
Introducing Hierarchy-awareness in Replacement and
Bypass Algorithms for Last-level Caches

Mainak Chaudhuri
Indian Institute of Technology

Kanpur 208016, INDIA
mainakc@iitk.ac.in

Jayesh Gaur
Intel Architecture Group

Bangalore 560103, INDIA

jayesh.gaur@intel.com

Nithiyanandan Bashyam
Intel Architecture Group

Bangalore 560103, INDIA

nithiyanandan.bashyam@intel.com

Sreenivas Subramoney
Intel Architecture Group

Bangalore 560103, INDIA

sreenivas.subramoney@intel.com

Joseph Nuzman
Intel Architecture Group
Haifa 31015, ISRAEL

joseph.nuzman@intel.com

ABSTRACT
The replacement policies for the last-level caches (LLCs) are
usually designed based on the access information available lo-
cally at the LLC. These policies are inherently sub-optimal
due to lack of information about the activities in the inner-
levels of the hierarchy. This paper introduces cache hierarchy-
aware replacement (CHAR) algorithms for inclusive LLCs (or
L3 caches) and applies the same algorithms to implement ef-
ficient bypass techniques for exclusive LLCs in a three-level
hierarchy. In a hierarchy with an inclusive LLC, these algo-
rithms mine the L2 cache eviction stream and decide if a block
evicted from the L2 cache should be made a victim candidate
in the LLC based on the access pattern of the evicted block.
Ours is the first proposal that explores the possibility of using
a subset of L2 cache eviction hints to improve the replacement
algorithms of an inclusive LLC. The CHAR algorithm classi-
fies the blocks residing in the L2 cache based on their reuse
patterns and dynamically estimates the reuse probability of
each class of blocks to generate selective replacement hints
to the LLC. Compared to the static re-reference interval pre-
diction (SRRIP) policy, our proposal offers an average reduc-
tion of 10.9% in LLC misses and an average improvement of
3.8% in instructions retired per cycle (IPC) for twelve single-
threaded applications. The corresponding reduction in LLC
misses for one hundred 4-way multi-programmed workloads is
6.8% leading to an average improvement of 3.9% in through-
put. Finally, our proposal achieves an 11.1% reduction in
LLC misses and a 4.2% reduction in parallel execution cycles
for six 8-way threaded shared memory applications compared
to the SRRIP policy.

In a cache hierarchy with an exclusive LLC, our CHAR
proposal offers an effective algorithm for selecting the subset
of blocks (clean or dirty) evicted from the L2 cache that need
not be written to the LLC and can be bypassed. Compared to
the TC-AGE policy (analogue of SRRIP for exclusive LLC),
our best exclusive LLC proposal improves average throughput
by 3.2% while saving an average of 66.6% of data transactions
from the L2 cache to the on-die interconnect for one hundred
4-way multi-programmed workloads. Compared to an inclu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

sive LLC design with an identical hierarchy, this corresponds
to an average throughput improvement of 8.2% with only 17%
more data write transactions originating from the L2 cache.

Categories and Subject Descriptors
B.3 [Memory Structures]: Design Styles

General Terms
Algorithms, design, measurement, performance

Keywords
Last-level caches, replacement policy, bypass algorithm

1. INTRODUCTION
The replacement policy for a particular level of a cache

hierarchy is usually designed based on the access informa-
tion (frequency, recency, etc.) available only at that level of
the hierarchy. Such a level-centric design methodology for
the last-level cache (LLC) fails to incorporate two important
pieces of information. First, the reuses taking place in the
inner-levels of a hierarchy are not propagated to the LLC.
Past research showed that propagating even a small fraction
of these reuses to the LLC can significantly increase the traf-
fic in the on-die interconnect [7]. Second, the clean evictions
from the inner-levels are usually not propagated to the LLC
in an inclusive or a non-inclusive/non-exclusive hierarchy.

This paper, for the first time, studies the possibility of us-
ing an appropriately chosen subset of L2 cache evictions as
hints for improving the replacement algorithms of an inclu-
sive LLC (or L3 cache) in a three-level hierarchy. The central
idea is that when the L2 cache residency of a block comes to
an end, one can estimate its future liveness based on its reuse
pattern observed during its residency in the L2 cache. Partic-
ularly, if we can deduce that the next reuse distance of such
a block is significantly beyond the LLC reach, we can notify
the LLC that this block should be marked a potential victim
candidate in the LLC. An early eviction of such a block can
help retain more blocks in the LLC with relatively shorter
reuse distances. In a hierarchy with an exclusive LLC, this
liveness information can be used to decide the subset of the
L2 cache evictions that need not be allocated in the LLC.

To estimate the merit of making an inclusive LLC aware of
the L2 cache evictions, we conduct an oracle-assisted experi-
ment where the LLC runs the two-bit SRRIP policy [8] (this
is our baseline in this paper). The two-bit SRRIP policy
fills a block into the LLC with a re-reference prediction value
(RRPV) of two and promotes it to RRPV of zero on a hit.
A block with RRPV three (i.e., large re-reference distance) is
chosen as the victim in a set. If none exists, the RRPVs of all

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 L
LC

 m
is

s
co

un
t

SRRIP−evict−oracle
Belady

172.m
grid

173.a
pplu

179.a
rt

183.e
quake

254.g
ap

401.b
zi

p2

403.g
cc

429.m
cf

456.h
m

m
er

462.li
bq

464.h
264re

f

482.s
phin

x3
AVG

Figure 1: Number of LLC misses with oracle-assisted
LLC replacement policies normalized to baseline SRRIP
in an inclusive LLC.

the blocks in the set are increased in steps of one until a block
with RRPV three is found. Ties are broken by victimizing the
block with the least physical way id.1 In our oracle-assisted
experiment, on an L2 cache eviction of a data block2, a next
forward use distance oracle determines the relative order be-
tween the next forward use distances of the evicted block and
the current SRRIP victim in the LLC set where the L2 cache
victim belongs to. If the next forward use distance of the
L2 cache victim is bigger, it is marked a potential victim by
changing its RRPV to three in the LLC.

The left bar in each group of Figure 1 shows the number
of LLC misses of this oracle-assisted policy normalized to the
baseline SRRIP. The bar on the right in each group shows
the number of LLC misses in Belady’s optimal algorithm [1,
20] normalized to the baseline. These experiments are carried
out on an offline cache hierarchy simulator that takes as in-
put the entire L2 cache access trace of twelve single-threaded
applications drawn from SPEC 2000 and SPEC 2006 suites.
The L2 cache access trace of each application is collected for a
representative set of one billion dynamic instructions chosen
using the SimPoint toolset [22]. The cache hierarchy consists
of 32 KB 8-way L1 instruction and data caches, a 256 KB
8-way L2 cache, and a 2 MB 16-way inclusive LLC. The L1
and L2 caches implement LRU replacement policy. Overall,
Belady’s optimal policy saves 28.5% of the LLC misses (refer
to the AVG group), while the oracle-assisted SRRIP policy
with L2 cache eviction hints can save about 17% of the base-
line LLC misses. As a result, this policy can bridge close to
two-third of the gap between Belady’s optimal and the base-
line SRRIP. Of course, this potential can be realized only if
we can accurately learn which L2 cache evictions should be
used to update the RRPV rank in the target LLC set and the
solution to this problem forms the crux of our proposal.

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 d
ea

d
L2

 c
ac

he
 e

vi
ct

io
ns

172.m
grid

173.a
pplu

179.a
rt

183.e
quake

254.g
ap

401.b
zi

p2

403.g
cc

429.m
cf

456.h
m

m
er

462.li
bq

464.h
264re

f

482.s
phin

x3
AVG

Figure 2: L2 cache evictions that are not recalled from
the LLC in baseline SRRIP policy.

To further justify the data in Figure 1, we show in Figure 2
the percentage of blocks evicted from the L2 cache that are
never recalled by the core from the time they are evicted from
the L2 cache until they are evicted from the LLC. These data
show that almost 60% of the blocks evicted from the L2 cache
turn out to be dead in the LLC (refer to the AVG group).
Such a block could be marked a potential LLC replacement
candidate at the time it is evicted from the L2 cache provided
we can separate it from the live blocks. Early replacement of
such dead blocks can improve performance if the application
has a good number of live blocks that can now stay longer in
the LLC and enjoy additional reuses.

1 SRRIP is known to outperform NRU and LRU [8].
2 We do not apply our policy proposal to instruction blocks.

The fact that 60% of the L2 cache evictions are dead cor-
responds well with the already known fact that the blocks
brought into the LLC have low use counts [21]. For the data
in Figure 2, the average use count per LLC block is about
1.67 (reciprocal of dead percentage). In summary, the L2
cache eviction stream is rich in information regarding live-
ness of the cache blocks. Accurate separation of the live blocks
from the dead ones in the L2 cache eviction stream can bridge
a significant portion of the gap between the baseline and the
optimal replacement policy for the LLC.

In Section 2, we present our cache hierarchy-aware replace-
ment (CHAR) algorithms for inclusive LLCs. Figure 3 shows
a high-level implementation of our CHAR algorithm for inclu-
sive LLCs. The dead hint detector hardware is part of the L2
cache controller. It consumes the L2 cache eviction stream
and identifies the eviction addresses that should be sent to
the LLC as dead hints. As usual, it sends all dirty evictions
to the LLC, some of which may be marked as dead hints. We
note that the general framework of CHAR algorithms is not
tied to any specific LLC replacement policy.

Section 2 also discusses how our CHAR proposal seamlessly
applies to exclusive LLCs as well. In such designs, we use the
dead hints to decide which blocks evicted from the L2 cache
can be bypassed and need not be allocated in the exclusive
LLC (blocks are allocated and written to an exclusive LLC
when they are evicted from the L2 cache). This leads to
bandwidth saving in the on-die interconnect and effective ca-
pacity allocation in the LLC. Further, we show that simple
variants of our CHAR proposal can be used to dynamically
decide if a block should be cached in exclusive mode or non-
inclusive/non-exclusive mode in the LLC. The former mode
optimizes the effective on-die cache capacity, while the latter
trades cache capacity for on-die interconnect bandwidth by
tolerating controlled amount of duplication of contents be-
tween the LLC and the L2 cache.

Update

victim rank
L2 cache

Eviction detector
Dead hint interconnect

L2−LLC

Subset of
L2 evictions

LLC

Figure 3: Implementation of CHAR algorithm.

Our execution-driven simulation methodology and results
for single-threaded, multi-programmed, and shared memory
parallel workloads are discussed in Sections 3 and 4. For in-
clusive LLCs, CHAR achieves 10.9%, 6.8%, and 11.1% reduc-
tions in LLC misses respectively for these workload classes
compared to the baseline SRRIP policy. This leads to an
average IPC improvement of 3.8% for the single-threaded ap-
plications, an average throughput improvement of 3.9% for
the multi-programmed workloads, and an average reduction
of 4.2% in parallel execution cycles for the shared memory
applications. For exclusive LLCs, the best CHAR proposal
achieves an average throughput improvement of 3.2% com-
pared to the two-bit TC-AGE baseline (analogue of SRRIP
for exclusive LLC) [5] while saving 66.6% data write trans-
actions from the L2 cache to the on-die interconnect for the
multi-programmed workloads.

1.1 Related Work
A large body of research work exists in the domain of re-

placement policies for inclusive LLCs. However, almost all of
these consider the LLC in isolation and design the algorithms
based on information available locally at the LLC. Only a few
published studies explore hierarchy-aware (sometimes called
global) replacement policies for inclusive LLCs. The first such
study explored a number of global replacement policies where
different types of access hints from the inner-level are sent to
the LLC [26]. It showed that the advantage of such global
schemes is limited to specific scenarios. A subsequent study
further analyzes the limited utility of access hint-based global
replacement schemes using a reuse distance argument [4].

A recent work shows that inner-level access hints can im-
prove performance of an inclusive LLC significantly for a se-
lected set of multi-programmed workloads if the on-die inter-
connect bandwidth is not a constraint [7]. This study also pro-
poses two techniques, namely, early core invalidation (ECI)
and query-based selection (QBS) to infer the temporal local-
ity of inner-level accesses without sending access hints to the
LLC. At the time of an LLC eviction, ECI invalidates the next
LLC victim block from the L1 and L2 caches so that the LLC
can observe any short-term temporal locality of this block be-
fore it is evicted from the LLC. QBS probes the L1 and L2
caches when an eviction decision is taken in the LLC to in-
fer the usefulness of the current LLC victim and accordingly
modifies the selection of LLC victims. In all the inclusive
LLC configurations used in this paper, we keep the inclusion
overhead low by maintaining an 8:1 capacity ratio between
the LLC and the L2 cache [7], thereby eliminating most of
the negative effects of inclusion victims. A recent work [27]
explores an orthogonal dimension of the problem by propos-
ing global cache management schemes to decide which level
of the hierarchy in a two-level cache an incoming block should
be placed in. Our proposal significantly differs from all these
existing proposals. Our policy learns to identify a subset of
blocks evicted from the L2 cache that can be made potential
victim candidates in the LLC.

Our proposal shares some similarities with the dead block
predictors. The existing dead block predictors predict the last
access or the last burst of accesses to a block [6, 12, 13, 14,
16, 18]. These predictors usually require partial or full pro-
gram counters (PC) to construct the necessary correlations
with liveness of cache blocks. A recent work constructs a
PC-less dead-on-fill predictor for use in cache bypassing by
dynamically segmenting the LLC between referenced and not
referenced blocks [11]. PC-less light-weight dead block pre-
dictors exploiting the fill order of LLC blocks have also been
proposed [2]. Our basic CHAR proposal infers the death of
an LLC block at the time it is evicted from the L2 cache and
does not rely on program counter information. We briefly
explore how to extend this basic CHAR design to take into
account PC-based correlations.

Our proposal relies on estimation of reuse distance pat-
terns in the L2 cache eviction stream. L2 cache eviction pat-
terns have been used to arrive at bypass decisions and assign
insertion ages to the non-bypassed blocks in the context of
exclusive L3 caches [5]. LLC insertion and replacement poli-
cies based on static and dynamic re-reference interval pre-
diction (SRRIP and DRRIP) have been explored [8]. A re-
cent proposal improves the re-reference interval prediction of
RRIP by exploiting LLC fill PC signatures (SHiP-PC), mem-
ory region signatures (SHiP-Mem), and instruction trace sig-
natures (SHiP-ISeq) [24]. Another recent work shows how to
extend RRIP to manage LLCs shared between CPU work-
loads and GPGPU workloads in a CPU-GPU heterogeneous
environment [17]. Further, the PACMan family of policies
is shown to outperform the RRIP policy in the presence of
hardware prefetching by judicious design of RRPV insertion
and update algorithms for prefetch fills and prefetch hits [25].
Prediction of reuse distances or next-use distances by corre-
lating with program counters has also been studied [10, 19].

A recent proposal explores a set dueling-based solution to
deliver performance close to an exclusive LLC while saving
on-die interconnect bandwidth by dynamically switching the
entire LLC between non-inclusive/non-exclusive and exclusive
modes based on the outcome of the duel [23]. We show that
our best CHAR proposal for exclusive LLC can dynamically
decide the caching modes of different classes of blocks in the
LLC at a fine grain.

2. CHAR ALGORITHMS
This section details our proposal on cache hierarchy-aware

replacement (CHAR). The high-level flow diagram of CHAR

is shown in Figure 3. Section 2.1 presents the design of the
dead hint detector that identifies dead blocks in the L2 cache
eviction stream in the context of an inclusive LLC. Section 2.2
explores the relationship of this design with PC-based dead
block predictors. In Section 2.3, we discuss how the same
dead hint detector design can be used in the context of an
exclusive LLC.

2.1 Dead Hint Detector
The dead hint detector relies on the reuse behavior experi-

enced by the blocks residing in the L2 cache to decide whether
a block is likely to be recalled in future from the LLC after it
is evicted from the L2 cache. To better learn a summary of
this reuse behavior, we classify an L2 cache block (data block
only) into one of five categories at the time of its eviction from
the L2 cache. Such a classification is expected to separate the
blocks with different liveness/death patterns.

2.1.1 Classification of L2 Cache Blocks
The classification of the L2 cache blocks is based on an

approximate estimation of reuse distances inferred from their
L2 cache usage patterns. This classification is invoked when
a block is evicted from the L2 cache. The following four at-
tributes (A0, . . . , A3) are used to classify an L2 cache block.

• (A0) The type of the request that filled the block in the
L2 cache (prefetch or demand).

• (A1) The request that filled the block in the L2 cache
was a hit or a miss in the LLC.

• (A2) Number of demand uses (including the fill if it was
a demand fill) enjoyed by the block during its residency
in the L2 cache.

• (A3) The L2 state of the block when it is evicted from
the L2 cache.

Table 1 summarizes the class definitions, while Figure 4 shows
how a block can transition from one class membership to an-
other during its residency in the L2 cache. For example, a
block belongs to C0 if a) it is filled into the L2 cache by a
prefetch request that misses in the LLC, b) it fails to expe-
rience any demand hit during its residency in the L2 cache,
and c) it is evicted from the L2 cache in a clean state (E or
S in a MESI protocol). On the other hand, a block is cat-
egorized as a C2 block if a) it is filled into the L2 cache by
a prefetch or a demand request that misses in the LLC, b)
it enjoys exactly one demand use during its residency in the
L2 cache (if it was filled by a demand request, it does not
experience any demand hit), and c) it is evicted from the L2
cache in modified state.

Table 1: L2 cache block classification

Class A0 A1 A2 A3

C0 Prefetch Miss 0 E/S
C1 X Miss 1 E/S
C2 X Miss 1 M
C3 X Miss ≥ 2 X
C4 X Hit X X

The C0 class is relevant only if a hardware prefetcher is
turned on and this class separates the potential premature or
incorrect prefetches from rest of the blocks.3 The remaining
four classes separate the L2 cache blocks into different reuse
distance bins. Beyond the L1 cache hits, a C1 block is ex-
pected to have most of its natural reuse distances bigger than
the reach of the L2 cache, since it fails to experience any de-
mand hits while residing in the L2 cache. The C2 blocks are

3 In our simulation model, the prefetched blocks are brought
into the LLC and the L2 cache, but not into the L1 cache.

similar to the C1 blocks, except that the former class is mod-
ified and the latter is clean. We find that in several applica-
tions, separation of C1 blocks from the C2 blocks improves the
identification of dead blocks in the L2 cache eviction stream.
The C3 blocks are likely to have a reuse cluster falling within
the reach of the L2 cache. Finally, the C4 blocks are likely to
have a reuse cluster within the LLC reach.

C0 C1

C2C3

Prefetch fill (LLC miss) Demand fill (LLC miss)

Demand hit in L2

Demand hit in L2

Demand hit in L2

writeback
L1 cache

Any L2
access

C4

(LLC hit)
Demand or prefetch fill

Any L2
access

Figure 4: State transitions among the classes of the L2
cache blocks.

Our classification of the L2 cache blocks is inspired by
the classification based on trip count and use count of cache
blocks presented in an earlier study in the context of a cache
hierarchy with an exclusive LLC [5]. According to the termi-
nology used in that study, the set C0 ∪C1 ∪C2 ∪C3 contains
the zero trip count blocks i.e., the blocks that are filled in
the L2 cache for the first time during their residency in the
hierarchy. The C4 blocks have positive trip counts because
they are recalled at least once from the LLC. As a result, C4

is a subset of C0 ∪ C1 ∪ C2 ∪ C3.
Table 2 shows how our five classes of cache blocks can be en-

coded in the L2 cache with just two extra state bits (S1, S0)
per L2 cache block (as opposed to three bits per L2 cache
block in [5]). Figure 4, through the class transitions, unam-
biguously defines the state transitions of these two bits on
hits and writebacks to L2 cache blocks.4

Table 2: Class encoding in the L2 cache

State M State S1 State S0 Class

X 0 0 C0

0 0 1 C1

1 0 1 C2

X 1 0 C3

X 1 1 C4

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
d
e
a
d
 e

vi
ct

io
n
s

C
1

C
2

C
3

C
4

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
d
e
a
d
 e

vi
ct

io
n
s

C
1

C
2

C
3

C
4

17
2.

m
grid

17
3.

ap
plu

17
9.

ar
t

18
3.

eq
uak

e

25
4.

gap

40
1.

bzi
p2

40
3.

gcc

42
9.

m
cf

45
6.

hm
m

er

46
2.

lib
q

46
4.

h26
4r

ef

48
2.

sp
hin

x3

AVG

M
EDIA

N

Figure 5: Fraction of dead evictions in each L2 cache
block class.

Figure 5 quantifies the benefit of implementing the afore-
mentioned classification of the L2 cache blocks. It shows the
4 In our model, a block is filled into the L2 cache in either S
or E state and it can transition to M state only if the L1 data
cache writes the block back to the L2 cache.

fraction of dead L2 cache evictions in each class for the non-
prefetched baseline configuration on the single-threaded ap-
plications (32 KB 8-way LRU L1 caches, 256 KB 8-way LRU
L2 cache, 2 MB 16-way SRRIP LLC). Naturally, the C0 class
is non-existent in non-prefetched executions. Overall, the C1,
C2, and C3 classes have very high fractions of dead blocks,
while the C4 blocks are mostly live (see the average and me-
dian groups of bars). By looking at the average or median
data, one may be tempted to merge the C1, C2, and C3

classes, given that they behave similarly. However, since C4

is a subset of C1 ∪C2 ∪C3, it is necessary to use a finer-grain
partitioning of the set C1∪C2∪C3 to identify the blocks that
eventually get promoted to C4. Also, there are applications
where the C1, C2, and C3 classes behave very differently. For
example, in 172.mgrid, the likelihood of finding a dead block
in C1 evictions is below 0.5. The same is applicable to the C3

evictions of 401.bzip2. On the other hand, the C2 evictions
coming out of the L2 cache in 179.art are primarily live. As
a result, it is necessary to dynamically learn the reuse prob-
ability (same as live fraction) of each class of blocks evicted
from the L2 cache and based on these probabilities we need to
classify a block evicted from the L2 cache as dead or live. To
save hardware resources necessary for this learning, our dead
hint detector statically classifies all C4 evictions as live be-
cause dead blocks are usually a minority in the C4 class. The
learning algorithm for the remaining four classes (C0, . . . , C3)
is presented next.

2.1.2 Learning Dead Evictions
The goal of the learning algorithm is to estimate the reuse

probabilities of the L2 cache block classes. If the estimated
probability of a class falls below an appropriate threshold,
the blocks belonging to that class are identified as dead when
they are evicted from the L2 cache and this hint is propa-
gated to the LLC. To effectively learn these probabilities, each
class Ck (k ∈ {0, 1, 2, 3}) maintains two saturating counters,
namely, the eviction counter (Ek) and the live counter (Lk).
An eviction counter E4 is also maintained for class C4. All
these counters reside in the L2 cache controller. Further, six-
teen LLC sample sets per 1024 LLC sets are dedicated for
learning Ek and Lk. These LLC sample sets always execute
the baseline SRRIP replacement policy. The L2 cache con-
troller is made aware of the hash function for determining if
an L2 cache fill or eviction address maps to an LLC sample
set. Ek keeps track of the number of L2 cache evictions be-
longing to class Ck and mapping to the LLC sample sets. Lk

keeps track of which of these Ek evictions are recalled from
the LLC (these are the live evictions). The total number of
L2 cache evictions mapping to the LLC sample sets is main-
tained in a saturating counter NE residing in the L2 cache
controller.

Tables 3 and 4 show the actions of the L2 cache controller
on an eviction and a fill, respectively. These actions are in
addition to the usual ones such as sending a writeback to the
LLC on evicting a dirty block from the L2 cache, etc.. The L2
cache eviction actions depend on whether the evicted address
maps to an LLC sample set and the class of the evicted block.
The L2 cache fill actions depend on whether the filled address
maps to an LLC sample set and two attributes of the fill e.g.,
fill type (demand/prefetch) and hit/miss in the LLC. When
a block mapping to one of the LLC sample sets is evicted
from the L2 cache, its class id (k) and address (A) are sent
to the LLC. The LLC stores the class id with the block. This
storage is needed only for the sample sets in the LLC. The
LLC, on a hit to a block in one of the sample sets, sends two
pieces of additional information along with the fill message:
the last stored class id (k) of the block and one bit signifying
a hit in the LLC. This value of k is used to update Lk, as
shown in the first and third rows of Table 4.

From Tables 3 and 4, we conclude that the estimated reuse
probability of class Ck is Lk/Ek, which is the collective hit

Table 3: L2 cache block eviction flow (address A)

Class Maps to LLC sample set Does not map to LLC sample set

Ck, k ∈ {0, 1, 2, 3} Ek++, NE++, send A and k to LLC Invoke dead block detection algorithm
Ck, k = 4 E4++, NE++, send A and k to LLC —

Table 4: L2 cache block fill flow (last class id k, if hit in LLC sample set)

Fill attribute Maps to LLC sample set Does not map to LLC sample set

Demand hit in LLC Lk++ if k 6= 4, fill in L2 cache as C4 Fill in L2 cache as C4

Demand miss in LLC Fill in L2 cache as C1 Fill in L2 cache as C1

Prefetch hit in LLC Lk++ if k /∈ {0, 4}, fill in L2 cache as C4 Fill in L2 cache as C4

Prefetch miss in LLC Fill in L2 cache as C0 Fill in L2 cache as C0

rate of the blocks belonging to class Ck, as learned from the
LLC sample sets executing the baseline SRRIP policy. Notice,
however, that a prefetch fill in the L2 cache does not update
the live counter of C0, even if the filled block hits in an LLC
sample set (third row of Table 4). This is because such a block
was filled into the L2 cache last time by a prefetch request
and got evicted as a C0 block without experiencing a demand
hit. If this block is again prefetched into the L2 cache, we
speculate that this is likely to be a premature or incorrect
prefetch and do not update the live counter of C0.

Finally, we present our dead block detection algorithm.
This algorithm dynamically estimates an appropriate thresh-
old t such that if Lk/Ek < t or equivalently Lk < tEk,
we identify a block belonging to class Ck as dead when it
is evicted from the L2 cache. One reasonable choice for t
at any point in time during execution would be the baseline
hit rate of the LLC. Such a dynamic choice would guaran-
tee that if any class of blocks has hit rate lower than the
current baseline LLC hit rate, the blocks in that class would
be marked dead as and when they are evicted from the L2
cache. This algorithm would evict the less useful blocks from
the LLC early and create more space in the LLC for the blocks
that are contributing more heavily toward LLC hit rate. A
highly accurate online estimate of the baseline LLC hit rate
is E4/NE because E4 approximates the number of LLC hits
to the sampled sets and NE approximates the total number
of LLC accesses to the sampled sets.

To simplify the hardware, we approximate the E4/NE ra-
tio such that t turns out to be a reciprocal of power of two.
Therefore, we can synthesize Lk < tEk using a shifter and
a comparator. The approximation is done by dividing the
possible values of E4 into four ranges, namely, [0, NE/8],
(NE/8, NE/4], (NE/4, NE/2], and (NE/2, NE]. On each L2
cache eviction, we first determine the range the current value
of E4 falls in. If it falls in the lowermost range i.e., [0, NE/8],
we approximate it to half of the upper bound of the range. If
it falls in any of the remaining ranges, we approximate it to
the lower bound of the range, which is also half of the upper

bound of the range. Finally, we determine t as Ẽ4/NE where

Ẽ4 is the approximate value of E4. This leads to the following
definition of t.

t =

1/16 if E4 ≤ NE/8
1/8 if NE/8 < E4 ≤ NE/4
1/4 if NE/4 < E4 ≤ NE/2
1/2 if E4 > NE/2

(1)

The computation of t may require further tuning. For cer-
tain workload classes, t = 1/2 may turn out to be very ag-
gressive. In such situations, we recommend merging the last
two ranges in Equation (1) i.e., t = 1/4 if E4 > NE/4. Simi-
larly, the last three ranges can be merged, if necessary. Also,
a carefully chosen static value of t can offer reasonably good
performance. A static value of 1/8 achieves excellent perfor-
mance for our selection of workloads. In this study, we present
results assuming Equation (1) for computing t dynamically.

2.1.3 Few Implementation Details
The L2 cache, on evicting a data block, first queries the L1

data cache. If the query hits in the L1 data cache, the L1 data
cache retains the block (our L2 cache is non-inclusive/non-
exclusive of the L1 caches). Only those L2 cache data evic-
tions that do not hit in the L1 data cache are passed on
to the dead hint detector. The dead hint detector receives
the address and the class of each such L2 cache eviction. It
decides if the block is dead in the LLC by determining the
current value of t and applying the dead hint detection algo-
rithm (only for blocks not mapping to LLC sample sets). If
the block is identified as dead, its address is sent to the LLC
in a special dead hint message. The LLC, on receiving a dead
hint message, sets the RRPV of the block to three. It also
clears the bit position corresponding to the evicting core in
the coherence bitvector of the block, since neither L1 cache
nor L2 cache of the evicting core has the block. This saves
a future back-invalidation message.5 If the LLC receives an
eviction message from the L2 cache for a block mapping to
one of its sample sets, it stores the class id of the block found
in the eviction message.

The combined hardware overhead of our CHAR proposal
involves two extra state bits per L2 cache block, ten coun-
ters in the L2 cache controller (L0, . . . , L3, E0, . . ., E4, and
NE), negligible logic overhead to implement the additional ac-
tions in the L2 cache controller on eviction and fill (Tables 3
and 4), the logic of the dead hint detector in the L2 cache
controller, three extra bits per LLC block for the sample sets
to store class id, and handling of dead hints to non-sampled
sets and eviction messages to sampled sets in the LLC. Note
that our proposal does not involve any dynamic dueling be-
tween CHAR and baseline SRRIP policies, even though we
use a small number of sampled sets in the LLC to dynami-
cally learn the reuse behavior of the SRRIP policy. The Lk,
Ek, and NE counters are halved periodically whenever the
total number of L2 cache evictions mapping to the LLC sam-
pled sets reaches a value of 127. We also experimented with
halving intervals of 255, 1023, and 2047, but did not see any
significant swing in performance. With a halving interval of
127, we need eight bits for each of the ten counters and seven
bits for the counter that keeps track of the halving interval.

The CHAR algorithms seamlessly apply to multi-core sce-
narios without any change, since each core would have its own
CHAR hardware attached to its private L2 cache controller.
The sample sets in the shared LLC would be shared by all
the threads.

For shared memory programs, we do not apply CHAR to
the shared blocks, since the current proposal does not have
the global view necessary to detect the death of shared blocks.
We rely on the inclusive LLC for detecting the read-shared
and read/write-shared blocks. When a request from a core

5 We simulate a bitvector-based directory coherence protocol.
The L1 and L2 caches are private to each core and the LLC is
shared. Each LLC tag is extended to maintain the coherence
states and sharing bitvector in the inclusive LLC design.

hits in the LLC and the requested block is currently shared by
another core (as indicated by the sharing bitvector directory),
the LLC marks this block shared using an additional state bit
per LLC block. Once marked, this bit remains set until the
block is evicted from the LLC. Dead hints received for the
blocks with this bit set are ignored by the LLC. Also, as soon
as a block mapping to the LLC sample sets is identified as
shared, it is upgraded to class C4 in the LLC so that it does
not update the Lk counters of any of the sharing cores. This
policy will be referred to as CHAR-S.

2.1.4 Controlling Dead Hint Rate
Our dead hint generation algorithm tries to victimize the

blocks belonging to the classes that have collective hit rates
lower than the baseline LLC hit rate. However, there are sit-
uations where the overall baseline hit rate is reasonably high,
but some of the classes are undergoing a phase transition and
have low hit rates. The blocks belonging to these classes will
be reused in near-future if we can retain them. CHAR cannot
infer this by looking at the current hit rates of these classes
and can hurt performance by sending premature dead hints
to the LLC. The SPEC 2000 application 172.mgrid exhibits
a few such phases. To address this problem, we incorporate a
dead hint rate divider D with each core’s L2 cache controller
that sends out every Dth dead hint to the LLC. The value of
D is always a power of two, and ranges between one and 256,
inclusive. In all simulations, we initialize D to one. In the
following, we discuss how D is adjusted dynamically.

We ear-mark sixteen LLC sample sets (different from the
sixteen baseline samples) per 1024 LLC sets to monitor the
relative number of hits experienced by CHAR compared to
the baseline samples. This is done using a saturating counter
residing in the L2 cache controller. The counter is initialized
to the midpointM of the range of the counter e.g., M is 2n−1

for an n-bit counter. The counter is incremented whenever the
L2 cache receives a fill that hits in one of the CHAR sample
sets of the LLC. The counter is decremented whenever the
L2 cache receives a fill that hits in one of the baseline sample
sets of the LLC.

After every eight halving intervals, we check the status of
this counter. If the counter value is at least M+Tgb, we halve
D to double the dead hint rate because CHAR is performing
better than the baseline. Note, however, that the minimum
value of D is one. If the counter value is less than or equal
to M − T ′

gb, we quadruple D provided the LLC hit rate is at

least 3/8 i.e., E4 is at least NE/4+NE/8; otherwise, D is left
unchanged. The rationale is that we do not decrease the dead
hint rate if the baseline LLC hit rate is anyway small. Note
that this particular hit rate threshold (i.e., 3/8) may require
tuning depending on the workload set under consideration.
The guard-band thresholds, Tgb and T ′

gb, are used to avoid
potentially spurious adjustments in D and are set to 8 and 32
in this study. The dead hint rate division algorithm is con-
servative in the sense that it increases D much faster (though
with a bigger guard-band) than it decreases D so that the per-
formance penalty is low in the phases where CHAR becomes
too aggressive. In multi-core configurations, the CHAR sam-
ple sets in the shared LLC are shared by all the threads and
each private L2 cache controller maintains its own dead hint
rate divider. To implement this algorithm, we use a 16-bit
saturating counter for relative hit count monitoring (i.e., M
is set to 215) and a 9-bit dead hint rate divider.

2.2 Code Space Correlation and CHAR-PC
Past research on dead block predictors has established a

strong correlation between program counters (PCs) of the
load/store instructions and the death patterns of the data
blocks, as already discussed in Section 1.1. Figure 6 explores
the relationship between the program counters of the instruc-
tions that bring the blocks of different classes into the L2
cache in the baseline configuration (32 KB 8-way LRU L1

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
P

C
s

|PC
1
∩ PC

2
|/|PC

1
∪ PC

2
|

|PC
2
∩ PC

3
|/|PC

2
∪ PC

3
|

|PC
1
∩ PC

3
|/|PC

1
∪ PC

3
|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
P

C
s

|PC
1
∩ PC

2
|/|PC

1
∪ PC

2
|

|PC
2
∩ PC

3
|/|PC

2
∪ PC

3
|

|PC
1
∩ PC

3
|/|PC

1
∪ PC

3
|

17
2.

m
grid

17
3.

ap
plu

17
9.

ar
t

18
3.

eq
uak

e

25
4.

gap

40
1.

bzi
p2

40
3.

gcc

42
9.

m
cf

45
6.

hm
m

er

46
2.

lib
q

46
4.

h26
4r

ef

48
2.

sp
hin

x3

AVG

M
EDIA

N

Figure 6: Relationship between L2 cache block classes
and code space.

caches, 256 KB 8-way LRU L2 cache, and 2 MB 16-way SR-
RIP LLC) for the single-threaded programs with the hardware
prefetcher disabled. We focus only on the classes C1, C2, and
C3 that can source dead hints in a non-prefetched execution.
Let PCk be the set of program counters that cause the blocks,
which eventually get classified as Ck blocks, to be filled into
the L2 cache. Figure 6 shows |PCk ∩ PCk′ | as a fraction of
|PCk∪PCk′ | for all ordered pairs (k, k′) with k, k′ ∈ {1, 2, 3}.
It is very encouraging to find that the load/store instructions
that bring C1 blocks into the L2 cache overlap very little
with those that bring C2 and C3 blocks (see the average and
median groups). The implication is that our PC-less classifi-
cation of L2 cache blocks can effectively capture differing code
space signatures for the pairs (C1, C2) and (C1, C3). However,
the classes C2 and C3 share a sizable proportion of program
counters. Further examination of this behavior revealed that
the blocks that are written to and do not belong to C4 are
consumed in either near-future (C3) or far-future (C2). The
dirty C4 blocks have reuses in intermediate-future such that
the reuse distance is within the LLC reach. Therefore, we
conclude that our classification can successfully partition the
dirty cache blocks based on their next use distance, which the
code signature fails to do.

While our classification correlates well with code space sig-
natures, further improvements may be possible if we can split
a class of blocks based on L2 cache fill PCs. For example, sup-
pose the set PC1 has two program counters, say, PC11 and
PC12. The blocks filled into the L2 cache by the instruction
at PC11 may behave differently from those filled by the in-
struction at PC12. Clustering these both types of blocks into
a single class would lower the overall prediction accuracy. To
resolve this issue, we propose CHAR-PC, a PC-based exten-
sion to CHAR. CHAR-PC maintains, for each class Ck with
k ∈ {1, 2, 3}, an eight-entry fully associative table Tk for stor-
ing the lower 14 bits of the PCs (after removing the lowest
two bits) of the instructions that bring the Ck blocks into the
L2 cache. Each entry of Tk has a valid bit, a 14-bit fill PC
signature, and a three-bit saturating counter.

When a block is filled into the L2 cache, the 14-bit fill
PC signature is stored with the L2 cache block. When a
block mapping to an LLC sample set is evicted from the L2
cache, its class Ck is determined and Tk is looked up with
its PC signature. If the signature is not found in Tk, an
entry is allocated by invoking the not-recently-used (NRU)
replacement policy and the saturating counter for that entry
is initialized to zero. If the entry is found in Tk, the saturating
counter for that entry is decremented by one. The fill PC
signature and the class id of the evicted block are sent to the
LLC. The LLC stores these along with the blocks mapping to
the sample sets. When a block mapping to an LLC sample
set is filled into the L2 cache as a result of an LLC hit, the

last class id (k) and the last fill PC signature of the block are
supplied by the LLC. At this point, Tk is looked up with the
last fill PC signature and if the entry is found, its saturating
counter is incremented by one.

Finally, the dead block prediction takes place when a block
not mapping to an LLC sample set and belonging to Ck with
k ∈ {1, 2, 3} is evicted from the L2 cache. Tk is looked up
with the fill PC signature of the block. If the entry is found
and the saturating counter has a value zero, the block is pre-
dicted dead and a dead hint is propagated to the LLC. The
signature length, the saturating counter size, and the predic-
tion threshold of zero have been borrowed from the SHiP-PC
proposal [24]. In Section 4, we show that CHAR-PC, which
exploits the cross product of our classification and L2 cache
fill PC signature, improves performance beyond SHiP-PC.

2.3 Application to Exclusive LLC
A block is allocated in an exclusive LLC when it is evicted

from the L2 cache and it is de-allocated from the LLC on
a subsequent hit or replacement. Since every L2 cache evic-
tion (clean or dirty) must be sent to the LLC for allocation,
an exclusive LLC design consumes much bigger on-die in-
terconnect bandwidth compared to an inclusive LLC design.
However, the dead hints of the CHAR algorithm can be used
to identify the blocks that can be dropped by the L2 cache
and need not be sent to the LLC for allocation. This is known
as selective cache bypassing. In the following, we discuss the
working of the CHAR algorithm in an exclusive LLC. Our
baseline exclusive LLC allocates all L2 cache evictions and
decides the insertion age of a block based on the two-bit TC-
AGE policy [5]. This policy is the analogue of SRRIP for
exclusive LLCs. It inserts all C0, C1, C2, and C3 blocks at
age two and the C4 blocks at age zero. Note that a block is
in C4 class if and only if it has experienced at least one LLC
hit. The LLC replacement policy is same as the inclusive SR-
RIP replacement policy (i.e., it victimizes a block with age

three).6

In CHAR algorithm for exclusive LLC, every L2 cache evic-
tion address is first sent to the LLC to update the coher-
ence directory (the data is not sent at this point). The dead
hint (one bit) for the block is sent to the LLC along with this
message. If the block is not marked dead, the LLC requests
the block from the L2 cache for allocation. If the block is
marked dead, but there is an invalid way available in the tar-
get LLC set, a request for the block is sent by the LLC to the
L2 cache. However, in this case, the block is filled at age three
in the LLC. If the block is marked dead and there is no invalid
way available in the target LLC set, the LLC sends a bypass
command to the L2 cache. If the L2 cache receives a bypass
command for a dirty block, it sends the block directly to the
memory controller over the interconnect. On the other hand,
if it receives a bypass command for a clean block, it drops
the block and eliminates the data transaction. In summary,
the CHAR algorithm allocates all live blocks in the LLC with
an insertion age dictated by the TC-AGE policy. It also al-
locates a dead block at the highest possible age provided an
invalid way is available in the target LLC set. All other dead
blocks are either dropped (if clean) or sent to the memory
controller (if dirty) by the L2 cache.

Since the CHAR algorithm classifies the C4 blocks as live,
these blocks are always allocated in the LLC. A block moves
to the C4 class as soon as it experiences a hit in the LLC
and it remains in the C4 class during its residency in the
cache hierarchy. As a result, a C4 block may get repeatedly
allocated in and de-allocated from the LLC on its every trip
between the L2 cache and the LLC. This leads to unnecessary
wastage of on-die interconnect bandwidth.

6 We use the term “age” instead of “RRPV” in this discus-
sion to conform to the terminology used in the prior work
on exclusive LLC management [5]. Age can be considered
synonymous to RRPV in this discussion.

We address this inefficiency by observing that a block allo-
cated in the LLC should not be de-allocated on a hit because
it is a live block and will have to be allocated again when it is
evicted from the L2 cache. In other words, live blocks should
be cached in non-inclusive/non-exclusive mode to save on-die
interconnect bandwidth. However, if a C4 block is evicted
from the LLC by the time it is evicted from the L2 cache,
it must be re-allocated in the LLC at age zero so that the
live blocks are retained in the cache hierarchy. Also, if such a
block is evicted in the dirty state from the L2 cache, it must
be sent to the LLC to update the LLC copy. In all other cases,
the L2 cache can drop a C4 block. Finally, the age of a C4

block in the LLC is changed to zero when it is evicted from
the L2 cache so that the block, being live, gets the highest
level of protection in the LLC.

We explore three variations of this basic policy that elim-
inates the unnecessary data transactions involving the C4

blocks. While these policies do not de-allocate a block from
the LLC on a hit, they update the age of the block in the LLC
differently at the time of the hit. The first policy, CHAR-
C4, leaves the age of the block unchanged at the time of hit.
The second policy, CHAR-C4-MAX, updates the age of the
block to the maximum possible i.e., three. The third policy,
CHAR-C4-MIN, updates the age of the block to the min-
imum possible i.e., zero. All three policies continue to fill
cache blocks from memory directly into the L2 cache and a
block is considered for allocation in the LLC only when it is
evicted from the L2 cache and the dead hint detector iden-
tifies it as live. Among these three policies, CHAR-C4-MIN
offers the best protection for C4 blocks and is expected to
have the highest bypass rate (percentage of blocks dropped
by the L2 cache) because it reduces the chance of a C4 block
getting evicted from the LLC before it is evicted from the L2
cache. On the other hand, CHAR-C4-MAX is expected to
have a bypass rate that is higher than CHAR but lower than
CHAR-C4 and CHAR-C4-MIN. Since all these three policies
reduce the effective on-die cache capacity, their relative per-
formance depends on the sensitivity of the workloads toward
cache capacity and on-die interconnect bandwidth.

3. EVALUATION METHODOLOGY
We carry out our execution-driven simulations on a MIPS

ISA simulator. We model an out-of-order issue core running
at 4 GHz with 4-wide front-end and 8-wide commit. The core
model has an 18-stage pipeline with 128-entry re-order buffer,
160-entry integer and floating-point register files, and a hybrid
branch predictor similar to the Alpha 21264 tournament pre-
dictor. The front-end of the core has a 256-set 4-way branch
target buffer, a 32-entry return address stack, and a 32-entry
branch stack allowing 32 in-flight branch instructions. The
issue unit of the core has a 32-entry integer queue, a 32-entry
floating-point queue, and a 64-entry load/store queue. The
execution unit of each core is equipped with six integer ALUs,
three FPUs, and two load/store units.

Each core has private L1 and L2 caches. The L1 instruc-
tion and data caches are 32 KB 8-way with LRU replacement
policy. In the inclusive LLC model, the capacity ratio be-
tween the LLC and the L2 cache is maintained at 8:1 in all
our configurations to keep the inclusion overhead low [7]. Our
single-threaded applications are simulated on a 256 KB 8-way
L2 cache with LRU replacement policy and a 2 MB 16-way
LLC. The 4-way multi-programmed workloads are simulated
on a 4-core model with each core having a 256 KB 8-way pri-
vate L2 cache. The LLC is 8 MB 16-way and shared among all
the cores. The 8-way threaded shared memory programs are
simulated on an 8-core model with each core having a 128 KB
8-way private L2 cache. The LLC is 8 MB 16-way and shared
among all the cores. In all the multi-core configurations, the
LLC banks and the cores sit on a bidirectional ring that has a
single-cycle hop time. Each hop has a core and an LLC bank.
The L2 cache of a core connects to the router in each ring

hop through a 32-entry outgoing message queue. The LLC in
the single-threaded and multi-programmed models has banks
of size 2 MB with access latency of eight cycles (tag+data).
The model used to evaluate the shared memory programs has
1 MB LLC banks with seven-cycle access latency (tag+data).
Each LLC bank can keep track of 16 outstanding misses. All
the levels in the cache hierarchy have 64-byte block size.

Table 5: Storage overhead of CHAR

States ST Mprog Shm

States in L2C 8192 bits 32768 bits 32768 bits
Counters in L2C 112 bits 448 bits 896 bits
LLC samples 1536 bits 6144 bits 6144 bits

TOTAL 1.20 KB 4.80 KB 4.86 KB

Table 5 summarizes the extra storage overhead of CHAR
(as discussed in Sections 2.1.3 and 2.1.4) for the three cache
configurations used to evaluate single-threaded (ST), multi-
programmed (Mprog), and shared memory (Shm) workloads.
It is clear that this overhead is a small percentage (less than
0.1%) of the total storage devoted to the cache hierarchy. The
CHAR-S implementation would need one extra shared bit per
LLC block in the Shm configuration. This would increase the
overhead of the Shm configuration to 20.86 KB, which is still
less than 0.3% of the LLC capacity.

We model an aggressive memory system with four single-
channel memory controllers clocked at 2 GHz with a round
robin mapping of consecutive cache blocks on the controllers.
Each controller implements the FR-FCFS scheduling policy
and connects to a DIMM (64-bit interface) built out of 8-
way banked DDR3-1600 DRAM chips. The 800 MHz DRAM
part has burst length of eight and 9-9-9-27 (tCAS-tRCD-tRP-
tRAS) access cycle parameters.

We model per-core multi-stream stride prefetchers that keep
track of sixteen simultaneous streams and prefetch into the
LLC and the L2 cache. The prefetcher attached to the L2
cache injects a prefetch request on an L2 cache miss as well
as on a demand hit to a prefetched L2 cache block.

The exclusive LLCmodel uses the same configuration as the
inclusive LLC model. Since there is no inclusion overhead in
exclusive LLC models, the per-core private L2 cache capac-
ity is increased to 512 KB (with a corresponding increase in
access latency) to improve baseline performance.

Table 6: Baseline inclusive LLC MPKI

mgrid applu art equake gap bzip2
2.92 4.62 6.51 13.93 3.60 1.18
gcc mcf hmmer libq h264ref sphinx3
5.35 28.84 0.34 11.38 0.31 7.43

We select twelve single-threaded applications (shown in Fig-
ure 1) from SPEC 2000 and SPEC 2006 suites. The selected
twelve applications represent a fair distribution of LLC miss
savings achievable by Belady’s optimal algorithm. The sav-
ings range from 1.1% in gap to 55.9% in sphinx3 (see Fig-
ure 1). The applications also represent a wide range of LLC
misses per kilo instructions (MPKI) for the baseline SRRIP
policy, as shown in Table 6. We simulate one billion dynamic
instructions chosen using the SimPoint toolset [22] from each
application executed on the ref input set.

The single-threaded applications are mixed to prepare one
hundred 4-way heterogeneous multi-programmed workloads.
In each workload, each thread is executed for 500 million rep-
resentative dynamic instructions. If a thread finishes execut-
ing its set of instructions early, it continues to run beyond
that point so that the LLC contention can be modeled cor-
rectly. However, performance is reported based on the first
500 million instructions retired by each thread.

We pick six shared memory kernels and applications for
preliminary evaluation in this paper. These are FFT (256K
complex double points), Radix-sort (4M points, radix 32), and

Ocean (514×514 grid) from SPLASH-2, Art (MinneSPEC in-
put [15]) and Equake (MinneSPEC input, ARCHduration 0.5)
from SPEC OMP, and FFTW (4096×16×16 complex double
points) [3]. All the applications are executed in entirety on
eight cores (one thread per core).

4. SIMULATION RESULTS
We present the results for the single-threaded applications

on the inclusive LLC model first with the hardware prefetcher
disabled to understand how each application performs in iso-
lation. Next we discuss the multi-core results for heteroge-
neous workload mixes as well as shared memory applications
with and without the hardware prefetcher enabled. We con-
clude this section with a discussion of the results for the ex-
clusive LLC model with the hardware prefetcher enabled.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o
rm

a
liz

e
d
 L

L
C

 m
is

s
co

u
n
t

CHAR
DRRIP
CHAR−PC
SDBP
SHiP−PC

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

IP
C

 n
o
rm

a
liz

e
d
 t
o
 S

R
R

IP CHAR
DRRIP
CHAR−PC
SDBP
SHiP−PC

172.m
grid

172.m
grid

173.a
pplu

173.a
pplu

179.a
rt

179.a
rt

183.e
quake

183.e
quake

254.g
ap

254.g
ap

401.b
zi

p2

401.b
zi

p2

403.g
cc

403.g
cc

429.m
cf

429.m
cf

456.h
m

m
er

462.li
bq

456.h
m

m
er

462.li
bq

464.h
264re

f

464.h
264re

f

482.s
phin

x3

482.s
phin

x3

AVG

G
M

EAN

Figure 7: Upper panel: Number of LLC misses normal-
ized to SRRIP. Lower panel: IPC normalized to SRRIP.

4.1 Inclusive LLC Model
In the following, we discuss the performance of CHAR on

the inclusive LLC model.

4.1.1 Single-threaded Applications
Figure 7 compares the performance of CHAR, DRRIP [8],

CHAR-PC, SDBP [12], and SHiP-PC [24]. The last three
policies require the program counter of the load/store in-
structions. SDBP is the state-of-the-art dead block predic-
tion technique that correlates death of a cache block with
the last-touch PC of the block. We do not exercise the LLC
bypass component of SDBP so that strict inclusion is main-
tained between the LLC and the L2 cache. SHiP-PC is the
state-of-the-art PC-correlated LLC insertion policy that im-
proves the re-reference interval prediction of SRRIP and DR-
RIP. The upper panel of Figure 7 compares the policies in
terms of the number of LLC misses (lower is better) nor-
malized to SRRIP, while the lower panel shows normalized
IPC (higher is better). CHAR enjoys noticeable reductions
in LLC misses in art, equake, bzip2, mcf, hmmer, libquantum,
h264ref, and sphinx3. On average, CHAR reduces the number
of LLC misses by 10.9%, while DRRIP exhibits a 5.8% reduc-
tion in LLC misses. The reduction in LLC misses achieved
by CHAR-PC is 12.4%. Interestingly, CHAR achieves re-
ductions in LLC misses similar to the SDBP and SHiP-PC
policies without requiring any program counter information.
This further confirms the finding of Section 2.2 that our L2
cache block classification captures the code space signatures
quite well. Referring back to Figure 1, we find that CHAR
and CHAR-PC still leave significant room for improvement.

As shown in the lower panel of Figure 7, the IPC gains
correspond well with the LLC miss reductions. The IPC im-
provements achieved by CHAR and CHAR-PC are 3.8% and
4.4%, respectively. The corresponding improvements of DR-
RIP, SDBP, and SHiP-PC are 2.7%, 3.5%, and 3.8%, respec-

tively. Given the small benefit of CHAR-PC in comparison
with CHAR and the added complexity of CHAR-PC, we do
not pursue CHAR-PC any further.

Table 7: LLC hit distribution

Policy C1 C2 C3 C4 Ins. Total

CHAR 0.11 0.08 0.04 0.76 0.01 1.00
DRRIP 0.07 0.05 0.01 0.75 0.01 0.89
SRRIP 0.09 0.05 0.01 0.52 0.01 0.68
SRRIP-Or 0.26 0.13 0.21 0.78 0.04 1.42
Belady 0.34 0.17 0.14 0.85 0.02 1.52

To further understand the sources of LLC hits in CHAR
and DRRIP, Table 7 shows the average distribution of LLC
hits normalized to CHAR among the L2 cache block classes
and instructions for the non-prefetched execution of the single-
threaded applications. To collect this data, every block evicted
from the L2 cache is classified as C1, C2, C3, C4, or instruc-
tion and this is also recorded in the LLC. A subsequent LLC
hit to such a block belonging to a category increments the hit
count of the corresponding category. We show the average
of this hit distribution for CHAR, DRRIP, SRRIP, oracle-
assisted SRRIP (SRRIP-Or), and Belady’s optimal policy
normalized to CHAR. The last two rows correspond to the
two policies discussed in Figure 1. Compared to SRRIP, both
DRRIP and CHAR significantly improve the volume of hits
enjoyed by the C4 blocks (recall that the C4 blocks are pre-
dominantly live). DRRIP achieves this while sacrificing some
of the hits in the C1 class. The RRPV duel of DRRIP inserts
all blocks in the LLC with RRPV of either two or three dur-
ing an execution phase. Therefore, it is expected that during
the phases dominated by a mix of C1, C2, and C3 blocks,
DRRIP would probably insert all blocks with RRPV three,
even though inserting some of these with RRPV two could
have improved performance. CHAR can enjoy such selectiv-
ity because it learns to send dead hints based on the reuse
probabilities of different classes of blocks. As a result, it im-
proves the volume of hits across all the four classes. Overall,
DRRIP and SRRIP experience 11% and 32% less LLC hits
compared to CHAR. The last two rows of Table 7 point out
that further characterization of the C1, C2, and C3 classes is
necessary to exploit the remaining performance potential.

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 L
2−

LL
C

 a
dd

re
ss

 tr
af

fic

Back inval and ack
L2 cache eviction
L2 cache miss and fill

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 L
2

ev
ic

tio
ns

 s
en

t t
o

LL
C

SRRIP
CHAR

SRRIP CHAR

172.m
grid

173.a
pplu

179.a
rt

183.e
quake

254.g
ap

401.b
zi

p2

403.g
cc

429.m
cf

456.h
m

m
er

462.li
bq

464.h
264re

f

482.s
phin

x3

AVG

172.m
grid

173.a
pplu

179.a
rt

183.e
quake

254.g
ap

401.b
zi

p2

403.g
cc

429.m
cf

456.h
m

m
er

462.li
bq

464.h
264re

f

482.s
phin

x3

AVG

Figure 8: Upper panel: Address traffic in L2-LLC in-
terconnect normalized to SRRIP. Lower panel: L2 cache
eviction addresses sent to LLC.

Before closing the discussion on the single-threaded appli-
cations, we examine the L2-LLC address traffic in the pres-
ence of the dead hints generated by CHAR. We divide the
traffic into three parts: a) L2 cache miss requests and the L2
cache fills, b) L2 cache evictions (in SRRIP, these are only
the dirty block evictions, while in CHAR, these also include

the eviction messages to the LLC sample sets and the dead
hints to the non-sample sets), c) back-invalidations and their
acknowledgments exchanged at the time of an LLC eviction.

The upper panel of Figure 8 shows the address traffic in
the L2-LLC interconnect normalized to SRRIP. Both SRRIP
and CHAR have the same volume of traffic due to L2 cache
misses and L2 cache fills. Although CHAR increases the L2
cache eviction traffic (as expected), it dramatically reduces
the traffic due to back-invalidations. The reduction in back-
invalidations in CHAR is observed for two reasons. First, due
to less number of LLC misses in CHAR, LLC evictions are less
in number leading to a lower volume of back-invalidations.
Second, a dead hint message clears the coherence bitvector
position of the core sending the dead hint. When such a block
is evicted from the LLC, no back-invalidation is generated.
On average, CHAR enjoys 10% less address traffic on the L2-
LLC interconnect compared to SRRIP. The lower panel of
Figure 8 further quantifies the fraction of L2 cache eviction
addresses sent to the LLC by SRRIP and CHAR. On average,
SRRIP sends 38.9% of all L2 cache evictions to the LLC (these
are dirty cache block evictions) and CHAR sends 69.5% of all
L2 cache evictions to the LLC. It is important to note that a
dead hint is a dataless message and inflates only the address
traffic, unlike the dirty block evictions.

4.1.2 Multi-core Workloads
For heterogeneous workload mixes, we present three dif-

ferent metrics to summarize the performance and fairness of
several policies. Normalized average IPC (or throughput)

i.e.,
∑

i
IPCNEW

i∑
i
IPCSRRIP

i

summarizes the improvement in average

throughput of the mix when a policy “NEW” replaces the
baseline SRRIP, where IPCi is the IPC of thread i (0 ≤ i ≤

3). We use mini
IPCNEW

i

IPCSRRIP

i

as a conservative fairness metric

that captures the minimum throughput improvement enjoyed
by any thread in a mix. A policy“NEW”is considered at least
as fair as the baseline SRRIP policy if this metric is at least
1.0 meaning that no thread has suffered from a slowdown
due to introduction of the new policy. Finally, we evaluate

the normalized LLC miss count as
∑

i
MNEW

i∑
i
MSRRIP

i

, where Mi is

the number of LLC misses experienced by thread i during
the execution of its first 500 million instructions. For shared
memory applications, we execute each application completely
and compare the policies in terms of the execution time of
the parallel computation.

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

N
o
rm

a
liz

e
d
 a

ve
ra

g
e
 t
h
ro

u
g
h
p
u
t

0.9

0.92

0.94

0.96

0.98

1

1.02

N
o
rm

a
liz

e
d
 L

L
C

 m
is

s
co

u
n
t

C
H
A
R

TA
D
R
R
IP

SD
B
P

SH
iP

−PC

EC
I

Q
B
S

Q
B
S

EC
I

SH
iP

−PC

SD
B
P

TA
D
R
R
IP

C
H
A
R

Figure 9: Left panel: Normalized average throughput
comparison (higher is better). Right panel: Normalized
average LLC miss count comparison (lower is better).

Figure 9 summarizes the normalized average throughput
and LLC miss counts delivered by CHAR, TADRRIP [8],
SDBP [12], SHiP-PC [24], ECI [7], and QBS [7]. These data
represent the average across one hundred heterogeneous mixes
with the hardware prefetcher disabled. CHAR improves aver-
age throughput by 3.9% and reduces the LLC misses by 6.8%.
Surprisingly, CHAR performs slightly better than SDBP and
SHiP-PC even though the latter policies use the PCs for the
load/store instructions that access the LLC and fill into the
LLC, respectively. The SDBP and SHiP-PC policies signif-
icantly reduce the LLC miss counts of several non-memory-
intensive mixes and as a result, these two policies save more

LLC misses compared to CHAR, but they fail to convert these
savings into throughput improvement. These results once
again underscore the effectiveness of CHAR in capturing the
code space signatures of LLC access patterns. CHAR does not
have the complexity of carrying the PC information through
the load-store pipeline, the L1 and L2 cache controllers, the
on-die interconnect, and the LLC controller. Also, the SDBP
and SHiP-PC policies need additional storage to maintain the
PC signatures and the predictor tables.

Thread-aware DRRIP (TADRRIP) improves throughput
by 3.1% and reduces the LLC miss count by 3.1%, on av-
erage. In Section 4.1.1, we have already explained how the
fine-grain cache block classification of CHAR helps it enjoy
more LLC hits compared to the DRRIP policy.

Finally, for completeness, we discuss the results of ECI and
QBS (these policies were discussed in Section 1.1). For our
workload mixes and simulated configurations, we do not ex-
pect ECI or QBS to deliver noticeable performance improve-
ments. Only 2.5% of the back-invalidations sent at the time
of LLC evictions in baseline SRRIP hit in the L1 or the L2
cache. As a result, at the time of an LLC eviction, the block
has already been evicted from the core caches with a likeli-
hood of 0.975. Hence, it is impossible for QBS to infer much
about the temporal locality of the block by querying the core
caches. Overall, QBS improves the average throughput by
only 0.23% compared to the baseline SRRIP. For ECI, only
1.5% of early-invalidated blocks are recalled by the cores be-
fore they are evicted from the LLC leading to an average
throughput improvement of 0.46% compared to the baseline
SRRIP. The original study [7] reported that QBS performs
better than ECI and we believe that we observe the opposite
trend due to selection of different workload mixes.

0 10 20 30 40 50 60 70 80 90 100
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

Mix

Average
Minimum

Figure 10: Performance and fairness of CHAR.

Figure 10 shows the details of the normalized average and
minimum throughput delivered by CHAR for each of the
mixes. The mixes are arranged in the increasing order of
throughput improvement. The average throughput profile
ranges from a loss of 1.0% to an improvement of 9.5%. The
minimum throughput profile also looks very encouraging as
only 11 of the 100 mixes have minimum improvement below
1.0. The minimum throughput improvement of any thread
ranges from 0.98 to 1.04, averaging at 1.01. Overall, CHAR
remains at least as fair as SRRIP while offering a throughput
improvement of 3.9% and an LLC miss saving of 6.8%.

FFT FFTW Ocean Radix Art Equake GMEAN
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

N
o
rm

a
liz

e
d
 p

a
ra

lle
l
e
x
e
c
u
ti
o
n
 t
im

e

CHAR−S
DRRIP
TADRRIP
SDBP
SHiP−PC

Figure 11: Comparison of parallel execution time.

Figure 11 presents the parallel execution time (lower is bet-
ter) of CHAR-S, DRRIP, TADRRIP, SDBP, and SHiP-PC
normalized to SRRIP for the shared memory applications.
CHAR-S achieves noticeable savings in FFTW, Radix-sort,
Art, and Equake. On average, it saves 4.2% execution time
compared to the baseline. This performance gain comes from

an 11.1% reduction in LLC misses. The reductions in execu-
tion time achieved by DRRIP, TADRRIP, SDBP, and SHiP-
PC are 1.8%, 0.4%, 0.4%, and 2.1%, respectively.

4.1.3 Interaction with Hardware Prefetching
All the results presented up to this point pertain to con-

figurations with the hardware prefetcher disabled. In this
section, we evaluate the performance of our policy proposal
in the presence of a multi-stream hardware prefetcher. This
would also validate the efficiency of our algorithm in iden-
tifying and managing the blocks belonging to the C0 class.

Table 8: Comparison between CHAR and PACMan-
DYN-Global relative to SRRIP

Metric CHAR PACMan-DYN-Global

Throughput 5.3% 2.8%
improvement
LLC demand 15.0% 11.5%
misses saved
DRAM requests 8.8% less 4.8% more

Prefetching alone improves the average throughput of SR-
RIP by 20.6% for the hundred heterogeneous mixes. Table 8
further compares CHAR and PACMan-DYN-Global [25] for
these mixes in terms of average throughput improvement,
the number of LLC demand misses saved, and the total vol-
ume of DRAM requests relative to SRRIP with the hard-
ware prefetcher enabled. PACMan is a family of RRPV in-
sertion and RRPV update policies that was shown to outper-
form DRRIP and SDBP in the presence of hardware prefetch-
ing [25]. CHAR improves average throughput by 5.3% and
significantly improves the effectiveness of the prefetcher by
reducing the LLC demand miss count by 15.0% compared
to the prefetched SRRIP. We find that compared to SRRIP,
the CHAR algorithm evicts 11.3% less C0 blocks from LLC.
This is primarily due to dynamic learning of the usefulness of
C0 blocks in the LLC. The prefetched blocks that experience
demand hits much later than they are prefetched into the hi-
erarchy must be identified and retained in the LLC. These
are a subset of the C0 blocks. CHAR dynamically monitors
the collective reuse probability of the C0 blocks and learns to
retain them if they are useful.

PACMan-DYN-Global delivers a throughput improvement
of 2.8% compared to prefetched SRRIP. This policy dynam-
ically selects one of the two algorithms, namely, PACMan-H
and PACMan-HM. None of these policies upgrade the RRPV
of a block on prefetch hits in the LLC. As a result, the blocks
that can potentially enjoy multiple prefetch hits in the LLC
followed by demand hits in the L2 cache get prematurely
evicted from the LLC. Note that even though CHAR does
not increment the live counter of C0 class if a C0 block expe-
riences a prefetch hit in the LLC, it does increment the live
counters of C1, C2, and C3 classes if a block belonging to any
of these three experiences a prefetch hit in the LLC. Further,
CHAR always upgrades the RRPV of a block in the LLC on
a prefetch hit following the SRRIP policy. A common pat-
tern experienced by a live block in CHAR is the following.
The block is prefetched into the L2 cache (filled as C0 in the
L2 cache). It enjoys demand hit(s) in the L2 cache and is
evicted as a C1, C2, or C3 block from the L2 cache. Later
the block is again prefetched from the LLC and it enjoys fur-
ther demand hits. While CHAR can retain such blocks in the
LLC, PACMan-DYN-Global fails to do so because it does not
upgrade the RRPVs on prefetch hits in the LLC.

Overall, we find that PACMan-DYN-Global is too aggres-
sive in filtering prefetch-induced LLC pollution and in the
process it often loses useful prefetched blocks early resulting in
an eventual increase in the memory controller congestion be-
cause several prematurely evicted useful prefetches will have
to be fetched/prefetched again. This fact is substantiated by
the last row of Table 8. CHAR saves 8.8% DRAM requests

compared to SRRIP, while PACMan-DYN-Global increases
the memory traffic by 4.8%. The increased pressure on the
memory controllers leads to loss in performance for several
mixes when running with PACMan-DYN-Global.

0 10 20 30 40 50 60 70 80 90 100
0.95

1

1.05

1.1

1.15

1.2

1.25

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

Mix

Average
Minimum

Figure 12: Performance and fairness of CHAR with
prefetcher enabled.

Figure 12 shows the details of throughput improvement and
fairness of CHAR for the heterogeneous mixes relative to SR-
RIP with the hardware prefetcher enabled. The mixes are
arranged in the increasing order of throughput improvement.
The throughput profile ranges from a loss of 1.2% to an im-
provement of 21.3%. The average throughput improvement
achieved by CHAR is 5.3%. The minimum throughput im-
provement of any thread ranges from 0.96 to 1.13, averaging
at 1.02. Only 16 mixes have minimum throughput improve-
ment below 1.0. These data confirm that even in the presence
of prefetching, CHAR continues to achieve significant perfor-
mance improvement compared to SRRIP.

For the shared memory parallel programs, prefetching alone
reduces the execution time of SRRIP by 15.6%. CHAR-S
achieves a further 2.2% reduction in execution time relative
to prefetched SRRIP. Thread-oblivious PACMan-DYN [25]
and thread-aware PACMan-DYN-Global respectively achieve
1.1% and 0.4% reduction in parallel execution time.

4.2 Exclusive LLC Model
We summarize our results for the exclusive LLC model

in Figure 13. All the simulations are done with the hard-
ware prefetcher enabled. The leftmost panel shows the av-
erage throughput of one hundred 4-way multi-programmed
mixes for a non-inclusive (NI) LLC model [7, 23] and TC-
AGE, CHAR, CHAR-C4, CHAR-C4-MAX, and CHAR-C4-
MIN policies implemented on the exclusive LLC model. The
throughput results are normalized to an inclusive LLC model.
The inclusive, non-inclusive, and exclusive LLC models have
identically designed cache hierarchies (32 KB 8-way private
L1 instruction and data caches, 512 KB 8-way private L2
cache, 8 MB 16-way shared LLC). The inclusive and the non-
inclusive LLCs implement the two-bit SRRIP policy. The NI
LLC model is identical to the inclusive LLC model, except
that on an LLC eviction the NI model does not invalidate
the copy of the block in the L2 and L1 caches. The perfor-
mance gain of the NI model over the inclusive model arises
from elimination of back-invalidations, while the performance
gap between the NI model and the TC-AGE policy running
on the exclusive LLC model stems from the added effective
capacity of the exclusive LLC. Overall, CHAR-C4 delivers
the best performance improving the average throughput by
8.2% over the inclusive model and 3.2% over the TC-AGE
exclusive model. The CHAR, CHAR-C4-MAX, and CHAR-
C4-MIN policies deliver performance close to CHAR-C4.

The middle panel of Figure 13 shows the bypass fractions
for CHAR, CHAR-C4, CHAR-C4-MAX, and CHAR-C4-MIN.
This fraction corresponds to the fraction of L2 cache evictions
dropped by the L2 cache controller and not sent to the LLC
or memory controllers in the exclusive LLC model. While
CHAR bypasses 14.8% blocks on average, the other three poli-
cies that switch the C4 blocks to non-inclusive/non-exclusive
mode enjoy more than 60% bypass rates. CHAR-C4 bypasses
66.6% of the L2 cache evictions.

The rightmost panel of Figure 13 quantifies the number
of data write transactions from the L2 cache to the on-die

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

N
o

rm
a

liz
e

d
 a

ve
ra

g
e

 t
h

ro
u

g
h

p
u

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
 o

f
L

2
 c

a
ch

e
 e

vi
ct

io
n

s
d

ro
p

p
e

d

1

1.5

2

2.5

3

3.5

4

N
o

rm
a

liz
e

d
 d

a
ta

 w
ri
te

 t
ra

n
sa

ct
io

n
 c

o
u

n
t

N
I

TC
−A

G
E

C
H
A
R

C
H
A
R
−C

4

 C
H
A
R
−C

4−
M

A
X

C
H
A
R
−C

4−
M

IN

C
H
A
R

C
H
A
R
−C

4

C
H
A
R
−C

4−
M

A
X

C
H
A
R
−C

4−
M

IN

TC
−A

G
E

C
H
A
R

C
H
A
R
−C

4

C
H
A
R
−C

4−
M

A
X

C
H
A
R
−C

4−
M

IN

Figure 13: Throughput, bypass fraction, and L2 cache
to interconnect data traffic in exclusive LLC model for
multi-programmed workloads with prefetcher enabled.

interconnect in the exclusive LLC policies relative to the in-
clusive LLC model. For an exclusive LLC, these are the data
transactions to LLC or memory controllers originating from
L2 cache evictions that could not be bypassed. For an inclu-
sive LLC, these are dirty writebacks from the L2 cache to the
LLC. While TC-AGE generates 3.6 times data write trans-
actions relative to the inclusive LLC model, the CHAR-C4
policy generates only 17% more writes to the LLC. As men-
tioned in Section 2.3, the TC-AGE policy does not exercise
any bypass algorithm. Overall, CHAR-C4 is the best pol-
icy among the ones we have evaluated for an exclusive LLC.
It improves the average throughput by 8.2% while generat-
ing only 17% more data writes to the LLC compared to an
identically sized inclusive LLC hierarchy.

0 10 20 30 40 50 60 70 80 90 100
0.9

0.95

1

1.05

1.1

1.15

Mix

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Mix

B
yp

a
ss

 f
ra

ct
io

n

Figure 14: Throughput normalized to TC-AGE and by-
pass fraction of CHAR-C4 policy.

Figure 14 shows the details of throughput (upper panel)
and bypass fraction (lower panel) of the CHAR-C4 policy for
the heterogeneous mixes. The throughput is normalized to
the TC-AGE policy. The mixes are arranged in the increas-
ing order of normalized throughput. The throughput profile
varies from a loss of 5.1% to a gain of 13.3%, while the bypass
fraction is between 0.37 and 0.81. In other words, the CHAR-
C4 policy can save 37% to 81% (average 66.6%) on-die data
write traffic originating from the L2 cache evictions while de-
livering a throughput improvement of up to 13.3% (average
3.2%) relative to TC-AGE.

5. SUMMARY
This paper proposes hierarchy-aware replacement and al-

location/bypass policies for LLCs in a three-level cache hier-
archy. The proposal uses a carefully chosen subset of the L2
cache evictions as hints to improve the quality of replacement
and allocation in inclusive and exclusive LLCs, respectively.
When a data block is evicted from the L2 cache, it is passed
on to a dead hint detector. The dead hint detector decides
if the block should be marked a potential victim in an inclu-
sive LLC, provided the block has already been evicted from
the L1 data cache. A similar decision is used to identify L2
cache evictions that need not be allocated in an exclusive
LLC and can be bypassed. Central to the dead hint detector
logic is an approximate reuse distance-based classification of
L2 cache blocks and estimation of reuse probability of each of

these classes. If the reuse probability of a class falls below a
threshold, any block belonging to that class is marked a po-
tential victim/bypass candidate for inclusive/exclusive LLC
when the block is evicted from the L2 cache.

We evaluate our policy proposal on single-threaded, multi-
programmed, and shared memory workloads. In an inclu-
sive LLC, our cache hierarchy-aware algorithm offers an aver-
age throughput improvement of 5.3% for one hundred 4-way
multi-programmed mixes compared to a baseline SRRIP pol-
icy with a well-tuned multi-stream hardware prefetcher en-
abled. Our best proposal for exclusive LLC improves the
average throughput of one hundred 4-way multi-programmed
mixes by 8.2% compared to an identical inclusive LLC hier-
archy while bypassing 66.6% of the L2 cache evictions. As
a result of this high bypass rate, this policy introduces only
17% more data write transactions into the on-die interconnect
compared to an identical inclusive LLC hierarchy.

6. ACKNOWLEDGMENTS
This research effort is funded by Intel Corporation. The

authors thank Praveen Vishakantaiah from Intel India and
Koby Gottlieb from Intel Israel for their financial support
and continued encouragement.

7. REFERENCES
[1] L. A. Belady. A Study of Replacement Algorithms for a

Virtual-storage Computer. In IBM Systems Journal ,
5(2): 78–101, 1966.

[2] M. Chaudhuri. Pseudo-LIFO: The Foundation of a New
Family of Replacement Policies for Last-level Caches. In
Proceedings of the 42nd International Symposium on
Microarchitecture, pages 401–412, December 2009.

[3] M. Frigo and S. G. Johnson. The Design and
Implementation of FFTW3. In Proceedings of the
IEEE , 93(2): 216–231, February 2005.

[4] R. V. Garde, S. Subramaniam, and G. H. Loh.
Deconstructing the Inefficacy of Global Cache
Replacement Policies. In 7th Annual Workshop on
Duplicating, Deconstructing, and Debunking, held in
conjunction with the 35th International Symposium on
Computer Architecture, June 2008.

[5] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass
and Insertion Algorithms for Exclusive Last-level
Caches. In Proceedings of the 38th International
Symposium on Computer Architecture, pages 81–92,
June 2011.

[6] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in
the Memory System: Predicting and Optimizing
Memory Behavior. In Proceedings of the 29th
International Symposium on Computer Architecture,
pages 209–220, May 2002.

[7] A. Jaleel et al. Achieving Non-Inclusive Cache
Performance with Inclusive Caches. In Proceedings of
the 43rd International Symposium on
Microarchitecture, pages 151–162, December 2010.

[8] A. Jaleel et al. High Performance Cache Replacement
using Re-reference Interval Prediction (RRIP). In
Proceedings of the 37th International Symposium on
Computer Architecture, pages 60–71, June 2010.

[9] A. Jaleel et al. Adaptive Insertion Policies for Managing
Shared Caches. In Proceedings of the 17th International
Conference on Parallel Architecture and Compilation
Techniques, pages 208–219, October 2008.

[10] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
Replacement Based on Reuse Distance Prediction. In
Proceedings of the 25th International Conference on
Computer Design , pages 245–250, October 2007.

[11] S. Khan, Z. Wang, and D. A. Jimènez. Decoupled
Dynamic Cache Segmentation. In Proceedings of the

18th International Symposium on High Performance
Computer Architecture, pages 235–246, February 2012.

[12] S. Khan, Y. Tian, and D. A. Jimènez. Dead Block
Replacement and Bypass with a Sampling Predictor. In
Proceedings of the 43rd International Symposium on
Microarchitecture, pages 175–186, December 2010.

[13] S. Khan et al. Using Dead Blocks as a Virtual Victim
Cache. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation
Techniques, pages 489–500, September 2010.

[14] M. Kharbutli and Y. Solihin. Counter-based Cache
Replacement and Bypassing Algorithms. In IEEE
Transactions on Computers, 57(4): 433–447, April
2008.

[15] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A
New SPEC Benchmark Workload for Simulation-Based
Computer Architecture Research. In Computer
Architecture Letters, 1(1), January 2002.

[16] A-C. Lai, C. Fide, and B. Falsafi. Dead-block
Prediction & Dead-block Correlating Prefetchers. In
Proceedings of the 28th International Symposium on
Computer Architecture, pages 144–154, June/July 2001.

[17] J. Lee and H. Kim. TAP: A TLP-aware Cache
Management Policy for a CPU-GPU Heterogeneous
Architecture. In Proceedings of the 18th International
Symposium on High Performance Computer
Architecture, pages 91–102, February 2012.

[18] H. Liu et al. Cache Bursts: A New Approach for
Eliminating Dead Blocks and Increasing Cache
Efficiency. In Proceedings of the 41st International
Symposium on Microarchitecture, pages 222–233,
November 2008.

[19] R. Manikantan, K. Rajan, and R. Govindarajan.
NUcache: An Efficient Multicore Cache Organization
Based on Next-Use Distance. In Proceedings of the 17th
IEEE International Symposium on High-performance
Computer Architecture, pages 243–253, February 2011.

[20] R. L. Mattson et al. Evaluation Techniques for Storage
Hierarchies. In IBM Systems Journal , 9(2): 78–117,
1970.

[21] M. K. Qureshi et al. Adaptive Insertion Policies for
High Performance Caching. In Proceedings of the 34th
International Symposium on Computer Architecture,
pages 381–391, June 2007.

[22] T. Sherwood et al. Automatically Characterizing Large
Scale Program Behavior. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
45–57, October 2002.

[23] J. Sim et al. FLEXclusion: Balancing Cache Capacity
and On-chip Bandwidth with Flexible Exclusion. In
Proceedings of the 39th IEEE/ACM International
Symposium on Computer Architecture, pages 321–332,
June 2012.

[24] C-J. Wu et al. SHiP: Signature-Based Hit Predictor for
High Performance Caching. In Proceedings of the 44th
International Symposium on Microarchitecture, pages
430–441, December 2011.

[25] C-J. Wu et al. PACMan: Prefetch-Aware Cache
Management for High Performance Caching. In
Proceedings of the 44th International Symposium on
Microarchitecture, pages 442–453, December 2011.

[26] M. Zahran. Cache Replacement Policy Revisited. In 6th
Annual Workshop on Duplicating, Deconstructing, and
Debunking, held in conjunction with the 34th
International Symposium on Computer Architecture,
June 2007.

[27] M. Zahran and S. A. McKee. Global Management of
Cache Hierarchies. In Proceedings of the 7th Conference
on Computing Frontiers, pages 131–140, May 2010.

