
Death Threshold of L2 Cache Block Classes in CHAR Algorithms
Tuning Suggestions

Mainak Chaudhuri
Department of Computer Science and Engineering

Indian Institute of Technology
Kanpur 208016

INDIA
mainakc@cse.iitk.ac.in

Date: 2nd October, 2012

This brief note should be read in conjunction with the proposal on making replacement and bypass algo-
rithms for last-level caches (LLCs) hierarchy-aware [1]. That proposal introduced cache hierarchy-aware replace-
ment (CHAR) and bypass algorithms. One central parameter of these algorithms is the threshold applied to the
reuse probability (or hit rate) in a class of cache blocks to decide if the class of blocks is dead. Such blocks can
be replaced early in an inclusive LLC or bypassed in an exclusive LLC. A dynamic algorithm for determining this
threshold t is discussed and evaluated in [1]. This algorithm chooses t such that blocks from classes with hit rates
below the prevailing baseline hit rate would be identified as dead. An implementable approximate version of this
algorithm is discussed in [1] and reproduced in Equation (1) below.

t =


1/16 if E4 ≤ NE/8
1/8 if NE/8 < E4 ≤ NE/4
1/4 if NE/4 < E4 ≤ NE/2
1/2 if E4 > NE/2

(1)

NE maintains the total number of L2 cache evictions mapping to the LLC sample sets. E4 maintains the number
of L2 cache evictions of blocks belonging to class C4. It is possible to replace such a dynamic value of t by a static
predetermined constant t.

Figure 1 compares the dynamic algorithm with a number of static t values (1/2, 1/4, 1/8, 1/16, and 1/32) for
one hundred four-way multi-programmed workloads with hardware prefetcher enabled (see [1] for configuration
details). For both inclusive and exclusive LLCs, the baseline is an inclusive LLC implementing the SRRIP re-
placement policy [2]. As can be seen, the dynamic policy delivers performance better than static t = 1/2 but
worse than t = 1/4, 1/8, 1/16, 1/32 for our choice of workloads. While our dynamic algorithm tries to eliminate
blocks from classes with hit rates below the prevailing baseline hit rate, for certain workload classes t = 1/2 can
be very aggressive, as can be seen from the static t = 1/2 results.

One possible tuning technique for the dynamic algorithm would be to choose t such that it eliminates blocks
from classes with hit rates below, say, 1/2kth of the prevailing baseline hit rate. This would lead to the following
approximate algorithm.

t =


1/(16 ∗ 2k) if E4 ≤ NE/8
1/(8 ∗ 2k) if NE/8 < E4 ≤ NE/4
1/(4 ∗ 2k) if NE/4 < E4 ≤ NE/2
1/(2 ∗ 2k) if E4 > NE/2

(2)

Therefore, k = 1 would result in t values ranging from 1/4 to 1/32, while k = 2 would lead to t values in the
range 1/8 to 1/64. The value k = 0 corresponds to the dynamic algorithm discussed in [1].

1



Inclusive LLC Exclusive LLC
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t 
o
f 
C

H
A

R

Dynamic
1/2
1/4
1/8
1/16
1/32

Figure 1. Normalized throughput comparison for static and dynamic t on one hundred four-way multi-programmed
workloads with hardware prefetcher enabled.

Since too small a value of t may lead to lost opportunities and too large a value may lead to loss in performance
due to aggressive death prediction, another alternative approach to tuning the dynamic algorithm would involve
fixing a minimum and a maximum allowable t value, say, tmin and tmax, respectively. Next, we take Equation (2)
and choose k such that tmin equals 1/(16 ∗ 2k), i.e., the minimum value of t in Equation (2). Finally, we merge all
the ranges in Equation (2) that have values of t more than tmax with the range that has value tmax. As an example,
suppose tmax is 1/8 and tmin is 1/32. This leads to k = 1 and the following dynamic algorithm.

t =


1/32 if E4 ≤ NE/8
1/16 if NE/8 < E4 ≤ NE/4
1/8 if E4 > NE/4

(3)

Similarly, if we set tmax to 1/8 and tmin to 1/16, we get the following dynamic algorithm.

t =

{
1/16 if E4 ≤ NE/8
1/8 if E4 > NE/8

(4)

In summary, when choosing a value of t it should be kept in mind that too small a value may lead to performance
close to the baseline due to lost opportunities, while too large a value may lead to loss in performance due to
aggressive death prediction. In general, we have found that a small conservative static value of t works well e.g.,
t = 1/8, 1/16. However, a well-tuned dynamic algorithm may be desirable so that the CHAR policy can adapt to
varying workload characteristics. In this brief note, we have proposed a couple of tuning strategies for choosing a
dynamic value of t.

References

[1] M. Chaudhuri et al. Introducing Hierarchy-awareness in Replacement and Bypass Algorithms for Last-level
Caches. In Proceedings of the 21st IEEE/ACM International Conference on Parallel Architecture and Com-
pilation Techniques, pages 293–304, September 2012.

[2] A. Jaleel et al. High Performance Cache Replacement using Re-reference Interval Prediction (RRIP). In
Proceedings of the 37th International Symposium on Computer Architecture, pages 60–71, June 2010.

2


