
Variants of NTRU Cryptosystem
CS681 – Extra Talk

Shaurya Johari
shauryaj23@iitk.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

April 2025

Variants of NTRU Cryptosystem 1 / 39

Outline

1 Introduction & Background

2 Linking with Closest Vector Problem

3 NTRU Basics

4 Variants of NTRU

5 NTRUSign

6 NTRU Prime

7 Conclusion

Variants of NTRU Cryptosystem 2 / 39

Overview

NTRU: Lattice-based public key cryptosystem known for efficiency
and security.

Applications: Post-quantum cryptography, especially suited for
constrained devices.

This Talk: Explore different variants of NTRU and their design
motivations.

Variants of NTRU Cryptosystem 3 / 39

Need of Strong Cryptography Schemes

Quantum computers pose a major threat to current encryption
methods, capable of breaking keys, certificates, and data protections
within minutes.

Quantum cyberattacks could rapidly compromise large networks and
critical infrastructure, enabling cybercriminals to access sensitive data
at unprecedented speed.

Thus, to secure all sorts of data and make such systems capable of
withstanding such breaches from quantum computers, there’s a dire
need to develop new cryptography protocols that don’t break so easily.

Variants of NTRU Cryptosystem 4 / 39

What is a Lattice?

A lattice is a discrete set of points in Rn generated by integer linear
combinations of basis vectors.

Mathematically: L(B) = {
∑n

i=1 aibi | ai ∈ Z}
Lattices are central in modern cryptography, especially post-quantum
schemes.

2D lattice formed by basis vectors b1 and b2

Variants of NTRU Cryptosystem 5 / 39

What is NTRU?

NTRU stands for Nth degree truncated polynomial ring units.

It is a lattice-based public key cryptosystem.

Proposed in 1996 by Hoffstein, Pipher, and Silverman.

Based on operations in a polynomial ring Zq[x]/(x
N − 1).

Efficient in both encryption and decryption, suitable for constrained
devices.

Variants of NTRU Cryptosystem 6 / 39

Why Study NTRU?

Post-Quantum Secure: Resistant to attacks from quantum
computers. Unlike RSA and ECC which can be decoded in short time
by quantum algorithms, no such algorithms exist for NTRU yet.

Fast: Faster than RSA and ECC in many implementations.

Small Key Sizes: Compact public/private keys compared to other
lattice-based schemes.

NTRU has found many useful applications in real life. For example,
OpenSSH by default uses NTRU combined with the X25519 ECDH key
exchange since August 2022

Variants of NTRU Cryptosystem 7 / 39

The Closest Vector Problem (CVP)

Problem: Given a lattice L ⊂ Rn and a target vector t⃗, find the
closest lattice point v⃗ ∈ L to t⃗.

Why it’s hard: CVP’s NP hard ad there’s no known polynomial-time
algorithm to find the shortest vector in a lattice, and any
polynomial-time algorithm for CVP could potentially be used to solve
any problem in NP

Cryptographic relevance: Many lattice-based cryptosystems,
including NTRU, rely on the hardness of CVP or its variants.

Variants of NTRU Cryptosystem 8 / 39

NTRU and Closest Vector Problem (CVP)

Key Insight:

In NTRU, the public key defines a
lattice.

Recovering the private key requires
finding a short vector in this lattice.

This is equivalent to solving a variant of
the Closest Vector Problem (CVP).

Why study CVP?:

Understanding and solving CVP, or
approximating it efficiently, is important
for both theoretical reasons, such as
exploring computational complexity,
and practical reasons, such as designing
and implementing the secure
cryptographic scheme

Illustration of CVP in 2D lattice

Variants of NTRU Cryptosystem 9 / 39

NTRU Scheme

Based on polynomial rings over finite fields.

Involves three main algorithms:

Key Generation
Encryption
Decryption

We shall now go over these phases in the next few slides.

Variants of NTRU Cryptosystem 10 / 39

Notation and Setup

Parameters: (N, p, q) with gcd(p, q) = 1, q ≫ p.

Ring: R = Z[X]/(XN − 1)

Polynomials are vectors:

F =
N−1∑
i=0

Fix
i = [F0,F1, . . . ,FN−1]

Multiplication (∗) is cyclic convolution:

(F ∗ G)k =
N−1∑
i=0

FiG(k−i) mod N

Multiplication mod q: reduce coefficients modulo q.

Variants of NTRU Cryptosystem 11 / 39

Key Generation

Choose random polynomials f , g ∈ R such that f is invertible mod p
and q.

Compute:

Fq ∗ f ≡ 1 mod q, Fp ∗ f ≡ 1 mod p

Public key: h = Fq ∗ g mod q

Private key: f (and optionally Fp for decryption)

Variants of NTRU Cryptosystem 12 / 39

Encryption

Shravan chooses message m ∈ R, random r ∈ R

Ciphertext:
e = p · r ∗ h +m mod q

Sends e to Devansh

Variants of NTRU Cryptosystem 13 / 39

Decryption

Devansh computes:

a = f ∗ e mod q, coefficients centered in [−q/2, q/2]

Then recovers message:

m = Fp ∗ a mod p

Works since:

a = f ∗ (p · r ∗ h +m) = p · r ∗ g + f ∗m

If coefficients of a stay within range, decryption succeeds.

Variants of NTRU Cryptosystem 14 / 39

Remarks on Decryption

Decryption may fail if coefficients overflow range.

Adding check bits can help detect failure.

Recovery possible by re-centering coefficients if near-boundary.

Well-chosen parameters ensure high probability of success.

Variants of NTRU Cryptosystem 15 / 39

NTRU Parameters: Why p and q Matter

NTRU encryption reduces modulo q, then decryption reduces modulo
p.

If q is too small, coefficients may wrap around after encryption.

This leads to information loss during mod p — incorrect message
recovery.

Constraints:

p: small, prime (e.g., p = 3), invertible mod q.

q: large prime or power of 2 (e.g., q = 2048).

Ensure:
q > p · (2d + 1) · B

where:

d : non-zero the coefficients in private key (≈ N/3),
B: bound on coefficient growth from convolution.

Variants of NTRU Cryptosystem 16 / 39

Note on faulty parameter selection

Dangers of Poor Parameter Choice:

Coefficients may exceed ±q/2 post-encryption.

Modulo q wraps incorrectly.

Modulo p gives garbage output — message lost!

Good Practices:

Use small p (typically 3), large q (2048+).

Ensure all coefficients after decryption lie within:(
−q

2
,
q

2

)
before reducing mod p.

Run tests on coefficient growth to validate bounds.

Summary: Always size q to handle noise from polynomial operations to
preserve recoverability of the message.

Variants of NTRU Cryptosystem 17 / 39

Brute Force Attacks on NTRU

Brute force aims to recover the private key by trying all possible short
polynomial pairs (f , g).

The number of such candidate pairs grows combinatorially:

Number of tries ∼
(
N

df

)
·
(
N

dg

)
where df and dg are the numbers of ±1 coefficients in f and g .

For recommended parameter sets (e.g., N = 167), brute force is
infeasible due to exponential growth.

Variants of NTRU Cryptosystem 18 / 39

Lattice Attacks on NTRU: Overview

Goal: Recover private key (f , g) by solving a shortest vector problem
(SVP).

Construct a lattice L where (f , g) lies as a particularly short vector.

Use lattice reduction (e.g., LLL, BKZ) to attempt recovery.

Security relies on gap between true short vector and others in lattice.

Variants of NTRU Cryptosystem 19 / 39

Constructing the NTRU Lattice

Define a 2N × 2N basis matrix Bh using public key h:

Bh =

[
IN H
O qIN

]
where H is the circulant matrix of h and IN is the identity.

(f , g) satisfies:
f ∗ h ≡ g mod q

There exist a lattice (f , u) such that

(f , u)Bh = (f , g)⇒ (f , g) ∈ L(Bh)

Variants of NTRU Cryptosystem 20 / 39

Lattice Attack on ei

From the encryption equation:

ei ≡ pri ∗ hj + fi (mod q)

we can express in vector form:

[0, ei] ≡ [ri , ri ∗ (phj)] + [−ri , fi] (mod q)

The vector [ri , ri ∗ (phj)] lies in the lattice Lphj .
Thus, [0, ei] is close to a lattice point — it is off by the short vector
[−ri , fi].
Attack Idea: Use CVP to find the closest vector in Lphj to [0, ei],
recovering the short offset [−ri , fi].

Variants of NTRU Cryptosystem 21 / 39

Time Complexity of LLL-Based Lattice Attacks

LLL Reduction: Polynomial-time lattice basis reduction algorithm.

Runtime:

O(n4 logB) where n = 2N, B = entry bound

Approximation Factor:

∥v∥ ≤ 2(n−1)/2 · λ1

LLL finds a vector exponentially longer than the true shortest vector.

Variants of NTRU Cryptosystem 22 / 39

Why Lattice Attacks Fail with Good Parameters

The private vector (f , g) is very short and not easily reached by
reduction algorithms.

Many moderately short vectors exist in the lattice, making it hard to
find the true secret key.

Proper parameter selection (e.g., large enough q) ensures a large
“short vector gap”.

Variants of NTRU Cryptosystem 23 / 39

Why Variants Exist

Improve security against new attack vectors used for decoding

Some NTRU variants aim to optimize the algorithm for speed and
efficiency, making it more practical for real-world applications.
Security: (e.g., smaller key sizes, faster computations).

Adaptation of NTRU for different platforms done through Variants
(IoT, servers, etc.).

Some popular NTRU Variants: NTRUEncrypt, NTRUSign, NTRU
Prime etc.

Variants of NTRU Cryptosystem 24 / 39

NTRUSign

A digital signature scheme based on the same lattice principles as
NTRUEncrypt.

This uses trapdoors to generate short preimages in a lattice.

Signature: a short vector s such that H(s) = m modulo lattice
structure.

Original versions had issues with key leakage due to statistical
patterns.

Modern improvements mitigate leakage with better sampling
techniques.

Variants of NTRU Cryptosystem 25 / 39

Key Generation

Input: Parameters N, q, df , dg ,B ≥ 0; string
t ∈ {”standard”, ”transpose”}

1 Sample polynomials f , g with:

f ← Poly(N, df , df)
g ← Poly(N, dg , dg)
That is, f and g have df and dg coefficients of ±1, rest zero

2 Compute:
h = g · f −1 mod q

where f −1 is computed in the NTRU ring modulo q.
3 Output:

Public Key: h
Secret Key: f

Variants of NTRU Cryptosystem 26 / 39

Signature Generation

Input: A digital document D ∈ D and the private key {fi , f ′i , hi} for
i = 0 . . .B

1 Set r = 0
2 Set s = 0. Let i = B. Encode r as a bit string. Set m0 = H(D∥r),

where || denotes concatenation. Set m = m0
3 Perturb the point using the private lattices: While i ≥ 1:

(a) Set x = ⌊(1/q)m ∗ fi⌋, y = ⌊(1/q)m ∗ f ′i ⌋
(b) si = x ∗ fi + y ∗ f ′i
(c) m = si + (hi − hi−1) mod q
(d) s = s + si , set i = i − 1

4 Sign the perturbed point using the public lattice:

x = ⌊(1/q)m ∗ f0⌋, y = ⌊(1/q)m ∗ f ′0⌋
s0 = x ∗ f0 + y ∗ f ′0 , s = s + s0

5 Check the signature:
(a) Set m′ = ⌊s ∗ h mod q⌋
(b) If ∥s∥ ≥ N , set r = r + 1 and go to step 3

6 Output: The triplet (D, r , s)
Variants of NTRU Cryptosystem 27 / 39

Signature Verification

Input: A signed document (D, r , s) and the public key h

1 Encode r as a bit string. Set m = H(D∥r)
2 Set m′ = ⌊s ∗ h mod q⌋
3 Output: Valid if ∥s∥ < N , invalid otherwise

Note: Verification uses the same hash function H, norm function ∥ · ∥,
and the norm bound N ∈ R

Variants of NTRU Cryptosystem 28 / 39

Security Considerations

Based on hardness of lattice problems (e.g., SIS, SVP).

Early versions vulnerable to signature leakage due to deterministic
behavior.

Later variants add perturbation/randomization to improve security.

Still active research area with connections to post-quantum
cryptography.

Variants of NTRU Cryptosystem 29 / 39

What is NTRU Prime?

A lattice-based post-quantum cryptosystem

A redesign of the original NTRUEncrypt, avoiding cyclotomic rings

Introduced by Bernstein, Chuengsatiansup, Lange, and van
Vredendaal in 2016

Secure against quantum attacks; efficient in software

Variants of NTRU Cryptosystem 30 / 39

Need for NTRU Prime

Classical NTRU used cyclotomic rings, leading to certain algebraic
attacks

NTRU Prime uses non-cyclotomic ring Z[x]/(xp − x − 1)

Better security reductions and simpler implementations

Resistance to quantum attacks and improved cryptographic
robustness

Variants of NTRU Cryptosystem 31 / 39

Use Cases

Secure key exchange in post-quantum TLS

Lightweight cryptography for embedded systems

Hybrid encryption schemes in quantum-safe communication

Candidate in NIST Post-Quantum Cryptography Standardization

Variants of NTRU Cryptosystem 32 / 39

Key Generation in NTRU Prime

Inputs: Parameters (p, q, t)
Output: Public key h and private keys f , 1/g

1 Choose random small g ∈ R such that g is invertible in R/3

2 Choose t-small f ∈ R (nonzero, hence invertible in R/q)

3 Compute h = g/(3f) in R/q

4 Encode h as h. This is the public key.

5 Save f ∈ R and 1/g ∈ R/3

Rings:

R = Z[x]/(xp − x − 1), R/q = (Z/q)[x]/(xp − x − 1)

Streamlined NTRU Prime is actually a “key encapsulation mechanism”
(KEM). This means that the sender takes a public key as input and
produces a ciphertext and session key as output.

Variants of NTRU Cryptosystem 33 / 39

Encapsulation

Goal: Given public key h, produce ciphertext C∥c and session key K

1 From h Decode h ∈ R/q

2 Generate t-small r ∈ R

3 Compute hr ∈ R/q to coefficients lying in (−(q−1)
2 , −(q−1)

2 , round
coefficients to nearest multiple of 3 ⇒ c ∈ R

4 Encode c as a string c

5 Hash r using SHA-512 to get a left half C (“key confirmation”) and a
right half K . (C ,K)

6 Ciphertext is C∥c and session key is K

We refer to an element of R as small if all of its coefficients are in
{1, 0, 1}. We refer to a small element as t-small if exactly 2t of its
coefficients are nonzero, i.e., its Hamming weight is 2t.

Variants of NTRU Cryptosystem 34 / 39

Decapsulation

Goal: Given C∥c and private key (f , 1/g), recover session key K

1 From c Decode c ∈ R/q

2 Compute 3fc in R/q to coefficients lying in (−(q−1)
2 , −(q−1)

2 , reduce
coefficients modulo 3 to get e = gr ∈ R/3

3 Multiply e by 1/g in R/3 and lift it in R to get r ′

4 Recompute c0, C0, K0 from r ′ as in encapsulation.

5 If valid (t-small, c0 = c , C0 = C), output K0, else output False

Variants of NTRU Cryptosystem 35 / 39

Conclusion

Thus we have explored NTRU and few variants.

Variants of NTRU Cryptosystem 36 / 39

References

Hoffstein, J., Pipher, J., Silverman, J.H. (1998). NTRU: A ring-based public key
cryptosystem.

Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C. (2017).
NTRU Prime.

Hoffstein, J., Pipher, J., Silverman, Whyte, W., (2002) NTRUSign: Digital
Signatures using NTRU Lattices

NIST PQC Project:
https://csrc.nist.gov/projects/post-quantum-cryptography

Variants of NTRU Cryptosystem 37 / 39

https://csrc.nist.gov/projects/post-quantum-cryptography

Acknowledgements

I would like to express my sincere gratitude to my professor Dr.Nitin
Saxena for his invaluable guidance throughout this course, and
Teaching Assistant Tufan Sir for helping me.

I would also like to thank my like-minded peers Shravan Agrawal and
Devansh Bhardwaj for engaging with me on many levels, sharpening
my mind.

I’m also Grateful to my peers, friends, and seniors for insightful
discussions on other topics of Computational Number Theory and
Algebra.

Variants of NTRU Cryptosystem 38 / 39

Thank You!

Questions are welcome.

Variants of NTRU Cryptosystem 39 / 39

	Introduction & Background
	Linking with Closest Vector Problem
	NTRU Basics
	Variants of NTRU
	NTRUSign
	NTRU Prime
	Conclusion

