CS688 - COMPUTATIONAL ARITHMETIC-GEOMETRY \& APPLICATIONS NITIN SAXENA

ASSIGNMENT 2

POINTS: 50

DATE GIVEN: 08-FEB-2023
DUE: 19-FEB-2023 (6PM)

Rules:

- You are strongly encouraged to work independently. That is the best way to understand the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Submit your solutions, before time, to your TA. Preferably, submit a printed/pdf copy of your LaTeXed or Word processed solution sheet.
TA: Diptajit Roy diptajit@cse.iitk.ac.in
- Problems marked '0 points' are for practice.

Question 1: [7 point] Show that the radical of a homogeneous ideal is again homogeneous.

Question 2: [$2+6$ points] What is a reducible topological space?
Discuss this notion (with proofs) in the context of the Euclidean real line versus the affine line (i.e. \mathbb{A}_{k}^{1})?

Question 3: [$4+2+5$ points] Recall morphisms and rational maps between varieties. Give an example of varieties that are not isomorphic wrt the former but are isomorphic wrt the latter notion. Is the opposite case possible?

- Show that the morphisms $X \rightarrow Y$ between affine varieties are in 1-1 correspondence to the k-algebra homomorphisms $A(Y) \rightarrow A(X)$.
- Let $\varphi: p \mapsto\left(f_{1}(p), \ldots, f_{n}(p)\right)$ be an automorphism (wrt morphisms) of $\mathbb{A}_{\mathbb{C}}^{n}$. Show that the Jacobian $\operatorname{det}\left(\left(\partial_{\mathrm{i}} \mathrm{f}_{\mathrm{j}}\right)\right)$ is a nonzero constant $($ in $\mathbb{C})$.

Question 4: (Product) [4+3+4 points] Show that for affine varieties X, Y the set product $X \times Y$ can also be viewed as an affine variety. - (Segre embedding) Generalize the product to projective varieties.

- How does the (geometric) dimension grow with these products?

Question 5: $[3+3+3+4$ points] Consider the projective Fermat curve $X:=Z\left(x_{1}^{n}+x_{2}^{n}=x_{3}^{n}\right) \subset \mathbb{P}_{\mathbb{C}}^{2}$.

- Compute $\mathcal{O}_{X}\left(x_{3} \neq 0\right)$.
- Consider any point $P \in X$. Compute the germs \mathcal{M}_{P} and $\mathcal{O}_{X, P}$.
- Compute $\mathcal{M}_{P} / \mathcal{M}_{P}^{2}$ and $T_{X, P}$.
- Is X a nonsingular projective curve?

Question 6: [0 point] Show that dimension is a local concept, i.e. for any point P in a variety $X, \operatorname{dim} X=\operatorname{dim} \mathcal{O}_{X, P}$.

Question 7: [0 point] Let $k \subset K$ be a trdeg one field extension, $k \subseteq R$ be a subring of K, and $\mathcal{M}_{R} \unlhd R$ be some maximal ideal. Show that $\left(\mathcal{M}_{R}, R\right)$ extends to a dominating $\operatorname{dvr}\left(\mathcal{M}_{B}, B\right)$.

- How many possibilities are there for B ?

Question 8: [0 point] Show that any nonsingular affine curve X can be embedded in some nonsingular projective curve Y.

Question 9: [0 point] Given a curve X, are there fast algorithms:

- To find all singular points on X ?
- To find a nonsingular model of X ?

Question 10: [0 point] Let $k \subset K$ be a trdeg $=1$ field extension. Compute the ring $\bigcap\left\{R_{v} \mid\right.$ valuation v of $\left.K\right\}$.

