CS688 - COMPUTATIONAL ARITHMETIC-GEOMETRY \& APPLICATIONS NITIN SAXENA

ASSIGNMENT 4

POINTS: 70

DATE GIVEN: 03-APR-2023
DUE: 21-APR-2023 (6PM)

Rules:

- You are strongly encouraged to work independently. That is the best way to understand the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Submit your solutions, before time, to your TA. Preferably, submit a printed/pdf copy of your LaTeXed or Word processed solution sheet.
TA: Diptajit Roy diptajit@cse.iitk.ac.in
- Problems marked '0 points' are for practice.

Assume the field k to be $\overline{\mathbb{F}}_{p}$, let C be a smooth projective curve of genus g, and fix a point $P_{0} \in C$.

Question 1: [10 points] Let D be a degree zero divisor. Show that there exists a degree $g-1$ divisor E such that $\ell\left(D+(2 g-1) P_{0}-E\right)=1$.

Question 2: [5 points] Let D, E be as above. Show that $D+(g-$ 1) $P_{0}-E$ is equal to a divisor D^{\prime}, s.t.:
(1) $D^{\prime}=: \sum_{1 \leq i \leq g} P_{i}-g \cdot P_{0}$, and
(2) P_{1}, \ldots, P_{g} are points on the curve C (i.e. $\operatorname{deg}\left(P_{i}\right)=1$).

Question 3: [15 points] Let E be a degree $g-1$ divisor. Show that $\mathcal{D}_{E}:=\left\{D \in \mathrm{Cl}_{0}(C) \mid \ell\left(D+(2 g-1) P_{0}-E\right)=1\right\}$ is a quasi-projective variety

Is it smooth?

Question 4: [20 points] Show that $\mathrm{Cl}_{0}(C)$ can be realized exactly as the set $J(C):=\left\{\sum_{1 \leq i \leq g} P_{i}-g \cdot P_{0} \mid P_{i} \in C\right\}$, satisfying:
(1) $J(C)$ is isomorphic to the projective variety $C^{(g)} / \mathrm{Symm}_{g}$, where $C^{(g)}$ is the g-fold Segre product of C; and identify tuple (P_{1} : $\left.P_{2}: \cdots: P_{g}\right)$ as equal to all its permutations.
(2) $J(C)$ is a smooth projective variety of dimension g.
(3) For any divisor E of degree $g-1$, the quasi-PV \mathcal{D}_{E} is an open set of $J(C)$. Thus, Qns.1-3 give a recipe to find an open neighborhood of any degree zero divisor D.
$[J(C)$ is called the Jacobian variety of the curve. It is both a PV and an infinite abelian group!]
Definition. What are the points P in the group $J(C)$ that have finite order? If $\ell \cdot P=0$ then P is called an ℓ-torsion point of the Jacobian. The set of all such points is denoted $J(C)[\ell]$.

Question 5: [10 points] Let C be a hyperelliptic curve, given as $y^{2}=$ $f(x)$. Give a fast algorithm to compute $J(C)[2]$.

Question 6: [10 points] Compute the zeta function $Z(T)$ for the function field K of the curve $C: y^{2}=x^{3}$, over $k=\mathbb{F}_{q}$.
Question 7: [0 points] Compute the genus of the three curves: $y^{2}=$ $x^{2}+x, y^{2}=x^{3}+x$, and $y^{2}=x^{4}+x$.

Question 8: [0 points] Given a planar (smooth projective) curve C, give a fast algorithm to compute the genus g and a canonical class divisor W.

Question 9: [0 points] Given an explicit hyperelliptic curve as $y^{2}=$ $f(x)$, could the polynomial ideal system for its Jacobian $J(C)$ be efficiently presentable?

Question 10: [0 points] Is the ℓ-torsion finite? What is the structure of the ℓ-torsion group $J(C)[\ell]$?

Question 11: [0 points] What is the action of the Frobenius map on $J(C)[\ell]$, and what is its characteristic polynomial?

