Hilbert Nullstellensatz is in the Polynomial Hierarchy

Presentation by: Ashish Dwivedi
Paper by: Pascal Koiran
Depatment of Computer Science and Engineering
IIT Kanpur

November 11, 2017

Hilbert's Nullstellensatz

- Consistency Question: Does given polynomials $f_{1}(\bar{x}), \ldots, f_{m}(\bar{x}) \in \mathbb{F}[\bar{x}]$ have a common zero over $\overline{\mathbb{F}}$?
- Hilbert's Nullstellensatz (HN) says- answer is "NO" iff,

$$
1=a_{1} f_{1}+\ldots+a_{n} f_{n}
$$

for some $a_{1}, \ldots, a_{n} \in \overline{\mathbb{F}}[\bar{x}]$.

- Nullstellensatz= Null (Zero)+ Stellen (Places)+ Satz (Theorem). "Theorem of zeros".
- Hence, consistency checking is also called HN.

The Problem

- We are interested in the complexity of HN over \mathbb{C}.
- Input is a system $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$, where $f_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ with coefficients at most C and total degree at most d.
- Question: Is \mathcal{F} satisfiable over \mathbb{C} ?
- $|\mathcal{F}|$ is the bit size of the system.
- Sparse representation to represent polynomials.
- Koiran (1996) showed that this problem is in the polynomial hierarchy assuming Riemann hypothesis.
- In particular, he put the problem in "Arthur-Merlin" (AM) class.
- To understand the main idea, we need to see systems over \mathbb{Z} as systems modulo p for prime p.

Some Examples

- Consider the following satisfiable system S over $\mathbb{Z}[x, y]$,

$$
S=\left\{\begin{array}{l}
x y-6=0 \\
x-2=0
\end{array}\right.
$$

satisfiable over \mathbb{Z} - $(2,3)$.

- What about its satisfiability is $\mathbb{Z} / p \mathbb{Z}$ for some prime p ?
- It is satisfiable for all such p 's- zeros are $(2 \bmod p, 3 \bmod p)$.
- In $[N]$ it has $\pi(N)$ - number of primes in $[N]$ - solutions.

Some Examples

- Consider an unsatisfiable system S over $\mathbb{Z}[x, y]$,

$$
S=\left\{\begin{array}{l}
(x y)^{6}-1=0 \\
x-2=0 \\
y-3=0
\end{array}\right.
$$

- What about its satisfiability is $\mathbb{Z} / p \mathbb{Z}$ for some prime p ?
- It is satisfiable with zero $(2 \bmod 5,3 \bmod 5)$ in $\mathbb{Z} / 5 \mathbb{Z}$ and $(2 \bmod 7$, $3 \bmod 7)$ in $\mathbb{Z} / 7 \mathbb{Z}$
- But we can see the number of zeros are bounded - for any prime $p>6^{6}$ it is unsatisfiable in $\mathbb{Z} / p \mathbb{Z}$

Some Examples

- Consider the given system of equation over $\mathbb{Z}[x, y, z]$

$$
S=\left\{\begin{array}{l}
x y-z^{2}=0 \\
2 x-1=0 \\
x-9 y=0
\end{array}\right.
$$

- Satisfiable over \mathbb{C} - $(1 / 2,1 / 18, \pm 1 / 6)$ or $(9 / 18,1 / 18, \pm 3 / 18)$
- It is satisfiable for all primes p except $p=2,3$.
- 18 doesn't have inverse modulo 2 or 3 .
- In $\mathbb{Z} / 5 \mathbb{Z}$ it has a solution $(3,2,1) \equiv\left(9.18^{-1} \bmod 5,1.18^{-1} \bmod \right.$ $\left.5,3.18^{-1} \bmod 5\right)$.
- In [N], satisfiable for $\pi(N)-2$ primes.
- What we observe by these examples?
- Do satisfiable systems over \mathbb{C} are always satisfiable for unbounded number of primes p?
- Do unsatisfiable systems over \mathbb{C} are satisfiable for only few primes p ?
- The answer to all these questions is - Yes!
- There is a large gap between number of primes in the two cases.
- We will prove that-
- If \mathcal{F} is unsatisfiable over \mathbb{C} then for at most N_{1} primes p, \mathcal{F} will be satisfiable modulo p , where $N_{1}=\exp (|\mathcal{F}|)$.
- If \mathcal{F} is satisfiable over \mathbb{C} then, assuming ERH, for at least $N_{2}:=\left(\pi(N) / N_{3}-N_{4}-O(\sqrt{N} \log N)\right)$ primes p in [N], \mathcal{F} will be satisfiable modulo p where N_{3} and N_{4} are constants at most $\exp (|\mathcal{F}|)$.
- $\pi(N) \gg \sqrt{N} \log N$.
- $N=\exp (|\mathcal{F}|)$ suffices for $N_{2} \gg N_{1}$
- We will exploit this large gap to put the question in AM.
- Class $A M \subseteq \Pi_{2}$ (second level in PH).
- We will first show that HN is in AM and then prove the statements about number of good primes in the two cases.
- Since, N_{2} is arbitrarily large we can take $N_{2}>4 N_{1}$.
- Let universe U is the set of all prime numbers in [N].
- For input $x, \operatorname{Good}(x)$ is set of all primes in U for which x is satisfiable.
- Membership testing in $\operatorname{Good}(x)$ is in NP.
- A direct way for AM protocol can be:
- Arthur picks a random y in U and gives it to Merlin.
- Merlin gives a certificate that $y \in \operatorname{Good}(x)$.
- Arthur verifies efficiently.
- Problem is that $|U|$ can be exponentially large than N_{2}, so probability for yes instance $N_{2} /|U|$ is very small.
- The good thing is that N_{2} is relatively much larger than N_{1}.
- We can use the idea of hashing discussed in last lecture.
- We contract the space size and hashing on average will maintain this relativity.
- We use pairwise independent family of hash functions \mathcal{H} from U to S, where S is a set of size N_{2}.
- Pick a subset $T \subseteq U$ s.t. $|T|=\alpha|S|$ with $\alpha \leq 1$.
- For random h and $x \in S$, $\alpha-\alpha^{2} / 2 \leq \operatorname{Pr}[x \in h(T)] \leq \alpha$
- Take $T=\operatorname{Good}(x)$.
- Then for no instance x, Prob $\leq \alpha=|T| /|S|=1 / 4$
- For yes instance x, Prob $\geq \alpha-\alpha^{2} / 2=1 / 2$
- So Arthur picks random $h \in \mathcal{H}$ and $s \in S$.
- Merlin replies with $y \in \operatorname{Good}(x)$ s.t. $h(y)=s$
- Arthur verifies efficiently. $(p<N=\exp (|\mathcal{F}|))$

Bound for N_{1}

- When \mathcal{F} is unsatisfiable over \mathbb{C}, effective HN gives g_{1}, \ldots, g_{m} of exponential degree s.t. $f_{1} g_{1}+\ldots+f_{m} g_{m}=1$
- Since coefficients of f_{i} 's are in \mathbb{Z}, we can have g_{j} 's in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ s.t. $f_{1} g_{1}+\ldots+f_{m} g_{m}=a$ for some non-zero a in \mathbb{Z}.
- $a=\exp (\exp (|\mathcal{F}|))$.
- If \mathcal{F} is satisfiable modulo p , then p must divide a.
- There are at most $N_{1}=\log a=\exp (|\mathcal{F}|)$ such p.

Bound for N_{2}

- Since $f_{i} \mathrm{~s}$ are in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, any zero $\left(a_{1}, \ldots, a_{n}\right)$ is in $\overline{\mathbb{Q}}^{n}$.
- We want some simple compact representation of $a_{i} s$ in \mathbb{Z}.
- The idea is to represent $a_{i} s$ by univariate polynomials and simplify the given system to a large enough size univariate system.
- Make the correspondence of the zeros of the univariate system to the zeros of a univariate polynomial modulo different primes p.
- Count of such ps gives N_{2}.

Bound for N_{2}

- $a_{1}, \ldots, a_{n} \in \mathbb{Q}\left(a_{1}, \ldots, a_{n}\right)$.
- By primitive element theorem, $\mathbb{Q}\left(a_{1}, \ldots, a_{n}\right)=\mathbb{Q}(\beta)$ for some $\beta \in \overline{\mathbb{Q}}$.
- $a_{i}=P_{i}(\beta) / b$, where $P_{i} \in \mathbb{Z}[x]$.
- Let $R(x) \in \mathbb{Z}[x]$ be minimal polynomial for β.
- Using classical results in quantifier elimination and complexity of primitive elements we get that $\exists\left(a_{1}, \ldots, a_{n}\right)$ s.t. b and coefficients of R are $\exp (\exp (|\mathcal{F}|))$ and degree D of R is $\exp (|\mathcal{F}|)$.

Bound for N_{2}

- Define the univariate system $g_{i}(x):=b^{d} f_{i}\left(P_{1}(x) / b, \ldots, P_{n}(x) / b\right)$.
- $g_{i}(\beta)=0$ implies $R \mid g_{i}$.
- We want count on all primes p in [N] s.t. p does not divide b and for some p^{\prime} in $\mathbb{Z} / p \mathbb{Z}, R\left(p^{\prime}\right)=0 \bmod p$.
- To get count of such primes p we use the effective version of Chebotarev Density Theorem, which assumes ERH.
- Define X as the set of primes p in [N] s.t. p does not divide discriminant of squarefree R.
- Define W as the set of all solutions of R modulo p, where p is in X.
- Assuming ERH, $|W|=|X|$ - Error, where Error is $O\left(\sqrt{N} \log N^{D} \operatorname{disc}(R)\right)$.
- N_{2} is at least $|W| / D-\log b$.
- By taking $N=\exp (|\mathcal{F}|)$, simplification gives the required expression for N_{2}.

Questions?

Thank You !!

Acknowlegement

- Besides the original paper by Koiran [Koi96] I would like to thank Dr. Madhu Sudan for his 1998 lecture notes [Sud98], which contains great exposition of original paper.

Hilbert's Nullstellensatz is in the Polynomial Hierarchy.
J. Complexity, 12(4):273-286, 1996.

固 Madhu Sudan.
Lecture notes on Algebra and Computation. 1998.

