom row (the Weil divisors) exists onlyXf is purelyn-dimensional,
(ii) the upper right vertical arrow is an isomorphism in most cases, at leasidf
irreducible,
(i) the lower vertical arrows are isomorphisms at lea3t i smooth (in codimension
1).

Remark9.3.11 Although line bundles, Cartier divisor classes, and Weil divisor classes are
very much related and even all the same thing on many schemes (e.g. smooth varieties),
note that their “functorial properties” are quite differentfif X — Y is a morphism then

for line bundles and Cartier divisors the pull-bafkis the natural operation, whereas for

Weil divisors (i.e. elements of the Chow groups) the push-forwiards in section 9.2

is more natural. In algebraic topology this can be expressed by saying that Weil divisors
correspond tthomologycycles, whereas Cartier divisors corresponddbomologyycles.

On nice spaces this is the same by Poiaahrality, but this is a non-trivial statement. The
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natural operation for homology (resp. cohomology) is the push-forward (resp. pull-back).
Intersection products are defined between a cohomology and a homology class, yielding a
homology class. This corresponds to our initial statement of this section that intersection
products of Chow cycles (“homology classes”) with divisors will usually only be well-
defined with Cartier divisors (“cohomology classes”) and not with Weil divisors.

9.4. Intersections with Cartier divisors. We are now ready to define intersection prod-
ucts of Chow cycles with Cartier divisors, as motivated in the beginning of section 9.3. Let
us give the definition first, and then discuss some of its features.

Definition 9.4.1. Let X be a scheme, 1& C X be ak-dimensional subvariety with inclu-
sion morphismi :V — X, and letD be a Cartier divisor oiX. We define théntersection
product D-V € Ac_1(X) to be

D-V =i.[i"Ox(D)],
whereOx (D) is the line bundle oiX associated to the Cartier divisbrby lemma 9.3.9,
i* denotes the pull-back of line bundlds,0x (D)] is the Weil divisor class associated to

the line bundle* Ox (D) by remark 9.3.10 (note th&t is irreducible), and, denotes the
proper push-forward of corollary 9.2.12.

Note that by definition the intersection product depends only on the divisor cléks of
not onD itself. So using our definition we can construct bilinear intersection products

PicX x Z(X) — Ac_1(X), (D,Za,[\/,]) |—>Za|(DV|)
If X is smooth and pure-dimensional (so that Weil and Cartier divisors agred)Vaad

a codimension-1 subvariety of, we denote by -V € A_1(X) the intersection product
D-V, whereD is the Cartier divisor corresponding to the Weil diviof].

Example 9.4.2.Let X be a smootim-dimensional scheme, and ¥tandW be subvarieties
of dimensionsk andn — 1, respectively. IV ¢ W, i.e. if dm(WnNV) =k—1, then the
intersection produdiV -V is just the cyclgW NV] with possibly some scheme-theoretic
multiplicities. In fact, in this case the Weil divisdW] corresponds by remark 9.3.10
to a line bundleOx (W) together with a sectiori whose zero locus is preciseély. By
definition of the intersection product we have to pull back this line bund\g tee. restrict
the sectionf toV. The cycleW -V is then the zero locus dfjy, with possibly scheme-
theoretic multiplicities iff vanishes alony with higher order.

As a concrete example, 1€ andC, be two curves ifP? of degreesd; andd,, re-
spectively, that intersect in finitely many poirs, ..., P,. Then the intersection product
C1-Cp € Ag(P?) is just 5 &[Py], whereg; is the scheme-theoretic multiplicity of the point
P, in the intersection schen@® NC,. Using that all points ifP? are rationally equivalent,
i.e. thatAq(P?) = Z is generated by the class of any point, we see @at; is just the
Bézout numbed; - ds.

Example 9.4.3. Again let X be a smootm-dimensional scheme, and tandW be
subvarieties of dimensiorksandn — 1, respectively. This time let us assume tWat W,
so that the intersectio/ NV =V has dimensiork and thus does not define(k— 1)-
dimensional cycle. There are two ways to interpret the intersection pridugtin this
case:

() Recall that the intersection produdt -V depends only on the divisalassof
W, not onW itself. So if we can replac®/ by a linearly equivalent divisoN’
such thatv ¢ W’ then the intersection produ¥ -V is justW’ -V which can
now be constructed as in example 9.4.2. For examplé letP? be a line and
assume that we want to compute the intersection produdi € Ag(P?) = Z.
The intersectiotd NH has dimension 1, but we can move the fildb a different
line H” which is linearly equivalent tél. So we see thatl -H =H’-H =1, as
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H’NH is just one point. Note however that it may not always be possible to find
such a linearly equivalent divisor that makes the intersection have the expected
dimension.

(i) If the strategy of (i) does not work or one does not want to apply it, there is also
a different description of the intersection product for which no movingvos
necessary. Let us assume for simplicity tiéatis smooth. By the analogue of
remark 7.4.17 for general hypersurfaces the burdik (W) (wherei : V — X
is the inclusion morphism) is precisely the restrictioVtof the normal bundle
Nw/x of W in X. By definition 9.4.1 the intersection produtt-V is then the
Weil divisor associated to this bundle, i.e. the locus of zeros minus poles of a
rational section of the normal bundigy x restricted tov.

V=W

wW-v =[Py] +[ P,]

Note that we can consider this procedure as an infinitesimal version of (i): the
section of the normal bundle describes an “infinitesimal deformatiok¥ af X,
and the deformeW/ meetsv precisely in the locus where the section vanishes.

Proposition 9.4.4. (Commutativity of the intersection product) Let X be an n-dimensional
variety, and let @,D; be Cartier divisors on X with associated Weil divisdy], [D2].
Then D - [Dz] =D5- [Dl] S Anfz(X).

Proof. We will only sketch the proof in two easy cases (that cover most applications how-
ever). For the general proof we refer to [F] theorem 2.4,

Case 1D; andD; intersect in the expected dimension, i.e. the locus where the defining
equations of bottD; and D, have a zero or pole has codimension 2Xin Then one
can show that botlD; - [D,] and D5 - [D4] is simply the sum of the components of the
geometric intersectioB; N D5, counted with their scheme-theoretic multiplicities. In other
words, ifV C X is a codimension-2 subvariety and if we assume for simplicity that the
local defining equationg;, f» for D1,D, aroundV are regular, theriV] occurs in both
intersection products with the coefficid(A/(f1, f2)), whereA = Oxy is the local ring
of X atV.

Case 2X is a smooth scheme, so that Weil and Cartier divisors agree den it suf-
fices to compare the intersection proditsV andV -W for any two(n— 1)-dimensional
subvarietied/,W of X. But the two products are obviously equaVif=W, and they are
equal by case 1 ¥ £ W. |

Corollary 9.4.5. The intersection product passes to rational equivalence, i.e. there are
well-defined bilinear intersection mapscX x Ay(X) — Ax_1(X) determined by D[V] =
[D-V]forall D € PicX and all k-dimensional subvarieties V of X.

Proof. All that remains to be shown is thBX- a = 0 for any Cartier divisoD if the cycle
a is zero in the Chow groupw(X). But this follows from proposition 9.4.4, as for any
rational functionp on a(k+ 1)-dimensional subvariety/ of X we have

D-[div(9)] = div(¢)- [D] =0

(note that divd) is a Cartier divisor oW that is linearly equivalent to zero). O
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Remark9.4.6 Obviously we can now iterate the process of taking intersection products
with Cartier divisors: ifX is a scheme an®;,...,Dy, are Cartier divisors (or divisor
classes) oiX then there are well-defined commutative intersection products

D1-D2---Dm-a € Ac-m(X)

for any k-cyclea € A(X). If X is ann-dimensional variety and = [X] is the class of
X we usually omifX] from the notation and write the intersection product simpl{Das
Dz---Dm € Ap—m(X). If m=nandX is complete, the notatioD1 - D, - - - Dy, is moreover
often used to denote thegreeof the 0-cycleD1 - Dy - - Dy, € Ag(X) (see example 9.2.13)
instead of the cycle itself. If a divis@® occursmtimes in the intersection product we will
also write this aP™.

Example 9.4.7.Let X = P2, Then PicX = A;(X) = Z- [H], and the intersection product is
determined byH? = 1 (“two lines intersect in one point”). In the same whi}: = 1 onP".

Example 9.4.8. Let X = P2 be the blow-up ofP? in a pointP. By example 9.2.14 we
have PiX = Z[H] @© Z[E], whereE is the exceptional divisor, and is a line inP? not
intersectinge. The strict transfornh of a line inP? throughP has clas$L] = [H] — [E] €
PicX.

The intersection products of are therefore determined by computing the three prod-
uctsH?, H-E, andE?. Of courseH? =1 andH -E = 0 (asH NE = 0). To compute
EZ we use the relatiofE] = [H] — [L] and the fact thaE andL meet in one point (with
multiplicity 1):
E?’=E-(H-L)=E-H-E-L=0-1=-1

By our interpretation of example 9.4.3 (ii) this means that the normal bundiecoP? in
X'is Op1(—1). In particular, this normal bundle has no global sections. This meankthat
cannotbe deformed irX as in the picture of example 9.4.3 (ii): one says that the chrve
is rigid in X.

We can consider the formulé$? = 1,H-E =0,E2 = —1, together with the existence
of the intersection product Picx PicX — Z as a Bzout style theorem for the blow-up
X =P2. In the same way, we getéRout style theorems for other (smooth) surfaces and
even higher-dimensional varieties.

Example 9.4.9.As a more complicated example, let us reconsider the question of exercise
4.6.6: how many lines are therelid that intersect four general given lines . .., L4 C P3?
Recall from exercise 3.5.4 that the space of line®3nis the smooth four-dimensional
Grassmannian variety = G(1, 3) that can be described as the set of all rank-2 matrices

( a a a a )
bo b1 by b
modulo row transformations. By the Gaussian algorithm it follows @(&t 3) has a strat-

ification by affine spaceXs, X3, X2, X3, X1,Xo (where the subscript denotes the dimension
and the stars denote arbitrary complex numbers)

1 0 x =% 1 « 0 =% 1 « % O
0 1 * =« 0 0 1 = 0 001

X4 X3 X2

7N
o o
[@X
= O
* %
~

N
o o
(@
o *
~ O
N—
7 N
[@Ne)
o o
(@
= O
N———
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If we denote byoy,...,00 the classes ik, (X) of the closures 0Kq, ..., Xo, we have seen
in remark 9.1.18 tha,.(X) is generated by the classes ...,0o. These classes actually
all have a geometric interpretation:

(i) oa=[X].
(i) o3 is the class of all lines that intersect the lifve) = x; = 0} C P3. Note that
this is precisely the zero locus agb; — a;bg. In particular, ifL P2 is any other
line then the class} of all lines in P2 meetingL is also a quadratic function
in the entries of the matrix that is invariant under row transformations (in fact a
2 x 2 minor in a suitable choice of coordinatesi. The quotient""w is

then a rational function oX whose divisor iso3 — cr:';. It follows that the class
0'3-, does not depend dn So we can viewss as the class that describes all lines
intersectinganygiven line inPP3.

(ii) oz isthe class of all lines passing through the pdtht0: 0 : 1). By an argument
similar to that in (ii) above, we can viesp as the class of all lines passing through
anygiven point inP3.

(iv) o isthe class of all lines that are contained in a plane (namely in the pjan®
for the cycleX; given above).

(v) o1 is the class of all lines that are contained in a plane and pass through a given
point in this plane.

(vi) o is the class of all lines passing through two given point&3n

Hence we see that the intersection number we are looking for igfustAg(X) = Z —

the number of lines intersecting any four given line®#h So let us compute this number.
Step 1. Letus compute% € Ay(X), i.e. class of all lines intersecting two given lines

L1,Lo in P3. We have seen above that it does not matter which lines we take, so let us

choosel; andL, such that they intersect in a poiRtc P2, A line that intersects bothy

andL, has then two possibilities:

() itis any line in the plane spanned by andL,,
(i) itis any line inIP3 passing througP.

As (i) corresponds t@’, and (ii) to o2 we see thatr% = 02+ 0,. To be more precise,
we still have to show thar§ contains bothX; andX; with multiplicity 1 (and not with a
higher multiplicity). As an example, we will show therg containso, with multiplicity
1; the proof ford), is similar. Consider the open subs@tc G(1,3); it is isomorphic to
an affine spacé* with coordinatesa,, as, by, bs. On this open subset, the space of lines
intersecting the lindxg = x; = 0} is given scheme-theoretically by the equati®mn= 0,
whereas the space of lines intersecting the {ige= X3 = 0} is given scheme-theoretically
by the equatiorbs = 0. The scheme-theoretic intersection of these two spaces (i.e. the
producto%) is then given by, = by = 0, which is precisely the locus of lines through the
point(0:1:0:0 (with multiplicity 1), i.e. the cycleos.

Step 2. In the same way we compute that

(i) o3-02 =03 (lines meeting a liné and a point are precisely lines in the plane
spanned by andP passing throug),
(i) o03-0, =01 (lines meeting a liné and contained in a plarté are precisely lines
in the planeH passing through the poikt NL),
(i) o3-01 = 0op.

So we conclude that
03 = 0%(024 0%) = 20301 = 2,

i.e. there are exactly two lines ¥ meeting four other general given lines.
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We should note that similar decompositions into affine spaces exist for all Grassmannian
varieties, as well as rules how to intersect the corresponding Chow cycles. These rules are
usually calledSchubert calculusThey can be used to answer almost any question of the
form: how many lines ifP" satisfy some given conditions?

Finally, let us prove a statement about intersection products that we will need in the next
section. It is based on the following set-theoretic idea:fleX — Y be any map of sets,
and letv ¢ X andW C Y be arbitrary subsets. Then it is checked immediately that

f(f 1 W)nVv) =wnf(V).

This relation is called arojection formula . There are projection formulas for many other
morphisms and objects that can be pushed forward and pulled back along a morphism. We
will prove an intersection-theoretic version here.

Lemma9.4.10.Let f: X — Y be a proper surjective morphism of schemesolLet,(X)
be a k-cycle on X, and let B PicY be a Cartier divisor (class) on Y. Then

f.(f*D-a) =D- f.a € Ac1(Y).

Proof. (Note that this is precisely the set-theoretic intersection formula from above, to-
gether with the statement that the scheme-theoretic multiplicities match up in the right
way.)

By linearity we may assume that= [V] for a k-dimensional subvariety C X. Let
W = f(V), and denote bg:V — W the restriction off to V. Then the left hand side of
the equation of the lemma @ [g*D’], whereD’ is the Cartier divisor oW associated to
the line bundledy (D) |w. The right hand side i (V) : K(W)] - [D'] by construction 9.2.9,
with the convention thafk (V) : K(W)] = 0 if dimW < dimV. We will prove that these
expressions actually agree #y_1(W) for any given Cartier divisoD’. This is a local
statement (as we just have to check that every codimension-1 subvaridétyo€urs on
both sides with the same coefficient), so passing to an open subset we can assihe that
is the divisor of a rational functioh onW. But then by theorem 9.2.11 the left hand side
is equal to

g.div(g*9) = divN(g"9) = div(¢KVKWI) = [K (V) : K(W)] - div(9),
which equals the right hand side. d

9.5. Exercises.

Exercise 9.5.1.Let X C P" be a hypersurface of degree Compute the Chow group
An_1(PM\X).

Exercise 9.5.2.Compute the Chow groups #&f=P" x P™ for all n,m> 1. Assuming that
there are “intersection pairing homomorphisms”

Anim—k(X) X Animat (X) = Anymk—1 (X),  (0,0") —a-a’

such thafV NW] = [V] - W] for all subvarietie®,W C X that intersect in the expected di-
mension, compute these homomorphisms explicitly. Use this to state a versién@it’®
theorem for products of projective spaces.

Exercise 9.5.3.(This is a generalization of example 9.1.7.)Xif and X, are closed sub-
schemes of a schemxeshow that there are exact sequences

Ak(Xl n Xz) — Ak(xl) @Ak(X2) — Ak(Xl UXZ) —0
forallk > 0.
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Exercise 9.5.4.Show that for any schemesandY there are well-defined product homo-
morphisms

AX) XA (YY) = A (X XY), V] x W] — [V xW].
If X has a stratification by affine spaces as in remark 9.1.18 show that the induced homo-
morphisms

D AX) X A(Y) — An(X xY)
k+l=m

are surjective. (In general, they are neither injective nor surjective).

Exercise 9.5.5.Prove the following criteria to determine whether a morphisnX — Y
is proper:

(i) The composition of two proper morphisms is proper.
(i) Properness is “stable under base changef::iX — Y is properandy: Z — Y is
any morphism, then the induced morphigm X xy Z — Z is proper as well.
(ii) Properness is “local on the base™: {it);} is any open cover of and the restric-
tionsf|f71<ui) : £71(U;) — U; are proper for all thenf is proper.
(iv) Closed immersions (see 7.2.10) are proper.

Exercise 9.5.6.Let f : P — P! be the morphism given in homogeneous coordinates by
(Xo:x1) — (33 :x2). Let P c P! be the point(1: 1), and consider the restrictiof :

P\ {P} — PL. Show thatf is not proper, both with the topological and the algebraic
definition of properness.

Exercise 9.5.7.For anyn > 0 compute the Chow groups Bf blown up inn points.

Exercise 9.5.8.Let k be an algebraically closed field. In this exercise we will construct an
example of a variety that is complete (i.e. compagt# C) but not projective.

ConsiderX = P? and the curve€; = {x3 = Xp — 1 = 0} andC, = {x3 = XoX — X2 = 0}
in X. Denote byP; = (1:0:0:0 andP, = (1:1:1: 0 their two intersection points.

Let X{ — X be the blow-up a€;, and letX; — X{ be the blow-up at the strict trans-
form of C,. Denote bym : X; — X the projection map. Similarly, lat, : X — X be
the composition of the two blow-ups in the opposite order; first blovCppand then the
strict transform ofC;. Obviously,Xl and X, are isomorphic away from the inverse im-
age of {P1,P,}, so we can glueg *(X\{P1}) and1,*(X\{P2}) along the isomorphism
0 (X\{P1,P2}) = 15,1 (X\{P1,P2}) to get a variety. This variety will be our example.
From the construction there is an obvious projection majy — X.

(i) Show thaty is proper ovek.
(i) Fori= 1,2 we know thaC; is isomorphic tdP!. Hence we can choose a rational
functiond; onC; with divisor P, — P,. Compute the divisor of the rational function
¢; oron the varietyrt1(G;), as an element id; (Y).
(iif) From (ii) you should have found two irreducible curv®g,D, C Y such that
[D1] + [D2] = 0 € A1(Y). Deduce thaY is not a projective variety.

Exercise 9.5.9.Let X be a smooth projective surface, anddeb C X be two curves irX
that intersect in finitely many points.

(i) Prove that there is an exact sequence of sheaves on
0— Ox(—C—D) — Ox(—C)@® Ox(—D) — Ox — Ocnp — 0.
(ii) Conclude that the intersection prod@@tD € Z is given by the formula
C-D =X(X, 0x) +X(X, Ox(~C— D)) — X(X, O (~C)) — X(X, Ox (D))

wherex (X, F) = ¥;(—1)'h(X, ) denotes the Euler characteristic of the sheaf
F.
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(iif) Show how the idea of (ii) can be used to define an intersection product of divisors
on a smooth complete surface (even if the divisors do not intersect in dimension
zero).
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10. CHERN CLASSES

For any vector bundle Ti: F — X of rank r on a scheme X we define an associated
projective bundle p: P(F) — X whose fibers p~1(P) are just the projectivizations of
the affine fibers TUL(P). We construct natural line bundles Op(F)(d) on P(F) for all
d € Z that correspond to the standard line bundles O(d) on projective spaces. As in
the case of vector bundles there are pull-back homomorphisms A, (X) — A, (P(F))
between the Chow groups.

For a bundle as above we define the i-th Segre class S (F) : A.(X) — A._i(X) by
s(F)-a= p*(D,r:_l+| - p*a), where Dg denotes the Cartier divisor associated to the
line bundle Op()(1). The Chern classes Ci(F) are defined to be the inverse of the
Segre classes. Segre and Chern classes are commutative; they satisfy the projection
formula for proper push-forwards and are compatible with pull-backs. They are mul-
tiplicative on exact sequences. Moreover, Cj(F) =0 fori > r. The top Chern class
¢ (F) has the additional geometric interpretation as the zero locus of a section of F.
Using the technique of Chern roots one can compute the Chern classes of almost any
bundle that is constructed from known bundles in some way (e.g. by means of direct
sums, tensor products, dualizing, exact sequences, symmetric and exterior products).

The Chern character ch(F) and Todd class td(F ) are defined to be certain polyno-
mial combinations of the Chern classes of F. The Hirzebruch-Riemann-Roch theo-
rem states that 5 h' (X, F) = deg(ch(F)-td(Tx)) for any vector bundle F on a smooth
projective scheme X. We study some examples and applications of this theorem and
give a sketch of proof.

10.1. Projective bundles. Recall that for any line bundl&€ on a varietyX there is a
Cartier divisor onX corresponding ta that in turn defines intersection homomorphisms
A(X) — Ax-1(X). These homomorphisms can be thought of as intersectingyale on
X with the divisor of any rational section a@f. We now want to generalize this idea from
line bundles to vector bundles. To do so, we need some preliminaries on projective bundles
first.

Roughly speaking, the projective bundtéE) associated to a vector bundteof rank
r on a schemeX is simply obtained by replacing the fibers (that are all isomorphic to
A") by the corresponding projective spad®s! = (A"\{0})/k*. Let us give the precise
definition.

Definition 10.1.1. Let t: F — X be a vector bundle of rankon a schem& (see remark
7.3.2). In other words, there is an open coverhly} of X such that

(i) there are isomorphismg; : TT1(U;) — Uj x A" overU;,
(i) on the overlapsJ; NU; the compositions

quOQJ;lZ (UinUj) x A" — (UinU;j) x A’
are linear in the coordinates &f , i.e. they are of the form
(PX) — (P,Wijx)

whereP € U, x= (Xg,...,X%) € A", and the¥; j arer x r matrices with entries in
Ox (Uinyj).

Then theprojective bundle P(F) is defined by glueing the patchel x P'~! along the
same transition functions, i.e. by glueibgx P'~1 to U; x P'~1 along the isomorphisms

(UinUj) x Pt — (UinUj) x P (Px) — (PWijx)

foralli, j, whereP € UinUj andx = (X1 : --- : %) € P'~1. We say thaP(F) is a projective
bundle of rank — 1 onX.
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Note that in the same way as for vector bundles there is a natural projection morphism
p:P(F) — X that sends a poir(P,x) to P. In contrast to the vector bundle case however
the morphisimp is proper (which follows easily from exercise 9.5.5).

Example 10.1.2.Let X = P1, and letF be the vector bundle (i.e. locally free sheaf) &
Ox(—1) on X. ThenP(F) is a projective bundle of rank 1 oM, so it is a scheme of
dimension 2. We claim th&(F) is isomorphic to the blow—u@2 of the projective plane
in a pointP. In fact, this can be checked directly: by definition 10.R(F) is obtained by
glueing two copied);, U, of Al x P! along the isomorphism

(AN{0}) x P* — (AN\{0}) x P!, (z,(x¢ 1 %)) = (%, (x1:2%)).
On the other hand?? is given by
P2 = {((x0:%1: %), (y1:¥2)) ; XaY2 =Xoy1} C P? x P!
(see example 4.3.4). Now an isomorphism is given by
Ur AT P S B2 (2 (x1:%2)) — ((X1: 2% X%2),(Z: 1)),
Up 2 AT P S B2 (2 (x1:%2)) — (X1 %2:2%),(1:2))

(note that this is compatible with the glueing isomorphism above).

To see geometrically that? is a projective bundle of rank 1 ové@?! let p: P2 —
E =~ P! be the projection morphism onto the exceptional divisor as of example 9.2.14
(ii). The fibers of this morphism are the strict transforms of lines thrd@ggo they are all
isomorphic toP?.

Remarkl0.1.3 If F is a vector bundle and a line bundle orX thenP(F) 2 P(F ®L). In
fact, tensoring- with L just multiplies the transition matricé, ; of definition 10.1.1 with
a scalar function, which does not affect the morphism asithee projective coordinates.

Example 10.1.4.Let p: P(F) — X be a projective bundle over a schedXggiven by an
open coverU;} of X and transition matrice®; ; as in definition 10.1.1. In this example
we want to construct line bundle%; ) (d) for all d € Z onP(F) that are relative versions
of the ordinary bundleg§),r—1(d) on projective spaces.
The construction is simple: on the patchgs< P'~* of P(F) we take the line bundles
Opr-1(d). Onthe overlapbli NU; these line bundles are glued y- ¢ oW j, wherep = é
is (locally) a quotient of homogeneous polynomifjg € K[x, ..., X/] with degf —degg =
d. Note that theh o W; ; satisfies the same degree conditions astheare linear functions.
Summarizing, we can say that sections of the line buagje)(d) are locally given by
guotients of two polynomials which are homogeneous in the fiber coordinates and whose
degree difference ig.

Construction10.1.5 Again letp: P(F) — X be a projective bundle over a scheide
given by an open coveJ; } of X and transition matriced; ;. Consider the vector bundle
p‘F onP(F). Itis given by glueing the patchés x P'~1 x A" along the isomorphisms

(UinUj) x P x A" — (UinUj) x P AT (Pxy) = (P W% Wi y),

wherex = (x1 : --- : %) are projective coordinates @1, andy = (y1,...,y;) are affine
coordinates o\". Now consider the subbund&of p*F given locally by the equations
xy; =Xjyi foralli,j=1,...,r, i.e. the subbundle gb*F consisting of thosgy,...,y)
that are scalar multiples @k; : --- : ;). Obviously,Sis a line bundle o®(F) contained
in p*F. Geometrically, the fiber o8 over a point(P,x) € P(F) is precisely the line in
the fiberFp whose projectivization is the poimt The line bundleS C p*F is called the
tautological subbundleonP(F).
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We can actually identify the subbundidn the language of example 10.1.4: we claim
thatSis isomorphic toOpr)(—1). In fact, an isomorphism is given by

Opr)(—1) =S o (Yi=0-%),
whered is (locally) the quotient of two polynomials homogeneous inxhef degree dif-
ference—1. Itis obvious that thé - x; are then quotients of two polynomials homogeneous
in thex; of the same degree, so that there well-defined.

Example 10.1.6.0ne place where projective bundles occur naturally is in blow-ups. Re-
call from construction 4.3.2 that the blow-Xpof an affine varietyx ¢ A" at a subvariety
Y c X with ideall (Y) = (f1,..., f;) is defined to be the closure of the graph

F={(P(fy(P):---: f(P))); PeX\Y}C X xP'L

The exceptional hypersurface of the blow-up must be contain&dxP'—1, which has
dimension dinY 4+r — 1. SoifY has dimension dird —r (which is the expected dimension
as its ideal has generators) then the exceptional hypersurface must be lkd? —1 for
dimensional reasons.

Let us now sketch how this construction can be generalized to blow-ups of arbitrary
(not necessarily affine) varietieé in a subvarietyy. For simplicity let us assume that
there are line bundles.y, ..., £, on X together with global sectiors HO(X,Q) such
thatY is scheme-theoretically the zero locgis= --- = s = 0. Then the straightforward
generalization of the above construction is to define the blow-0pinfY to be the closure
of the graph

F={(P(s1(P):--:5(P)); PEX\Y} CP(L1®-- D Ly).
As above, ifY has codimensionin X then the exceptional hypersurface of the blow-up is
the projective bundI®((Ly & --- @ L )|y) overY.

Now recall from remark 7.4.17 and example 9.4.3 (ii) that the normal bundle of a smooth
codimension-1 hypersurfadéin a smooth varietyK that is given as the zero locus of a
section of a line bundl& is just the restriction of this line bundleto Y. If we iterate this
resultr times we see that the normal bundle of a smooth codimensiypersurface in
a smooth variety that is given as the zero locus of sections dihe bundlessy,..., 4
isjust(L1®--- @ Lr)|]y. Combining this with what we have said above we conclude that
the exceptional hypersurface of the blow-up of a smooth variety X in a smooth variety Y
is just the projectivized normal bund®{Ny x) over Y. This is a relative version of our
earlier statement that the exceptional hypersurface of the blow-up of a variety in a smooth
point is isomorphic to the projectivized tangent space at this point.

In the above argument we have used for simplicity that the codimemnsabvarietyY
is globally the zero locus af sections of line bundles. Actually we do not need this. We
only need thay is locally around every point the zero locus rofegular functions, as we
can then make the above construction locally and finally glue the local patches together.
Using techniques similar to those in theorem 9.3.7 one can show\batsmooth subva-
riety Y of codimensiorr in a smooth varietyX is locally around every point the zero locus
of r regular functions. So it is actually true in general that the exceptional hypersurface of
the blow-up ofX in Y isP(Ny x ) if X andY are smooth.

Finally, in analogy to the case of vector bundles in proposition 9.1.14 let us discuss
pull-back homomorphisms for Chow groups induced by projective bundles.

Lemma 10.1.7.Let F be a vector bundle on a scheme X of rankly and let p: P(F) — X
be the associated projective bundle of rank r. Then there are pull-back homomorphisms

P i AX) = Acr (B(F)), V] = [pH(V))]
for all k, satisfying the following compatibilities with our earlier constructions:
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(i) (Compatibility with proper push-forward) Let:fX — Y be a proper morphism,
and let F be a vector bundle of ranki1 on Y. Form the fiber diagram

!

P(f*F) ——> P(F)

p'i | lp

X Y.

Then g f, = f,p"* as homomorphisms&X) — A, (P(F)).
(ii) (Compatibility with intersection products) Let F be a vector bundle of rank.r
on X, and let De PicX be a Cartier divisor (class). Then

p'(D-a)=(p'D)-(p'a)
in Air—1(IP(F)) for every k-cyclex € Ac(X).

Proof. (i): LetV C X be ak-dimensional subvariety. Thepr(f(V)) = f'(p~1(V)) =:
W, and bothp* f,[V] and f,p’*[V] are equal ta - [W], whered is the generic number of
inverse image points df (resp.f’) on f(V) (resp.p~X(f(V)).

(i): Let o = [V] for ak-dimensional subvariety C X. OnV the Cartier divisoD is
given by a line bundle. If ¢ is any rational section of then the statement follows from
the obvious identityp* div(¢) = div(p*¢). O

Remarkl10.1.8 We have now constructed pull-back morphisms for Chow groups in three
cases:

(i) inclusions of open subsets (example 9.1.11),
(ii) projections from vector bundles (proposition 9.1.14),
(iii) projections from projective bundles (lemma 10.1.7).

These are in fact special cases of a general class of morphisms, fatliexdrphismsfor
which pull-back maps exist. See [F] section 1.7 for more detalils.

10.2. Segre and Chern classes of vector bundled.et X be a scheme, and I& be a
vector bundle of rank on X. Let p: P(F) — X be the projection from the corresponding
projective bundle. Note that we have the following constructions associated to

(i) push-forward homomorphismg, : Ac(P(F)) — A(X) since p is proper (see
corollary 9.2.12),
(i) pull-back homomorphismg* : Ax(X) — Axir—1(P(F)) by lemma 10.1.7,
(i) a line bundle Opr)(1) onP(F) by example 10.1.4 (the dual of the tautological
subbundle).

We can now combine these three operations to get homomorphisms of the Chow groups of
X that depend on the vector bundie

Definition 10.2.1. Let X be a scheme, and |&t be a vector bundle of rankon X. Let
p:P(F) — X be the projection map from the associated projective bundle. Assume for sim-
plicity that X (and hencé?(F)) is irreducible (see below), so that the line bundigr)(1)
corresponds to a Cartier divisDg onP(F). Now for alli > —r + 1 we defineSegre class
homomorphismsby the formula

S(F):AX) = Aci(X), o= s(F)-a:=p,(DE pra).

Remarkl10.2.2 We will discuss some geometric interpretations of Segre classes (or rather
some combinations of them) later in proposition 10.2.3 (i) and (ii), proposition 10.3.12, and
remark 10.3.14. For the moment let us just note that every vector béngdiees rise to
these homomorphisnsgF) that look like intersections (hence the notat$(t ) - a) with
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some object of codimensidras they decrease the dimension of cycles.kyn algebraic
topology the Segre clasgF) is an object in the conomology growf? (X,7Z).)

Note also that the condition thAtbe irreducible is not really necessary: eveaife) (1)
does not determine a Cartier divisor B(F) it does so on every subvariety BfF ), and
this is all we need for the construction of the intersection product (as we intersect with a
cycle inP(F) which is by definition a formal linear combination of subvarieties).

Proposition 10.2.3.Let X and Y be schemes.

(i) For any vector bundle F on X we have
e 5(F)=0fori<0,
e 5o(F) =id.
(ii) For any line bundle L on X we have(k)-a = (—1)'D'-a for i > 0 and all
a € A.(X), where D is the Cartier divisor class associated to the line bundle L.
(i) (Commutativity) If F and F, are vector bundles on X, then

s(F1)-sj(F2) =sj(F2) - si(Fy)

as homomorphisms&X) — Ac_j_j(X) for all i, j (where the dot denotes the
composition of the two homomorphisms).

(iv) (Projection formula) If f: X — Y is proper, F is a vector bundle on Y, ands
A.(X), then

fo(s(f'F)-a) =s(F)- f.a.

(v) (Compatibility with pull-back) If f: X — Y is a morphism for which a pull-back
f* 1 AY) — A.(X) exists (see remark 10.1.8), F is a vector bundle on Y, and
a € A.(Y), then

s(f*F)-ffa = f*(s(F)-a).

Proof. (i): Let V C X be ak-dimensional subvariety. By construction we can represent
s(F) - [V] by a cycle of dimensiok — i supported ivV. As Z_;(V) =0 fori <0 and
Z (V) = [V] we conclude thasi (F) = 0 fori < 0 andsp(F) - [V] = n-[V] for somen € Z.
The computation of the multiplicityr is a local calculation, so we can replaXeby an
open subset and thus assume fhds a trivial bundle. In this casB(F) = X x P'~1 and
Dr is a hyperplane i 1. SoDE1 is a point inP' 2, i.e.DE- p*[V] = [V x {pt}] and
hencesy(F) - [V] = [V].

(i): If Lis a line bundle ther®(L) = X and p is the identity. Hence the statement
follows from the identityOp )(—1) = L.

The proofs of (iii), (iv), and (v) all follow from the various compatibilities between
push-forward, pull-back, and intersection products. As an example we give the proof of
(iv), see [F] proposition 3.1 for the other proofs.

For (iv) consider the fiber square

P(FF) — > P(F)

oo, b

X—Y
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and denote the Cartier divisors associated to the line buri@gs(1) and Op(s+¢)(1) by
Dr andDg, respectively. Then

f.(s(f*F)-a) = f.p,(DE 1. p*a) by definition 10.2.1
= p, /(DL 1. p*a) by remark 9.2.10
=p. f;((f/*DF)PHl. p’*(x) aSD;: — f/*DF
= p. (DL £ p*a) by lemma 9.4.10
= p.(DEL. pf.a) by lemma 10.1.7 (i)
=s(E) f.a by definition 10.2.1.

O

Corollary 10.2.4. Let F be a vector bundle on a scheme X, and letPgF) — X be
the projection. Then p: A, (P(F)) — A.(X) is surjective and p: A.(X) — A.(P(F)) is
injective.

Proof. By proposition 10.2.3 (i) we have

a=s(F)-a=p.(DE* pa)

for all a € A.(X), sop. is surjective. The same formula shows that 0 if p*a =0, so
p* is injective. O

By proposition 10.2.3 (iii) any polynomial expression in the Segre classes of some vec-
tor bundles acts on the Chow groupsfAlthough the Segre classes are the characteristic
classes of vector bundles that are the easiest ones to define, some others that are polyno-
mial combinations of them have nicer properties and better geometric interpretations. Let
us now define these combinations.

Definition 10.2.5. Let X be a scheme, and |&t be a vector bundle of rankon X. The
total Segre clasof F is defined to be the formal sum

s(F) = _Z)s(F) CA(X) — AX).

Note that:

(i) All s(F) can be recovered from the homomorphis(f) by considering the
graded parts.
(i) Although the sum overin s(F) is formally infinite, it has of course only finitely
many terms agy(X) is non-zero only for finitely mani.
(iii) The homomorphisns(F) is in fact anisomorphisnof vector spaces: by proposi-
tion 10.2.3 (i) it is given by a triangular matrix with ones on the diagonal (in the
natural grading oA\ (X)).

By (iii) it makes sense to define thetal Chern classof F

c(F) :i;)Ci(F)

to be the inverse homomorphismsf ). In other words, th€hern classes;(F) are the
unique homomorphismg(F) : Ax(X) — Ax_i(X) such that

S(F)-c(F) = (1+s1(F) +%2(F)+---) - (co(F) +c1(F) +c2(F) +---) =id.



194 Andreas Gathmann

Explicitly, the first few Chern classes are given by

co(F) =1,

ci(F) = —si(F),

C2(F) = —s(F) +s1(F)?,

c3(F) = —s3(F) + 251 (F)(F) — s1(F)2.

Proposition 10.2.3 translates directly into corresponding statements about Chern classes:

Proposition 10.2.6.Let X and Y be schemes.

(i) For any line bundle L on X with associated Cartier divisor class D we have
¢(L)-a=(1+D)-a. In other words, gdL) =0 fori > 1, and g(L) is the
homomorphism of intersection with the Cartier divisor class associated to L. By
abuse of notation, the Cartier divisor class associated to L is often also denoted

ci(L).
(ii) (Commutativity) If F and F, are vector bundles on X, then
¢i(F1)-cj(R2) = cj(F2)-ci(F)

foralli, j.
(iii) (Projection formula) If f: X — Y is proper, F is a vector bundle on Y, aod=
A.(X), then
fo(ci(f'F)-a)=c(F)- f.a.
(iv) (Pull-back) If f: X —Y is a morphism for which a pull-back fA.(Y) — A.(X)
exists, F is a vector bundle on Y, aads A.(Y), then

G(f*F) - ffa=f"(c(F)-a).

Proof. (i): This follows from proposition 10.2.3, since
(1-D+D?-D3%+---)(1+D)=1.

(i), (iii), (iv): All these statements follow from the corresponding properties of Segre
classes in proposition 10.2.3, taking into account that the Chern classes are just polynomi-
als in the Segre classes. |

10.3. Properties of Chern classeslIn this section we will show how to compute the
Chern classes of almost any bundle that is constructed from other known bundles in some
way (e.g. by means of direct sums, tensor products, dualizing, exact sequences, symmetric
and exterior products). We will also discuss the geometric meaning of Chern classes.

The most important property of Chern classes is that they are multiplicative in exact
seguences:

Proposition 10.3.1.Let0 — F' — F — F” — 0 be an exact sequence of vector bundles
on a scheme X. Thertfe) = c(F’) - c(F").

Proof. We prove the statement by induction on the rank 6f
Step 1:rankF” = 1. We have to show tha(F’) - V] = ¢(F”) - s(F) - [V] for all k-
dimensional subvarieties C X. Consider the diagram

P' = P(Fly) ————— P(Fjv) =P

N
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Then
c(F")-s(F)- V] =c(F")- ps((L+Dg +D2+---)-[P]) by definition 10.2.1
=c(F") p«(s(Op(-1)) - [P]) by proposition 10.2.3 (ii)
= (14+c1(F")) - p«(s(Op(—1)) - [P]) by proposition 10.2.6 (i)

= p:((L+c(p*F"))-s(0p(—1)) - [P]) by proposition 10.2.6 (ii).

On the other hand, we have a bundle n@ag—1) — p*F — p*F” on P, which by con-
struction fails to be injective exactly at the pointsRf In other words,P’ in P is the
(scheme-theoretic) zero locus of a section of the line bupti¢’ ® Op(—1)". So we get

S(F) - V] = p.(s(O0p (—1)) - [P])
= P (s(i"Op(-1)) - [P])
= p:(s(Op(—1)) -i[P])
= P«(S(Op(—1)) - (ca(p"F") — c2(Op(—1))) - [P)).
Subtracting these two equations from each other, we get
c(F") - s(F)- V] —s(F) - V] = p.(s(Op(—1)) c(Op(—1)) [P]) = p.[P] =0
for dimensional reasons.

Step 2:rankF” > 1. LetQ = P(F"Y) with projection mapg: Q — X, and letLY C
g*F”" be the universal line bundle. Then we get a commutative diagram of vector bundles
on Q with exact rows and columns

0 s q*F/

0
|
ﬁ//
|
0 — q*F’ . q*F . q*F” —=0
|
L
v
0

0

-

L

|

0

for some vector bundles andF” on Q with rankF” = rankF” — 1. Recall that we want

to prove the statement that for any short exact sequence of vector bundles the Chern poly-
nomial of the bundle in the middle is equal to the product of the Chern polynomials of the
other two bundles. In the above diagram we know that this is true for the columns by step
1 and for the top row by the inductive assumption; hence it must be true for the bottom row
as well. So we have shown that

c(qF) = c(q"F') -c(q"F").
It follows that

q'c(F) =a"(c(F') - c(F"))
by proposition 10.2.6 (iv), and finally that

c(F) = c(F') - c(F")

asq* is injective by corollary 10.2.4. O
Remarkl0.3.2 Of course proposition 10.3.1 can be split up into graded parts to obtain the
equations

«(F)= Y c(F) c(F")

i+]=k
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for all k > 0 and any exact sequenceOF’ — F — F” — 0 of vector bundles on a scheme
X.

Note moreover that by definition the same relatfR) = s(F’) - s(F”) then holds for
the Segre classes.

Example 10.3.3.1n this example we will compute the Chern classes of the tangent bundle
Tx of X =P". By lemma 7.4.15 we have an exact sequence of vector bundlés on

0— Ox — x(1)*M - T — 0.

Moreover proposition 10.2.6 (i) implies thetOx ) = 1 andc(Ox (1)) = 1+ H, whereH is
(the divisor class of) a hyperplaneX So by proposition 10.3.1 it follows that

c(Tx) = ¢(Ox(1))™/e(0x) = (L+H)™,
i.e.ox(Tx) = ("I1) - H* (whereHX is the class of a linear subspaceXobf codimensiork).

Remarkl0.3.4 Note that proposition 10.3.1 allows us to compute the Chern classes of any
bundleF of rankr on a scheme that has a filtration

O=FCckcCc---Ch_1CkKk=F

by vector bundles such that the quotiehts= F /F_; are all line bundles (i.€5 has rank
i for all i). In fact, in this case a recursive application of proposition 10.3.1 to the exact
sequences
O—-FKi1—-kK—-L—0
yields (together with proposition 10.2.6 (i))

r

o(F) =[]+

whereD; = c¢;(L;) is the divisor associated to the line bundje

Unfortunately, not every vector bundle admits such a filtration. We will see now how-
ever that for computations with Chern classes we can essentially pretend that such a filtra-
tion always exists.

Lemma 10.3.5. (Splitting construction) Let F be a vector bundle of rank r on a scheme X.
Then there is a scheme Y and a morphisny f- X such that

(i) f admits push-forwards and pull-backs for Chow groups (in fact it will be an
iterated projective bundle),
(ii) the push-forward fis surjective,
(i) the pull-back f is injective,
(iv) f*F has afiltration by vector bundles

0=FOCF1C-~~CFr,1CFr=f*F
such that the quotients A_1 are line bundleson Y.

In other words, “every vector bundle admits a filtration after pulling back to an iterated
projective bundle”.

Proof. We construct the morphisrh by induction on rank. There is nothing to do if
rankF = 1. Otherwise se¥’ = P(F") and letf’ : Y — X be the projection. LeLY C
f”*FV be the tautological line bundle ofi. Then we have an exact sequence of vector
bundles 0— F — f"*F — L — 0 onY’, where rank = rankF — 1. Hence by the inductive
assumption there is a morphistfi : Y — Y’ such thatf”*F has a filtration(F;) with line
bundle quotients. If we sdt= f’o f” it follows that we have an induced filtration 6fF
onY

0O=RcFC---CR_1=f"FcCfF
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with line bundle quotients. Moreovef, is surjective and* is injective, as this is true for
f” by the inductive assumption and férby corollary 10.2.4. O

Construction10.3.6 (Splitting construction) Suppose one wants to prove a universal
identity among Chern classes of vector bundles on a schéneeg. the statement that
c¢i(F) = 0 wheneveri > rankF (see corollary 10.3.7 below). If the identity is invariant
under pull-backs (which it essentially always is because of proposition 10.2.6 (iv)) then one
can assume that the vector bundles in question have filtrations with line bundle quotients.
More precisely, pick a morphism: Y — X as in lemma 10.3.5. We can then show the
identity for the pulled-back bundl&*F onY, using the filtration. As the pull-back® is
injective and commutes with the identity we want to show, the identity then follows for

on X as well. (This is the same argument that we used already at the end of the proof of
proposition 10.3.1.)

Corollary 10.3.7. Let F be a vector bundle of rank r on a scheme X. ThéR)c= 0 for
alli >r.

Proof. By the splitting construction 10.3.6 we can assume fhhas a filtration with line
bundle quotientk;,i =1,...,r. Butthenc(F) =[]{_1(1+ci(Li)) by remark 10.3.4, which
obviously has no parts of degree bigger than |

Remarkl0.3.8 This vanishing of Chern classes beyond the rank of the bundle is a property
that isnot shared by the Segre classes (see e.g. proposition 10.2.3 (ii)). This is one reason
why Chern classes are usually preferred over Segre classes in computations (although they
carry the same information).

Remark10.3.9 The splitting construction is usually formalized as follows. Eebe a
vector bundle of rank on a schem&. We writeformally
r

o(F) =[]+ ).

There are two ways to think of tteey, ..., 0;:

e Theaq; are just formal “variables” such that theth elementary symmetric poly-
nomial in theaq; is exactlyc(F). So anysymmetricpolynomial in thea; is
expressible as a polynomial in the Chern classds iofa unique way.

e After having applied the splitting construction, the vector burkdheas a filtration
with line bundle quotientk;. Then we can set; = ¢y (L), and the decomposition
c(F) =i_1(1+aj) becomes an actual equation (and not just a formal one).

Theaq; are usually called th€hern roots of F. Using the splitting construction and Chern
roots, one can compute the Chern classes of almost any bundle that is constructed from
other known bundles by standard operations:

Proposition 10.3.10.Let X be a scheme, and let F and Ite vector bundles with Chern
roots (aij)i and (a)j, respectively. Then:
(i) FY has Chern root§—a;);.

(i) F®F’ has Chern rootga; + G/j)i"j.

(iiiy SF has Chern rootgai, + - - + i, )iy <...<i-

(iv) AKF has Chern rootgai, + -+ - + i, )iy <...<i-
Proof. (i): If F has afiltration G= Ry C F1 C --- C i, = F with line bundle quotientk; =
F/F_1, thenF" has an induced filtration8 (F /R)" C (F/FR_1)V C---C (F/Ro)V =F"
with line bundle quotients;’.

(i): If F andF’ have filtrations

O=RCcFc---CR=F and O:FO/CF]{C"'CFS/:F/
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with line bundle quotients; := F/F_1 andL] := F//F’ ;, thenF @ F’ has a filtration
0=ReF CR&F Cc---CROF =FaF

with quotientsL @ F’. ButL; ® F' itself has a filtration
O=LeFRcL®Fc--CcLeF=LaF

with quotientsL; ® L, so the result follows.
(iii) and (iv) follow in the same way. O

Example 10.3.11.The results of proposition 10.3.10 can be restated using Chern classes
instead of Chern roots. For example, (i) just says thé") = (—1)'ci(F). It is more
difficult to write down closed forms for the Chern classes in the cases (ii) to (iv). For
example, ifF’ = L is a line bundle, then

c(Fol) =[]+ (@i+a)) =3 (L+cu(L) " a(F)

wherer = rankF. So for 0< p <r we have

cp(F®L)= i (L_ i.) Gi(F)ey(L)P.

1=
Also, from part (iv) it follows immediately that; (F) = c1(A"F).

As a more complicated example, assume fhdt a rank-2 bundle on a schenxe
and let us compute the Chern classeSt#¥. SayF has Chern rootsi; anda, so that
c1(F) = a1+ az andcy(F) = ai02. Then by part (i) a tedious but easy computation
shows that

¢(S’F) = (14 301)(1+ 207 +a2) (1401 4 202) (1 + 302)
= 1+6¢1(F) +10c2(F) + 11c1(F)? 4 30cy (F ) c2(F)
4 6C1(F)3 4 9c2(F)? 4 18¢1 (F )2ca(F).
Splitting this up into graded pieces one obtains the individual Chern classes, e.qg.
ca(S*F) = 9c2(F)? + 18c1(F ) co(F).
Now that we have shown how to compute Chern classes let us discuss their geometric

meaning. By far the most important property of Chern classes is that the “top Chern class”
of a vector bundle (i.ec; (F) if r = rankF) is the class of the zero locus of a section:

Proposition 10.3.12.Let F be a vector bundle of rank r on an n-dimensional scheme X.
Let se I'(F) be a global section of F, and assume that its scheme-theoretic zero I6gus Z
has dimension i r (as expected). ThelZ(s)] = ¢ (F) - [X] € An_r (X).

Proof. We will only sketch the proof; for details especially about multiplicities we refer to
[F] section 14.1.

We prove the statement by induction on Applying the splitting principle we may
assume that there is an exact sequence
0—-F -F—-L—0 (*)

of vector bundles oiX, whereL is a line bundle and rarfk = rankF — 1. Now lets e
I (X,F) be a global section df as in the proposition. Thesinduces

(i) asectionl € '(X,L), and
(i) asections' e I'(Z(1),F’) (i.e. “sis a section oF’ on the locus where the induced
section orL vanishes”).
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Let us assume thdtis not identically zero, and denote by Z(l) — X the inclusion
morphism. Note that then.[Z(S)] = ¢;—1(F) - [Z()] by the induction hypothesis, and
[Z(1)] = ca1(L) - [X] as the Weil divisor associated to a line bundle is just the zero locus of a
section. Combining these results we get

Z(s)] =i.[Z(S)] = ¢r—1(F) -ca(L) - [X].

But applying proposition 10.3.1 to the exact sequegave getc, (F) = ¢;_1(F’) - c1(L),
so the result follows. O

Remarkl0.3.13 Proposition 10.3.12 is the generalization of our old statement that the first
Chern class of a line bundle (i.e. the divisor associated to a line bundle) is the zero locus of
a (maybe rational) section of that bundle. In contrast to the line bundle case however, it is
not clear that a section of the vector bundle exists that vanishes in the right codimension.
This is why proposition 10.3.12 cannot be used as a definition for the top Chern class.

Remark10.3.14 There are analogous interpretations for the intermediate Chern classes
ck(F) that we state without proof: |ét be a vector bundle of rankon a schemé. Let
s1,.-.,S+1-k be global sections of, and assume that the (scheme-theoretic) l@casX

where the sectiongs .., s 1k are linearly dependerttas codimensiok in X (which is

the expected codimension). Thgtj = ck(F) - [X] € A.(X). (For a proof of this statement

see [F] example 14.4.1).

Two special cases of this property are easy to see however:

(i) Inthe cas&k =r we are reduced to proposition 10.3.12.

(i) Inthe casek =1 the locu<Z is just the zero locus of a section &fF, so we have
[Z] = c1(A"F) = c1(F) (the latter equality is easily checked using proposition
10.3.10 (iv)).

Example 10.3.15.As an example of proposition 10.3.12 let us recalculate that there are 27
lines on a cubic surfack¥ in IP? (see section 4.5). To be more precise, we will not reprove
here that the number of lines Kis finite; instead we will assume that it is finite and just
recalculate the number 27 under this assumption.

LetG(1, 3) be the 4-dimensional Grassmannian variety of liné&inAs in construction
10.1.5 there is &autological rank-2 subbundle Bf the trivial bundleC* whose fiber over
a point[L] € G(1,3) (whereL c P is a line) is precisely the 2-dimensional subspace of
C* whose projectivization i&. Dualizing, we get a surjective morphism of vector bundles
(C*Y — FV that corresponds to restricting a linear function@h(or P3) to the lineL.
Taking thed-th symmetric power of this morphism we arrive at a surjective morphism
§(Cc*V — SFV that corresponds to restricting a homogeneous polynomial of degree
onP3toL.

Now let X = {f = 0} be a cubic surface. By what we have just said the polynofmial
determines a section &F " whose set of zeros iG(1, 3) is precisely the set of lines that
lie in X (i.e. the set of lines on which vanishes). Sassuming that this set is finitee see
by proposition 10.3.12 that the number of lines in the cubic sutfaiethe degree of the
cyclecs(S*FY) onG(1,3).

To compute this number note that by example 10.3.11 we have

ca(SPFY) = 9ca(FY)? 4 18c1 (FV)2co(FY),

so that it remains to compute the numbes& )2 andcy (FY)?c,(FY). There are general
rules (called “Schubert calculus”) how to compute such intersection products on Grass-
mannian varieties, but in this case we can also compute the result directly in a way similar
to that in example 9.4.9:

(i) By exactly the same reasoning as abaugF") = cp(S'FV) is the locus of all
lines inP3 that are contained in a given plane.
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(ii) The classci(FY) = c1(A?FY) is (by definition of the exterior product, see also
remark 10.3.14) the locus of all linésc P2 such that two given linear equations
f1, f> onP* become linearly dependent when restricted to the line. This means
that f1|_ and f2|. must have their zero at the same point.ofin other words]-
intersect<Z( fy, f2), which is a line. In summang; (FV) is just the class of lines
that meet a given line if#3.

Using these descriptions we can now easily compute the required intersection products:
c2(FV)? is the number of lines that are contained in two given plané&jrso it is 1 (the

line must precisely be the intersection line of the two planes). Moreow@t, )2c,(F ") is

the number of lines intersecting two given lines and lying in a given plane, i.e. the number
of lines through two points in a plane, which is 1.

Summarizing, we get that the number of lines on a cubic surface is
ca(SFY) = 9ca(FY)2 + 1801 (FY)2co(FY) = 9-1+18-1 = 27.

Remarkl0.3.16 The preceding example 10.3.15 shows very well how enumerative prob-
lems can be attacked in general. By emumerative problerwe mean that we want to
count the number of curves in some space with certain conditions (e.g. lines through two
points, lines in a cubic surface, plane conics through 5 points, and so on). Namely:

(i) Find acomplete(resp. compact) “moduli spacé whose points correspond to
the curves one wants to study (in the above example: the Grassm#3(1i:8)
that parametrizes lines iPP).

(ii) Every condition that one imposes on the curves (passing through a point, lying in
a given subvariety, . ..) corresponds to some intersection-theoretic cyMe-en
a divisor, a combination of Chern classes, or something else.

(i) If the expectechumber of curves satisfying the given conditions is finite then the
intersection product of the cycles in (ii) will have dimension 0.Ms$s complete
the degree of this zero-cycle is a well-defined integer. It is calledvitieal
solutionto the enumerative problem. Note that this number is well-defined even
if the actual number of curves satisfying the given conditiommidinite.

(iv) Itis now a different (and usually more difficult, in any case not an intersection-
theoretic) problem to figure out whether the actual number of curves satisfying
the given conditions is finite or not, and if so whether they are counted in the
intersection product of (iii) with the scheme-theoretic multiplicity 1. If this is the
case then the solution of (iii) is said to baumerativgand not only virtual). For
example, we have shown in section 4.5 that the number 27 computed intersection-
theoretically in example 10.3.15 is actually enumerative for any smooth cubic
surfaceX.

10.4. Statement of the Hirzebruch-Riemann-Roch theorem.As a final application of
Chern classes we will now state and sketch a proof of the famous Hirzebruch-Riemann-
Roch theorem that is a vast and very useful generalization (yet still not the most general
version) of the Riemann-Roch theorem (see section 7.7, in particular remark 7.7.7).

As usual the goal of the Riemann-Roch type theorems is to compute the dimension
hO(X, F) of the space of global sections of a shgabn a schem, in the case at hand
of a vector bundle on a smooth projective schefné\s we have already seen in the case
whereX is a curve andf a line bundle there is no easy general formula for this number
unless you add some “correction term” (that wals' (X, ) in the case of curves). The
same is true in higher dimensions. Here the Riemann-Roch theorem will compute the Euler
characteristic off:

Definition 10.4.1. Let 7 be a coherent sheaf on a projective schem&hen the dimen-
sionsh'(X, F) = dimH'(X, ¥) are all finite by theorem 8.4.7 (i). We define teler



10. Chern classes 201

characteristic of ¥ to be the integer
X(X, F) = 2{)(—1%i (X, 7).
i>

(Note that the sum is finite d$(X, ) = 0 fori > dimX.)

The “left hand side” of the Hirzebruch-Riemann-Roch theorem will jusk b€, F);
this is the number that we want to compute. Recall that there were many “vanishing the-
orems”, e.gh'(X, F @ Ox(d)) = 0 fori > 0 andd >> 0 by theorem 8.4.7 (ii). So in the
cases when such vanishing theorems apply the theorem will actually compute the desired
numberh®(X, F).

The “right hand side” of the Hirzebruch-Riemann-Roch theorem is an intersection-
theoretic expression that is usually easy to compute. It is a certain combination of the
Chern (resp. Segre) classes of the burilgorresponding to the locally free sheg)
and the tangent bundi& of X. These combinations will havational coefficients, so we
have to tensor the Chow groups with (i.e. we consider formal linear combinations of
subvarieties with rational coefficients instead of integer ones).

Definition 10.4.2. Let F be a vector bundle of rank with Chern rootsas,...,0, on a
schemeX. Then we define th€hern character ch(F) : A.(X) @ Q — A.(X) ® Q to be

r

ch(F) = _Ziexp(ai)

and theTodd classtd(F) : A.(X) @ Q — A.(X) ® Q to be

L] 1—exp(—aj)’

where the expressions in thig are to be understood as formal power series, i.e.

td(F)

1 1
exp(a;) = 1+ai+§a?+éa?+m
and

S R P P e
1—exp—a;) ~ 2 ' 12" '

Remarkl0.4.3 As usual we can expand the definition of Eh and tdF) to get symmetric
polynomials in the Chern roots which can then be written as polynomials (with rational
coefficients) in the Chern classgs= c;(F) of F. Explicitly,

1 1
ch(F) =r+cy+ é(cf—ZCZ) + 6(c§—3c102+3ce,)+~~
1

1 1
and tdF)=1+c1+ 1—2(cf+cz)+ SgGiCat

Remark10.4.4 If 0 — F' — F — F” — 0 is an exact sequence of vector bundlesXon
then the Chern roots & are just the union of the Chern rootsfefandF”. So we see that

ch(F) = ch(F’) 4+ ch(F")
and
td(F) =td(F") - td(F").
We can now state the Hirzebruch-Riemann-Roch theorem:

Theorem 10.4.5. (Hirzebruch-Riemann-Roch theorejnLet F be a vector bundle on a
smooth projective variety X. Then

X(X,F) =degch(F)-td(Tx))

wheredeg o) denotes the degree of the dimension-0 part of the (non-homogeneous) cycle
a.
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Before we sketch a proof of this theorem in the next section let us consider some exam-
ples.

Example 10.4.6.Let F = L be a line bundle on a smooth projective cuXef genus

g. Theny(X,L) = h%(X,L) —h(X,L). On the right hand side, the dimension-0 part of

ch(L) -td(Tx), i.e. its codimension-1 part, is equal to

degch(L) -td(Tx)) = deg(1+cy(L))(1+3c1(Tx))) by remark 10.4.3

= degcl(L) — %Cl(Qx))
=degL - 3(29-2) by corollary 7.6.6
=degL+1—g,

S0 we are recovering our earlier Riemann-Roch theorem of corollary 8.3.3.

Example 10.4.7.If F is a vector bundle of rankon a smooth projective curve then we
get in the same way

ho(X,F) —h!(X,F) = degch(F) - td(Tx))

= deg((r + c1(F))(1+ 2ca(Tx)))
=degci(F)+r(1—0).

Example 10.4.8.LetL = Ox(D) be a line bundle on a smooth projective surfxceorre-
sponding to a divisob. Now the dimension-0 part of the right hand side has codimension
2, so the Hirzebruch-Riemann-Roch theorem states that

hO(X,L) —hY(X,L) +h?(X,L)
= degch(F) - td(Tx))

= deg< (1+ ca(L)+ ;Cl(l-)2> (1+ %Cl(TX) + %2(01(&)2 + Cz(TX>>>>

1 KZ +Co(Tx)
=ZID-(D—Kx)+ X —2 22,
50 ( X)+ =15

Note that:

(i) The numberx(X, Ox) = @ is an invariant ofX that does not depend on
the line bundle. The Hirzebruch-Riemann-Roch theorem implies that it is always
an integer, i.e. thatZ +c,(Tx) is divisible by 12 (which is not at all obvious from
the definitions).

(i) If X has degrea andL = Ox(n) for n>> 0 thenh'(X,L) = h?(X,L) = 0 by
theorem 8.4.7 (ii). Moreover we then haié = dr?, so we get

d, 1 KZ +co(Tx)
0 — 2L Z(H. . X T VAT
h° (X, 0x(n)) = 2n +2(H Kx)-n+ 12

whereH denotes the class of a hyperplane (restricte®)toln other words, we
have just recovered proposition 6.1.5 about the Hilbert functioX.dfloreover,

we have identified the non-leading coefficients of the Hilbert polynomial in terms
of intersection-theoretic data.

Example 10.4.9.The computation of example 10.4.8 works for higher-dimensional vari-
eties as well: leK be a smooth projectivi-dimensional variety of degreleand consider
the line bundlel = Ox(n) on X for n>> 0. We see immediately that the codimenshn-
part of ch{Ox(n)) - td(Tx) is a polynomial i of degreeN with leading coefficient
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which reproves proposition 6.1.5 (for smooth. Moreover, we can identify the other co-
efficients of the Hilbert polynomial in terms of intersection-theoretic expressions involving
the characteristic classes of the tangent bundhé. of

Example 10.4.10.Let F = Ox(d) be aline bundle o = P". Then we can compute both
sides of the Hirzebruch-Riemann-Roch theorem explicitly and therefore prove the theorem
in this case:

As for the left hand side, proposition 8.4.1 implies that

ho(X, Ox(d)) = ("¢ if d>0,
X(X, 0x(d)) = { (=1)"h"(X, O (d)) = (D" ("4 ) ifd<—n-—1,
0 otherwise.

Note that this means in fact in all cases that

xox.ox(e) = ("1 9).

n
As for the right hand side let us first compute the Todd claskoBy the Euler sequence

0— Ox — Ox(1)®™D Ty —0

of lemma 7.4.15 together with the multiplicativity of Chern classes (see proposition 10.3.1)
we see that the Chern classes (and hence the Todd clagg)awé the same as those of
Ox(1)#(™1), But the Chern roots of the latter bundle are just1 times the claski of a
hyperplane, so it follows that

Hn+1
(1—exp(—H))m1
As the Chern character @ (d) is obviously exgdH) we conclude that the right hand
side of the Hirzebruch-Riemann-Roch theorem ishiffecoefficient of
H"exp(dH)
(1—exp(—H))™t

td(Tx) =

But this is equal to the residue

exp(dH)
(1—exp(—H))n+1 dH,

which we can compute using the substitutior- 1 — exp(—H) (so exgH) = %( and
dH

1 .
ax = Tx)-

rési-o

exp(dH)
(1—exp(—H))n+1
This number is equal to thé-coefficient of(1— x)~9-1, which is simply

(—1) (—d — 1) _ (n+d>
n n
in agreement with what we had found for the left hand side of the Hirzebruch-Riemann-
Roch theorem above. So we have just proven the theorem for line bundiés on

(1 _ X)fdfl
Xn+l

dx.

resi—o dH =res—o

10.5. Proof of the Hirzebruch-Riemann-Roch theorem. Finally we now want to give

a very short sketch of proof of the Hirzebruch-Riemann-Roch theorem 10.4.5, skipping

several subtleties from commutative algebra. The purpose of this section is just to give an
idea of the proof, and in particular to show why the rather strange-looking Todd classes
come into play. For a more detailed discussion of the proof or more general versions see
[F] chapter 15.



204 Andreas Gathmann

The proof of the theorem relies heavily on certain constructions being additive (or oth-
erwise well-behaved) on exact sequences of vector bundles. Let us formalize this idea
first.

Definition 10.5.1. Let X be a scheme. Therothendieck group of vector bundlesk® (X)
on X is defined to be the group of formal finite surfisai[F] wherea € Z and theR
are vector bundles oX, modulo the relation§F] = [F'] + [F”] for every exact sequence
0—F' —F —F” - 0. (Of course we then also hayé_,(—1)'[F] = 0 for every exact
sequence

0O—-F—-oFR—--—FK—0)

Example 10.5.2. Definition 10.5.1 just says that every construction that is additive on
exact sequences passes to the Grothendieck group. For example:

(i) If X is projective then the Euler characteristic of a vector bundle (see definition
10.4.1) is additive on exact sequences by the long exact cohomology sequence of
proposition 8.2.1. Hence the Euler characteristic can be thought ohama-
morphism of Abelian groups

XK (X) = Z, X([F]) =X(X,F).
(i) The Chern character of a vector bundle is additive on exact sequences remark
10.4.4. So we get a homomorphism
ch:K°(X) = A,(X)®Q, ch([F]) =ch(F).

(It can in fact be shown that this homomorphism gives rise tégsamorphism
K°(X)®Q — A.(X) @ Qif X is smooth; see [F] example 15.2.16(b). We will not
need this however in our proof.)

(iii) Let X be a smooth projective variety. For the same reason as in (ii) the right hand
side of the Hirzebruch-Riemann-Roch theorem gives rise to a homomorphism

T:K°(X) > A(X)®Q, T(F) = ch(F)-td(Tx).

In particular, by (i) and (iii) we have checked already that both sides of the Hirzebruch-
Riemann-Roch theorem are additive on exact sequences (which is good). So to prove the
theorem we only have to check it on a set of generator&Kfd@iX). To use this to our
advantage however we first have to gather more information about the structure of the
Grothendieck groups. We will need the following lemma of which we can only sketch the
proof.

Lemma 10.5.3.Let X be asmoothprojective scheme. Then for every coherent sifeah
X there is an exact sequence

O—-FR—-F.1—-—-R—=9—0

where the Fare vector bundles (i.e. locally free sheaves). We say that “every coherent
sheaf has a finite locally free resolution”. Moreover, if=XP" then the Fcan all be
chosen to be direct sums of line bund@g(d) for various d.

Proof. By a repeated application of lemma 8.4.6 we know already that there is a (possibly
infinite) exact sequence
K- >FH-RKR—-7%—=0.

Now one can show that for andimensionasmoothscheme the kern& of the morphism
F_1 — F_p is always a vector bundle (see [F] B.8.3). So we get a locally free resolution

O—-K—-FK.1—-Fo—-—-FR—-%—0
as required.
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If X =P" with homogeneous coordinate rigg= k[xo, . .., Xn] then one can show that a
coherent shegf onX is nothing but ggraded SmoduleM (in the same way that a coherent
sheaf on an affine scheme Sipdis given by arR-module). By the famouslilbert syzygy
theorem(see [EH] theorem III-57) there is a free resolutiorvbf

OH@SmH“'HEBSLiH@S),iHMHO

where eacls;; is isomorphic toS, with the grading shifted by some constaafg. This
means exactly that we have a locally free resolution

Oﬁ@ox(an.i)—’"'—’EBox(al,i)ﬁ@ox(ao,i)—}f—)()

of F. O

Corollary 10.5.4. The Hirzebruch-Riemann-Roch theorem 10.4.5 is true for any vector
bundle onP".

Proof. By lemma 10.5.3 (applied tX = P" and a vector bundlgF) the Grothendieck
groupK°(PP") is generated by the classes of the line bundlggd) for d € Z. As we

have already checked the Hirzebruch-Riemann-Roch theorem for these bundles in example
10.4.10 the statement follows by the remark at the end of example 10.5.2. O

Remarkl0.5.5 To study the Hirzebruch-Riemann-Roch theorem for general smooth pro-
jectiveX leti : X — P" be an embedding of in projective space and consider the following
diagram:

Ko(X) — > Ko@) — X > 7

| |
i deg
AX)Q — APHYRQ — Q.
Let us first discuss the right square. The homomorphigraadt are explained in ex-
ample 10.5.2, and deg denotes the degree of the dimension-0 part of a cycle class. The
Hirzebruch-Riemann-Roch theorem @t of corollary 10.5.4 says precisely that this right

square is commutative.

Now consider the left square. The homomorphisisias above, and thein the bottom
row is the proper push-forward of cycles of corollary 9.2.12. We have to explain the push-
forwardi, in the top row. Of course we would like to defingF| = [i.F] for any vector
bundleF on X, but we cannot do this directly asF is not a vector bundle but only a
coherent sheaf ofi". So instead we let

O—-FR—-FKR_1—--—FR—isF—=0 (%)

be a locally free resolution of the coherent shekfonP" and set

r

. Lo L Ko(P" i _ _1\k )
i, KO(X) = K°(P"), i.([F]) k;( D[R

One can show that this is indeed a well-defined homomorphism of groups (i.e. that this
definition does not depend on the choice of locally free resolution), see [F] section B.8.3.
But in fact we do not really need to know this: we do know by the long exact cohomology
sequence applied &) that

-

X(X,F) = 2 (—1)*x(P", Ro),
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soitis clear that at least the compositipni,. does not depend on the choice of locally free
resolution. The Hirzebruch-Riemann-Roch theoremXois now precisely the statement
that the outer rectangle in the above diagram is commutative.

As we know already that the right square is commutative, it suffices therefore to show
that the left square is commutative as well (for any choice of locally free resolution as

above), i.e. that
r

3 (—1) ch(R) - td(Ter) = i..(ch(F) - td(Tx)).
k=0
As the Todd class is multiplicative on exact sequences by remark 10.4.4 we can rewrite
this using the projection formula as
! ~ ch(F)
—1¥ch(R) = iy =
k;( )" ch(R) td(Ny )
Summarizing our ideas we see that to prove the general Hirzebruch-Riemann-Roch theo-
rem it suffices to prove the following proposition (f6r= P"):

Proposition 10.5.6.Leti: X — Y be a closed immersion of smooth projective schemes,
and let F be a vector bundle on X. Then there is a locally free resolution

O—-FKk—-FK.1—--—FR—iF—0

of the coherent sheafff on'Y such that

inA.(Y)®2Q.

Example 10.5.7.Before we give the general proof let us consider an example where both
sides of the equation can be computed explicitly: Xebe a smooth schemg, a vector
bundle of rankr on X, andY = P(E @ Ox). The embedding: X — Y is given byX =

P(0® Ox) — P(E® Ox). In other wordsX is just “the zero section of a projective bundle”.
The special features of this particular case that we will need are:

(i) There is a projection morphisqm: Y — X such thatpoi = id.

(i) X is the zero locus of a section of a vector bundleYorconsider the exact se-

qguence
0-S—p(E®0x)—»Q—0 ()

onY, whereSis the tautological subbundle of construction 10.1.5. The vector
bundleQ (which has rank) is usually called theniversal quotient bundleNote
that we have a global section pf (E & Ox) by taking the point0,1) in every
fiber (i.e. 0 in the fiber oE and 1 in the fiber of0x). By definition of S the
induced sectios € ' (Q) vanishes precisely di(0® Ox) = X.

(ii) Restricting(x)toX (i.e. pulling the sequence back bywe get the exact sequence

0—i"S—E®Ox —i"Q—0 (*)

on X. Note that the first morphism is given By— (0,A) by construction, so we
conclude that*Q = E.

(iv) As X isgiveninY as the zero locus of a section@f we see from example 10.1.6
that the normal bundle of in Y is justNy y =i*Q=E.

Let us now check proposition 10.5.6 in this case. Note dlway from the zero locus of s
there is an exact sequence

0— 0y 2QEAQEANQ— -~ N IQEAQ -0
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of vector bundles (which follows from the corresponding statement for vector spaces).
Dualizing and tensoring this sequence witt we get the exact sequence

0— p*F®/\rQ\/ N p*F®/\r—lQ\/ e p*F®Q\/ N p*F -0
again ony\Z(s) = Y\X. Let us try to extend this exact sequence to al¥ oNote that the
last morphisnp*F ® Q¥ — p*F is just induced by the evaluation morphismQ" — Oy,
so its cokernel is precisely the shéafF )|z = i.F. One can show that the other stages
of the sequence remain indeed exact (see [F] B.3.4), so we get a locally free resolution
0— pFOANQY - pPFRAN Q" - ... - pPF®Q" — p'F —i,F -0
onY. (This resolution is called th€oszul comple} So what we have to check is that

C K kavy i Ch(F)
k;( 1) Ch(p FoAQ )_I*td(i*Q).

But note that
L OhF) _ ch(pF) | o ch(pF)c(Q)
di*Q)  td(Q Y td(Q)

by the projection formula and proposition 10.3.12. So by the additivity of Chern characters
it suffices to prove that

_ a(Q)
td(Q)

But this is easily done: ifi1, ..., a, are the Chern roots @ then the left hand side is

r—1"h/\kv
k;( )" ch(A*Q")

kio(]—)ki1<z<ikexlxai1 S aik) - ﬁ(l eXp(*Gi)) =0g---Qr- il_Llle}((;ixai)a

which equals the right hand side. It is in fact this formal identity that explains the appear-
ance of Todd classes in the Hirzebruch-Riemann-Roch theorem.

Using the computation of this special example we can now give the general proof of the
Hirzebruch-Riemann-Roch theorem.

Proof. (of proposition 10.5.6) We want to reduce the proof to the special case considered
in example 10.5.7.

Leti: X — Y be any inclusion morphism of smooth projective varieties. We denote by
M be the blow-up o x P! in X x {0}. The smooth projective scherivecomes together
with a projection morphisng : M — P2, Its fibersq1(P) for P # 0 are all isomorphic to
Y. The fiberq=(0) however is reducible with two smooth components: one of them (the
exceptional hypersurface of the blow-up) is the projectivized normal bunc{exof0} in
Y x P! by example 10.1.6, and the other one is simply the blowtigd Y in X. We are
particularly interested in the first component. As the normal bundieof 0} in'Y x Pt is
Nx /v @ Ox this component is just the projective bunéle= P(Ny y © Ox) on X. Note that
there is an inclusion of the spa¥ex P! in M that corresponds to the given inclusrc Y
in the fibersg~1(P) for P # 0, and to the “zero section inclusioX’ C P(Nx,y @ Ox) =P
as in example 10.5.7 in the fibgr'(0). The following picture illustrates the geometric
situation.
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P=1P(Nx/y $Oy) - - ..

Pl

0

Se

The idea of the proof is now simply the following: we have to prove an equality in the Chow
groups, i.e. modulo rational equivalence. The fibgr$(0) and g () are rationally
equivalent as they are the zero resp. pole locus of a rational function on thé'pasehey
are effectively “the same” for intersection-theoretic purposes. But example 10.5.7 shows
that the proposition is true in the fiogr'(0), so it should be true in the fiber () as
well.

To be more precise, & be a sheaf oX as in the proposition. Denote fpy : X x P —
X the projection, and bik : X x P — M the inclusion discussed above. Thgnp;F is
a coherent sheaf dvl that can be thought of as “the shéabn X in every fiber ofg”. By
lemma 10.5.3 we can choose a locally free resolution

O—F—FK_1— - —F—ix.pxF—0 1)

onM.

Note that the divisof0] — [«] onP? is equivalent to zero by example 9.1.9. So it follows
that

r

—1)%ch(R)-g*([0] — []) = O
k;( ) ch(R) - g7 ([0] — [eo])

in A, (M)®Q. Now by definition of the pull-back we hawg[0] = [Y]+ [P] andq*[eo] = [Y],
so we get the equality

r r

k;( 1)*ch(Fly) zo )kch(Filp) - [P] = kgo(fl)kch(mmw )

in A.(M) ®Q. But note that the restriction 16 of the sheafx, p4F in (1) is the zero sheaf
asX x PINY = 0in M. So the sequence

0—-Fly——Flg—FRly—0

is exact, which means that the first sun{®) vanishes. The second sum(R) is precisely

ch(F)
W) [X] by example 10.5.7. So we conclude that
[ ch(F)
—1)kch(Rly)-[Y] = ————-
k;( ) ( I‘Y) [ } td(Nx/Y)
in A,(M) ® Q. Pushing this relation forward by the (proper) projection morphism flkbm
toY then gives the desired equation. O

This completes the proof of the Hirzebruch-Riemann-Roch theorem 10.4.5.
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Remarkl0.5.8 Combining proposition 10.5.6 with remark 10.5.5 we see that we have just
proven the following statement: Iét: X — Y be a closed immersion of smooth projective
schemes, and I€t be a coherent sheaf 06 Then there is a locally free resolution

O—-Fk—-R 11— —F—fF—=0

of the coherent shedfF onY such that
r

S (~1)*ch(Ry) -td(Tv) = f.(ch(F) td(Tx)) € A.(Y) 2 Q.

K=0
This is often written as

ch(f.F)-td(Ty) = f.(ch(F)-td(Tx)).
In other words, “the push-forwardl. commutes with the operatar of example 10.5.2

(iii)".

It is the statement of th&rothendieck-Riemann-Roch theoremthat this relation is
actually true forany propermorphismf of smooth projective schemes (and not just for
closed immersions). See [F] section 15 for details on how to prove this.

The Grothendieck-Riemann-Roch theorem is probably one of the most general Rie-
mann-Roch type theorems that one can prove. The only further generalization one could
think of is to singular schemes. There are some such generalizations to mildly singular
schemes; see [F] section 18 for details.

10.6. Exercises.

Exercise 10.6.1.Let X = P!, and forn € Z let F, be the projective bundIE, = P(Ox @
Ox(n)). Letp: F, — X be the projection morphism. The surfaég®re calletHirzebruch
surfaces
(i) Show thatFy = P x P!, andF, = F_, for all n.
(i) Show that all fibersp=1(P) c F, for P € X are rationally equivalent as 1-cycles
onF,. Denote this cycle b € A (Fy).
(iii) Now let n > 0. Show that the global sectidi,xj) of Ox & Ox(n) (Wherexo,
X are the homogeneous coordinatesX¢fdetermines a morphis®: X — Fy.
Denote byC € A;(F,) the class of the image curgéX).
(iv) Again for n > 0, show that®y(Fn) = Z andAy(Fy) =Z - [C]® Z - [D]. Compute
the intersection produc®?, D?, andC - D, arriving at a B:zout style theorem for
the surfaces,.

Exercise 10.6.2.Let F andF’ be two rank-2 vector bundles on a schexheCompute the
Chern classes df ® F’ in terms of the Chern classes©fandF’'.

Exercise 10.6.3.Let F be a vector bundle of rankon a schem&, and letp: P(F) — X
be the projection. Prove that

DE +DF - prea(F) +-- 4 prer(F) =0,
whereDr is the Cartier divisor associated to the line bundigr (1).
Exercise 10.6.4.Let X C P* be the intersection of two general quadric hypersurfaces.

(i) Show that one expects a finite number of lineXin
(i) If there is a finite number of lines iX, show that this number is 16 (as usual
counted with multiplicities (which one expects to be 1 for genxji

Exercise 10.6.5.A circle in the planeP? is defined to be a conic passing through the two
points(1: +i:0).

Why is this called a circle?

How many circles are there in the plane that are tangent to
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(i) three circles

(i) two circles and a line
(iii) one circle and two lines
(iv) three lines

in general position? (Watch out for possible non-enumerative contributions in the intersec-
tion products you consider.)

If you are interested, try to find out the answer to the above questionRofaerd the
“usual” definition of a circle).

Exercise 10.6.6.Let X c P* be a smooth quintic hypersurface, i.e. the zero locus of a
homogeneous polynomial of degree 5.

(i) Show that one expects a finite number of lineXirand that this expected number
is then 2875.

(ify Show that the number of lines on the special quittie= {x3 +--- +x3 = 0} is
notfinite. This illustrates the fact that the intersection-theoretic computations will
only yield virtual numbers in general. (In fact one can show that the number of
lines on ageneralquintic hypersurface i is finite and that the computation of
(i) then yields the correct answer.)

Exercise 10.6.7.Let X = P! x P1. Compute the numbe¢Z + co(Tx) directly and check
that it is divisible by 12 (see example 10.4.8).

Exercise 10.6.8.Let X andY be isomorphic smooth projective varieties. Use the Hirze-
bruch-Riemann-Roch theorem 10.4.5 to prove that the constant coefficients of the Hilbert

polynomials ofX andY agree, whereas the non-constant coefficients will in general be
different.



[AM]
(D]

[Do]
[EGA]
[EH]
[F]
[G]
[Gr]
[GP]
[H]
[Ha]
[K]
[M1]
[(M2]

[Ma]
(R]

[S1]
(2]

(S3]

Y

References 211

REFERENCES

M. Atiyah, I. Macdonald,Introduction to commutative algebraddison-Wesley (1969).

O. Debarre,Introductiona la geonétrie algebrique notes for a class taught at the University Louis
Pasteur in Strasbourg, availablenttp://www-irma.u-strasbg.fr/"debarre/

I. Dolgachev,Introduction to algebraic geometrmotes for a class taught at the UnlverS|ty of Michigan,
available ahttp://www.math.lsa.umich.edu/"idolga/lecturenotes.html

A. Grothendieck, J. DieudormElements de gometrie algebrique Publications Mathmanques IHES
(various volumes).

D. Eisenbud, J. HarrisThe geometry of schem&pringer Graduate Texts in Mathematics 197 (2000).
W. Fulton, Intersection theorySpringer-Verlag (1984).

A. GathmannAlgebraic geometrynotes for a class taught at Harvard University (1999-2000), available
at http://www.math.ias.edu/"andreas/pub/ .

G.-M. Greuel,Introduction to algebraic geometryotes for a class taught at the University of Kaisers-
lautern, Mathematics International Lecture Notes, University of Kaiserslautern (1997-1998).
G.-M. Greuel, G. PfisteA Singular introduction to commutative algeb@pringer-Verlag (2002).

R. HartshorneAlgebraic geometrySpringer Graduate Texts in Mathematics 52 (1977).

J. Harris,Algebraic geometrySpringer Graduate Texts in Mathematics 133 (1992).

F. Kirwan, Complex algebraic curved ondon Mathematical Society Student Texts 23, Cambridge
University Press (1992).

D. Mumford, The red book of varieties and schem8&gpringer Lecture Notes in Mathematics 1358
(1988).

D. Mumford, Algebraic geometry | — complex projective varieti8pringer Classics in Mathematics
(1976).

H. MatsumuraCommutative algebraV. A. Benjamin Publishers (1970).

M. Reid, Undergraduate algebraic geometriyondon Mathematical Society Student Texts 12, Cam-
bridge University Press (1988).

|. ShafarevichBasic algebraic geometrspringer Study Edition (1977).

|. ShafarevichBasic algebraic geometry | — Varieties in projective spaspringer-Verlag, Berlin
(1994).

|. ShafarevichBasic algebraic geometry || — Schemes and complex mani®jsger-Verlag, Berlin
(1994).

R. Vakil, Introduction to algebraic geometrynotes for a class taught at MIT (1999), available at
http://math.stanford.edu/"vakil/725/course.html

Note: This is a very extensive list of literature of varying usefulness. Here is a short
recommendation which of the references you might want to use for what:

e For a general reference on the commutative algebra background, see [AM].
e For commutative algebra problems involving computational aspects, see [GP].
e For motivational aspects, examples, and a generally “fairy-tale” style introduc-

tion to theclassical theoryof algebraic geometry (no schemes) without much
theoretical background, see [Ha], or maybe [S1] and [S2].

For motivations and examples concerning scheme theory, see [EH], or maybe
[S1] and [S3].

For a good book that develops the theory, but largely lacks motivations and ex-
amples (especially in chapters Il and IIl), see [H]. You should not try to read the
“hard-core” parts of this book without some motivational background.

e For intersection theory and Chern classes the best reference is [F].
e For the ultimate reference (“if it is not proven there, it must be wrong”), see

[EGA]. Warning: this is unreadable if you do not have a decent background in
algebraic geometry yet, and it is close to being unreadable even if you do.
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