
Verilog-to-C-Compiler: Simulator

Generator

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

Master of Technology

by

Anand Vivek Srivastava

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

January, 2007

CERTIFICATE

Certified that the work contained in the thesis entitled “Verilog-to-C-

Compiler: Simulator Generator”, by “Anand Vivek Srivastava”, has

been carried out under my supervision and that this work has not been

submitted elsewhere for a degree.

(Prof. Rajat Moona)

Professor,

Department of Computer Science and Engineering,

Indian Institute of Technology,

Kanpur.

January, 2007

ii

Contents

List of Tables vi

1 Introduction 1

1.1 Objective . 1

1.2 Motivation . 2

1.3 Survey of Related Works . 2

1.3.1 Verilator . 3

1.3.2 vl2mv . 3

1.3.3 Carbonized RTL Machine Objects 4

1.4 Overview . 4

1.5 Organization of the Report . 5

2 Verilog-to-C-compiler Design 6

2.1 Front end . 7

2.1.1 Lexical Analyzer . 7

2.1.2 Syntactic Parser . 7

2.1.3 Semantic Analyzer . 7

2.2 Optimizers . 8

2.2.1 Parameter replacement . 8

2.2.2 Constant Folding . 8

2.2.3 Dead code removal . 9

2.3 Back end: Code generator . 10

2.3.1 Modules and Module Instantiations 11

2.3.2 Variable Declarations . 12

iii

2.3.3 Always blocks . 14

2.3.4 Initial blocks . 14

2.3.5 Continuous Assignments . 15

2.3.6 Delays and Delay controls . 15

2.3.7 Named and unnamed blocks . 15

2.3.8 Tasks and Task enable statements 15

2.3.9 Functions and Function calls . 16

2.3.10 System tasks . 16

2.3.11 Behavioral statements . 16

3 Implementation 17

3.1 Parser module . 17

3.2 Semantic Analyzer module . 21

3.3 Util and Common modules . 24

3.4 Interface module . 26

3.5 Optimization module . 27

3.6 Code Generator module . 28

4 Results and Conclusion 29

4.1 Experiments . 29

4.1.1 Test environment . 29

4.1.2 Test programs . 30

4.1.3 Correctness of Verilog-to-C-compiler 31

4.1.4 Performance of generated program 34

4.2 Conclusion and Future Work . 35

References 36

A Supported Verilog constructs 39

A.1 List of recognized Verilog keywords . 39

A.2 Supported Verilog Operators . 40

A.3 List of supported Verilog constructs . 40

A.4 List of unsupported Verilog constructs 42

iv

B Class diagram of Parser module 43

C Utility Classes 48

C.1 list class . 48

C.2 list iterator class . 49

C.3 stack class . 50

C.4 stable class . 50

C.5 stable iterator class . 51

C.6 set class . 52

C.7 Integer struct . 52

C.8 Integer library . 53

D Using the Verilog-to-C-compiler 57

v

List of Tables

3.1 File for Lexical Analyzer . 18

3.2 Filelist for Syntactic Parser module . 19

3.3 Filelist for Parse Tree classes . 21

3.4 Filelist for Semantic Analyzer module 22

3.5 Filelist for AST classes . 23

3.6 Filelist for Util module . 24

3.7 Filelist for Common module . 26

3.8 Filelist for Interface module . 26

3.9 Filelist for Optimization module . 27

3.10 Filelist for Code Generator module . 28

4.1 Testsuite results for Parser module . 31

4.2 Testsuite results for Semantic Analyzer module 32

4.3 Testsuite results for Optimizer modules 33

4.4 Testsuite results for correctness of Code Generator module 33

4.5 Comparative Benchmark results . 34

vi

Abstract

With the increase in complexity of hardware models, we need better simulation

tools to keep up with the needs of the designers. While Verilog, like other hardware

specification languages, is especially suitable for hardware description, it does not

compare favorably to general purpose languages, like C or C++, when efficiency of

execution is considered. Moreover, it is very difficult to write hardware specification in

a general purpose language. In addition, Verilog or other HDL descriptions are suitable

for hardware synthesis.

A Verilog to C compiler allows us to use Verilog for hardware description, and

still be able to exploit the efficiency of a general purpose language. This also allows

us to reuse the large repository of hardware descriptions that are available as HDL

models. This work consists of creating a compiler for Verilog RTL which generates

an executable model. The executable model simulates the behavior of the hardware

component described by the Verilog RTL model. An event based simulator is generated,

which can be executed natively.

Keywords: Verilog, compiler, simulator, hardware model, system modeling

Chapter 1

Introduction

1.1 Objective

This work tries to converts a synthesizable behavioral Verilog model to an equivalent

C program, which can be compiled using a standard C compiler and run natively. The

primary aim of this exercise is to speed up the relatively slow process of simulation.

The objective of this thesis is to parse the Verilog code and create an executable model

that simulates the behavior of the hardware component described by the Verilog RTL

model.

This work is part of a larger project[2, 3], that intends to create an Integrated

Development Environment for system modeling. The project uses Sim-nML[4] for pro-

cessor model description, that is used by various retargetable tools like code profiler[5],

cache simulator[5], assembler[6], dis-assembler[7] and functional simulator[8]. The

Sim-nML processor model is converted into C code that can be executed to simulate

the processor specified. Since, RTL description of hardware components is typically

available as an HDL model, the C code for processor model simulation cannot use them

directly. This makes the process of system simulation very slow as during the runtime

logic simulation tools are used to simulate the hardware. If hardware behavioral

models can be converted into C code programmatically, they can be integrated with

the processor models easily.

1

1.2 Motivation

With hardware getting increasingly complicated, using software tools for designing

and testing is necessary. With the increase in complexity of hardware models, we need

better simulation tools to keep up with the needs of the designers. A faster simulation

tool increases the efficiency of the designers, by reducing the time taken by a design-

test-debug cycle. The more efficient the simulator, the more complex hardware model

it can execute in feasible time intervals, resulting in shorter product design time. It can

reduce costs incurred in acquiring more processing power. Therefore, there is always

an incentive to create a faster simulator.

While Verilog, like other hardware specification languages, is especially suitable

for hardware description, it does not compare favorably to general purpose languages,

like C or C++, when efficiency of execution is considered. Moreover, it is very difficult

to write hardware specification in a general purpose language. With the kind of

complexity the hardware designs have today, it would be quite inefficient to do so

manually. In addition, Verilog or other HDL descriptions are suitable for hardware

synthesis.

A Verilog to C compiler, gets us the best of both worlds. This allows us to

use Verilog for hardware description, and still be able to exploit the efficiency of a

general purpose language. This also allows us to reuse the large repository of hardware

descriptions that are available as Verilog RTL models.

1.3 Survey of Related Works

There have been innumerable attempts at writing compilers/converters that convert

Verilog models into another models. Lots of compilers convert Verilog to other hard-

ware specification languages like VHDL or SystemC[18], and vice versa. Such conver-

sions are usually done for compatibility reasons or for speed gains. Other incentives

for converting Verilog models into other forms include using the target as intermediate

representations that can be used as an input for another program. Some such works

are discussed below.

2

1.3.1 Verilator

Verilator[9] is a compiler for synthesizable Verilog into C++ with a SystemC[18]

wrapper. The project was first conceived in 1994 by Paul Wasson at the Core Logic

Group at Digital Equipment Corporation. The initial design was used to merge Verilog

code to a C based CPU model of the Alpha processor and simulated in a C based

environment. In 1995, the software started being used by DEC for Multimedia and

Network processor development, with Duane Galbi taking over active development. In

2002, Wilson Snyder, did a complete rewrite of Verilator in C++, with a SystemC

mode. The software is freely downloadable under the GNU public license. It runs 4-10

times faster than some commercial simulators. Verilator aims at creating executable

models of CPUs for embedded software design teams.

Verilator supports a very restrictive synthesizable subset of Verilog. A C++

/SystemC wrapper has to be manually written to execute the generated code. It is a

two state simulator, so Xs and Zs are approximated to either 0 or 1. Verilog functions

and Verilog tasks are only partially supported by Verilator. The support for Verilog

arithmetic operations is partial, and division and multiplication are 32-bit operations.

Delays and timing controls are ignored as it would be in any synthesis tool.

1.3.2 vl2mv

Vl2mv[11] was created as a Master’s thesis at University of California, Berkeley in

1994. This tool converts a Verilog model to an equivalent automata. The target lan-

guage is formally defined as BLIF-MV[12], which is a language designed for describing

hierarchical sequential systems with non-determinism. This project is now part of a

larger project VIS[13] that attempts to implement formal verification, synthesis, and

simulation of finite state systems. The project is now a joint project of University

of California at Berkeley, the University of Colorado at Boulder, and the University

of Texas, Austin. By converting Verilog models into BLIF-MV, it allows the models

to be used by VIS. The tool supports most of Verilog 1995 constructs. The compiler

is written using C, along with lex and yacc tools. Both VIS and vl2ml are freely

downloadable from the project website[13].

3

1.3.3 Carbonized RTL Machine Objects

Carbon Design System[14] has commercial products that convert Verilog or VHDL RTL

models into cycle accurate and register accurate forms. The target representation is

called Carbonized Machine Objects, which can be used by other products like Carbon’s

VSPTM (Virtual System Prototyping)[15] and RealViewTM [16]. RealView allows the

RTL model to be seen as a cycle accurate SystemC models. The Carbonized Machine

Objects can also be called independently by a C++/SystemC wrapper, which works

as a test bench. Since the RTL models are converted into cycle accurate models, the

performance of these models is better than equivalent inter-cycle accurate event-based

simulators.

1.4 Overview

In this work, a compiler has been created that converts Verilog RTL model to a C

program. The C program is compiled to get a executable model for the hardware

described by the Verilog program. The generated simulator can be run natively

independent of the compiler tool. This approach allows a much faster simulation

compared to conventional Verilog logic simulators.

This thesis aims at being able to provide fast software simulation for hardware

models. Therefore, only a synthesizable subset of Verilog is supported. Moreover,

Verilog-to-C-compiler creates a behavioral RTL simulator and does support gate level

modeling. Independent work that converts Sim-nML processor models into executable

C models has been carried out. The C hardware models generated using this tool

can be easily integrated with the C processor models, allowing the large repository of

Verilog hardware models to be reused with the processor models.

The generated model is an event based simulator, with an execution model

similar to the hardware execution model. The only significant deviation from the

hardware execution model is that the delays and delay controls. The delays are are

non-synthesizable, hence are not supported.

4

1.5 Organization of the Report

The rest of the thesis is organized as follows. Chapter 2 gives an overview of the high

level design of Verilog-to-C-compiler . The design decisions taken for the back-end of

the compiler have also been explained in this chapter. Chapter 3 provides an insight

into the implementation details of the software. This chapter also explains the general

organization of the various components of the software. Finally, in Chapter 4 we

conclude with results and future work.

Appendix A outlines the Verilog constructs that are supported, along with

those that are partially supported or not supported. Appendix B describes in some

detail the parse tree data structures. Appendix C outlines the general purpose data

structures that have been implemented.

5

Chapter 2

Verilog-to-C-compiler Design

Verilog-to-C-compiler compiles Verilog behavioral model and generates a simulator in

general purpose programming language C. The design of this tool is similar to most

modern day compilers. The high level software design of this tool is represented by the

pipe and filter design pattern[19, 21, 22]. Figure 2.1 represents the high level design of

the tool.

Figure 2.1: Compiler Module Diagram: Pipe and Filter Architecture

6

2.1 Front end

2.1.1 Lexical Analyzer

The lexical analyzer, the parser and the semantic analyzer form the front end of the

compiler. The lexer accepts a Verilog file and breaks it down to a stream of tokens.

Ill-formed tokens are captured here and an error is reported. The lexical analyzer

associates a context with each token passed to the parser. The context consists of the

starting line number, end line number and source filename. This context is used for

error reporting and debugging at all steps of compilation. The lexical analyzer handles

the definition and usage of Verilog macros, and therefore, works as a preprocessor as

well.

2.1.2 Syntactic Parser

The parser accepts the stream of tokens generated by the lexical analyzer and matches

them with the grammar rules. Syntax errors, along with their context, are reported

at this stage. Each supported Verilog construct is internally modeled as a C++ class.

The Verilog constructions in the program are converted into objects of corresponding

classes from the parse tree data structure. The objects together form an internal tree

structure, referred to in here as the parse tree.

2.1.3 Semantic Analyzer

The semantic analyzer makes changes to certain parts of the parse tree and creates an

abstract syntax tree (AST). While creating the AST, the semantic analyzer performs

another round of error checking for catching errors that could not be caught by the

parser. The semantic analyzer also performs certain other tasks that could not be

performed by the parser. These include identifier name and scope resolution. The AST

obtained is in general simpler that the parse tree, since it need not capture the syntax

of all source language constructs. The AST is used as an intermediate representation

between the front end and the back end of the compiler.

7

2.2 Optimizers

The optimizers performs multiple traversals of the AST, making changes to the AST,

but while maintaining all its properties.

A number of optimizations are implemented in the Verilog-to-C-compiler which

increase the efficiency and readability of the generated code. The optimizations module

of the tool is based on the visitor design pattern[19, 20]. The motivation of using the

visitor design pattern is to separate the traversal code from the optimizations code,

thereby facilitating easy extendability.

Since the structure of the internal representation remains unchanged, opti-

mization routines can be called any number of times and in any order. A certain order

of application of optimizations may be better than the other, depending upon the input

code. The optimizations that have been incorporated in the tool are as follows.

2.2.1 Parameter replacement

In this optimization, module parameters are replaced by the corresponding value. This

can be done only when it is ensured that the value is not overridden (at module

instantiation). Parameters declared with the localparam keyword can always be

replaced, since they can never be overridden. Parameter replacement is done as early

as possible so that other optimizers work more effectively. Parameters declared with

the ‘define macro, however, get expanded by the lexical analyzer itself.

2.2.2 Constant Folding

Expressions that can be evaluated at compile time, are evaluated and replaced by their

value. This reduces the size of the AST and at times will allow other optimizations to

work better. Expressions that are folded would be of one of the following kinds.

• Expressions where all subexpressions are constants while some are not. Therefore,

a unary operation with a constant operand and a binary operation where both

operands are constants qualify for this group. The arithmetic, logical or bitwise

operation will be performed by the compiler and the result would replace the

expression. This process is performed in a bottom-up fashion allowing complex

8

but constant expressions to be evaluated in a single iteration. The following is

an example of this kind of optimization.

value1 = 4’b1001 & 4’b11; =⇒ value1 = 4’b1;

• Expressions where some subexpressions are constants. Expressions of this kind

can be evaluated only in certain cases, where the value depends on the constant

parts alone. The following are some examples of such expressions.

value1 = value2 || 1’b1; =⇒ value1 = 1’b1;

value1 = value2 && 1’b0; =⇒ value1 = 1’b0;

2.2.3 Dead code removal

If it can be guaranteed at compile time that a portion of code would not be executed, the

code can be dropped. A common example of dead code is unused code like uninitiated

modules and functions or tasks that are not invoked. Similarly, if-else statements

with constant condition expressions can be simplified. If the expressions evaluates

to true, the entire statement can be replaced with the true statement block. If it

evaluates to false, it would be replaced by the false statement block. If there is no

false statement block and the conditional expression evaluates to false, the entire if

statement is dropped.

The following is an example of parameter replacement optimization and dead

code removal.

parameter WIDTH = 14;

if(WIDTH<32) =⇒ display(“GOOD”);

$display(“GOOD”);

else

$display(“BAD”);

Dead code removal reduces the target code size and the final binary size.

This optimization has a minor performance advantage on the execution speeds of

generated code by avoiding cache being filled with non-useful code. By simplifying

9

the if statements some jump statements are also avoided. Since the dropped code is

not processed by the code generator module, this optimization increases the efficiency

of the compiler as well.

2.3 Back end: Code generator

Verilog-to-C-compiler uses C constructs to model the behavioral constructs of source

Verilog code. The constructs that Verilog shares with C, are mapped trivially to the

equivalent structures. The Verilog if-else statement is an example, which gets mapped

to the C if-else statement. The Verilog constructs that have no direct equivalent in C,

have to be simulated by using a combination of C constructs.

It is noteworthy, that the data model of Verilog is significantly different from

C. While each bit of a C integer value can have only two states, represented by a 0 and

a 1, Verilog HDL value set consists of four states, represented by 0, 1, x and z. The

four states represent the possible states a hardware wire or a hardware register can

take. A value of 0 means low voltage and value of 1 represents high voltage, which are

complimentary to each other. The X and Z values represent an unknown logic state

and a high impedance value, respectively. A wire without a driver is denoted by a value

Z. When, a value of Z is used in expressions, it may cause an X value on the output

port. Also, while the range of all C data types are fixed and are constants, Verilog data

types can be much wider. Therefore, a Verilog register data type might not fit within

a C integer. To overcome the differences in the data model of the two languages, this

tool includes an Integer library (see appendix C.7). This library can handle integers of

arbitrary width, supports the four possible state values and all Verilog operators (see

appendix A.2 for complete list of supported operators).

Moreover, a C variable would not change its value until it is explicitly assigned

another value. This does not hold true for Verilog net data types. These are equivalent

to a hardware wire, the output value of which changes continuously as the input value

changes (with or without a delay). Therefore, the value on a Verilog wire has to be

evaluated continuously.

Similarly, while a Verilog always block is intuitive when describing hardware,

it lacks a close equivalent in C. For an exact equivalent the always block should be

10

executed in an infinite loop. However, if more then one always blocks exist, then it is

not possible for a single threaded process on a uniprocessor machine.

The generated model is event based, and so does not differ much from the

hardware execution model. The only significant deviation from in the hardware exe-

cution model is that the delays and delay controls are not supported and hence are

ignored. Verilog-to-C-compiler in the end supplies ANSI C code. The generated code

is compiled to get native machine code, that can be run independently.

The generated code has the following sections.

Includes : Various include directives that include some standard C header file and

some libraries provided by Verilog-to-C-compiler .

Top module : Generated code corresponding to the top module from Verilog source

(along with all instantiated modules)

Initialization : A function responsible for initializing various global constructs

Driver : The main function that acts as the driver and runs the target code as would

be done by a Verilog simulator.

The code generator takes in the AST generated by the semantic analyzer and

output the target code (C program). The C program that is generated can be compiled

using a standard ANSI C compiler, and after linking it to the Integer library (described

in section C.7) can be run natively on the machine.

2.3.1 Modules and Module Instantiations

Verilog modules do not get any representation in the generated code. All declarations

at module scope are mapped to the global scope in C code. Comments are included

in the generated code to mark the beginning and end of a module. Expect for the top

module, all modules have their corresponding code generated as many times as they

are instantiated. Uninstantiated modules, except for the top module, are dropped. For

all instantiated modules, the full hierarchical name of the instance is prefixed to the

name of its members. If no instance name is specified during module instantiation, an

11

auto—generated dummy name is provided to each instance. The following example

shows how Verilog modules would look like in the generated C program.

Verilog code C code

module sub (pvalue1);

. . .

endmodule

module main ; /∗ module main start ∗/

.

sub(value2); /∗ module main dummy1 start ∗/

. . .

/∗ module main dummy1 end ∗/

.

endmodule /∗ module main end ∗/

In the example above, no code is initially generated corresponding to the sub

module. Code generation starts with code for top module main. The code for the top

module includes code for instantiated modules, once for each instantiation. The name

dummy1 is the auto-generated name assigned to the module instantiation.

2.3.2 Variable Declarations

Variable declarations from module scope get mapped to global scope in generated code.

The data type of the declared variable would be either a standard C int data type or

a pointer to the Integer class (see appendix C.7) depending of the kind of values the

variable may take. Variables declared as ports in instantiated modules get replaced by

the argument that connects to it, at module instantiation. Therefore, port declarations

from instantiated modules do not find any corresponding declaration in target code.

Following is an example that shows how Verilog variable declarations are translated to

C code.

12

Verilog code C code

module sub (pvalue1);

reg [1:0] pvalue1 ;

reg [1:0] value1 ;

. . .

endmodule

module main ; /∗ module main start ∗/

reg [40:0] value1 ; Integer∗ main value1 ;

reg [1:0] value2 ; int main value2 ;

.

sub(value2); /∗ module main dummy1 start ∗/

int main dummy1 value1 ;

. . .

/∗ module main dummy1 end ∗/

.

endmodule /∗ module main end ∗/

As can be seen in the example, variables value1 and value2 from main module

are generated as global variables. However, port variable pvalue1 from instantiated

module does not get generated. Non-port variable value1 in module sub also gets

converted to a global variable but the top module name and instance name are prefixed

to its name.

Variable declarations in tasks, functions or named blocks are mapped to local

variables in corresponding constructs. The input ports in functions are declared in

parameter scope for the corresponding function. The ports of tasks are dealt with in a

way similar to the module instance ports, that is, they are verbatim replaced. This is

done to capture the copy-in/copy-out behavior of task ports.

13

2.3.3 Always blocks

Always blocks map to C functions with no arguments. If the always block does

not have an event control, it will be called infinite number of times till the program

encounters a $finish system call. If an always block has an event control it will get

called each time the event occurs. The C function generated for the always blocks

contains code corresponding to the Verilog behavioral constructs in the block. The

names of generated functions are internally generated and the name of the containing

module or module instance is prefixed to this name. The prefix ensures a unique name

for each block. The following code snippet shows the C code that corresponds to an

always block.

Verilog code C code

always main dummy1 func3()

{

.

}

In the example above, the always block belongs to the sub module instantiated

in top module main. The name func3 is internally generated.

2.3.4 Initial blocks

Initialization is not synthesizable and therefore is ignored during code generation.

However, as an extension, if -DALLOW INITIAL flag is passed to the C++ compiler

while compiling Verilog-to-C-compiler from source, initial statements are supported.

The initial blocks behave like always blocks except that they are executed exactly

once, before any always block. The order in which the initial blocks are executed

is uncertain.

14

2.3.5 Continuous Assignments

Continuous assignments are modeled as always blocks with an event control added to

make the block combinatorial. The assignment gets mapped to a function with no

arguments just like the always block. The corresponding function is called whenever

the value of the expression on the right hand side of the assignment changes. The

function call causes the right hand side to be reevaluated and assigned it to the left

hand side.

2.3.6 Delays and Delay controls

Delays are non-synthesizable, therefore they are ignored. Similarly, delay controls are

also dropped. A warning is generated to inform the user that the program might not

behave the way it was expected to, because of the ignored delays.

2.3.7 Named and unnamed blocks

Verilog block constructs (begin-end) get mapped to the equivalent C block, marked

by an opening and closing brace enclosing a list of statements. The statements are

executed in the same order in which they appear in the Verilog code. Named blocks,

unlike unnamed blocks, are allowed to have variable declarations as well. These

declarations appear as local variables with the block as their scope. The parallel

blocks(fork-join) are also executed sequentially. However, the ordering may or may not

be maintained.

2.3.8 Tasks and Task enable statements

No code is generated for task declarations. However, the task enable statements get

verbatim replaced by the task body. The task ports, if any, are replaced by the

arguments to the task enable call. The task body is generated for each invocation

in a way similar to unnamed blocks. This ensures that the global module members

are accessible to the task. The replacement of ports by arguments to task enable call,

models the copy-in/copy-out behavior of the task ports. Since, the task enables are

verbatim replaced task disable constructs are not supported. All tasks are assumed to

15

be reentrant, so each task has a local copy of its variables. Since, a task can have any

number of output/in-out ports, it does not easily map to a C function.

2.3.9 Functions and Function calls

Function declaration is modeled as a C function with the arguments representing the

input ports of the function. The return type of the C function is a C int or a pointer

to an object of the Integer class. The return value serves the purpose of the output

port for the function. All functions are assumed to be automatic (recursive), that is,

each function has a local copy of its variables.

2.3.10 System tasks

While the system tasks are accepted by the parser, most of them are non-synthesizable,

and will be ignored during code generation. The ones that are not ignored are as follows.

$finish : The $finish system call is modeled by the exit system call in C. When a

program encounters a $finish system call, it is assumed to have run successfully

and would cause an exit(0) statement to be called.

$display : The display statement is non-synthesizable but supported to allow debug-

ging. It is modeled as a library function displayf, which uses C stdio.h library

to output the message to standard output. The similar $displayb, $displayh and

$displayo statements are also correctly handled.

2.3.11 Behavioral statements

Verilog constructs that have a direct C counterpart get modeled accordingly. A Verilog

if-else statement is modeled as a C if-else statement. Verilog for and while loops

are both modeled as C while loops. Verilog case statement is modeled as a C switch

statement. The Verilog repeat statements causes the code for the statement block to

be generated multiple number of times, depending on the counter expression.

16

Chapter 3

Implementation

Verilog-to-C-compiler has been implemented in C++, along with a few C libraries. All

general purpose data structures are written as C++ template classes. The compiler

makes use of a couple of open source compiler tools, Flex[25] and Bison[26]. The

program has been developed on linux[23] platform, using GNU gcc compiler[24]. The

implementation mostly follows the object oriented paradigm. Dynamic dispatch of

functions is often exploited and polymorphic containers are frequently used.

Verilog-to-C-compiler has been designed and implemented to allow easy ex-

tendability and reusability. As the high level design shown in figure 2.1 suggests, any

given module does not depend on modules that lie on its right. The dependence is

restricted to one direction and for one level only. For example, making changes to the

parser module would not require changes to be made to the lexical analyzer or the

code generator. As an exception, the code generator module depends on the semantic

analyzer module and not on the optimization modules. The new optimization modules

can be plugged in or removed without any effect on the semantic analyzer or the code

generator.

3.1 Parser module

The parser module contains the lexical analyzer, the syntactic parser and the parse

tree data structures.

17

The lexical analyzer consists of a list of rules defining what constitutes a

valid token (see appendix A.2 for list of recognized keywords). The rule list acts

as an input to a lexical analyzer generator program, like Lex[27] or Flex. The lexical

analyzer generator generates a C++ program, that scans the input Verilog program

to generate a stream of tokens. The lexical analyzer also acts as a preprocessor,

by expanding ‘define macros and taking care of conditional compilation directives

(‘ifdef, ‘ifndef, ‘else, ‘elsif and ‘endif). Table 3.1 contains the file needed by

the lexical analyzer generator.

Filename Description
parser/verilog.l Contains rule list for Lexical Analyzer, and

function definitions that are used by the lexer

Table 3.1: File for Lexical Analyzer

The syntactic parser, like the lexical analyzer, consists of a list of rules defining

what constitutes valid syntax for the input Verilog program. Table 3.2 gives a brief

description of the files responsible for parsing. Each rule also has an associated action

that gets executed, whenever the rule matches a construct in the input. This rule

list acts as input to a parser generator program, like YACC[27] or Bison. The parser

generator creates a C++ program that uses the lexical analyzer to scan the input, and

identifies the syntactic constructs in the input. The actions that are associated with

the rules identify invalid syntax and report errors, if any. If there are no errors, a parse

tree is constructed corresponding to the input.

Filename Description

parser/Makefile Provides targets to generate dependencies, com-

pile and clean the parser module.

parser/verilog.h Contains macro definitions that are used by the

parser.

Continued on next page. . .

18

Filename Description

parser/verilog.ypp Contains grammar rules for syntactic parser and

the associated actions.

parser/p scope.h Class definitions for P scope and P scope stk

classes. An object of P scope class represents

a valid scope for the parser. An object of

P scope stk class holds the scope stack.

parser/p context.h Class and function definitions for P context

class. An object of this class is associated with

each node of parse tree.

Table 3.2: Filelist for Syntactic Parser module

The parser module additionally implements C++ classes for each supported

Verilog construct. Each class additionally includes an object of class P context. The

parse tree data structures form a complex class hierarchy that accurately corresponds

to Verilog syntax. The parse tree generated by this module consists of objects of the

parse tree data structure classes. A brief description of the files associated with parse

tree classes is given in table 3.3. A more detailed description of each parse tree class

is given in appendix B.

Filename Description

parser/p decl.cpp,

parser/p decl.h

Class and function definitions for P decl,

P module, P primitive, P function, P task,

P basicdecl, P rangedecl, P netdecl,

P paramdecl and P cont assign classes.

parser/p decl print.cpp Print functions for declaration classes.

parser/p delay.cpp,

parser/p delay.h

Class and function definitions for P delay class.

Continued on next page. . .

19

Filename Description

parser/p desc.cpp,

parser/p desc.h

Class and function definitions for P desc class.

parser/p dst.h,

parser/p dst.cpp

Class and function definitions for P dst class.

parser/p expr.cpp,

parser/p expr.h

Class and function definitions for P expr,

P event expr and P lval classes.

parser/p expr print.cpp Print functions for P expr, P event expr and

P lval classes.

parser/p id.cpp, parser/p id.h Class and function definitions for P id range

and P range classes.

parser/p inst.cpp,

parser/p inst.h

Class and function definitions for

P module prim inst, P module prim inst list,

P gate inst and P gate inst list classes.

parser/p port.cpp,

parser/p port.h

Class and function definitions for P port and

P port connect classes.

parser/p stmt.cpp,

parser/p stmt.h

Class and function definitions for

P stmt, P proc stmt, P begin end stmt,

P if else stmt, P case stmt, P forever stmt,

P repeat stmt, P while stmt, P for stmt,

P delay control stmt, P event control stmt,

P assign stmt, P wait stmt, P fork join stmt,

P task enable stmt, P sys task enable stmt,

P disable stmt, P deassign stmt,

P release stmt, P send event stmt classes.

parser/p stmt print.cpp Print functions for statement classes.

parser/p systask.cpp,

parser/p systask.h

Class and function definitions for P systask

class.

Continued on next page. . .

20

Filename Description

parser/parser datastructures.h Header file that includes definitions of all parser

classes. It also contains class definitions for data

structures for temporary use by the parser.

parser/p list print.h Function for printing lists of parser data struc-

tures.

Table 3.3: Filelist for Parse Tree classes

3.2 Semantic Analyzer module

The semantic analyzer module consists of a parse tree to AST converter and semantic

tree data structures. The parse tree to AST converter (Table 3.4) takes the parse tree

as input and checks it for semantic consistency. This convertor also gathers certain

information that could not be obtained by the parser. Identifier name resolution, which

consists of resolving the data type and scope of an identifier, is performed at this stage.

The symbols tables are populated accordingly in this pass.

Filename Description

semantic tree/Makefile Provides targets to generate dependencies, com-

pile and clean the semantic analyzer module.

semantic tree/

parser to semantic tree.cpp,

semantic tree/

parser to semantic tree.h

Function definitions for the semantic analyzer.

These functions act on the parse tree nodes and

generate the AST.

semantic tree/s context.h Class and function definitions for S context, the

context class associated with AST nodes

Continued on next page. . .

21

Filename Description

semantic tree/s scope.h Class definitions for S scope and S scope stk

classes. An object of S scope class represents a

valid scope for the semantic analyzer. An object

of S scope stk class holds the scope stack.

Table 3.4: Filelist for Semantic Analyzer module

The semantic analyzer module also consists of class definitions of semantic tree

data structures (Table 3.5, like the parse tree data structures. However, these data

structures do not necessarily show similarity to Verilog syntax. The class definitions

are made simpler to make the dependent modules simpler. Some constructs from parse

tree gets mapped to another, logically equivalent but simpler construct in the AST. For

example, a continuous assignment node (P cont assign) in the parse tree gets mapped

into a always block node (S proc stmt) in the AST. Similarly, a declaration of a list of

nets gets broken down into a list of declarations, with a net each. The AST consists

of objects of the semantic tree data structure classes. The hierarchical nature of this

tree is similar to the parse tree. Here is a brief description for the contained files, see

appendix B for more detail.

Filename Description

semantic tree/s decl.cpp,

semantic tree/s decl.h

Class and function definitions for S decl,

S module, S primitive, S function, S task,

S basicdecl, S rangedecl, S netdecl,

S paramdecl and S cont assign classes.

semantic tree/s decl print.cpp Print functions for declaration classes.

semantic tree/s delay.cpp,

semantic tree/s delay.h

Class and function definitions for S delay class.

semantic tree/s desc.cpp,

semantic tree/s desc.h

Class and function definitions for S desc class.

Continued on next page. . .

22

Filename Description

semantic tree/s dst.h,

semantic tree/s dst.cpp

Class and function definitions for S dst class.

semantic tree/s expr.cpp,

semantic tree/s expr.h

Class and function definitions for S expr,

S event expr and S lval classes.

semantic tree/s expr print.cpp Print functions for S expr, S event expr and

S lval classes.

semantic tree/s id.cpp,

semantic tree/s id.h

Class and function definitions for S id range

and S range classes.

semantic tree/s inst.cpp,

semantic tree/s inst.h

Class and function definitions for S mod inst,

S mod inst list, S gate inst and S gate inst list

classes.

semantic tree/s port.cpp,

semantic tree/s port.h

Class and function definitions for S port and

S port connect classes.

semantic tree/s stmt.cpp,

semantic tree/s stmt.h

Class and function definitions for

S stmt, S proc stmt, S begin end stmt,

S if else stmt, S case stmt, S forever stmt,

S repeat stmt, S while stmt, S for stmt,

S delay control stmt, S event control stmt,

S assign stmt, S wait stmt, S fork join stmt,

S task enable stmt, S sys task enable stmt,

S disable stmt, S deassign stmt,

S release stmt, S send event stmt classes.

semantic tree/s stmt print.cpp Print functions for statement classes.

semantic tree/s systask.cpp,

semantic tree/s systask.h

Class and function definitions for S systask

class.

semantic tree/

semantic tree dst.h

Header file that includes definitions of all AST

classes.

semantic tree/s list print.h Function for printing lists of AST classes.

Table 3.5: Filelist for AST classes

23

3.3 Util and Common modules

The util module provides general purpose data structures that are extensively used by

all other modules. These data structures include polymorphic containers, like list,

set, stack and stable (Symbol Table). These data structure have been implemented

as C++ template classes to ensure they are usable for a variety of objects without

compromising on type safety. They can be used for primitive data types, class objects

or pointers. The dependence of this module over other modules is minimal allowing

very easy reusability. Table 3.6 provides a brief description of the files that belong to

the util module.

Filename Description

util/Makefile Provides targets to generate dependencies, com-

pile and clean the util module. An additional

install target installs the integer library, and

some header files.

util/list.h Class definitions for list element, list and

list iterator classes

util/stack.h Class definitions for stack class

util/st.h Class definitions for stable (Symbol Table) and

stable iterator classes

util/set.h Class definition for set class

util/integer.h, util/integer.c Definition for struct Integer, and functions pro-

vided by Integer library

util/cint.h, util/cint.c Functions for operations on C int data type

util/display.h Contains function that handles the Verilog $dis-

play system call

Table 3.6: Filelist for Util module

24

The list class implements a doubly-linked list. References to both the start

and end of the list are maintained, allowing addition and removal of elements from

start and end in constant time (see appendix C.1). The stack class provides the basic

stack functionality and internally uses the list class (see appendix C.3).

The stable class is a simple hash table implementation (see appendix C.4).

The class requires a hash function which acts as a map for the key and the location

where the record is stored. This hash function is used while comparing, inserting and

finding elements. The set class is internally based on the symbol table class, with the

key and the record being the same (see appendix C.6).

An integer library is also part of this module. The library supports integers

of arbitrary width, with functions corresponding to all Verilog expression operators(see

appendix C.7. Each bit in the integer can take four states similar to a Verilog integer.

The library also provides Verilog unary reduction operations for C int data type.

The common module contains header files common to all other modules. These

header files contain C macros and forward declarations of classes and functions. Log-

ging facility that is used throughout the program is also part of this module, along

with memory allocation, memory deallocation and string manipulation functions. A

brief description of each file included in the module is given in table 3.7.

Filename Description

common/Makefile Provides targets to generate dependencies, com-

pile and clean the common module.

common/all classes.h Forward declarations of all classes in the pro-

gram.

common/extended function-

name.h

Class definitions of Extended function name.

The class is used internally to hold names

of function generated by the code generator

module.

common/systask defs.h Contains the definitions of system tasks recog-

nized by the parser.

Continued on next page. . .
25

Filename Description

common/system tasks.h Class representing an entry in the table of

recognized system tasks.

common/util.h, com-

mon/util.cpp

Provides utility functions for internal use by the

program.

common/util macros.h Provides utility macros used extensively by

other modules.

Table 3.7: Filelist for Common module

3.4 Interface module

The interface module defines the program interface that is used to drive the program.

It consists of an Interface class, which has a couple of pure virtual functions. The

Interface class is the parent class of cli class, which provides the command line

interface to the program. This implementation provides an easy way to add a different

interface, like a Graphical User Interface. Any new interface would need to inherit

the Interface class, and implement the virtual functions. Table 3.8 provides a brief

description if the files in the interface module.

Filename Description
interface/Makefile Provides targets to generate dependencies, com-

pile and clean the interface module.
interface/interface.h Class description for Interface class.
interface/cli.h Class definition for Comman line class.

Table 3.8: Filelist for Interface module

26

3.5 Optimization module

The optimization module consists of a traversal library and optimization functions

corresponding to each optimization.

As mentioned earlier, the optimizations module is implemented as the visitor

design pattern[19, 20]. The traversals library provides functionality to visit each node

of the AST, independent of what needs to be executed on the node. The traversal is

bottom up (post order) in nature.

An optimization routine consists of a function for each of the node that needs

to be modified. Each optimization is implemented to make a pass at each node in the

AST, and modify the ones required for the particular optimization. The optimization

functions can communicate among themselves using members of a struct argument or

using global variables. Table 3.9 lists the files included in the optimization module.

Filename Description

optimizer/Makefile Provides targets to generate dependencies, com-

pile and clean the optimization module.

optimizer/execute on s.cpp Contains function definitions for the AST

traversals library.

optimizer/s expr o.cpp Contains optimizations functions that act to

AST nodes of S expr kind.

optimizer/s inst o.cpp Contains optimizations functions that act to

AST nodes of S mod inst kind.

optimizer/s stmt o.cpp Contains optimizations functions that act to

AST nodes of S stmt kind.

Table 3.9: Filelist for Optimization module

27

3.6 Code Generator module

The code generator module consists of code generator functions for each of the semantic

tree data structure classes. The functions could be missing for the unsupported Verilog

constructs (see appendix A.3). A top down traversal of the AST is made while

generating corresponding C code for each tree node. Some additional code for including

libraries is also generated, along with code for initializing and driving the generated

model.

A couple of additional passes are made on the AST before invoking the code

generation routine. The first iteration determines the data type of variables in gener-

ated code that would be optimal for a given Verilog variable. The second pass drops

non-synthesizable Verilog constructs which do not get any code generated for them.

This pass is made to increase the performance of the code generator and the readability

and quality of generated code.

Filename Description
code generator/Makefile Provides targets to generate dependencies, com-

pile and clean the code generator module.
code generator/
cint compatibility.cpp

Provides functions that determine whether a
node can fit in a C int data type or not.

code generator/
code generator.h,
code generator/
code generator.cpp

Provides functions that are responsible for gen-
erating code for each node of the AST. Some
supporting functions are also provided.

code generator/
drop non synthesizable.cpp

Provides functions that drop some of the node
from the AST for which no code would be
generated by the code generator.

code generator/ temp var.h Class definition for Temp var class. The class
represents a variable that is generated by the
code generator, to store value temporarily.

Table 3.10: Filelist for Code Generator module

28

Chapter 4

Results and Conclusion

4.1 Experiments

A variety of tests were performed on the Verilog-to-C-compiler to test various aspects

of the program.

4.1.1 Test environment

The tests were run on a computer with an Intel Pentium 4, with clock speed of 1.9GHz

processor and 640MB of DDR memory, running Linux operating system (kernel version

2.6.11.4-20a). The Verilog-to-C-compiler and the generated C program were compiled

using the GNU gcc (version 3.3.5) C++ and C compilers, respectively. The C++

compiler was passed the −DALLOW INITIAL flag (for supporting initial blocks) , −g

flag to allow debugging and −o3 flag for optimization. The C compiler was passed the

−o3 optimization flag, while compiling the generated C program.

29

4.1.2 Test programs

The following test programs were run on the compiler to verify its correctness and

measure the performance of the generated code.

Icarus Verilog Testsuite

For testing the front end of the compiler, a testsuite maintained by Steve Wilson

of Icarus Verilog[28] was used. The testsuite consists of 664 Verilog programs, each

containing one or more modules. Each program consists of exactly one main file.

However, some of the files include other files. Each test program checks a Verilog

construction for correctness. The testsuite as a whole, provides an extensive coverage

of syntax and semantics of various Verilog constructions. Not all programs in the

testsuite are valid Verilog models, some of the programs are included to check error

conditions.

Verilator Simulator Benchmark

For testing the correctness of the back end (code generator) of the compiler and the

performance of the generated simulator, Verilator simulator benchmark[29] was used.

The benchmark contains the following.

1. Synthesizable Verilog model of a 68K binary compatible, CRISC processor[30].

It consists of 24 modules, contained in 16 files and has nearly 3700 lines of code.

2. Synthesizable Verilog model of a simple asynchronous serial controller

(SASC)[31]. This model consists of 3 files, containing 3 modules and

approximately 350 lines of code.

3. A Verilog test bench consisting of 4 modules spread over 4 files and has approx-

imately 120 lines of code.

The top module of the testbench consists of an initial block with a $finish

system call following a delay control. Since, delay controls are ignored by the Verilog-

to-C-compiler , the $finish system call causes the simulator to exit immediately. This

30

causes the the test bench to be non-synthesizable. As a work around, the initial block of

the benchmark has been removed. A C driver function has been manually written that

is responsible for controlling the simulation and eventually stoping it. This C function

is responsible for calling appropriate functions and initializing the model. The simple

driver function that is auto-generated by the tool can also be used in some special

cases.

The experimental results have been reported in the following sections.

4.1.3 Correctness of Verilog-to-C-compiler

The modules described in chapter 2 have been tested independently, and also as a

whole. In the tables in this section, the success count indicates the number of test

cases that passed successfully, with or without warnings. The error count indicates

number of test cases that caused the compiler to stop execution, gracefully. The crash

count indicates the number of test cases that caused the compiler to stop unexpectedly.

The unexpected result count is the number of test cases which passed when an error

was expected or which failed when they were expected to pass. The warnings count

is the total number of cases where a warning was raised. A single test case can cause

multiple warning messages to be generated, which may or may not be of the same kind.

Parser

The testcases were run with only the parser module in place. This tests the grammar

specification of the parser and some of the functionality provided by the parse tree

classes. Table 4.1 shows the results for the testsuite run for the parser module.

Success 659
Error(s) reported 5
Warning(s) reported 41
Crash count 0
Unexpected result(s) 0
Total 664

Table 4.1: Testsuite results for Parser module

31

The reported warnings include ignored compiler directives, like ‘timescale and

ignored specify blocks. The reported errors include lexical errors and syntax errors.

Semantic Analyzer

The test cases were run with the parser and the semantic analyzer modules in place.

This testsuite execution tests the semantic constraints put by the semantic analyzer

and some functionality provided by the AST classes. Table 4.2 summarizes the results

of the testsuite for the semantic analyzer.

Success 617
Error(s) reported 47
Warning(s) reported 411
Crash count 0
Unexpected result(s) 0
Total 664

Table 4.2: Testsuite results for Semantic Analyzer module

The error count and warning count shown in table 4.2, include the errors and

warnings generated by the parser module (table 4.1). The reported errors include

those caused by undeclared identifiers, or those accessed outside their scope. Variables

declared more than once in the same scope also cause errors. Lastly, an error is reported

if a unique candidate for the top module can not be identified. The reported warnings

are due to implicit wire declarations.

Optimizers

The testsuite is run for the compiler front end, along with the optimization modules

in place. The results have been summarized in table 4.3.

This run of the testsuite checks the optimization routines, and the traversal

library for accuracy. It has been manually verified that the correct optimizations

indeed take place where applicable. The two additional errors are division by zero

errors, generated by the constant folding optimization module. However, it may be

32

Success 615
Error(s) reported 49
Warning(s) reported 5479
Crash count 0
Unexpected result(s) 0
Total 664

Table 4.3: Testsuite results for Optimizer modules

noted that the number of warnings shoots up drastically. Since, the optimization

module drops non-synthesizable constructs, it generates a warning for each dropped

construct. The new warnings correspond to dropped constructs, like delay controls and

task disable statements.

Code generator

With the code generator included, the software becomes complete. So, the testcases

for the code generator are the same as those for the complete application. Almost all

test programs in Icarus Verilog testsuite are non-synthesizable. Since, this module only

supports a synthesizable subset of Verilog, the testsuite could not be used for testing

the complete application. To test this module the Verilator benchmark is used. The

test program compiles without errors, but generates lots of warnings. Table 4.4 shows

the test results for this module.

Parser warnings 23
Semantic Analyzer warnings 182
Code generator warnings 560
Total warnings 770
Unexpected warnings 0
Lines of code in Verilog program 4200
Lines of code in C program 5300

Table 4.4: Testsuite results for correctness of Code Generator module

33

Generated
Simulator

ModelSim

Number of simulation cycles executed 10,000,000 10,000,000
Total time taken for execution 8.9 seconds 42 seconds
Average number of cycles/second 1,120,000 238,000

Table 4.5: Comparative Benchmark results

The warnings generated by the parser are because of ignored compiler direc-

tives. The semantic analyzer warnings are caused by implicitely declared Verilog nets

and ports. The warnings generated by code generator correspond to dropped non-

synthesizable and unsupported constructs, chiefly delays and delay controls.

The size of the output program is of the same order as the input program.

However, some functionality is provided to the generated program by the Integer

library, the size of which is not included in count.

4.1.4 Performance of generated program

Providing a fast simulation is an important goal of this thesis. Therefore, the perfor-

mance of the generated simulator is crucial to this work. For testing the performance

of the generated simulator, Verilator simulator benchmark was used. The compiler

successfully parsed the Verilog model and generated a C program. The C program was

successfully compiled to get an executable file. The executable file was successfully run

on the native machine, to simulate the Verilog RTL model.

For comparing the performance of the simulator generated by the Verilog-to-

C-compiler , the same benchmark was run on ModelSim SE PLUS 6.0[32] as well.

Optimizations were enabled for ModelSim as well as the C compiler that is used to

compile the generated simulator. Table 4.5 shows the benchmark results for both the

simulator generated by Verilog-to-C-compiler and ModelSim.

As can be seen from the table 4.5, the simulator generated by Verilog-to-

C-compiler takes one-fifth the time to execute the benchmark Verilog model, than

ModelSim.

34

4.2 Conclusion and Future Work

The primary objective of this thesis, of providing a fast simulator for synthesizable

subset of Verilog has been achieved. The Verilog-to-C-compiler converts Verilog RTL to

a C program. The generated C program can be compiled using a standard C compiler.

The generated executable can be run to simulate the hardware model described by the

Verilog RTL model. The performance of the generated simulator compares favorably

to conventional Verilog logic simulators (see section 4.5 for detail).

The front end of the compiler has been designed, implemented and tested to

work with a large subset of Verilog 2001 standard. This allows all kinds of Verilog

programs to be accepted by the compiler. However, the back end works only for a

more restrictive subset. Most non-synthesizable Verilog constructs are either partially

supported or unsupported (see appendix A.3 for detailed list). As a workaround, some

of these constructs can be modeled as synthesizable constructs. For example, a trior

net is not synthesizable, but it can be modeled as an or operation on all the drivers.

Such transformations may be supported in future by the compiler itself. Also, the new

features introduced in the IEEE Verilog 2005 standard[17] have not been implemented

in this software. These features may be incorporated in future.

More importantly, the simulator generator by Verilog-to-C-compiler currently

is only slightly more efficient that conventional Verilog logic simulators. However, the

performance of the product can be improved further. Only, some simple optimizers

have been implemented in the compiler. The performance of the generated simulator

can be improved further by implementing more optimizations, like loop unfolding and

redundancy removal. The integer library (see appendix C.7) is an importance part

of the generated simulator. The performance of the simulator can be improved by

optimizing the integer library.

35

References

[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques and Tools,

Addison-Wesley Publishing Company

[2] Rajat Moona. Processor Models for Retargetable Tools rsp, p. 34, 11th IEEE

International Workshop on Rapid System Prototyping (RSP’00), 2000.

[3] Subhash Chandra, Rajat Moona. Retargetable Functional Simulator Using High

Level Processor Models vlsid, p. 424, 13th International Conference on VLSI Design,

2000.

[4] V. Rajesh. A Generic Approach to Performance Modeling and Its Application

to Simulator Generator Master’s thesis, Department of Computer Science and

Engineering, IIT Kanpur, August 1998.

http://www.cse.iitk.ac.in/users/simnml/docs/simnml.pdf

[5] Rajiv A. R. Retargetable Profiling Tools and their Application in Cache Simulation

and Code Instrumentation Master’s thesis, Department of Computer Science and

Engineering, IIT Kanpur, December 1999.

http://www.cse.iitk.ac.in/users/simnml/thesis/rajiv.pdf

[6] Sarika Kumari. Generation Of Assemblers Using High Level Processor Models

Master’s thesis, Department of Computer Science and Engineering, IIT Kanpur,

February 2000.

http://www.cse.iitk.ac.in/users/simnml/thesis/sarika.pdf

[7] Prithvi Pal Singh Bisht. Generic Disassembler Using Processor Models Master’s

thesis, Department of Computer Science and Engineering, IIT Kanpur, February

36

2002.

http://www.cse.iitk.ac.in/users/simnml/thesis/prithvi.pdf

[8] Surendra Kumar Vishnoi. Functional Simulation Using Sim-nML Master’s thesis,

Department of Computer Science and Engineering, IIT Kanpur, May 2006.

http://www.cse.iitk.ac.in/users/simnml/thesis/surendra.pdf

[9] Wilson Snyder, Paul Wasson and Duane Galbi. Verilator - Convert Verilog code to

C++/SystemC

http://www.veripool.com/verilator.html

[10] S. T. Cheng et al. Compiling Verilog into Timed Fi-

nite State Machines International Verilog Conference’95.

http://vlsi.colorado.edu/∼vis/doc/stcheng verilog95.ps.gz

[11] S.-T. Cheng. vl2mv Manual Master Thesis, UCB ERL Technical Report M94/37

http://vlsi.colorado.edu/∼vis/doc/stcheng M94 37.ps.gz

[12] BLIF—MV Manual.

http://vlsi.colorado.edu/∼vis/doc/blifmv/blifmv/blifmv.html

[13] VIS Verification Interacting with Synthesis Joint project of University of California

at Berkeley, the University of Colorado at Boulder, and at the University of Texas,

Austin. http://vlsi.colorado.edu/∼vis/

[14] VSPTM and RealViewTM . Carbon’s Virtual System Prototype and RealView

http://carbondesignsystems.com/corpsite/products/html/vsp-product-brief.html

[15] VSPTM Product Overview.

http://carbondesignsystems.com/corpsite/products/vsp-html-version.html

[16] SOC-VSPTM Product Overview.

http://carbondesignsystems.com/corpsite/products/soc-vsp-html-version.html

[17] IEEE Verilog 2001 standard.

http://standards.ieee.org/announcements/verilog2001.html

37

[18] SystemC. http://www.systemc.org/

[19] E Gamma, R Helm, R Johnson, J Vlissides. Book: Design Patterns: Elements of

Reusable Object-Oriented Software

[20] Visitor Design Pattern - C++ implementation http://www.swe.uni-

linz.ac.at/research/deco/designPatterns/Visitor/visitor.abstract.html

[21] Frank Buschmann. Building Software with Patterns

http://citeseer.ist.psu.edu/buschmann99building.html

[22] Pipes and Filters.

http://vico.org/pages/PatronsDisseny/Pattern%20Pipes%20and%20Filters/

[23] Linux. Unix-type open source operating system http://www.linux.org/

[24] The GNU Compiler Collection. Open source free C/C++ compiler

http://gcc.gnu.org/

[25] flex. Fast Lexical Analyzer Generator http://flex.sourceforge.net/

[26] Bison. GNU parser generator http://www.gnu.org/software/bison/

[27] Lex, Flex, YACC, Bison. http://dinosaur.compilertools.net/

[28] Icarus Verilog testsuite. http://sourceforge.net/projects/ivtest/

[29] Verilator Simulator benchmarks.

http://www.veripool.com/verilog sim benchmarks.html

[30] Shawn Tan. CRISC processor Verilog model.

http://www.opencores.org/cvsget.cgi?module=k68&tag=

http://www.opencores.org/people.cgi/info/sybreon

[31] Simple Asynchronous Serial Controller

http://www.opencores.org/projects.cgi/web/sasc

[32] ModelSim. http://www.model.com/products/default.asp

38

Appendix A

Supported Verilog constructs

A.1 List of recognized Verilog keywords

always and assign automatic begin

buf bufif0 bufif1 case casex

casez cmos deassign default defparam

disable edge else end endcase

endfunction endmodule endprimitive endspecify endtable

endtask event for forever force

fork function highz0 highz1 if

initial inout input integer join

large localparam macromodule medium module

nand negedge nmos nor not

notif0 notif1 or output parameter

pmos posedge primitive pull0 pull1

pulldown pullup rcmos real realtime

reg release repeat rnmos rpmos

rtran rtranif0 rtranif1 scalered signed

small specify specparam strong0 strong1

supply0 supply1 swire table task

39

teslaTimer time tran tranif0 tranif1

tri tri0 tri1 triand trior

trireg unsigned vectored wait wand

weak0 weak1 while wire wor

xnor xor

A.2 Supported Verilog Operators

Unary Operators +,−, !,∼, &, |,∼ &,∼ |,∧ ∼,∼ ∧

Binary Arithmetic Operators +,−, ∗, /, %, ∗∗

Binary Logical Operators &&, ||

Binary Bitwise Operators &, |,∧,∼ ∧,∧ ∼,∼ &,∼ |

Shift Operators <<, <<<, >>, >>>

Comparison Operators <, >, <=, >=, ==, ! =, ===, ! ==

Ternary Operator ? :

A.3 List of supported Verilog constructs

Lexical Constructs

Operators : (see appendix A.2)

White Spaces

Single line and Multiple line comments

Numbers : All decimal, binary, hexadecimal and octal formats supported.

Strings : Operations on strings are not supported.

Identifiers : All kinds of valid Verilog identifier names (Simple, Escaped and

System names) are supported.

Keywords : (see appendix A.1)

Text Substitutions : (‘define macros)

40

Data types

Registers : Arbitrary width registers are supported.

Nets : Only wire type nets are supported, others are treated as wire. Implicit

declarations are supported. Initialization is converted to continuous assignment.

Integers

Parameters : parameter and localparam is supported.

Behavioral modeling

Continuous assignments : Strength and delays are ignored.

Procedural assignments : Delay and event controls are ignored.

Conditional statement

Case statement : Supported for expression with width ≤ width of C int.

Loops : For, While and Repeat Loops are supported.

Blocks : Both named and unnamed blocks are supported. Parallel blocks are

converted to serial blocks. Disabling of blocks is not supported.

Timing controls : Delay controls are ignored. Event controls are supported when

they occur just under procedural blocks. Event controls other than just under

always and initial blocks are not supported.

Tasks : Task disable statement is not supported.

Functions : Hierarchical access is limited to module scope.

Initial : Ignored. If compiler is compiled with -DALLOW INITIAL flag, then Initial

statements are supported.

Always : Supported with or without event controls.

Hierarchical structures

Modules : Macromodule treated same as module.

41

Module Instantiations

Ports : All input, inout and output ports are supported, though the direction is

not enforced except for functions.

Hierarchical names : Supported, but hierarchical access across modules is not

allowed.

Scope rules

A.4 List of unsupported Verilog constructs

Data types

Time

Real Numbers

Events

Parameter : defparam statement is not supported

Behavioral modeling

Loops : Forever loops are not supported

Gate and switch level modeling

Accepted by parser, but ignored by code generator.

User defined primitives

Accepted by parser, but ignored by code generator.

Specify blocks

Ignored by parser.

42

Appendix B

Class diagram of Parser module

The classes implemented by the parser module and a brief description of the Verilog

construct each class represents is as follows. Figure B.1 shows the dependencies

among top level classes.

P dst: Parent class of all parse tree classes. Functions are implemented in this

class that handle the context for each Verilog construction in the input Verilog

description.

P decl: Parent class of all declarations(see figure B.2).

P stmt: Parent class of all behavioral statements(see figure B.3). Also represents

an empty statement.

P expr: Represents all kinds of Verilog expressions.

P desc: Represents the Verilog model description. Consists of a list of modules

and User Defined Primitives.

P context: Represents the context associated with each construct. A context

consists of start and end line numbers, along with the filename in which

the construct appeared. If a construct spans multiple files, the file where the

construct started is considered.

P lval: Represents the subset of Verilog expressions that can appear on the left

hand side of an assignment.

43

Figure B.1: Class diagram for parser datastructure

P event expr: Represents an expression that represents an event in Verilog.

P delay: Represents various kinds of delay specification.

P id range: Represents a Verilog identifier, along with an associated range, if any.

P range or type: Represents the possible return values of a Verilog function.

P range: Represents the lower and upper limits of Verilog range.

P port: Represents Verilog ports for modules, tasks and functions.

P port connect: Represents the arguments passed while module instantiation

that connects to the ports.

P module prim inst list: Represents a list of module or UDP instantiation.

P module prim inst: Represents a single module or UDP instantiation.

P prim entry: Represents a single entry in a UDP table.

P gate inst list: Represents a list of Verilog gate instantiation.

P gate inst: Represents a single Verilog gate instantiation.

44

Declaration classes

The P decl is a generic class for Verilog declaration. The declaration class (P decl)

is extended by a number of classes (figure B.2), each subclass representing a kind of

Verilog declaration. A brief description of the various declaration classes is as follows.

Figure B.2: Class diagram for declarations in parser datastructure

P basicdecl: Represents a variable declaration with no range.

P rangedecl: Represents a variable declaration with range.

P paramdecl: Represents a parameter variable declaration.

P netdecl: Represents declaration of a Verilog net.

P cont assign: Represents a continuous assignment to a Verilog net.

P module: Represents declaration of a Verilog module.

P primitive: Represents declaration of a Verilog User Defined Primitive(UDP).

P function: Represents declaration of Verilog function.

P task: Represents declaration of Verilog task.

45

Statement classes

The statement class (P stmt) is inherited by a number of other classes, each subclass

representing a kind of Verilog statement. Figure B.3 depicts the dependencies among

the statement classes.

Figure B.3: Class diagram for statements in parser datastructure

A brief description of the various statement classes is as follows.

P proc stmt: Represents the Verilog initial and always blocks.

P begin end stmt: Represents the Verilog sequential (being-end) block.

P if else stmt: Represents the Verilog if-else statement.

P case stmt: Represents the Verilog case statement.

P forever stmt: Represents the Verilog forever loop.

46

P repeat stmt: Represents the Verilog repeat loop.

P while stmt: Represents the Verilog while loop.

P for stmt: Represents the Verilog for loop.

P delay control stmt: Represents a generic Verilog statement with a delay

control.

P event control stmt: Represents a generic Verilog statement with a delay

control.

P assign stmt: Represents the Verilog assignment statement.

P wait stmt: Represents the Verilog wait statement.

P fork join stmt: Represents the Verilog parallel (fork-join) block.

P task enable stmt: Represents the Verilog task enable statement.

P sys task enable stmt: Represents the Verilog system task call statement.

P disable stmt: Represents the Verilog task disable statement.

P deassign stmt: Represents the Verilog deassign statement.

P release stmt: Represents the Verilog release statement.

P send event stmt: Represents the Verilog raise event statement.

All classes except the P module prim inst list and P gate inst list classes have an

equivalent AST class, with a name starting with a S instead of a P .

47

Appendix C

Utility Classes

The util module implements various general purpose data structures. The important

ones are as follows.

C.1 list class

This is an implementation of a doubly linked list. Looking, adding and removing

elements from both start and end have constant time complexity. Other operations

have linear time complexity.

Members

• first: Points to the first element of list.

• last: Points to the last element of list.

• length: The number of elements in the list.

Functions

• first element: Returns the first item in the list.

• last element: Returns the last item in the list.

48

• add to start: Adds an element or another list to the start of list.

• add to end: Adds an element or another list to the end of list.

• remove from start: Removes and returns the first element in the list.

• remove from end: Removes and returns the last element in the list.

• remove: If the argument exists in the list, it is removed.

• replace: If the first argument exist in the list, it is replaced by the second

argument. If multiple occurrences exist in the list, only the first occurrence

would get replaced. Boolean value true is returned to indicate if the replacement

was successfully done. A false value indicates that the element was not found

in the list.

• contains: Checks if the argument exists in the list.

C.2 list iterator class

This class is used to iterate over all elements in a list, without affecting it. The

iterator becomes unpredictable if the list changes during iteration.

Members

• l: The list being traversed.

• handle: A pointer to the next element to be returned.

• remain: The number of elements left to be traversed.

Functions

• has more items: Returns true if there are more elements to be traversed.

• next item: Returns the next item.

49

C.3 stack class

The stack class implementation uses the list class internally. All operations listed

below have a constant time complexity.

Members

• stk: A pointer to the list object that holds the stack elements.

Functions

• push: Push an element into the stack

• pop: Removes and returns an element from top of stack

• top: Returns the element on top of stack. Same as a pop followed by a push.

It is the same as a peak operation.

• depth: Returns the number of elements in the stack.

• empty: Returns true is the stack is empty, false otherwise.

C.4 stable class

The stable (Symbol Table) class implements a simple hash table. Lookup, insert and

remove operations have on an average constant time complexity.

Members

• hash: A function pointer to the function used to compute hash values of a key.

• compare: A function pointer to the function used to compute two keys for

equality.

• bins: A pointer to an array of bins that hold the records.

• num bins: Number of bins currently allocated.

50

• num entries: Number of entries in the table.

• max density: The average number of records in each bin when an addition

causes the hash table to be rehashed to a larger table.

• reorder flag: If this flag is true, a record access will cause the accessed element

to be bumped to head of its bin.

• grow factor: The number of times the capacity of hash table grows when it

is almost full.

Functions

• lookup: Returns true if the element is contained in the table.

• insert: Inserts a key along with a record.

• remove: Removes the element, if present.

C.5 stable iterator class

This class is used to iterate over all elements in a symbol table, without affecting it.

The iterator becomes unpredictable if the symbol table changes during iteration.

Members

• table: A pointer to the symbol table being iterated over.

• index: Index of the bin till which point the table has been traversed.

• empty: Pointer to the element in a bin till which point the table has been

traversed.

Functions

• next: Returns the next element in the symbol table, NULL if no more element

is present.

51

C.6 set class

This implementation of a set uses the stack class internally. Add, remove and find

operations have a constant time complexity, on an average.

Members

• s: A pointer to the symbol table that holds the set elements.

Functions

• add: Add an element to the set.

• remove: Remove the argument from the set, if present.

• find: Returns true is the argument exists in the set.

C.7 Integer struct

The structure represents a Verilog variable. It can be used to save numbers of

arbitrary width.

Members

• bitcount: The number of valid bits in the number.

• data[]: An array of C unsigned long, used to hold the data part of the number.

• xz[]: An array of C unsigned long, used as a vector to mark bits that are X or

Z.

The following table explains how the value of a Verilog bit is interpreted in this

datastructure.

52

Bit in xz Bit in data Verilog bit

0 0 0

0 1 1

1 0 x

1 1 z

C.8 Integer library

This library provides functions to manage the Integer struct described in appendix

Functions

• newInteger: Returns a new Integer with value 0.

• fromInteger: Returns a new Integer which is a copy of the argument.

• fromString: Returns a new Integer with value obtained from the string

argument.

• fromLong: Returns a new Integer with value obtained from the C long

argument.

• fromUlong: Returns a new Integer with value obtained from the C unsigned

long argument.

• fromInt: Returns a new Integer with value obtained from the C int argument.

• fromUint: Returns a new Integer with value obtained from the C unsigned int

argument.

• copy: Copies the second Integer argument to the first Integer argument.

• copyLong: Copies the second long argument to the first Integer argument.

• bitSelect: Copies a part of the first Integer argument to the second Integer

argument.

• logicalNot: Invert the logical value in the argument.

53

• arithmeticNot: Performs a bitwise inversion on the argument (Each 0 bit is

changed to 1, and each 1 bit is changed to 0).

• neg: Invert the arithmetic sign of the argument.

• shiftLeft: Perform a left shift operation on the argument.

• shiftRight: Perform a right shift operation on the argument.

• getLong: Returns a C long if the argument value can fit in it. Returned value

is inaccurate otherwise.

• toString: Converts the Integer argument to a string.

• isZero: Returns true if the argument is zero.

• isNegative: Returns true if the argument is negative.

• isPositive: Returns true if the argument is positive.

• hasXZ: Returns true if the argument is contains at least one bit that is either

X or Z.

• equal2: Checks two numbers for equality(Verilog == operator).

• equal3: Checks two numbers for case equality(Verilog === operator).

• add: Perform arithmetic addition on two number(Verilog + operator).

• sub: Perform arithmetic substraction on two number(Verilog − operator).

• mul: Perform arithmetic multiplication on two number(Verilog ∗ operator).

• divide: Perform arithmetic division on two number(Verilog / operator).

• mod: Find the arithmetic mod on two number(Verilog % operator).

• exponent: Find the value of first argument multiplied to itself second argument

number of times(Verilog ** operator).

• unaryNeg: Finds the arithmetic negation of a number(Verilog − operator).

• unaryNot: Finds the logical negation of a number(Verilog ! operator).

• unaryCompliment: Finds the bitwise negation of a number(Verilog ∼

operator).

• unaryAnd: Finds the AND reduction of the number(Verilog & operator).

54

• unaryOr: Finds the OR reduction of the number(Verilog | operator).

• unaryNand: Finds the NAND reduction of the number(Verilog ∼ & operator).

• unaryNor: Finds the NOR reduction of the number(Verilog ∼ | operator).

• unaryXor: Finds the XOR reduction of the number(Verilog ∧ operator).

• unaryXnor: Finds the XNOR reduction of the number(Verilog ∧ ∼ or ∼ ∧

operator).

• logicalAnd: Finds the logical AND of two numbers(Verilog && operator).

• logicalOr: Finds the logical OR of two numbers(Verilog || operator).

• bitwiseAnd: Finds the bitwise AND of two numbers(Verilog & operator).

• bitwiseNand: Finds the bitwise NAND of two numbers(Verilog ∼ & operator).

• bitwiseOr: Finds the bitwise OR of two numbers(Verilog | operator).

• bitwiseNor: Finds the bitwise NOR of two numbers(Verilog ∼ | operator).

• bitwiseXor: Finds the bitwise XOR of two numbers(Verilog ∧ operator).

• bitwiseXnor: Finds the bitwise XNOR of two numbers(Verilog ∧ ∼ or ∼ ∧

operator).

• lessThan: Finds whether the first argument is less than the second argu-

ment(Verilog < operator).

• lessThanEqual: Finds whether the first argument is less than or equal to the

second argument(Verilog <= operator).

• greaterThan: Finds whether the first argument is greater than the second

argument(Verilog > operator).

• greaterThanEqual: Finds whether the first argument is greater than the

second argument(Verilog >= operator).

• leftShiftUnsigned: Treats the first argument as an unsigned number and

performs a left shift operation on it. The second argument give the shift count.

The result is put into the third argument(Verilog << operator).

55

• leftShiftSigned: Treats the first argument as a signed number and performs a

left shift operation on it. The second argument give the shift count. The result

is put into the third argument(Verilog <<< operator).

• rightShiftUnsigned: Treats the first argument as an unsigned number and

performs a right shift operation on it. The second argument give the shift count.

The result is put into the third argument(Verilog >> operator).

• rightShiftSigned: Treats the first argument as a signed number and performs

a right shift operation on it. The second argument give the shift count. The

result is put into the third argument(Verilog >>> operator).

56

Appendix D

Using the Verilog-to-C-compiler

Following is a brief description of the usage scenario for Verilog-to-C-compiler .

vl2c [-d] [-o <output file>] [-t <top module name>] [-nomain]

<input files>

−d Debug mode, causes parser and

semantic tree intermediates to be

dumped

−t top module name Overrides heuristic to find out top

module. Mandatory when a unique top

module can not be determined

−nomain Instead of the main function, a simple

function with name same as top module

is generated

−o output file Compiler output gets saved to the out-

put file. Otherwise, the name of the

first input file is used.

input files A list of files that are to be compiled

To compile the generated C code, use the following command:
$ gcc -lm -linteger [-L <path/to/integer library>] [-I

<path/to/util/headers>] [<c wrapper file.c>] [-o <output filename>]

[-o3] <generated file.c>

57

If the Integer library is installed to some system directory (use make install to do

this), the -L and -I options can be avoided.

To execute the compiled binary for the simulator (The first step can be ignored if

the integers library exists in the path):

$ export LD LIBRARY PATH = path/to/integer/library

$./output filename

58

