CS688 - COMPUTATIONAL ARITHMETIC-GEOMETRY & APPLICATIONS NITIN SAXENA

ASSIGNMENT 1

POINTS: 50

DATE GIVEN: 13-JAN-2023

DUE: 03-FEB-2023 (6PM)

$\underline{\text{Rules}}$:

- You are strongly encouraged to work *independently*. That is the best way to understand the subject.
- Write the solutions on your own and honorably *acknowledge* the sources if any. cse.iitk.ac.in/pages/AntiCheatingPolicy.html
- Clearly express the fundamental *idea* of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Submit your solutions, before time, to your TA. Preferably, submit a printed/pdf copy of your LaTeXed or Word processed solution sheet.
 - TA: Diptajit Roy diptajit@cse.iitk.ac.in
- Problems marked '0 points' are for practice.

Question 1: [2+2 points] Recall the definition of a ring and its *characteristic*. Which integers can be the characteristic of a ring? Of a *field*?

Question 2: [6+6+6 points] Let p be a prime number. Give a construction of the algebraically closed field $\overline{\mathbb{F}}_p$.

- Show that any finite subgroup of $\overline{\mathbb{F}}_p^* := \overline{\mathbb{F}}_p \setminus \{0\}$ is cyclic.
- What can you say about the Galois group of $\overline{\mathbb{F}}_p$ over \mathbb{F}_p ?

For Qns. 3-4, let k be a finite field of characteristic p.

Question 3: [4 point] Given $n \in \mathbb{Z}_{\geq 0}$ and $x \in k$, we want to compute x^n . Estimate the *time complexity* in bit operations.

Question 4: (Frobenius morphism) [4+5+5 points] Let $\varphi: k[\mathbf{x}] \to k[\mathbf{x}]$ be the map $u \mapsto u^p$. Show that φ is a (ring) homomorphism.

Show that, in fact, φ is an *automorphism* of k. When is it *nontrivial*?
What are the other endomorphisms of k?

Question 5: (FLT instance) [2+3+5 points] Consider the equation $x^3 + y^3 = z^3$. We consider its *nontrivial* solutions only, i.e. $xyz \neq 0$ and (x, y, z) considered the same as $(\alpha x, \alpha y, \alpha z)$ for any nonzero α .

- How many solutions are there in the field $\mathbb{Z}/5\mathbb{Z}$?
- How many solutions do you "expect" in the field $\mathbb{Z}/p\mathbb{Z}$? Justify.
- How many *integral* solutions are there?

Question 6: (Hilberts Nullstellensatz) [0 points] Recall prime and maximal ideals of the polynomial ring $A := k[x_1, \ldots, x_n]$. Suppose k is an algebraically closed field.

- Let \mathcal{M} be a maximal ideal of A. Show that A/\mathcal{M} is a field.
- Show that $A/\mathcal{M} \cong k$.

- Deduce that a set of polynomials f_1, \ldots, f_m have a common solution in k iff $1 \notin \langle f_1, \ldots, f_m \rangle$.

Question 7: [0 points] Let k be a field and S be its finite subset. Prove that $\overline{k} \setminus S$ is not a closed set.

Question 8: [0 points] Show that $\mathbb{A}^2_{\overline{k}}$ is an affine variety.

Question 9: (Noetherian) [0 points] Show that every ideal of $k[\mathbf{x}]$ is finitely generated.

How do you interpret this geometrically?

Question 10: [0 points] Is there a fast algorithm to find a generator of k^* , where k is a finite field?

##