CS688 - COMPUTATIONAL ARITHMETIC-GEOMETRY \& APPLICATIONS NITIN SAXENA

ASSIGNMENT 1

POINTS: 50

DATE GIVEN: 13-JAN-2023
DUE: 03-FEB-2023 (6PM)

Rules:

- You are strongly encouraged to work independently. That is the best way to understand the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Submit your solutions, before time, to your TA. Preferably, submit a printed/pdf copy of your LaTeXed or Word processed solution sheet.
TA: Diptajit Roy diptajit@cse.iitk.ac.in
- Problems marked '0 points' are for practice.

Question 1: $[2+2$ points] Recall the definition of a ring and its characteristic. Which integers can be the characteristic of a ring? Of a field?

Question 2: $[6+6+6$ points] Let p be a prime number. Give a construction of the algebraically closed field $\overline{\mathbb{F}}_{p}$.

- Show that any finite subgroup of $\overline{\mathbb{F}}_{p}^{*}:=\overline{\mathbb{F}}_{p} \backslash\{0\}$ is cyclic.
- What can you say about the Galois group of $\overline{\mathbb{F}}_{p}$ over \mathbb{F}_{p} ?

For Qns. 3-4, let k be a finite field of characteristic p.
Question 3: [4 point] Given $n \in \mathbb{Z}_{\geq 0}$ and $x \in k$, we want to compute x^{n}. Estimate the time complexity in bit operations.

Question 4: (Frobenius morphism) [4+5+5 points] Let $\varphi: k[\mathbf{x}] \rightarrow k[\mathbf{x}]$ be the map $u \mapsto u^{p}$. Show that φ is a (ring) homomorphism.

- Show that, in fact, φ is an automorphism of k. When is it nontrivial?
- What are the other endomorphisms of k ?

Question 5: (FLT instance) [$2+3+5$ points] Consider the equation $x^{3}+y^{3}=z^{3}$. We consider its nontrivial solutions only, i.e. $x y z \neq 0$ and (x, y, z) considered the same as $(\alpha x, \alpha y, \alpha z)$ for any nonzero α.

- How many solutions are there in the field $\mathbb{Z} / 5 \mathbb{Z}$?
- How many solutions do you "expect" in the field $\mathbb{Z} / p \mathbb{Z}$? Justify.
- How many integral solutions are there?

Question 6: (Hilberts Nullstellensatz) [0 points] Recall prime and maximal ideals of the polynomial ring $A:=k\left[x_{1}, \ldots, x_{n}\right]$. Suppose k is an algebraically closed field.

- Let \mathcal{M} be a maximal ideal of A. Show that A / \mathcal{M} is a field.
- Show that $A / \mathcal{M} \cong k$.
- Deduce that a set of polynomials f_{1}, \ldots, f_{m} have a common solution in k iff $1 \notin\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Question 7: [0 points] Let k be a field and S be its finite subset. Prove that $\bar{k} \backslash S$ is not a closed set.

Question 8: [0 points] Show that $\mathbb{A}_{\bar{k}}^{2}$ is an affine variety.
Question 9: (Noetherian) [0 points] Show that every ideal of $k[\mathbf{x}]$ is finitely generated.

How do you interpret this geometrically?
Question 10: [0 points] Is there a fast algorithm to find a generator of k^{*}, where k is a finite field?

