Design and Implementation of
a 32 Bit VLSI RISC Architecture

by
Anil Kumar

5@
93 * M—E&/ 1997/

L w364 | | | |

oo I DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
UM INDIAN INSTITUTE OF TECHNOLOGY KANPUR‘

)ES D MARCH, 1993

Design and Implementation of
a 32 Bit VLSI RISC Architecture

A Thesis Submitted
in. Partial Fulfilment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY

By
ANIL KUMAR

to the
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR
March, 1993

0 8 APR 1993

CSE
CENTRAL LIBRARW

C SE- 1993~ M- KM~ DES

CERTIFICATE

This is to certify that the work contained in the thesis titled, Design and
Implementation of a 32 bit VLSI RISC Architecture, was carried out under my

supervision by Anil Kumar and it has not been submitted elsewhere for a degree.

=

March 1993 : Rajat Moona

Kanpur Assistant professor
Dept. of Comp. Sc. and Engg.
I.I.T., Kanpur

To
Anvma & Pitaji

ACKNOWLEDGEMENTS

Designing a RISC processor is indeed a RISCy work. In the begining of this project, I was
not very much sure about the completion in time but some how I was able to finish it.

I am grateful to my guide for Lis constant support and freedom he gave me during the
most difficult part of this project. Some times we had heated discussion and'I realized that
“Boss was always right.” Working under him is a memorable experience for me.

Many people assisted me during the prepartion of this thesis. In particular Rgopa.
Alok Kumar Gupla. and Raj kuimar. 1also acknowledge all my classmates and other friends
~ of mine from CSE and other departments for obvious reason. Last but not least. T appreciate
my brother Arun KNumar. bliabhiji Indu. and their kids Abhishck and Akanksha(Princic).

Without their motivation and inspiration this project might be still incomplete.

Anil NKumar

Abstract

RISC has become a mainstream movement to improve computing power and keep cost of
design and design time low. In this thesis a 32 bit VLSI RISC architecture is designed
and referred as iitk-RISC. The iitk-RISC supports four stage instruction pipeline and has
128 on-chip registers. This allows a fast operand fetch and simple data management by the
cbmpiler. The iitk-RISC also supports 4 Giga byte memory space organized in byte banks.

The processor has been implemented using 1.6y scalable CMOS c3tu process. It has
83638 transistors and fits in the area of 7.85x 7.24mm. The simulation results show that iitk-
RISC can operate at 15MHz. With the large register set, it is possible to avoid memory reads

and writes to approximately 10% of the program size. This gives an average performance

of 14MIPS.

Contents

1.1
1.2
1.3
14

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4

Introduction

Reduced Instruction Set Computer

.......................

Contribution of this Thesis

VLSI CAD Tools

Thesis Organization

...............................

A Survey of RISC Mainstream

The Berkeley RISOM . | -/ I™MIKL. |51 @)
The Berkeley RISCTL \& M. 5" ./ Al el oo L.
The MIPS R2000 A2 Ny ST S e . . o o o o oL
The 80960 RISC Architecture o o ..
The 29000: AMD’s RISC Machine
The SUN's SPARC e e

Conclusion o v o e e e e e

Instruction Set of iitk-RISC

3.4.1 Data Movement Instruction
3.4.2 Data Manipulation Instructions
3.4.3 LOAD/STORE Instructions
3.4.4 Control Transfer Instructions

3.4.5 Miscellaneous Instructions v v i i i e e e e

-

ov e W

© W 0 N o O

10
10

ii

3.5 Tlegal Conditions i

3.5.1 Illegal Instructions

............................

3.5.2 Memory Address Violation

3.6 Evaluation of the iitk-RISC Instruction Set

3.6.1 Instruction Set and High Level Language

3.7 Conclusion

....................................

4 | The 1itk-RISC Architecture and Pipeline
4.1 The Instruction Pipeline of iitk-RISC
4.1.1 A Four Stage Pipeline
4.1.2 Analysis of Pipeline,
4.2 The iitk-RISC Architecture L .
4.2.1 TheRegister-File....................:
4.2.2 Execution Uhifr fomd . 27 b . S AmhF X . - . . . oL
423 Memory Access Unit e
4.2.4 Write Back Unit . . LN I - A I e R
425 Imterrupt Unit
4.2.6 Control Unit of iitk-RISC
4.3 Evaluation of iitk-RISC Architecture

5 The iitk-RISC Design and Layout

5.1 The iitk-RISC Data Path Design
5.2 Theiitk-RISC Data Path
5.2.1 Paths Followed for Instruction Execution
5.3 The Design Issues and Layouts
5.3.1 The Register-file
5.3.2 ExecutionUnit L o ool
5.3.3 Memory Access Unit o o
534 WriteBack Unit e .
5.3.5 The iitk-RISC Control Unit

5.4 Conclusion

6 Conclusions

....................................

21
21
22
22
23
23

24
24
24

31
31
33
37
38
38
41
46

48
48
49
50
52
52 -
53
53
54
54
55

iii

A Instruction Set for iitk-RISC

B Basic Modules of iitk-RISC Layout

Bibliography

69

72

78

List of Figures

2.1 Intel’s 80960 RISC Architecture. 9
2.2 The AMD’s 29000, a bit slice RISC Architecture. 10
2.3 Sun Microsystems’ SPARC Architecture. 11
3.1 Imstruction Formats of iitk-RISC. 13
3.2 The Flag Register of iitk-RISC. 15
3.3 Shift Operations. J. & b A7 o 4 - oo om kb X e ¢ o v e v v e e e el 17
34 LoadingaByte.. e e 18
3.5 Storing a Half-Word. LR -) S I O 19
3.6 An Example of Procedure Call. o A ae - 21
3.7 Interrupt Vector for lllegal Conditions. 21
3.8 HLL Translation into iitk-RISC Codes. 23
4.1 Instruction Pipeline of iitk-RISC. e e 25
4.2 Pipeline Suspension During Memory Access. 28
4.3 Delayed Control Transfer. 29
4.4 The Effect of Consecutive Jumps. 0. 30
4.5 An Example Requiring Internal Forwarding. e e 30
4.6 The iitk-RISC Block Diagram. l. .32
4.7 A Basic Cell Register. 33
4.8 An AND-_tree Decoder for Three Lines. 34 |
4.9 A Binary Carry Lookahead Adder., | . 36 |
4.10 A Basic Cell of Logical URit. . . . oo v oo v ee e e PR ¥
4.11 The Memory Access Unit of iitk-RISC. Sl 38
4.12 The Read and Write Memory Cycles.. ,39;;3 R
4.13 The Write Back Unit of iitk-RISC. T 40

e . oA
Lo~

4.14 Interrupt Unit and Interrupt Cycle.. '. .40
4.15 Control Unit of iitk-RISC. 42
4.16 A Fetch Cycle of iitk-RISC. 43
4.17 The control register of iitk-RISC. e 47
5.1 A Typical iitk-RISC Data Path Segment. 49
5.2 Data Path of iitk-RISC. 56
5.3 The Layout of iitk-RISC. 57
5.4 The Critical Delay Path of Register File. 58
5.5 The Register-file of iitk-RISC. 59
5.6 The Longest Delay Path. 60
5.7 The Execution Unit of iitk-RISC., 61
5.8 The Memory Unit of iitk-RISC. 62
5.9 The Write Back Unit of iitk-RISC. 63
5.10 Control Path of iitk-RISC. e e e e 64

5.11 The Control Unit of iitk-RISC. et e e e e e 65

List of Tables

1.1 Instruction Execution Times for Some Processors 3
3.1 Storing Data of Various Widths. 18
3.2 The iitk-RISC Jump Conditions. e e e 20

6.1 Design Metrics for iitk-RISC. 0. . .o L o o oo 68

Chapter 1

Introduction

Many factors have influenced the design of a processor. These include availability of VLSI
technology which made it possible to realize cache. data prefetch, data pipelines, instruction
pipeline etc. on the processor chip. Using these concepts several processors (RISC. CISC
and semi RISC) have been introduced in the recent past. Rest of this chapter discusses the
concept of RISC., how VLSI made RISC a reality, “iitk-RISC'". and the organization of the

thesis.

1.1 Reduced Instruction Set Computer

In late 70s and early 80s general trend in computers was to increase the complexity of
architectures by providing complex instructions and complex addressing modes. As a result
the control unit of these processors océupied a good amount of silicon area: see for example,
control unit of MC68000 is 68% of the chip area [5]. The complexity of these computers,
(here onward referred as to CISC) had some negative consequences. These include increased
design time and errors and increased duplication of resources, where resources stand for
instruction set and functional units. Due to complexity of CISC even a million transistors
chip was insufficient to design a single chip computer.

This led to a hypothesis that by reducing the number of instructions one can design
a suitable VLSI architecture that uses a scarce resource, the chip area. more effectively
than CISC [8]. Therefore the main emphasis in RISC design is to utilize the silicon area as
optimaly as possible.

Some of the features of RISC' design are as follows:

1.1 Reduced Instruction Set Computer 2

They supports simple instructions. In RISC'instructious are kept as simple as.possible.

In most of the cases a RISC' instruction is equivalent to one micro call in CISC.

¢ RISC processors have fixed instruction format. A choice of fixed instruction format
simplifies the instruction fetch and decode logic. Further registers access can be done

in parallel with instruction decoding.

¢ There are good number of on-chip registers in RISC processor. This enables compiler

to keep frequently used variables in registers.

e The core architecture of RISC is LOAD/STORE type architecture. Only LOAD and
STORE instructions can access data from outside. Other instructions operate on

registers as their source of operands and destination for result.
o All RISC processors execute one instruction per cycle.
e The instruction set in RISC processor has a good Support for high level languages.

Due to simple instructions, fixed instruction format. and small number of addressing
modes the control logic of RISC is very simple. The silicon area thus saved is used to
provide on-chip memory in the form of registers and caches. This reduces the demand on
critically limited chip bandwidth. The result is increased system throughput. A typical
RISC processor has up to 128 registers.

To utilize on-chip resources to their maximum potential the execution sequence is divided
into several easy to implement subsequences. These execution subsequences are so arranged
that a unit executing a subsequence is ready to accept a subsequence in every cycle. This
arrangement of execution subsequences is called execution or instruction pipeline. For
simplified and regularly running pipeline several things are to be considered. For example,
in case of control transfer instruction. to keep the pipeline full instead of flushing, delayed
branch technique is utilized. In almost all RISC processors the jump is not be taken until
an intervening delay instruction has been executed. Advanced Micro Devices(AMD) claims
that 90% of the time compiler can insert a useful instruction into the *delay slot’ [1]. In
fact there is scope of other optimizations as well and this will improve the performance of

the system many fold.

1.2 Contribution of this Thesis 3

Instr | 180386 | MC68030 | iith-RISC
cmp | 4 cycles | T cycles 1 cycles
call 17 cycles | 17 cycles | 1 cycles
ret 18 cycles | 15 cycles | 1 cycles
iret | 22 cycles | 20 cycles | 1 cycles
jmp | 17 cycles | 14 cycles | 1 cvcles

Table 1.1: Instruction Execution Times for Some Processors

To summarize our discussion on RISC and CISC processors, the time required for some
of the typical instructions is listed in table 1.1 for two CISC processors and compared with

that required for these instructions in iitk-RISC'.

1.2 Contribution of this Thesis

In this thesis, iitk-RISC has been designed and implemented at Computer Science and
Engineering department of IIT KANPUR. It has almost all features of RISC discussed
above. The iitk-RISC is a 32 bit architecture and consists of a control unit, an execution
unit, a memory access unit, a write back unit, a register-file, and an interrupt handling unit.
It supports 4 Giga byte memory space organized in byte banks. It has a four stage pipeline:
Fetch/Decode and register fetch(IF and DRF), execution(EXEC), Memory access(MEM),
and Write back(WB). The input clock frequency is 30MHz and it is divided by two internally
to get the pipeline clock. In iitk-RISC an instruction cycle is taken to be same as one clock
cycle. However, execution cycle is the number of cycles required to execute an instruction in
a non-pipelined architecture. An execution cycle of iitk-RISC' cousists of four clock cycles.

The register-file of iitk-RISC consists of 128 registers of 32 bits each. The execution
unit consists of a 32 bit adder/subtractor, a logic unit. and a barrel shifter. It is capable of
doing 32 bit operations in a single cycle. The memory access unit can access a byte, a half
word, and a full word from memory and data is aligned accordingly. In case of read access of
memory the read data is converted to either signed 32 bit or unsigned 32 bit depending upon
the type of read. The write back unit writes data into register-file or flag register or does
not write as required by the instruction. The Interrupt handling unit monitors the on-chip
illegal activities and interrupt requests from outside. For example illegal memory address.

If an illegal activity or an interrupt request is detected then the interrupt’ handling unit
I '

1.3 VLSI CAD Tools 4

offest lines. The interrupt table of iitk-RISC' is 2k bytes deep and lies at the bottom of the
memory map.

The iitk-RISC instructions are of fixed size and fixed format. The instruction set of iitk-
RISC has instruction for data movement among the register; instructions for arithmetic,
logical, and shift operations; instructions to read an unsigned or signed byte, half word,
and a word from memory; instructions to write a byte. a half word. and a word into the
memory; and instructions to alter the control flow. Instruction set also includes few privilege
instructions, for example, write into flag register and normal user is not permitted to execute

these instructions.

1.3 VLSI CAD Tools

Several tools are available for designing and testing ICs by computer without actually
fabricating them. These design tools consist of tools for simulating circuit at transistor
and/or gate level, tools for designing layout and preparing mask for fabrication. Several
fabrication technologies are available these days, for example, NMOS, SCMOQS, HMOS,
CMOS. A technology defines design rules and these rules are to be closely followed while
designing the ICs. The design tools provide utilities to check the design for possible design
errors. These rules include the minimum dimensions of layers, minimum separation of two
layers etc. The design is normally done in terms of scalable unit A as defined by C. A. Mead
and L. Conway [6].

The iitk-RISC is designed with the aid of nelsis-IC design tool [7]. from TU Delft software
distribution available in Computer Science and Engineering Department, IIT KANPUR.
The layout of iitk-RISC is designed using interactive layout editor dali with A fixed at
0.200u, for 1.6u technology. All circuit simulations are done with SLS (A Switch Level
Simulator) [4] and SPICE [10].

1.4 Thesis Organization 5

1.4 Thesis Organization

Chapter 2 reviews some of the existing true RISC and semi RISC architectures. The next
three chapters deal with the instruction set, architecture. and layvout of iitk-RISC. They
show how iitk-RISC fits into the category of true RISC.

The thesis concludes with the results that have been obtained and some possible ex-
tensions to the iitk-RISC. In Appendix A instructions set of iitk-RIS(" is given. The basic

modules, that are used in implementation of iitk-RISC, are illustrated in Appendix B.

Chapter 2

A Survey of RISC Mainstream

This chapter discusses some of the RISC' processors™ design. The processors discussed
include: RISC I, RISC II. MIPS R2000. intel’s 80960. AMD"s 29000. and SPARC. The
processors are discussed roughly in ascending order of their architectural complexity. The
discussion is brief and the design issues to be considered in subsequent chapters are included
specifically.

Some of the newly introduced processors have been excluded because these processors
do not qualify the basic criterion of RISC, narﬁely, simplicity. Though these are claimed to
be RISC processors by their respective vendors, yet computer architects prefer to call these

processors Pseudo RISC.

2.1 The Berkeley RISC I

The concept of RISC is not new but it was taken seriously only after the RISC I was
designed at UC Berkeley. The RISC I architecture [8, 5] has 31 instructions. most of which
do simple ALU and shift operations on registers. Instructions. data, addresses, and registers
are 32 bits wide. RISC I execution cycle consists of fetching instructions and execution of
instructions. With two stage pipeline no internal forwarding is required. The register-file
consists of 138 registers of 32 bits each. though its first model “RISC GOLD™ was fabricated
with 72 registers only. Separate buses are used for reading two registers and writing result
back. Register-file is partioned into overlapped register-windows of 32 registers. Out of these
32 registers, Ry ...Rg are termed as global registers, Ryg...R 5 are termed as low registers,
Ri6...Ras are termed as local registers, and Ryg . .. Raj are termed as high registers. Every
time a CALL instruction is executed a new window is allocated and the low registers of

caller’s window become the high registers of callee’s window. On overflow or underflow a

2.2 The Berkeley RISC II 7

trap is generated and necessary steps are taken by the interrupt handler routine 16 allocate
registers in memory. For regular and smooth running of pipeline the concept of delayed
branch is used in case of control transfer instructions.

The layout of RISC I was designed using NMOS technology with A at 2 microns and no

buried contacts.

2.2 The Berkeley RISC II

This is the successor of RISC I and most of its architectural features were copied from
RISC I. The aspects in which it differs from RTISC I are discussed in this section.

The RISC II CPU [5] has two modes of operation namely user-visible(u-v), and interrupt-
kandling(i-h). Some of the instructions can be executed in i-h mode only. In case of illegal
execution of instructions a trap is generated.

RISC II is a 32 bit architecture. The instruction execution pipeline consists of three
stages: fetch, compute(ALU), and write back result. The simultaneous read and write to
the register-file is avoided and only two bus register-file is used. The register-file consists of
8 overlapped windows of 32 registers each of which Rg...Rg are global registers, Rig...Ris
are input registers, Rig...Rgs are local registers, and remaining Rgg...Ra; are output
registers. On call instruction a new window is allocated and the current status of window
is reflected by CWP(current window pointer). and SWP(saved window pointer). These two
window pointers are the part of PSW(program status word). PSW includes four condition
flags (zero, negative, overflow, and carry), interrupt enable bit(I). system mode bit(S), and
previous system mode bjt in addition to the CWP and SWP. Three program counters are
used, NXTPC contains the address of next instruction to be executed. PC contains the
address of the instruction that is in execution process, and LSTPC contains the address of
interrupted instruction in case of interrupt. Whenever an illegal condition is detected an
interrupt is raised and content of PC is pushed into LSTPC.

Three types of instruction formats are supported. These are long immediate, short
immediate, and register-register. The instruction set consists of 53 instructions. It includes
instructions for arithmetic and logical operations; instructions for loading and storing a
byte, a half word, and a word, control transfer instructions. and some other miscellaneous

instructions.

2.3 The MIPS R2000 8

The layout of RISC II was designed using NMOS technology with A at 2 microns and

it requires a 4 phase clock.

2.3 The MIPS R2000

The MIPS R2000 [9] is a 32 bit architecture. The instruction execution pipeline consists
of five stages: JJF(instruction fetch), RF(register fetch). MEM(data memory reference),
WB(write result back). The CPU is logically composed of six synchronized units: Master
pipeline control unit, Execution unit, Address unit, Translation look-aside buffer, System
co-processor interface unit, and External interface coutroller. The Master pipeline control
latches instruction field off the data bus and performs instruction decode. It also controls
the pipeline if any abnormal conditions arise.

The execution unit is composed of a 32 bit shifter, an incoming data aligner, an arith-
metic logical unit and, a multiply and divide unit. Multiply and divide unit operates
autonomously from rest of the processor. Internal bypassing is done. to get the consistent
result, inside the execution unit. .

The R2000 does not use cdndition codes to govern the control flow. Instead, the CPU
provides branches based directly on simple data comparison and ALU operations that di-
rectly create boolean values in register. The compiler synthesizes branch conditions from
the instructions available to access these hoolean values. Delaved branch concept is used
to avoid bubbles in pipeline.

All the memory reference instructions are processed in MEM part of the execution cycle.
The address of data is computed in ALU part of execution cvcle and data is actually accessed
in MEM part of execution cycle. For instructions other than memory access instructions
MEM part of execution cycle is converted into an intermediate latency. The layout of R2000

was designed using double metal CMOS technology with A at 2 microns.

2.4 The 80960 RISC Architecture

Architecturally, 80960 architecture [2] is very different from RISC mainstream. For one
thing, its design has microcode in a number of places with the main 32x42 bit microcode
ROM which is used to generate 42 control signals. For another. it has a full IEEE-754

floating point unit complete with its own 80 bit registers. Its instruction set includes a

2.5 THE 29000: AMD’s RISC MACHINE ' 9

INSTRUCTION REGISTER FILE

FETCH UNIT L GLOBAL(16x32) |
INSTRUCTION | LOCAL(16x32) |
CACHE (512 BYTES)

MICRO-SEQUENCER

FLOATING-POINT UNIT
MICROCODE ROM
(3K x42)

FPU REGISTER (4x80)

BUS CONTROL LOGIC

I ADDRESS/DATA

Figure 2.1: Intel’s 80960 RISC Architecture.

large number of specialized controller-type instructions like boolean logic operations and bit
manipulation. Some of the architectural details are shown in figure 2.1. It was fabricated

with 1.5um using CMOS technology.

2.5 The 29000: AMD’s RISC Machine

The computer architects consider CISC as a computer running inside computer. Dan
O’Dowd, a computer architect who was respousible for 32000 CISC family from National
Semiconductor Corp., points out that a RISC performance can be extracted from a CISC
computer by removing the outer “macrocomputer” level from a CISC. leaving the inner
microcoding “computer within a computer.” On this idea AMD introduced this bit slice
RISC machine. It was fabricated using 1.2 CMOS technology.

The architecture of the 29000 is shown in figure 2.2. It is a 32 bit architecture and has
192 on-chip registers [2].

2.6 The SUN’s SPARC X 10

BRANCH TARGET REGISTER-FILE

(‘ZC:((ST ;2 . (3 PORTS. 192x32)

4-STAGE PIPELINE

¢ FETCH

¢ DECODE

¢ EXECUTE

¢ WRITE BACK

TLB ALU
(2 x 32 x 64)
SHIFTER
INSTUCTION ADDRESS DATA

Figure 2.2: The AMD’s 20000, a bit slice RISC Architecture.
2.6 The SUN’s SPARC

SPARC (Scalable Processor Architecture) [2] was intended to be a high speed true RISC
processor unlike its contemporary architectures. The basic architecture of SPARC is shown
in figure 2.3. The first SPARC was realized in a 20000-gate, 1.5um gate array from Fijitsu
Microelectronics Inc. It is a 32 bit machine and has 136 on-chip registers. These registers
are partioned into overlapped windows and a window is assigned to a task. It was later

fabricated using 0.8um CMOS technology.

2.7 Conclusion

The concept of RISC processors started with the RISC I architecture and its on-chip reg-
ister resources, small number of addressing modes, and small number of instructions were
publicized as a RISC standard. However. the new RISC processors are departing from
this standard very much. The new RISC processors seem to follow a different liné of de-
sign, closer to their counterpart CISC. In-fact people prefers to call these RISC processors

Pseudo RISC. Some of the interesting observations ahout these processors are as follows:

2.7 Conclusion 11

4-STAGE PIPELINE

o FETCH DATA REGISTER FILE
* DECODE (136 x 32)
¢ EXECUTE

o WRITE BACK

ADDRESS
ALU

32 32
ADDRESS ' DATA

Figure 2.3: Sun Microsystems’ SPARC Architecture.

All are 32 bit architectures.

All are pipelined architectures and use a 2 to 4 stage pipeline.

The number of on-chip registers is declining as some extra features like MMU, FPU-

etc. are added on-chip.

All architectures use on-chip or off-chip data and instruction caches.

The complexity of processors is increasing.

The chip area required for fabricating the processors is increasing with time.

Chapter 3

Instruction Set of iitk-RISC

There is always a trade off between compactness of code and CPU performance. As mem-
ory is a critical resource, a compact code will enable smaller devices for handling the same
amount of compiled code. Here memory devices include secondary memory, primary mem-
ory, and instruction cache.

There are two main methods for reducing the average code size. Firstly. an instruction
format closer to Huffman encoding may be utilized. This means having a variable num-
ber of fields in the instructions. The choices are made according to the relative usage of
instruction and fields. Secondly, the approach followed in CISC is that of merging two or
more instruction into one [5].

Both the approaches have their own merits and demerits. We shall not discuss that
here. The compact code also has some negative consequences. discussed in section 1.1.

In accordance with the RISC philosophy. all iitk-RISC! instructions are one word long
and have fixed format for easy decoding. The meaning of some fields of in an instruction
format is fixed and can not be altered. The iitk-RISC! is a 32 bit architecture and can
support 4 Giga-byte of memory space. It supports a LOAD/STORE type architecture
where a memory access is done by some specified instructions. Data in memory can be
stored as a byte, a half word, and a full word. The accessed data is converted into signed or
unsigned full word before writing into register-file. This offers simplicity and full flexibility
of supporting different data types.

This chapter discusses the instruction set of iitk-RISC briefly. A detailed description
can be found in Appendix A. The instruction set is divided into four broad categories: Data
Movement Instructions, Data Manipulation Instructions, Control Transfer Instructions,

and Miscellaneous Instructions.

3.1 Instruction Format 13

LONG IMMEDIATE :

31 262524 181716153 0

a:| OPCODE RS, 1 IMMEDIATE DATA
[

\‘ SCC \— SIGN

SHORT IMMEDIATE :
31 2625 24 181716 10987 0

IMMEDIATE
DATA

\4 sce \ SIGN

REGISTER-REGISTER :
31 262524 181716 10 9 21 0

b:{ OPCODE RS, 0 RD 1

c:| OPCODE RS, 0 RD 0 RS,
\~ SCC

SCC: SET CONDITION CONTROL

RS;, RS;: REGISTER OPERANDS

RD: DESTINATION REGISTER

SIGN: SIGN BIT FOR IMMEDIATE DATA

Figure 3.1: Instruction Formats of iitk-RISC.
3.1 Instruction Format

The different instruction formats of iitk-RISC' instructions are shown in figure 3.1. All
instructions of iitk-RISC are one word long and aligned at word boundaries in memory.
The format of an instruction in the instruction set depends on the addressing modes it

supports.

3.2 Addressing Modes

The iitk-RISC in accordance with the philosophy of RISC architecture supports small num-
ber of addressing modes. Some fields in ‘the instruction format carry same information for

all instructions whereas some other fields encode the information specifying the addressing

mode used and hence are dependent on addressing modes. For control transfer instruction

3.2 Addressing Modes 14

relative addressing mode is provided and it has been simplified enough for the implemen-

tation purpose. All instructions use at least one operand which is specified in the field

RS;.

Register-Addressing The second source of two operands instruction is a register. This
addressing mode is supported by all two operand instructions. Format for these

instruction is shown in figure 3.1.c.

Long-Immediate Addressing Second source of the instruction is 17 bit signed immediate
data. The sign of immediate field is determined by SIGN(bit<16> of Long-Immediate
Instruction format) and immediate data is sign extended to 32 bit. This addressing
mode is supported by two operand instructions with implicit destination. Format of

these instructions is shown in figure 3.1.a.

Short-Immediate Addressing Second source of the instruction is 9 bit immediate data.
The sign of immediate field is determined by SIGN(bit<8> of Short-Immediate In-
struction format) and immediate data is sign extended to 32 bit. This addressing is

supported by all two operands instructions. Format of these instructions is shown in

figure 3.1.h.

Register-Relative Addressing The effective address(EA) is calculated as
EA=[RS;]+S2, Sz can be a register, 16 bit immediate offset. or 8 bit immediate offset.
If S; is immediate offset then it is first converted to 32 bit signed immediate offset.
This addressing mode is supported by all the control transfer and LOAD/STORE

instructions.

PC-Relative Addressing If PC is used to calculate the effective address in place of RS;,
then Register-Relative addressing becomes PC-Relative. The effective address is cal-
culated as EA=[PC]+S;. S, can be a register. 17 bit immediate offset. or 9 bit imme-
diate offset data. Similar to previous addressing modes. Sy is first sign extended to
32 bit. In this addressing mode RS is ignored because in effective address calculation
PC is used as first operand of the instruction and RS, field of instruction can not be
used as other then the first operand of the instruction. This addressing is supported

by PC relative control transfer instructions.

3.3 Flags 15

31 8 7 6 5 4 3 2 1 0
0/0 e . . 0| 0 0
T P 1 ¢ v § Z
Z: ZERO FLAG S: SIGN FLAG
V: OVERFLOW FLAG C: CARRY FLAG
I: INTERRUPT FLAGQ P: PRIVILEGE FLAG

T: TEMP FLAG

Figure 3.2: The Flag Register of iitk-RISC.

Data Manipulation Instructions do not support Long-Immediate Addressing as in this

case the destination can not be specified.

3.3 Flags

The flags in iitk-RISC are arranged in a form of a 32 bit register and can be accessed by
the user. It is the implicit source/destination for two instructions. The flag register of
iitk-RISC is shown in figure 3.2. .

The C, V, S, and Z flags are condition flags and reflect the result of data Manipulation
instructions and flags are changed according to explain below if SC'C field in the instruction
is set to 1 (bit<25>=1) and instruction can change the flags.

Z:=[DEST==0]; S:=DEST<31>

V:=0; in case of shift and logical instructions.

V:=[32-bit 2's-complement overflow occurred]; in case of arithmetic instructions.

C:=0, in case of logical instructions.

C:=RS; <shift_count-1>((shift.count-1)>0); in case of shift right instructions.

C:=RS; <32-shift_count>((32-shift_count)>0): in case of shift left instructions.

C:=carry<31>to<32>(for RS, a.ﬁcl 52 unsigned): in case of additi‘on instructions.

C:=NOT[borrow<31>to<32>](for RS, and S, unsigned); in case of subtraction instruc-
tions.

The I, P, and T flags are used for system control. If I=0, no interrupt will be honored by
the CPU. If P=0 then CPU is in privilege mode. The T flag is used to store the content of
P in case of an interrupt. A normal user can access the flag register however. changing the

flag register is allowed only in privilege mode. When the system is reset all flags are cleared

3.4 Instruction Set 16

except T flag which is set. The system flag T is set because at the end of the execution
of reset program a ret: instruction will be executed to transfer the control to some user

program.
3.4 Instruction Set

In this section, the instructions have been grouped into five categories and the discussion

of a particular category is applicable to all instructions of that category.
3.4.1 Data Movement Instruction

The only instruction that comes in this category is mouv. In this instruction second source
is redundant and ignored. No flag is changed even if SCC=1 because in moving content of

one register to some other register no arithmetic, logic, or shit operation is involved.
3.4.2 Data Manipulation Instructions

This category includes instructions for addition, subtraction. logical operations and shift
operations. All of these support Register-Addressing, and Shért-lmmediate Addressing. All
the instructions except inv are two operand instructions. Instruction inv takes only one
operand. Flags are changed to reflect the result of Data manipulation instruction if SCC
' bit is set.

For shift instructions shift count is provided by the second operand. As the shifts more
then 31 bit are meaningless only. 5 bit(<1:0>) are used as shift count. Various types of

shift supported in iitk-RISC are illustrated in figure 3.3.
3.4.3 LOAD/STORE Instructions

This set of instructions is used to access memory for read and write operations. Data can
be accessed as a byte, a half word. and a full word. The width of the data being accessed
is provided by two data-width-lines: Wy and W.

In case of load instructions CPU always internally reads full word. Separate load in- B
structions are provided for loading unsigned byte, half word. and full word. Similarly for-.
loading signed byte, half word, and word separate instructions are provided. If read data

is byte or half word then it is aligned and converted to either signed 32 bit or unsigned 32

3.4 Instruction Set 17

SCC g

0
0
é&}é< SHL
31 0 SCC

31 0 SCC

Figure 3.3: Shift Operations.

bit, depending on the signed or unsigned access of data, before writing into register. How-
ever, in case of full word read operation data is written into register specified without any
modification. An example of loading second signed byte is shown in figure 3.4

The load type instructions support Register-Relative Addressing mode. However, the
second field S, in effective address calculation can not be 16 bit immediate offset because '
load type instructions require a destination register.

For write access of memory, separate instructions are provided for storing a byte, a half
word, and a full word. The iitk-RISC CPU always outputs a full 32 bit word onto the bus.
However, only some of the bytes in that word are to be written into the corresponding bytes
of addressed word. The number of bytes to be written are determined by the instruction
in execution. For example, in case of storb instruction only one byte will be written. For
this iitk-RISC supports a memory system organized in byte banks. The bank(s) in which
byte(s) is(are) to be written is(are) selected by Wo and Wy, Ag and A, lines of address bus.
The width code lines indicate the width of item to be written. The decoded meaning of
these four lines is given in table 3.4.3. Figure 3.5 shows an example of storing a half-word
into effective-address <1:0>=10

The store type instructions support Register-Relative Addressing mode where the effec-
tive address is calculated as:eff-address=[RS;]+0.

No instruction from this category modifies the flags irrespective of SCC bit.

3.4 Instruction Set

31 16 15 87 0
MEMORY WORD
Memory Rejd Cycle
Effective Address out of CPU: \
\\ 2 0 Wl WO
\ \
\ \
\ Y 0 1 1
- -
Data Read from memory \
31 N\ T N\ 0
Sign
bbbt b TN N TEMP REGISTER
I \
| Send Data to register !
31V 1¢(dd()lgl‘o(! v 0
REGISTER
Figure 3.4: Loading a Byte.
OUTPUT INFORMATION MEMORY BYTE BANKS
FROM CPU THAT SHOULD BE
INSTR | WIDTH CODE | eff-addr<1:0> ENABLED
W, Wo A, Ao 3 <31:24> | 2 <23:16> | 1 <15:8> | 0 <T:0>
0 0 E
storb | ON OFF 0 1 E
1 0 E
1 1 E
storh | OFF ON 0 0 E E
1 0 E E
storw | ON ON 0 0. E E E E
load ON ON - E E E E
- type

Table 3.1: Storing Data of Various Widths.

3.4 Instruction Set

19
'
31 Memory word before 0
@ <------T-TTssss-s—-----—-—--T> 4
Source register
31 0
b <---3> b A <-----m-e---3> A
efféctive Address out of CPU //
31 P < 0 W; Wy
1ol |oh
3y2 16 15 0
A <------ A=Y > x| TEMP REGISTER

31\:/ \:/ 0

A<------=> A a <c--------- = a

memorl);5 w?gd after

Figure 3.5: Storing a Half-Word.

3.4.4 Control Transfer Instructions

Conditional jumps, Unconditional jumps, and Procedure call constitute this group. This
set of instructions is used to translate decision boxes of flow chart of a program. There are
two types of control transfer instructions provided. The first type of instructions support
Register-Relative Addressing mode whereas second type of instructions support PC-Relative
Addressing. The jump conditions are evaluated according to the table 3.2. A jump delayed
by one cycle takes place if the condition evaluates to TRUE. The instruction slot next to
the control transfer instruction is called delay slot of that control transfer instruction and
the instruction in delay slot is always executed due to delayed control transfer.

The call instruction differs from other instructions of this group in one respect. It pushes
the address of the instruction that has been executed in delay slot into specified register. It
will be used as a return address. Thus to get the correct return address the address pushed

by call instruction should be incremented by 04h. This can be done in the control transfer

3.4 Instruction Set 20

INSTR CONDITION TEStED | INSTR CONDITION TESTED
jgtrjgtp (SeV)vi jler,jlep (SeV)VvZ
jger,jgep §_€;| \% jltr,jltp SeV

jhir,jhip Cvz jlosr,jlosp Cvz
jacr,jncp C jer,jep C

JPT,ippP 5 jnr,jnp S

jner,jnep Z jer,jep Z

jovr,jnvp \Y jvp.jvr \Y
jmpr.jmpp 1

Table 3.2: The iitk-RISC Jump Conditions.

instruction used to return from procedure or function call. Figure 3.6 shows an example.

Instructions of this group do not modify the flags even if SCC bit is set.
3.4.5 Miscellaneous Instructions

In this group two types of instructions are included. Instructions reti, getlpc, and putpsw
are privileged instructions and can be executed only if P flag is 0. The non-privileged group
comprises getpsw and nop instructions.

The reti instruction is used for return from interrupt handling routine. It restores the
previous system operation mode(P flag) and loads the PC with the content of specified
register. The control transfer is delayed by one cycle. '

The getlpc must be the first instruction of any interrupt handling routine. It moves the
content of LSTPC (the address of interrupted instruction) to register specified, which will
be used to restart the interrupted instruction.

The putpsw instruction is used to change the content of flags. Changing the flags C, S,
Z, and V is meaningless because these flags change dynamically and no one can predict the
content without actually analyzing the program. The result of instruction will be effected
only after the end of execution cycle.

The getpsw pushes the content of flags into the register specified. The nop instruction
does nothing and generally used to fill the delay slot if compiler is unable to fill it with
some meaningful instruction. Some times it used to introduce calculated amount of delay
in program.

No instruction of this group except putpsw changes the flags. putpsw changes flags even

if SCC bit is clear.

3.5 Illegal Conditions 21

MAIN PROGRAM:
XXXXXXXX call R;.R5.R9

—
+4h xor Rs.,R7.05h
. +8h
SUBROUTINE:
YYYYYYYY mov Rg,R15, .
+4h
72277777777 jmpr Rs, . ,04h
J

Figure 3.6: An Example of Procedure Call.

Illegal Instruction : FEFFF808h
Address Violation : FFFFF800h

Figure 3.7: Interrupt Vector for Illegal Conditions.

3.5 Illegal Conditions

There are some illegal conditions that may arise during the program execution. We have
tried to detect all such illegal conditions that may affect the program execution. On detec-
tion of an illegal condition the system changes its operating mode to privilege mode and an
interrupt or exception handling routine is called. The instruction which causes the illegal
condition is executed as nop. Figure 3.5 shows the interrupt vector for the two case of illegal
conditions to be discussed.

These illegal conditions are: Illegal Instruction and Memory Address violation(or llegal

Memory Address).

3.5.1 Illegal Instructions

There are three cases of illegal instruction. These are illegal opcode, privilege violation, and

invalid field. An illegal instruction is executed as nop and an interrupt is raised.

3.6 Evaluation of the iitk-RISC Instruction Set 22

Illegal Opcode

The opcode field of iitk-RISC’s instruction is 6 bit wide. With 6 bit 64 combinations are
possible. For iitk-RISC some of these combinations are meaningless, that is, no instruction
is associated with them. If iitk-RISC CPU finds any of these combinations, it is treated as
Illegal Instruction. The list of illegal combinations is as follows: 17h, 1Ch, 1Dh, 1Eh, 1Fh,
20h, and 30h.

Privilege violation

Some of the instructions are protected from the execution by a normal user because exe-
cution of these instruction may cause some serious problems during execution. To avoid
execution of these instruction by a normal user privilege flag(P) is checked before execut-
ing these instructions. If the check succeeds then only instruction is inserted into pipeline
for execution otherwise instruction is executed as nop and instruction treated as an illegal

instruction.

Invalid Fields

Sometimes the CPU finds that a particular field of a instruction is missing, for example,
destination register is not given. This is another case of illegal instruction and treated

accordingly.
3.5.2 Memory Address Violation

To access a full word and a half word the last two bits of effective-address(<1:0>) must
be 00 and 00/10 respectively. Because, in case of iitk-RISC words are aligned at word
boﬁndaries and half word at half word boundaries. If any mefndry request violates this
restriction, the address will be corrected by converting these two bits to 00. Memory will

be accessed using this address and an interrupt is raised.

3.6 Evaluation of the iitk-RISC Instruction Set -

In This section we evaluate the iitk-RISC instruction set. We discuss its appropriateness

for High Level Languages(HLL) and its impact on code size.

3.7 Conclusion 23

HLL Statement: | iitk-RISC instructions:

if (count++<n) | sub R,, Ro, Reount;SCC set
jge target_addr

Rcmmt — Rcount + 1
C—>xyz==+abc | load Ry — M[Rc+OFFS,,,]
load th - IM[Rabc + 0]

sub Ry, Ro, Ri2;SCC set
C=C->xyz load Rc — M[Rc+ OFFS,,:]

Figure 3.8: HLL Translation into iitk-RISC Codes.

3.6.1 Instruction Set and High Level Language

In most of the cases iitk-RISC! instructions are similar to a micro-instruction of a typical
CISC computer. One can argue that the instruction set of iitk-RISC is “of too low level”
for a High Level Language.

However, several frequently used statements of HLL can be compiled into only a single
or a few iitk-RISC instructions. Some examples are shown in figure 3.8

Thus, iitk-RISC instructions are not far away from some very frequently used HLL
statements. Also the variants of LOAD/STORE as discussed earlier enable the iitk-RISC

to support almost all the data types without much overhead.

3.7 Conclusion

The instruction set of iitk-RISC is designed in such a way that every instruction can be
executed in a single cycle but not at the cost of increasing the number of instruction required
to translate a HLL statement. The code translated in simple instructions has more scope of
optimization as compared to translated in complex instructions. Further, we feel 4 Giga byte
memory space is enough to fit any program of these days. Also iitk-RISC has enough number
of on-chip registers for compiler to keep almost all variables. Based on these considerations,
in case of iitk-RISC relatively uncompacted code will not cost too much. In a nutshell we

can say that the performance of iitk-RISC will be better then most of the CISC computers.

Chapter 4

The 1itk-RISC Architecture and
Pipeline

This chapter discusses the architecture of iitk-RISC including instruction pipeline of iitk-
RISC, the delayed control transfer. and the internal forwarding mechanism. The basic
timing for read, write, and fetch cycles of iitk-RISC is also discussed. The discussion of

architecture and micro-architecture is intermixed for easy understanding.

4.1 The Instruction Pipeline of iitk-RISC

The instruction pipeline of iitk-RISC is a four stage pipeline and supports internal for-
warding of data for inter-stage data dependency resolution. In this section we focus on the

instruction pipeline and its impact on the iitk-RISC architecture.
4.1.1 A Four Stage Pipeline

Execution sequence of a simple instruction in a processor follows a very simple pattern. It
consists of the following sequence of operations: Fetch Instruction, Decode instruction, Fetch
operands, Perform operation, and finally write result into destination. These operations do
not require equal amount of time to finish. As a pipeline is more effective if all of its stages
take roughly equal amount of time, some operations can be combined to provide operations
of roughly equal time. For example instruction decode and fetch operands are combined in
iitk-RISC.

We assume that iitk-RISC will have an off-chip instruction cache and fast primary mem- -
ory for filling the instruction cache and data memory access. This enables fast instruction

fetch. Further, some of the operations can not be made faster because of implementation

24

4.1 The Instruction Pipeline of iitk-RISC 25

j i+l 42 J+3 J+4 45 j46 47

LU

: - - —r—
| : . :)
1 | IF\DRF- EXEC .- MEM WB//
! . . . !

N QVNTERNAL FORWARDING -

v . . . !
] . . .] .
Iy IF\DRF EXEC :| MEM -WB //
[! . .), .

y

Ll L)
I | IF DRF EXEC MEM wa/ !
| v/}
| /
] 1 1
I3 IF 1 DRF: EXEC MEM - WB /
1 h I
T - T
| , Kok . 1
ly | 1r (DRF EXEC MEM 'WB//
1 .

IF: INSTRUCTION FETCH DRF : DECODE and REGISTER FETCH

EXEC : EXECUTION MEM: MEMORY REFERENCE
WB: WRITE BACK RESULT

Figure 4.1: Instruction Pipeline of iitk-RISC.

limitations and high cost of implementation. For example, the implementz'xtion cost of carry
lookahead adder increases exponentially if we go for a faster adder. Due to these reasons
instruction decoding could not be clubbed with execution phase. In iitk-RISC, to make all
the steps of the execution sequence of almost equal time, fetch instruction and decoding is
done in the same cycle. Operands are fetched in parallel with instruction decoding. The
~ basic timing for fetch cycle, to be discussed later, validates our assumption.

Considering all above assumptions we have designed the iitk-RISC pipeline. It is a
4 stage pipeline and shown in figure 4.1

The instruction is fetched during IF part of jth cycle. After fetching the instruction

4.1 The Instruction Pipeline of iitk-RISC 26

following actions are taken in parallel:
1. Opcode part of the instruction is decoded.

2. Immediate data/offset is aligned and signed extended to 32 bit immediate data/offset.

The 32 bit data/offset is stored in immediate register.
3. Register operands are fetched.

For fetching register operands and taking immediate data/offset from the instruction,
it is assumed that an instruction has second register operand and 17 bit or 9 bit immediate .
data/offset field. The first register operand is present in all the instructions. The bit<8:2>
of an instruction are used for register fetch even if bit<9> is 0. The bit<9> and bit<17>
determine the presence or absence of second register operand. The bit<16:0> are taken
as long immediate data if bit<17> is set. If bit<17> is 0 then the bit<8:0> are taken as
short immediate data. The operands to be used for an instruction are determined by the
control signals generated by decode of an instruction as discussed in Section 3.4.1. After the
decoding phase is over the necessary operand sources are enabled. The RS; is required by
all the instructions as first operand whereas either RSz or immediate data/offset is required
as second operand. '

In (j41)th cycle, the decoded instruction together with all the necessary operands is
sent for execution. In execution phase of the execution cycle the execution unit performs
the required operation on the operands of the instruction. The operation performs by the
execution unit may be add/subtract, logical operation, or shift operation. At the end of
(3+1)th cycle all flags are updated if SCC bit is set in the instruction and the instruction
can modify the flags.

After the execution stage gets over, memory access stage reads the result of the execution
stage. If instruction under consideration involves memory access then a memory access cycle
is initiated in (j+2)th cycle, otherwise memory access stage sits idle in (j+2)th cycle. At
the end of (j+2)th cycle it sends data to the write back unit, which may be data read from
memory, result of the execution unit, or nothing depending on the instruction. For example
in case of load type instruction memory access unit passes the accessed data, in case of data
manipulation instruction it passes the data read from the execution unit, and in case of

control transfer instructions nothing is passed. Inclusion of this stage as a regular feature

4.1 The Instruction Pipeline of iitk-RISC 27

of the pipeline requires some explanation. In RISC Il and some other processors, in which
memory stage is not a regular feature of pipeline, memory access stage is included only
when there is a memory access instruction in pipeline. We found that in such processors
decision regarding the inclusion of memory stage is to be made either during decode of
instruction or at the end of execution cycle and it should be known to write back stage well
in advance so that write back unit can delay its action by one cycle. This increases the
number of control signals and affects the regularity of the pipeline.

In write back stage of pipeline, data read from memory access unit is written into
appropriate destination if required by the instruction. The destination may be a register in -

register-file or flag register.
4.1.2 Analysis of Pipeline

A pipeline also has some negative effects on the performance of the processor if the archi-
tecture is not designed carefully. In this subsection we have discussed the possible problems

with a 4 stage pipeline of iitk-RISC and how these problems are taken care of.

Pipeline Suspension During Data Memory Access

If there is a memory access instruction already in pipeline, then a instruction can not be
fetched during the cycle when this load instruction will be processed by memory access unit
in the computer systems in which address and data buses are shared by instruction fetch
and data access both. This is becatlise the address and data buses are busy in doing data
memory access operation in that cycle. This situation is shown in figure 4.2

iitk-RISC in this situation pushes one bubble into the pipeline, by inser-ting a nop. There
are several remedies to avoid this bubble inside the pipeline. Firstly, separate buses for data
memory access and instruction fetch may be used. This choice though promising, requires
a two port external memory and increased pin-count. However, the instruction fetch will
never clash with data memory access. Secondly, data cache may be used. In this case time
shared address and data buses can be used, that is, address and data buses will be used to

fetch the instruction and data memory access in the same cycle.

4.1 The Instruction Pipeline of iitk-RISC 28

FETCH COMPUTE MEMORY
n |P®F ADDRESS ACCESS wB
loadw
FETCH MEMORY
F
1, | PR EXECUTE AGCESS

]
\ , Data and address buses are not free.
|
1

—
dummy(nop) : This instruction can not be fetched.

Instruction can be FETCH
fetched in this cyclé] 1 RDF
only. 3

Figure 4.2: Pipeline Suspension During Memory Access.

Delayed Control Transfer

Till this point delayed control transfer(delayed jump/branch) has been used without giving
any reason of its inclusion in pipelined architecture. In this section concept of delayed
control transfer has been introduced formally. Consider the execution sequence shown in
figure 4.3.

During first part of jth cycle instruction Iy is fetched, which is a control transfer in-
struction. It is decoded in second part of jth cycle. During cycle (j+1), the target address
for control transfer instruction is computed and the necessary hoolean condition is also
evaluated. The boolean condition is evaluated during the first part of (j+1)th cycle. Along -
with the execution of I;, a new instruction I is also fetched and inserted into pipeline for
decoding and operand fetch because till the end of (j+1)th cycle the execution of control
transfer instruction is not completed (target address has not been computed). At the end of
execution phase the target address of control transfer instruction is available and in case of
conditional jump type instructions the decision about the successful or unsuccessful jump
has been taken. If control is to be transferred then target address of the control .tranéfer
instruction is loaded into the PC in the end of (j+1)th cycle and the fetching now can be
done from the target 61' control transfer instruction from cycle (j+2) and onwards.

The instruction I, which is already in pipeline, may be flushed .out of the pipeline or left
inside the pipeline. The first solution is not attractive because CPU has already decoded I

and flushing it will waste one cycle. Further flushing the pipeline will require extra control

4.1 The Instruction Pipeline of iitk-RISC 29

J j+1 j+2
|
1
FETCIl,DECODEI1 EXECUTE I3
= JMP : COMPUTE TARGET
! ADDRESS

1
1
l
FETCH I, :DECODE I
|
|
1

LOAD PC

FETCH
TARGET
INST I3

Figure 4.3: Delayed Control Transfer.

and will complicate the flow of pipeline. The iitk-RISC uses the second option because it
does not require any other extra hardware and no clock cycle is wasted.

The effect of leaving I, as such is that the control transfer is virtually delayed by one
cycle hence the name delayed control transfer. The instruction slot I is referred to as
the Delay Slot of instruction I;. The instruction in delay slot will always be executed
and compiler can put an instruction in delay slot which does not affect the decision of the
control transfer is not going to be effected. Most of the time compiler will be able to find
a meaningful instruction suitable for delay slot but occasionally compiler will insert a nop
instruction there. Empirical results have shown that the compiler is able to fill the delay
slot of unconditional control transfer instruction about 90% of the time and delay slot of
conditional control transfer instruction for the 40% to 60% of the time (5, 9].

If two or more control transfer instructions are executed in consecutive cycles then
the control will be transferred to the target address of the last executed control transfer
instruction. However, instruction at the target address of control transfer instruction is
also executed in the delay slot of subsequent control transfer instruction. This situation is

illustrated in figure 4.4.

4.1 The Instruction Pipeline of iitk-RISC. 30

90-.. :finaly control will be here

100 jmp 150 T

124 jmp 200 ;12, delay slot of I,

128---

150 add - -- ;13; delay slot of I3

154 :

200 jmp 300 HVR control will be here after I and I,
204 jmp 360 iIs, delay slot of 14

208 - --

300 jmp 90 ;Is, delay slot of Is

304 -

Figure 4.4: The Effect of Consecutive Jumps.

I;: loadw R;,R3,R2

12: add R'4=R'5}R6
13: sub R5,R’;,R.3
L;: sub R5,. ...RT

Figure 4.5: An Example Requiring Internal Forwarding.

The Internal Forwarding

In pipelined architecture an instruction is executed in every cycle and a new instruction is
inserted into the pipeline without waiting for the earlier instruction to finish. Consider the
program segment shown in figure 4.5.

In non-pipelined execution there is no problem in executing this code segment but in case
of pipelined execution the effect of this program segh1ent will not be as expected because
operand registers Rs and R3 of I3 will be fetched from the register file before they have
been written. That means, the sub instruction will operate on old content of Rs and Rs.

Same is the case with 1. To get consistent result, in pipelined computer. the result of the

4.2 The iitk-RISC Architecture 31

instructions already in pipeline is forwarded to subsequent instructions. This is referred to
as Internal Forwarding.

In iitk-RISC the places at which internal forwarding is done are shown in figure 4.1.
Data manipulation instructions, data movement instructions, and control transfer instruc-
tions require internal forwarding from memory access unit to execution unit and write back
unit to execution unit. Load/Store type instructions require internal forwarding from write

back unit to memory access unit in addition to above two.

4.2 The 1itk-RISC Architecture

The basic block diagram of iitk-RISC is shown in figure 4.6. In subsequent sections every
block is explored up to its circuit level design and design parameters are also discussed for
the same. The implementation details of all the units discussed here can be found in next

chapter.
4.2.1 The Register-File

iitk-RISC has 128 registers of 32 bit each and all registers are organized in a group and as
a whole they are referred to as Register-File. The register file has two ports for reading and
writing operations. The port; is attached to system Bus A and port; is attached to system
Bus B through register RA and register RB respectively. For reading operation a port is
used. Simultanepusly two re.gist-ers can be read as there are two ports available. In writing
operation data is read from port; of register file which is demultiplexed and attached to
system BUS D through RD. Registers RA and RB are the output buffer registers whereas
RD is input buffer register for register-file.

The register Rg is hardwired to contain zero and writing into Ro is allowed without
any effect. This is a special purpose register and may be used as the destination of the
instruction in which user does not want to change the content of any of the registers, for
example to compare two registers a subtract instruction is used with destination of the
result of this subtraction instruction as Ro. The read and write operations on the same
register simultaneously are avoided by carefully designing the pipeline. Refer to figure 4.1,
the operands of an instruction are read during low part of the cycle (clock is low) but
the result of an instruction is written only during high part (clock is high) of the cycle.

Therefore reading and writing operations on register-file will not clash. -

4.2 The i1itk-RISC Architecture

32

DATA WRITE BUS)
RD 7
c
o
N
T
R
o T
L A E
RA M
% P
REGISTER i ! °
FILE s
] T
(128x32) T I"
E
M
RB & P SHIFTER
2
port A port B
REG. REG
ADDR. ADDR.
FLAGS
e
I
CONT IMM
REG — MEM
LOGIC, ot TEMP TEMP
. INTRR.
REG LOGIC ADDR
o] —
EIG REG REG
LSTPC, REG
1 INTRR.
PC
R VECTOR
Vi ADDRESS BUS
F

32

DATA BUS ,/"

Z
'/ INTERRUPT OFFSET LINES

MEMORY CONTROL SIGNALS

Figure 4.6: The iitk-RISC Block Diagram.

PADS

4 Z00

4.2 The iitk-RISC Architecture 33

READ; CONTROL
rbit,
WRITE CONTROL
whbit]
w
I > < | rbit,
READ2 CONTROL

WRITE CONTROL
Figure 4.7: A Basic Cell Register.

The Register Cell

A register is nothing but the replication of a basic cell shown in figure 4.7. The cell is a
simple CMOS D-latch with two lines for reading and a line for writing. The choice of D-
latch over static RAM-cell is critical one. In case of RAM-cell the design of sense amplifier
is critical and slight over or under design can affect the data read. The way D-latch is

implemented costs almost same area as static RAM-cell.

Register Address Decoder for Register-File

Seven address lines are required to address all 128 registers of register-file. The iitk-RISC
uses two register address decoders corresponding to two ports of register-file. Separate
decoders are used for two register read operations and the first register address decoder
is also used for writing operation. A simple AND-tree decoder is used for designing the

decoder. Figure 4.8 shows an AND-tree decoder for 3 address lines.

4.2.2 Execution Unit

The execution unit of iitk-RISC comprises of a 32 bit add/sub unit, a logical unit for 32 bit
operations, and a shifter for 0 to 31 bit shift operations. The execution step of iitk-RISC
execution pipeline is performed by this unit. It takes two inputs from two temporary
registers (It is assumed that input will always be available in these two registers before
any operation is started to be performed by this unit) and after performing the operation
requested for result is stored in DST-reg. At the end of computation ALU returns either

the old value of condition flags or the modified values of flags. If SCC bit of instruction is

4.2 The iitk-RISC Architecture 34

>
=/
Q

Y
N

>
3
&

N
=
E

R
Y

Y
Y
E

AIAIBIB C C

Figure 4.8: An AND-tree Decoder for Three Lines.

OFF or instruction is not permitted to modify the flag (even SCC bit is 1) then old content

of condition flags is returned otherwise modified content is returned.

Adder/Subtractor

We have chosen a carry-lookahead adder because the addition and subtraction operations
are to be done in a single cycle. A carry lookahead adder consists of a carry generation block
which generates all the carry bits (or block of these) in parallel and an add block which
performs the actual addition. We have used a modiﬁed version of normal carry-lookahead
adder because oi' reduced complexity and implementation reasons.

Consider the two numbers A and B , and a number S such that $ = A+ B. Let A4,

B;, S;, and C; be the bit i of number A4, bit i of number B, bit ¢ of sum S, and carry out

4.2 The iitk-RISC Architecture 35

of sum S; respectively. The carry out of stage i may be expressed as

Ci=Gi+ F.Cio
where P; = A; © B;, carry propagation signal.
G; = A;.B;,carry generation signal.
then S;=A;® B;

We can define a new operator o which has the following function:
(g:p) 0 (¢",7) = (9 + (p.g),p¥)
where g,p,¢’,p’ are boolean variables. The carry signal can be determined by

Ci=G;

i o) (g1.m)o(g0.p0) ifi=1
where|G;, P —{ (gipi)-+-0-+(Gie1, Picy) if2<i<n

The operator o is associative and allows the processing elements to be embedded in a
binary tree [11]. Such a carry generation block is shown in figure 4.9 for 8 bit numbers and
an input carry Cp. The adding block consists of XOR gates.

Other details can be found in [11]. The iitk-RISC has two 16 bit blocks of the adder
discussed above. The adder is appended with an XOR gate for each bit to get the one’s
complement of second operand in case of subtraction operation and normal addition is
performed with input carry Cp is set to 1. In case of addition operation XOR gates pass

the bits of second operands as such.

Logical-Unit

The logical-unit of iitk-RISC is capable of performing bitwise AND, OR, and XOR of two
32 bit numbers and bitwise inversion of a 32 bit number. The logical unit is designed by

replication of the basic cell shown in figure 4.2.2.

4.2 The i1itk-RISC Architecture 36

BINARY TREE REVERSE BINARY TREE

| R -
g8,P8 ' O Cs
87,07 O O O C7
g6:Ps O | Ce
£5,P5 | O O . Cs
g4:P4 O | C4
€3,P3 | O O Cs
g2,P2 O %
BLP () G

Co | g.p G.P

O_.

g',p'i

Figure 4.9: A Binary Carry Lookahead Adder.

4

Shifter

A barrel shifter is used to shift 32 bit number read from BUS A by the amount given by
the shift-count (shift-count<32) read from BUS B. To get the shift-count five low order bits
of TEMP, register are used. The design of barrel shifter consist of a basic shift block, a
shift count decoder, and some extra hardware to make the basic block capable of doing all
type of shift operations. The basic shift block is a 32x32 matrix of pass transistors and it
is capable of doing right shift operation. The basic shift block has two input planes and a
output plane. The control signals are fed in vertical direction, inputs(data to be shifted) are

given diagonally, and outputs(shifted data) are taken out in horizontal plane. The output

4.2 The 1itk-RISC Architecture 3

TO WB-UNIT TO ALU(INT FORWARDING)

j z :: z N TO ADDRESS BUS
FROM ALU
'{ >< l *1 TEMP REGISTER N STORE TEMP REGISTER | ’l >< ! 1

TO DATA|BUS

FROM BUS B

l >< l STORE IN REGISTER | >< | STORE TEMP REGISTER I > < |

TO WB-UNIT FROM DATA BUS
LOAD TEMP REGISTER

1 INTERNAL CONTROL

CONTROL CONTROL

IN MEM ACCESS CONTROL UNIT

ouT

Figure 4.11: The Memory Access Unit of iitk-RISC.

of store type instruction it outputs the data together with the information about the width
and the memory banks to be enabled as discussed in Chapter 3. The basic architecture
of memory access unit is shown in figure 4.11 and the timing diagrams for read and write
cycle are shown in figure 4.12. The request signal shown in read and write cycles is used

internally and shown here for clarity.
4.2.4 Write Back Unit

The basic architecture of write back unit is shown in figure 4.13. The write back unit
takes the input from memory access unit during low part of cycle and writes the result into.

register-file or flag register during high part of cycle.
4.2.5 Interrupt Unit

The block diagram of interrupt unit is shown in figure 4.14. The interrupt request may,
come from an external device or internal unit. Internal request can come from control unit:
for illegal instructions or memory access unit for address violations. The following actions

are taken by the interrupt unit whenever it receives an interrupt request on one of the

4.2 The iitk-RISC Architecture

3¢

WRITE CYCLE

.

uqussﬁ

ADDRESS X

DATA 3(

WR/RD /

o)

INST/DATA \

\|><F><f4

READ CYCLE

|

REQUEST / \

ADDRESS x

wn/ﬁ_—_\

Wo,W3 \

INST/DATA \

nnr

Figure 4.12: The Read and Write Memory Cycles.

4.2 The iitk-RISC Architecture 40

FROM MEMORY

TO WRITE
_.W TEMP REGISTER BUS

ACCESS UNIT
i TO ALU

Figure 4.13: The Write Back Unit of iitk-RISC.

, ,I\sm /t\mﬁ\l/m‘f \l/m

INTERRUPT INTERRUP
DETECTION VECTOR
LOGIC LOGIC

NTERRUPT
INTERRUPT
OFFSET LIN%k \VECTOR

) [
int / ‘ _

Figure 4.14: Interrupt Unit and Interrupt Cycle.

interrupt lines:
e On int signal: [P}—T, [signature register]=LSTPC, P~1.

e Further fetching of instruction is suspended and a nop instruction is inserted into the
pipeline.
o 8 bit of interrupt offset is generated either internally or after reading the 8 interrupt

lines and using this interrupt offset interrupt vector is calculated.

e PC is loaded with the interrupt vector just computed, and fetching of instruction is

resumed from that address.

4.2 The iitk-RISC Architecture 41

Interrupt line INT is checked in the begining of every cycle for the presence of interrupt
request from external device but other internal interrupts are processed whenever detected.
The interrupt due to memory address violation arises during the high part of cycle(clock
is high). However, interrupt due to illegal instruction arises during low part of cycle(clock
is low). When an interrupt request from external device or memory adders violation is
detected an interrupt cycle is initiated. In case of interrupt request due to illegal instruction
a short length interrupt cycle is initiated. This short length cycle takes half of the cycle
to complete. Interrupt cycle once started can not be stopped and no further request from
external device is entertained. The interrupt cycle completes at the end of current cycle.]
In figure 4.14 an interrupt cycle is shown. INTA is the acknowledgement signal for INT.
External interrupts are maskable and can be disabled by clearing the 1 flag. The two internal
interrupts are unmaskable but interrupt due to invalid instruction has low priority. Interrupt
due to memory address violation has high priority. The interrupt vector is computed as
: interrupt-vector=FFFFF800h +offsetx8h. The interrupt table of iitk-RISC starts from
memory address FFFFF800h and extends up to FFFFFFFFh. Two consecutive full words
are reserved at each interrupt vector location as the first instruction here is an unconditional
jump and due to delayed control transfer the next instruction is also executed. The interrupt
vector locations FFFFF800h and FFFFF808h are used for memory address violation and

illegal instruction respectively.

4.2.6 Control Unit of iitk-RISC

The structure of control unit is shown in figure 4.15. Control logic is divided into parts and
almost all the units of iitk-RISC have a small control section. However, most of the control
logic is inside control unit. This has reduced the number of control lines considerably. In

this section fetching and execution process of instruction in iitk-RISC is discussed.

Fetching a Instruction

The part of control unit responsible for fetching instruction includes the Program Counter
(PC), the instruction register, and the signature register. The PC is a 32 bit counter and
bits<1:0> of the address generated by it are always 00. This is because all iitk-RISC
instructions are aligned at word boundaries and memory is organized in byte banks. The

fetch control first identifies whether address and data buses are free or not. Buses may be

4.2 The 1itk-RISC Architecture

42
CONTROL BUS TO BUS B TO BUS A
CONTROL IMMEDIATE REG.
REGISTER
LSTPC
CONTROL PLA
SIGNATURE
REGISTER
INSTRUCTION
REGISTER PC
Py 14/'{% (}X.egister A 32
To System HURLESP To syst
7| DatwBUS ¢ Decoder Y Address BUS

Figure 4.15: Control Unit of iitk-RISC.

occupied by memory access unit for memory access operation, which is given first priority
because a pipeline stage can not be delayed. To see whether buses are free or not, fetching
control accesses the bﬁsy bit of memory access unit. If busy bit is set the buses are not free
otherwise buses are assumed to be free. If buses are not free then fetch cycle is not initiated
and a nop is inserted into the pipeline. In other case, when buses are found to be free, a
fetch cycle is initiated. The iitk-RISC fetch cycle is shown in figure 4.16. |
During the fetch cycle the content of PC is released onto the address bus and signal is
sent to inform the memory that a fetch cycle is in progress. The content of PC is pushed into
the signature register and the data bus is read after sending the RD signal. The instruction
is send for decoding and operand fetch. If int ;ig11al is received by the control unit from
interrupt handling unit the fetch cycle just initiated is suspended and nop is pushed into

the pipeline.

4.2 The 1itk-RISC Architecture 43

ADDRESS_X
INST/WI‘_T/
Wo,W1 —\
WR/RD _\ /

Figure 4.16: A Fetch Cycle of iitk-RISC.

~ 1 <

Control Signals Generation

The control signal generation part of control unit consists of instruction register, control
PLA, and control register. The instruction is fetched from memory into instruction register.
The instruction register is designed with simple D-latch with clear signal. Previously at
several places we have mentionéd that on occurrence of some particular signal a nop is
pushed into the pipeline. The nop is pushed into pipeline by clearing the instruction register.
We have kept the opcode of nop 00000000k intentionally for the same reason. Signature
register works like an identification tag to a instruction register. The signature register has
the memory address of a instruction that is in instruction register and is loaded during the
instruction fetch. The signature of the instruction is used by several instructions. These
include all the PC-Relative control transfer instructions. If control unit gets int signal from
the interrupt unit, then the LSTPC is loaded with the content of signature register.
Following is the list of the control signals that are required to manage the instruction

execution in iitk-RISC.
e Control signals required by control unit.

1. Cp: A valid instruction.

2. C;: Load P flag with the content of T flag.
e Control signals required by execution unit.

1. A_1,A: Execution unit input source for first operand. 00:RA, 01:Signature

register, 10:flag register, 11:LSTPC.

4.2 The iitk-RISC Architecture 44

2. A;,A2: Execution unit input source for second operand. 00:RB, 01:immediate

register, 10:Z-register.

3. A3,A4: Execution unit subunit activation code. 01:add/sub unit, 10:logic unit,
11:barrel shifter.

4. As, Ag: Execution unit operation code.

00:add,and,shr; 01:sub,or,shl; 10:adc,xor,sar; 11:sbb,not.

5. A7: Flag control line. 0:condition flags will not be changed, 1:Condition flags
will be changed.

6. Ag: Send PC content to memory access unit in. low part of cycle.
o Control signals required by Memory Access Unit.

1. Mo: Enable/Disable unit.

2. M;: Operation type. O:load. 1:store.

3. Ma: Signed/Unsigned data. O:unsigned. 1:signed.

4. M3,M4: Data width. 01:byte, 10:half word, 11:full word.

5. Ms: Data currently with execution unit will be written in register file. Used for

internal forwarding mechanism.
6. Mg: Send data received from execution unit to write back unit.
7. M7: Send data accessed from memory to write back unit.

8. Mg: Send PC content received from execution unit to write back unit.
o Control signals required by write back unit

1. Wo: Enable/Disable unit.

2. W;: Data currently with memory access unit will be written in register file. Used

for internal forwarding mechanism.

3. M,: Destination of data. l:register-file, 0:flag register.

If internal forwarding is done, then some of the signals lose their meaning. These
signals are (A-1,A0) and (A1,A2). If internal forwarding is to be done for first operand
then A_; and Ag loose their meaning. If internal forwarding is to be done for second

operand then A; and Az loose their meaning. In case interna.l.forwarding is to be done

4.2 The 1itk-RISC Architecture 45

for both operands then (A_;,Aq) and (A;.A;) all loose their meaning. Signals Ms and W,
are used to control internal forwarding. 1f one or both register operands of an instruction
are also the destination register of the previous instructions and are not written back yet
as the instruction has not passed through write back unit, then modified data is internally

forwarded and not fetched from register-file. The internal forwarding is done in the following

steps:
a. First the location for internal forwarding is identified as follows:

¢ Theinstruction whose destination matches with instruction currently in decoding
process is identified, say /. If there are two such instructions inside the pipeline
then the instruction nearer to the entry end is taken as instruction I because it

is the instruction whose result will be the final content of the register.

o The location of instruction [/ is identified, say L.

o The location of instruction / in pipeline when internal forwarding will be done to
provide the correct data to the current instruction is identified. It will be L + 1
when internal forwarding is to be done from write back unit to execution unit

and L + 2 when it is to be done from write back unit to memory access unit.

b. After identification of the place of the instruction / control signals Ms or W; are
checked of the instruction I. The control signal Ms is checked if instruction I currently
is in execution phase of execution cycle and W, is checked when instruction I is in
memory access phase of execution cycle. After this internal forwarding control signals
are generated using above information and the information about the equality of
source register of current instruction and destination register of instruction I. These
signals will be used to forward result on BUS A. BUS B, or on Data bus(store type

instruction).

All control signals are generated during the decode phase of execution cycle. A PLA
is used to generate all the control signals. The generated control signals are stored in a
control register and the signals are issued to each stage of the the pipeline in the order of

execution cycle.

4.3 Evaluation of iitk-RISC Architecture 46

Control PLA and Control Register

We have used a CMOS NOR-NOR dynamic PLA for designing iitk-RISC control logic. The
CMOS NOR-NOR PLA is the fastest among all CMOS PLAs because of parallel connected
NMOS-transistor in AND and OR planes.

There are 14 inputs to the PLA and 25 outputs are generated. Inputs are opcode(7),
SCC bit(1), field identification bits(2), P flag(1), Conditional flags(4). The opcode, SCC bit
and field identification bits are taken from the instruction to be decoded and currently in
IR.

Output control signals, destination register address. and information about internal
forwarding are stored in control register. Control register is a three stage register. The
information flows from stage 1 to stage 2 to stage 3. Each stage is made of master-slave
CMOS D-latch with clearing facility. The first stage has 35 cells. These cells are used
for storing destination register address(7). internal forwarding control signals for internal
forwarding from MEM stage to EXEC stage(2), internal forwarding control signals for
internal forwarding from WB stage to EXEC stage(2), internal forwarding control signal for
internal forwarding from WB stage to MEM stage(1). control signals for write back unit(3),
control signals for memory access unit(9), and control signals for execution unit(11). The
second stage has 20 cells. These cells are used for storing destination register address(7),
internal forwarding control signal for internal forwarding from WB stage to MEM stage(1),
control signals for write back unit(3), and control signals for memory access unit(9). The
third and final stage has 10 cells. The cells are used to store destination register address(7),
and control signals for write back unit(3). The first stage issues the control signals to
execution unit, second stages issues signals to memory access unit while the third stage
issues the control signals to write back unit. The internal forwarding control signals are
sent to the unit whose result is to be internally forwarded. The control signals remain active
throughout the cycle but are used by their controlled unit either in low or high part of cycle.

The control register of iitk-RISC is shown in figure 4.17.

4.3 Evaluation of iitk-RISC Architecture

Here we have listed down some of the important characteristics of the iitk-RISC to conclude

our discussion on the architecture of iitk-RISC.

4.3 Evaluation of iitk-RISC Architecture

47

Stage 3:

Stage 2:

Stage 1:

To register-

To write

back unit
9 Tﬁle 1 0
. . J
Destination s&ge
register control
address(7) |(3)
To write To Memoiy
. access uny
19 I back unit I 0
Destination SYXgBe MEM stage
redg(ister |control (1) trol(9
address(7) | (3) control(9)
To memory
access unit. . To execution unit
To write
35 back unit 0
Destination |s }ag]?(MEM stage EXEC stage
;e &?Zﬁg(r) (‘()2)1131)'4)] (3) control(9) (2) control(11)
Internal forwarding] Internal forwardin
From IR control for WB stage control for MEM stage
From Cont.
Logic

Figure 4.17: The control register of iitk-RISC.

A simple architecture.

Fast fetch mechanism.

A 4-stage regular pipeline.
Simple control mechanism.

Balanced read and write cycle.

Fetching of operands in parallel with decoding.

Chapter 5

The 1itk-RISC Design and Layout

This chapter deals with the micro architecture of iitk-RISC. After a detailed description

of the data path, layout design issues for different units are discussed. Actual layout for

different units are also given.

5.1 The iitk-RISC Data Path Design

For compact layout the data path should be designed carefully. The general form of data
path is a direct consequence of the pipeline scheme employed and the illstl‘uétio11 set. The
basic form of a data path is that a gate is driving some other gates through a resistive
and capacitive path. Several designs of data path are possible. These include a precharged
path, self amplified path, a static data path. The precharged path requires a multiphase
clocking scheme. The data path are precharged to high logic but here discharging of data
path is a critical issue. That means the NMOS transistor of the gate driving the data pa.th
should be designed carefully. Otherwise in fast operation on data path will not be possible
because the driver will not be able to transfer 0 logic. Self amplified or self adjusted data
path are suitable for low speed high capacitive and resistive data path. In this scheme pull
ups and pull downs are used. The static scheme is very critical from the designer point of
view. In this scheme the driver, generally a inverter, is designed in such a manner so that
it is able to charge and discharge the data path in specified time. Generally data path is
divided into segment and a driver is used for driving every segment to reduce the loading on
driver. There is always a trade off between driver size-and the segment length a driver can
drive. To drive a long segment with a reasonable switching time a fat gate will be required.
It is generally used for high speed operations. In iitk-RISC we have used static data path

scheme. Though it costs us much in terms of area but works satisfactorily. The segment of

48

5.2 The iitk-RISC Data Path 49

_--__.j_l_f__}_mit
o ——1- 7\]

N N shifter

Figure 5.1: A Typical iitk-RISC Data Path Segment.

data path for time critical signal is kept short. A typical iitk-RISC Data path segment is

shown in figure 5.1, this data segment drives the input side of execution unit.

5.2 The iitk-RISC Data Path
Figure 5.2 presents the iitk-RISC data path which consists of the following:

e Register-file: 128 registers of 32 bit each, with its dual-port address decoder and with
latches RA, RB, RD. Rg is hardwired to contain 0.

o Flag register: A 32 bit register. It consist of conditional flags(S,Z,V.C) and flags for

system management(I,P,T).

e Immediate Register: A 32 bit register and holds the immediate fields of instruction

after sign extension to 32 bit data/offset.

o Z-register: A 32 bit register hardwired to contain 0 and used as second operand of

some instructions internally.

e TEMP;, TEMP,: 32 bit temporary registers used as the input registers for execution

unit.

o DST register: A 32 bit temporary register and used to store the result of execution

unit.

o Ezecution Unit: The execution unit take input form TEMP, and TEMP; and output
is sent to DST register. The execution unit comprises of ALU and a shifter. The
shifter uses 5 LSBs of TEMP; as shift-count.

5.2 The 1itk-RISC Data Path 50

o IR: It holds the instruction fetched during fetch cycle. Opcode field of instruction is
decoded and other fields are used to fill immediate register and/or used to fetch the

registers. Destination register address is send to control section.

e Signature: A 32 bit register is used to store the memory address of the instruction

currently in IR.

o PC: The program counter, which holds the address of the instruction to be fetched in

current cycle.

e LSTPC: The Last-PC register, which holds the content of Signature when int signal '

is active.

o Memory Access Unit: This unit is used to access the memory in case of load and

store type instructions. It reads effective address from DST data to store from RB

and accessed data is sent to RD.

e BUS A, BUS B: The register-file read buses. Data traverse from RA, RB to other

units.
e BUS D: The register-file write bus. Data traverse from other units to RD.

e SYSTEM ADDRESS BUS: The address of memory during data access or instruction

fetch is send across this bus.
e SYSTEM DATA BUS: The data or instruction are fetched over this bus.
o Interrupt Offset Lines: Interrupt offset is read on the request of external interrupt.
e busOQUT: The off-chip data and address bus.

e CONTbusQUT: The off-chip control signal bus. The off-chip control signals include
WR/overlineRD, INT, INT, Wo,W,, and interrupt offset lines.

5.2.1 Paths Followed for Instruction Execution

In pipelined architecture instruction passes through all the stage of the pipeline during
the instruction execution. The result of the stages of the pipeline is stored or buffered in
intermediate latches. Data is forwarded from the output latch of one stage to input of the

next stage. As discussed earlier the iitk-RISC pipeline is a 4 stage pipeline. During the

5.2 The iitk-RISC Data Path 51

course of execution of instruction data followed some specified path to pass through the
pipeline. Data path of iitk-RISC is presented in figure 5.2. There are a few activities that

may be going on in the data path during each cycle.

e The two source operands of instruction are routed to the execution unit.

» The output of execution unit or of the content of signature register is routed to memory

access.unit or to the PC.

¢ The output of memory access unit is routed to write back unit or(and) external
memory interface. The output of PC is routed to write back unit in case of call

instruction.
o The output of write back unit routed to register-file or flag register.

The two sources, S; and S, are routed on different buses or data path. Source S; follows
the BUS A and it can be any of the data sources attached to BUS A. These sources are RA,
Signature register, flag register, LSTPC or internally forwarded result of the instruction
already in pipeline. Source S; follows the BUS B and it can be any of the data sources
attached to BUS B. These sources are RB. immediate register, Z-register, or internally
forwarded result of the instruction already in pipeline. The particular choice of S; and
S2 depends on the instruction. For example, getlpc instruction requires LSTPC as S; and
Z-register as S;. The two sources are latched in the input registers TEMP; and TEMP; of
execution unit respectively. Which are used as the input for all binary operations whereas
TEMP, is the input source of unary operationinv. The result of execution unit is forwarded
to the output register of execution unit.

The output of execution unit, DST register, is routed to memory access unit or to the
program counter. if the instruction is control transfer instruction then the DST register is
routed to PC otherwise the content of DST register is forwarded to memory access unit.
The other input source to the memory access unit is register RB content delayed by 2 clock
cycles if instruction is store type. If instruction is load type then the other source is memory
access interface or system DATA BUS.

The output of memory access unit is routed to write back unit or(and) memory access
interface. If instruction is store type then output of memory access unit is forwarded only to

memory access interface. If instruction is load type Eg&gc?@hdgxé:% smver system
"ae

A B». Il’ 1

5.3 The Design Issues and Layouts 52

ADDRESS BUS to memory access interface and accessed data is sent to write back unit.
In other cases the output of memory access unit is forwarded to write back unit. If internal
forwarding is required then output is also forwarded to the input latch(es) of the execution
unit. The output of memory access unit is written into register file or flag register. Some
instruction do not have any destination field in these cases write back unit do not forward its
output to any of the unit. The output of memory access unit may be internally forwarded

to the input latch(es) of execution unit or(and) memory access unit. Internal forwarding is

discussed in chapter 4.

5.3 The Design Issues and Layouts

In this section the design issues of iitk-RISC layout are discussed. The discussion is de-
pended on the discussion of previous chapter. We have included the lavouts of different units
and building blocks of these units. The simulation results of some time critical units are also
given. The simulation in most of the cases is done with SLS(Switch Level Simulator) [4].
However, some critical parts are simulated with SPICE [10].

The layout of iitk-RISC is illustrated in figure 5.3. The floor plan is overlaid for easy
understanding. In the design of different units some of the registers are duplicated to save

the space used by metal wires.
5.3.1 The Register-file

In iitk-RISC register-file occupies 39.32% of the whole designed area. The register file is
divided into two banks of 64 registers each to make the layout suitable for connecting with
other units and to optimize the access time. The critical delay path of register file is shown
in figure 5.4.

If read signal is enable then the decoded signal is applied to selected registér. The
decoded signal will charge 32 output pass transistor(decoder line) of jth register to enable
the latched data in jth register. This data follows the output lines(bit lines) of the register-
file. The following discussion is given for only one of the decoder lines required to enable
NMOS transistor of a transmission gate.

Let tg; and t; be the delay associated with decoder line and bit line respectively, that is
at least tg; will be required to enable the decoder line and for bit line this time is t;. The

access time of a particular register will be to=t4+tp. In case of the design of register-file

5.3 The Design Issues and Layouts 53

tg; and tp; are the two design parameter. The delay t4 depends on size of inverter IVy4; and
the decoder. However, the delay due to decoder can not be changed very much. The delay
ty: depends on the size of inverter IV,; and pass transistor Py;. However, effect of Py; is
not much because there are two transistor(a transmission gate) in parallel to charge the bit
line. For low access time t4; and ty; should be reduced. In our design the values of tg4; and
ty; are 7ns and 13ns respectively. We have got these values by careful design of the two
critical inverters and by reducing the length of poly lines. The decoder lines are taken as
first metal whereas bit lines are taken as second metal. The bit lines are amplified at the
output of register-file to avoid further degradation in bit quality.

The layout for register-file together with one register cell is shown in figure 5.5.
5.3.2 Execution Unit

The execution unit of iitk-RISC' is most time critical unit because the longest delay path is
inside in this unit and is shown in figure 5.6.

The length of this path is approximately 45 gates. It starts from the output of TEMP
register and passes through XOR gate, lower carry generation block, upper carry generation
block, add block and zero detector(zero detector finds whether result of execution unit is
0 or not). That is Z flag is the last signal that will be available from execution unit. The
worst case delay for this path is a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>