Directed Planar Reachability is in Unambiguous Log-Space

(Bourke, Tewari, Vinodchandran)

UL Complexity Class

- UL denotes the unambiguous subclass of NL.
- A decision problem L is in UL, if and only if there exists a nondeterministic log-space machine M deciding L such that, for every instance x, M has at most one accepting computation on input x.
- To prove: Planar reachability can be decided by a nondeterministic machine in log-space with at most one accepting computation.

CLAIM 1

- [Allender 2005]: The PLANARREACH problem log space many-one reduces to GGR.

Grid Graphs

- A $\mathrm{n} \times \mathrm{n}$ grid graph is a directed graph whose vertices are $[n] \times[n]=\{1, \ldots, n\} \times\{1, \ldots, n\}$ so that if $(i 1, j 1)$, $(i 2$, $\mathrm{j} 2)$) is an edge then $|\mathrm{i} 1-\mathrm{i} 2|+|\mathrm{j} 1-\mathrm{j} 2|=1$.
- Grid graphs are a very natural subclass of planar graphs.
- Grid Graph Reachability problem reduces to its complement.

Min-Unique Graph

- Min-unique graph is a directed graph with positive weights associated with each edge where for every pair of vertices u, v, if there is a path from u to v , then there is a unique minimum weight path from u to v.
- Here, the weight of a path is the sum of the weights on its edges.

Claim 2

- [REINHARDT AND ALLENDER 2000]. Let G be a class of
- graphs and let $H=(V, E) \in G$. If there is a polynomially bounded log-space computable function f that on input H outputs a weighted graph $f(H)$ so that
- (1) $f(H)$ is min-unique and
(2) H has an st-path if and only if $f(H)$ has an st-path

Algorithm 1:Determining whether $\mathrm{d}(\mathrm{v}) \leq \mathrm{k}$ or not.

Input: (G, v, k, ck , $\mathbf{\Sigma k}$)
Output: true if $d(v) \leq k$ else false
1 Initialize count $\leftarrow \mathbf{0}$; sum $\leftarrow \mathbf{0}$; path.to.v \leftarrow false
2 foreach $\mathrm{x} \in \mathrm{V}$ do
3 Nondeterministically guess if $\mathbf{d}(\mathrm{x}) \leq \mathrm{k}$
4 If guess is Yes then
5 Guess a path of length $I \leq k$ from s to x

6
7
8
9
10
11
12 end
13 end
14 end
15 if count $=\mathrm{ck}$ and sum $=\Sigma \mathrm{\Sigma}$ then
16 return path.to.v
17 else
18 return "?"
19 end

Algorithm 2:Computing ck and

Algorithm 3: Determining if there exists a path

 from s to t in G.Input: A directed graph G
Output: true if there is a path from s to t, false otherwise
1 Initialize $\mathbf{c}(0) \leftarrow \mathbf{1}, \mathbf{\Sigma}(0) \leftarrow 0, k \leftarrow 0$
2 for $k=1, \ldots, n$ do
3 Compute $c(k)$ and $\Sigma(k)$ by invoking Algorithm 2 on

$$
(G, k, c(k-1), \Sigma(k-1))
$$

4 end
5 Invoke Algorithm 1 on (G, t, n, c(n) , $\Sigma(n)$) and return its value

Taking log space computable func. to define weights(|G|=n)

- Weights to the edges can be assigned on following criteria:
- Case 1: North edge
$w(e)=i+n^{\wedge} 4$, for column i
- Case 2: South edge
$w(e)=-i+n \wedge 4$, for column i
- Case 3: East/West edge
$w(e)=n \wedge 4$
- The weight of any path P can be denoted as: $a+b .\left(n^{\wedge} 4\right)$

Claim 3

Let C be a simple directed cycle in G. Then $a(C)=+A(C)$ if C

- is a counter-clockwise cycle and $a(C)=-A(C)$ if C is a clockwise cycle.
- $A(C)$: denotes the number of unit squares the cycle encloses in grid graph.
- $a(C)$: denotes the ' a ' component of the path.

Claim 4

- Let G be a grid graph. With respect to the weight function w, for any two vertices u and v, the minimum weight path from u to v, if one exists, is unique.

Thank you.

