CS688 - COMPUTATIONAL ARITHMETIC-GEOMETRY & APPLICATIONS NITIN SAXENA

ASSIGNMENT 4

POINTS: 70

DATE GIVEN: 03-APR-2023

DUE: 21-APR-2023 (6PM)

$\underline{\text{Rules}}$:

- You are strongly encouraged to work *independently*. That is the best way to understand the subject.
- Write the solutions on your own and honorably *acknowledge* the sources if any. cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Clearly express the fundamental *idea* of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Submit your solutions, before time, to your TA. Preferably, submit a printed/pdf copy of your LaTeXed or Word processed solution sheet.
 - TA: Diptajit Roy diptajit@cse.iitk.ac.in
- Problems marked '0 points' are for practice.

Assume the field k to be $\overline{\mathbb{F}}_p$, let C be a smooth projective curve of genus g, and fix a point $P_0 \in C$.

Question 1: [10 points] Let D be a degree zero divisor. Show that there exists a degree g - 1 divisor E such that $\ell(D + (2g - 1)P_0 - E) = 1$.

Question 2: [5 points] Let D, E be as above. Show that $D + (g - 1)P_0 - E$ is equal to a divisor D', s.t.:

- (1) $D' =: \sum_{1 \le i \le g} P_i g \cdot P_0$, and
- (2) P_1, \ldots, P_g are points on the curve C (i.e. $\deg(P_i) = 1$).

Question 3: [15 points] Let E be a degree g - 1 divisor. Show that $\mathcal{D}_E := \{D \in \operatorname{Cl}_0(C) | \ell(D + (2g - 1)P_0 - E) = 1\}$ is a quasi-projective variety.

Is it *smooth*?

Question 4: [20 points] Show that $\operatorname{Cl}_0(C)$ can be realized exactly as the set $J(C) := \{\sum_{1 \le i \le g} P_i - g \cdot P_0 \mid P_i \in C\}$, satisfying:

- (1) J(C) is isomorphic to the projective variety $C^{(g)}/\text{Symm}_g$, where $C^{(g)}$ is the g-fold Segre product of C; and identify tuple $(P_1 : P_2 : \cdots : P_g)$ as equal to all its permutations.
- (2) J(C) is a smooth projective variety of dimension g.
- (3) For any divisor E of degree g 1, the quasi-PV \mathcal{D}_E is an open set of J(C). Thus, Qns.1-3 give a recipe to find an *open neighborhood* of any degree zero divisor D.

[J(C) is called the *Jacobian* variety of the curve. It is both a PV and an *infinite* abelian group!]

Definition. What are the points P in the group J(C) that have *finite* order? If $\ell \cdot P = 0$ then P is called an ℓ -torsion point of the Jacobian. The set of all such points is denoted $J(C)[\ell]$.

Question 5: [10 points] Let C be a hyperelliptic curve, given as $y^2 = f(x)$. Give a fast algorithm to compute J(C)[2].

Question 6: [10 points] Compute the zeta function Z(T) for the function field K of the curve $C: y^2 = x^3$, over $k = \mathbb{F}_q$.

Question 7: [0 points] Compute the genus of the three curves: $y^2 = x^2 + x$, $y^2 = x^3 + x$, and $y^2 = x^4 + x$.

Question 8: [0 points] Given a planar (smooth projective) curve C, give a fast algorithm to compute the genus g and a canonical class divisor W.

Question 9: [0 points] Given an explicit hyperelliptic curve as $y^2 = f(x)$, could the polynomial ideal system for its Jacobian J(C) be *efficiently* presentable?

Question 10: [0 points] Is the ℓ -torsion finite? What is the structure of the ℓ -torsion group $J(C)[\ell]$?

Question 11: [0 points] What is the action of the Frobenius map on $J(C)[\ell]$, and what is its characteristic polynomial?

 $\Box\Box\Box$