Long-Latency Branches: How Much Do They Matter?

Abhas Kumar, Nisheet Jain, Mainak Chaudhuri
Department of Computer Science and Engineering
Indian Institute of Technology
Kanpur 208016
INDIA
Email: abhask, nisheet, mainakc@cse.iitk.ac.in

Abstract— Dynamic branch prediction plays a key role in
delivering high performance in the modern microprocessors. The
cycles between the prediction of a branch and its execution
constitute the branch misprediction penalty because a mispre-
diction can be detected only after the branch executes. Branch
misprediction penalty depends not only on the depth of the
pipeline, but also on the availability of branch operands. Fetched
branches belonging to the dependence chains of loads that miss
in the L1 data cache exhibit very high misprediction penalty
due to the delay in the execution resulting from unavailability
of operands. We call these the long-latency branches. It has
been speculated that predicting such branches accurately or
identifying such mispredicted branches before they execute would
be beneficial. In this paper, we show that in a traditional pipeline
the frequency of mispredicted long-latency branches is extremely
small. Therefore, predicting all these branches correctly does not
offer any performance improvement. Architectures that allow
checkpoint-assisted speculative load retirement fetch a large
number of branches belonging to the dependence chains of the
speculatively retired loads. Accurate prediction of these branches
is extremely important for staying on the correct path. We show
that even if a// the branches belonging to the dependence chains
of the loads that miss in the L1 data cache are predicted correctly,
only four applications out of twelve control speculation-sensitive
applications selected from the SPECInt2000 and BioBench suites
exhibit visible performance improvement. This is an upper bound
on the achievable performance improvement in these architec-
tures. This article concludes that it may not be worth designing
specialized hardware to improve the prediction accuracy of the
long-latency branches.

[. INTRODUCTION

Dynamic control speculation, or more traditionally known
as branch prediction, is one of the most important factors con-
trolling the end-performance delivered by a microprocessor.
Since instructions execute late in the pipeline, it is necessary
for the fetcher to speculate about the path that would be taken
by a branch instruction immediately after it is fetched. Of
course, a prediction can be made at any point between the
time a branch is fetched and the time it executes. However, an
early correct prediction avoids excessive number of bubbles
in the pipeline. The number of cycles between the time a
prediction is made and the time the branch executes is known
as the branch misprediction penalty because, if the branch is
mispredicted, the instructions fetched into the pipeline during
this time are on the wrong path and must be drained out of
the pipe without contributing anything to the progress of the
execution. For example, in a microprocessor, if the branch
misprediction penalty is n cycles and the fetch width is k, the
number of useless instructions fetched because of a branch

ACM SIGARCH Computer Architecture News

misprediction is nk. As expected, for deep pipelines, such as
the one in the Intel Pentium 4 [6], where n is large, branch pre-
diction accuracy becomes extremely important. The situation
worsens if a mispredicted branch cannot execute as early as
possible due to unavailability of operands. The misprediction
penalty reaches a maximum when the branch belongs to the
dependence chain of a load instruction that misses in the L2
cache. It is most likely that by the time the branch executes
and the misprediction is detected, the active list (or the re-order
buffer) would be full with wrong path instructions. It has been
speculated that these branches could hurt performance [10],
[20], [21] and therefore, special predictors should be designed
to improve the prediction accuracy of such branches.

In this paper we explore the performance impact of branches
that not only belong to the dependence chain of a load missing
in the L2 cache, but also belong to the dependence chain of
a load missing in the L1 data cache. Of course, the loads
missing in the L2 cache are only a subset of the loads
that miss in the L1 data cache (we consider architectures
with inclusion in the cache hierarchy). We call the branches
belonging to the dependence chains of the loads missing in
the L1 data cache the long-latency branches. We find that such
branches have near-zero impact on performance in traditional
pipelines with state-of-the-art branch predictors because only
few of them are mispredicted. Also, due to a finite size of the
active list not too many branches belonging to the dependence
chain of a missing load can be fetched in the pipe while
the load is outstanding. For architectures, such as Runahead
execution [15] and CLEAR [12], which allow checkpoint-
assisted early load retirement, many more branches belonging
to the dependence chain can be brought into the pipeline. We
estimate an upper bound on performance improvement that can
be achieved if all the branches belonging to the dependence
chain of every load taking a L1 data cache miss could be
predicted accurately. Our simulation results show that only
one application out of twelve control speculation-sensitive
applications selected from the SPECInt2000 and BioBench
suites shows a 13% improvement in performance. Three other
applications achieve an improvement in the range 5.6% to
7.1%. The remaining eight applications are largely unaffected.

In the next section we briefly discuss some relevant work.
In Section II we detail our simulation environment. Sec-
tion III discusses the impact of long-latency branches on
traditional pipelines while Section IV presents an overview of
the Runahead and the CLEAR architectures and establishes,

Vol. 34, No. 3, June 2006

through simulations, an upper bound on the achievable perfor-
mance improvement in these architectures, if all long-latency
branches are predicted correctly. In Section V we conclude.

A. Related Work

In this paper we explore the impact of branches belonging
to the dependence chains of loads missing in the L1 data
cache. If the values of these loads could be predicted, the
dependent branches could be executed speculatively based on
the predicted value. Some work has been done in exploiting
general operand value prediction to improve control specu-
lation [2], [5], [7]. Selective reversal of branch predictions
by discovering correlations with predicted operand values
is explored in [2]. Early computation of branches through
operand value prediction is presented in [5]. The authors
also explore a hybrid scheme by combining a conventional
branch predictor (gshare) and a branch execution unit taking
inputs from an operand value predictor. The branch difference
predictor introduced in [7], correlates branch outcomes with
the history of differences between the branch operand values.
A rare event predictor remembers the abnormally behaving
history patterns in a cache-like structure so that interference in
the main predictor can be reduced. In contrast to these studies,
in this paper we explore the performance impact of the long-
latency branches.

Wrong path events such as null pointer dereferences, un-
aligned accesses, access permission violations, TLB misses,
illegal opcodes, division by zero can be used as a hint of
branch misprediction and an early reversal of prediction can
be initiated [3]. For long-latency branches, such a scheme
can be extremely useful in reducing the high misprediction
penalty, provided some exceptional event does happen on the
wrong path. Our simulation results show that mispredicted
long-latency branches are extremely small in number.

II. SIMULATION ENVIRONMENT

This section presents the details of the simulator and the
applications we have used to evaluate the impact of long-
latency branches. Table I presents the parameters of the MIPS
ISA-based simulated architecture. We simulate an aggressively
clocked deep pipeline so that we can gauge the maximum
benefit that the processor might enjoy if the long-latency
branches could be correctly predicted. The fetcher accesses the
BTB for every instruction in the fetch stage and proceeds with
the BTB outcome, which only tells the fetcher about the fate of
a branch the last time around. A BTB miss forces the fetcher
to continue sequentially (i.e. the BTB outcome in such cases
is the fall-through PC). After an instruction is decoded, the
conditional branch predictor is looked up, if the instruction is
a branch. The predicted outcome overrides the BTB outcome,
if two predictions do not agree. In this case, all the instructions
fetched from the BTB target are marked squashed and the fetch
PC is steered according to the conditional branch prediction.
Our simulated pipeline assumes the existence of an adder
in the decode stage to compute the branch target from the
instruction’s PC-relative offset. This is used in conjunction

ACM SIGARCH Computer Architecture News

10

TABLE I
SIMULATED ARCHITECTURE

\ Attribute | Value
Frequency 4 GHz
Pipe stages 38
Front-end/Commit width 4/8
BTB 256 sets, 4-way
Branch predictor several (see Table II)
RAS 32 entries
Branch misprediction penalty | 31 cycles (minimum)
Active list 192 entries
Branch stack 48 entries
Integer/FP register 224/224
Integer/FP queue 48/48 entries
Unifi ed load/store queue 64 entries
ALU 8 (two for addr. calc.)
Integer mult./div. latency 6/35 cycles
FPU 3
FP multiplication latency 2 cycles

FP division latency
ITLB, DTLB

Page size

L1 instruction cache
L1 data cache
Unified L2 cache

12 (SP)/19 (DP) cycles

128/fully assoc./LRU

4 KB

32 KB/64B/4-way/LRU
32 KB/32B/4-way/LRU

2 MB/128B/8-way/LRU

MSHR 16+1 for retiring stores
Store buffer 32

L1 cache hit 6 cycles

L2 cache hit 25 cycles (round trip)

\ Memory system |

Memory controller frequency | 2 GHz
System bus width 64 bits
System bus frequency 2 GHz

SDRAM access time 80 ns (row buffer miss)
40 ns (row buffer hit)
16

6.4 GB/s

Number of banks
SDRAM bandwidth

with the prediction to steer the fetch PC. We always update the
global history register speculatively as in the Alpha 21264 [11]
and recover it from branch stack checkpoint in case of a branch
misprediction. A branch misprediction is detected after the
branch executes which is at least 31 cycles from the time
it is fetched. The register map is recovered from the branch
stack immediately and fetching begins from the correct path
in the next cycle. We allow at most 48 outstanding non-
committed branches at any point in time (this is one-fourth
of the maximum number of in-flight instructions).

The memory system is assumed to have an on-die integrated
memory controller clocked at half the speed of the main core.
The 16-way banked SDRAM module is clocked at 800 MHz,
and can transfer 64 bits to the memory controller on both the
clock edges (DDR), thereby achieving an aggregate bandwidth
of 6.4 GB/s. A 32-bit physical address is divided into the
following parts and decoded accordingly by the memory
controller. The least significant 3 bits are offset into an 8-byte
column, the next 12 bits are used as the column number, the
next 4 bits are the bank address for the simulated 16 banks,
the next 13 bits are the row address. The mapping of address
bits to row, column, and bank is similar to the one suggested
in [16]. To avoid bank conflicts between a miss request and a

Vol. 34, No. 3, June 2006

writeback originating from the eviction due to the same miss,
the bank number is calculated by XORing the bits [18:15] with
bits [21:18] of the address, the latter being the least significant
four bits of the L2 tag [22].

The simulated branch predictors are detailed in Table 1I. We
present them for completeness, but we use only the 2Bc-gskew
predictor for the major portion of this study (see next section
for details). We do not consider over-riding branch predictors,

TABLE I
SIMULATED BRANCH PREDICTORS

| Predictor |

Gshare [13]
Tournament [11]

Confi guration |

16-bit global history, 2-bit saturating counters

4096-entry SAg, 12-bit local history,

3-bit saturating counters;

14-bit global history, 2-bit saturating counters;
16384-entry chooser, 2-bit saturating counters

46-bit global history (excluding bias bit),

8-bit 2’s complement weights, 348 perceptrons
33-bit global history (excluding bias bit),

8-bit 2’s complement weights, 397 perceptrons
16384-entry BIM, GO, G1, META, 2-bit each,
6-bit global history for BIM,

24-bit global history for GO,

48-bit global history for G1,

6-bit global history for META

Perceptron [9]

Path-perceptron [8]

2Bc-gskew [14], [17],
(18]

such as the prophet-critic predictor [4], in this study. For
this study we fixed the branch predictor storage budget to
16 KB. Accordingly, we scale up the original Alpha 21264
Tournament predictor [11]. While computing the configuration
of the path-perceptron predictor, we had to take into account
the non-negligible checkpoint storage it requires to record all
the in-flight partial sums. We found that this takes up about
2.5 KB of storage for the configuration shown in Table II.
Note that the 2Bc-gskew predictor is optimized with different
history lengths for different components as suggested in [17].
We find that this optimization has a significant impact on
performance.

In this study we use eleven applications from the
SPEC2000 integer suite, eight from the SPEC2000 floating-
point suite, and three from the BioBench suite [1]. Our
simulator currently cannot handle 252.eon, 177 .mesa,
178.galgel, 187.facerec, 189.1lucas, 191.fma3d,
and 200.sixtrack from the SPEC2000 suite. The se-
lected SPEC2000 applications are simulated with the ref
input sets. We have selected 002.tiger, 003.clustalw,
and protdist of 006.phylip from the BioBench suite.
These applications are run with inputs sitchensis. fa,
tufad20.seq, and tufad20.phy, respectively. All the
applications are run for one billion representative instructions
as determined by SimPoint [19], when fed with the basic block
vectors for intervals of length one billion instructions.

III. CHARACTERIZING THE LONG-LATENCY BRANCHES

In this section we present the results of our simulations
showing the characteristics of the long-latency branches. First,
we pick one of the five branch predictors discussed in Ta-
ble II. Next, we prune the set of the applications based on

ACM SIGARCH Computer Architecture News

1"

their sensitivity to control prediction. Figure 1 presents the
misprediction rates of the predictors for all the twenty three
applications. For each application we show the misprediction
rates for gshare, Tournament, perceptron, path-perceptron, and
2Bc-gskew predictors, from left to right in that order. The
integer applications (CINT) are grouped towards the left, the
floating-point applications (CFP) appear in the middle, and the
BioBench applications are towards the right of the bar chart.
For each of the CINT, CFP, and BioBench groups, we also
show the average misprediction rates of the predictors. For
CINT, 2Bc-gskew is the clear winner achieving an average
misprediction rate of slightly over 4%. Also, for individual
integer applications, 2Bc-gskew secures the first place in all
but gzip, where gshare gets a slight edge over 2Bc-gskew.
For CFP, perceptron and path-perceptron are tied at the first
place while for BioBench, gshare and 2Bc-gskew are tied at
the first place. Since the floating-point applications are not
much sensitive to control speculation, we select the 2Bc-gskew
predictor for further study.

The next step is to select the interesting applications and
focus on them. Table III shows the IPC of all the twenty
three applications with the 2Bc-gskew predictor as well as
a perfect predictor. The left half of the table shows the
performance of the integer applications while the right half
shows that of the floating-point and the BioBench applications.
As expected, the floating-point applications are least sensitive
to control speculation and a 2Bc-gskew predictor achieves IPC
equivalent to the perfect predictor. Only wupwise, applu,
and ammp show small gap in performance between the two
predictors. Also, phylip from BioBench falls in the same
category. Among the integer applications only mcf does not
show any performance improvement with the perfect predictor.
Based on these results, we pick the remaining ten integer
applications, and tiger and clustalw from BioBench for
further inspection.

Figure 2 presents the distribution of the selected twelve
applications based on how sensitive they are to control spec-
ulation and how much opportunity they offer in terms of
correctly predicting the long-latency branches. On the hor-
izontal axis we plot the IPC difference between a perfect
predictor and the 2Bc-gskew predictor. On the vertical axis
we plot the percentage of mispredicted branches that can be
categorized as long-latency with the 2Bc-gskew predictor. A
branch has a long latency if it belongs to the dependence
chain of a load that misses in the L1 data cache. Note that
the branches that enter the pipe after the data cache refill
completes cannot be categorized as long-latency, even though
they belong to the dependence chain of the load. Therefore,
it is clear that this percentage has a close relationship with
the amount of resources that a microprocessor has. More
resources allow more instructions to be fetched while the load
miss is outstanding. For our simulated pipeline (which we
believe is quite aggressive in terms of resources, given the
current commercial standards), we find that none of the twelve
applications offer much opportunity in terms of optimizing
the long-latency branches. The applications that are placed

Vol. 34, No. 3, June 2006

Misprediction rate (%)

P S

Lol SN o v R) L86 B

Benchmarks

- |
|
| [!
i I 1 n | "
(1 EYE0F i i I
T T T I. T —VJ-h]_TE[I]_TEI:-:‘_T T I-I-ill Iri-l-I I| T T w T T
; P - S W SR S S O & ST R T - S SR SR VI o
MO P S I SR N A &SP & T e S E
S & QQ'@QQ{\& S O S P T Eo Sy @oé@é‘

‘DGshare B Tourmament O Ferceptron B Path Perceptron @ 2Bc-gskew

Fig. 1.

TABLE III

Misprediction rates for various branch predictors in a 38-stage pipeline

IPC COMPARISON BETWEEN 2BC-GSKEW AND PERFECT PREDICTORS

| CINT App. | 2Bc-gskew IPC | Perfect IPC || CFP and Bio App. | 2Bc-gskew IPC | Perfect IPC |
164.gzip 0.46 0.70 168 .wupwise 0.72 0.74
175.vpr 0.44 0.60 171.swim 0.18 0.18
176 .gcc 0.49 0.70 172 .mgrid 0.59 0.59
181.mcf 0.03 0.03 173.applu 0.47 0.48
186.crafty 0.63 0.99 179.art 0.12 0.12
197.parser 0.47 0.64 183.equake 0.21 0.21
253 .perlbmk 0.39 1.12 188.ammp 0.42 0.44
254 .gap 0.36 0.57 301.apsi 0.42 0.42
255.vortex 0.96 1.17 002.tiger 0.45 0.50
256.bzip 0.36 0.57 003.clustalw 0.65 1.10
300.twolf 0.28 0.40 006.phylip 0.83 0.84
TABLE IV
IPC WITH PERFECT PREDICTION OF THE LONG-LATENCY BRANCHES
Application | 2Bc-gskew IPC | PerfectLLB IPC || Application | 2Bc-gskew IPC | PerfectLLB IPC |
002.tiger 0.45 0.44 197 .parser 0.47 0.47
003.clustalw 0.65 0.65 253 .perlbmk 0.39 0.39
164.gzip 0.46 0.46 254 .gap 0.36 0.36
175.vpr 0.44 0.44 255.vortex 0.96 0.93
176.gcc 0.49 0.49 256.bzip 0.36 0.36
186.crafty 0.63 0.57 300.twolf 0.28 0.28

ACM SIGARCH Computer Architecture News

12

Vol. 34, No. 3, June 2006

5 18
@ + parser
§w 1.4
=9 *vpr
-.g E 1.2 ~bzip——
$® * gzip
2.0 * twolf
= ® 08
55,
c E 0.6
E g 04 *gap
L2 0.2 +gee + crafty
o 0 + tiger + vortex e S
T CriStarn T pefims
0 0.2 0.4 0.6 0.

IPC difference between perfect and 2Bc-gskew

Fig. 2. Distribution of applications based on sensitivity to long-latency branches in a 38-stage pipeline

towards the upper right corner of the plot are the most
promising ones because they not only have enough room for
improvement in terms of control speculation, but also have
a sizable percentage of mispredicted long-latency branches.
However, in this case we find that per1bmk has the maximum
IPC gap between the 2Bc-gskew and the perfect predictors, but
has near-zero mispredicted long-latency branches. On the other
hand, parser has the maximum percentage of mispredicted
long-latency branches, but this is only about 1.6%. Therefore,
we do not expect much performance gain even if we predicted
all the long-latency branches correctly for these applications.
These results are presented in Table IV. For brevity, the base
IPC with the 2Bc-gskew predictor is also included along with
the perfect long-latency branch (PerfectLLB) IPC.

Table IV confirms our hypothesis that long-latency branches
are not critical for performance. Predicting all these branches
correctly does not improve performance at all. What is surpris-
ing is that for three applications (tiger, crafty, vortex),
the performance actually degrades after predicting all the long-
latency branches correctly. Since this effect is most prominent
in crafty, we explored it a little further. We found that
the L1 instruction cache miss rate increased from 1.63% to
2.78% after correctly predicting all the long-latency branches
in crafty. Further, 60% of these extra dynamic instructions
that were missing in the cache belonged to the wrong path
of some mispredicted long-latency branch in the base 2Bc-
gskew predictor. However, these instructions on the alternate
path were used after a while. After we eliminate all the
mispredictions of the long-latency branches, these instructions
are accessed less frequently and the LRU replacement policy
of the instruction cache evicts these cache blocks before they
are accessed on the correct path. We also pinpointed the code
section where this phenomenon takes place most frequently (in
the chain of if-elseif-else within the first while loop

ACM SIGARCH Computer Architecture News

13

of the Swap function) and found that the branch behavior
in that region is extremely data-dependent and erratic. In
summary, the wrong path of the most frequently mispredicted
long-latency branch is traversed more frequently than the
correct path in crafty.

IV. ESTIMATING THE IMPACT ON RUNAHEAD AND CLEAR

In the last section we pointed out that the opportunity
offered by an application in terms of correcting long-latency
branches depends on how many such branches can be fetched
while a missing load is outstanding. Due to the finite size of
the active list in traditional architectures this number is quite
limited, as shown in our results. The Runahead execution [15]
and Checkpointed Load with EArly Retirement (CLEAR) [12]
allow a long-latency load to be retired speculatively so that
new instructions can be fetched into the pipe and the active
list can continue to move smoothly. In the Runahead execution,
the destination register of the load is marked “invalid” and this
state propagates along the dependence chain. Any instruction
receiving an “invalid” operand does not execute and proceeds
to retirement immediately. However, none of these instructions
are allowed to modify the architectural state. When the load
refill completes, the processor flushes the pipe, rolls back to a
register checkpoint taken at the time of speculatively retiring
the load, and starts fetching from the load. Effectively, Runa-
head execution allows warming up of the pipeline structures
such as the caches and the predictors while the missing load
is outstanding.

CLEAR augments load-value prediction with early retire-
ment. When a long-latency load comes to the head of the
active list, a value predictor is consulted and the load is
retired with the predicted value written to the destination
register. Thus, with correct value prediction, CLEAR can offer
significantly higher performance than Runahead execution.

Vol. 34, No. 3, June 2006

& = 35
5 v 30 :
2 8 gz
L2 E
35
o O
o= 20 ~
g twolf, o2 oe
% 5 15 zip
g 5 tiget
L o + gagee + crafty
2 5 * voltex ; clustatw————+ perimbk
0 0.2 0.4 06 0.8

IPC difference between perfect and 2Bc-gskew

Fig. 3.

Still on mispredictions, it has to roll back to a checkpoint taken
at the time the load was retired speculatively. However, even in
that case CLEAR enjoys the prefetching effect of Runahead.

In both Runahead and CLEAR, staying on the correct path
while a missing load is outstanding is extremely important.
Otherwise, execution along the wrong path for such a long
time would pollute the caches and the predictors. In Runahead
execution this is a bigger problem because the branches
dependent on long-latency loads cannot even execute and will
have to rely on predictions only. The first such mispredicted
branch is called the divergence point. In CLEAR a wrongly
predicted value can still continue the execution along the
correct path depending on the branch condition. For example,
a bgez branch will be executed correctly for any non-
negative predicted value. Nonetheless, correctly predicting all
these branches dependent on the long-latency loads would be
beneficial.

We gauge the maximum possible gain that can be achieved
in these architectures by correctly predicting all the branches
belonging to the dependence tree of a load that takes an
L1 data cache miss. Figure 3 shows the distribution of the
applications in a similar fashion as Figure 2, but the vertical
axis now plots the percentage of the mispredicted branches
that are on the dependence chain of loads missing in the L1
data cache. Therefore, a mispredicted branch, that comes into
the pipeline even after the load has refilled, is considered
for inclusion in this statistic, if it depends on the load.
Thus, we consider the unpruned dependence tree with a load
missing in the L1 data cache at the root to generate this
plot. All mispredicted branches belonging to such a tree are
considered in this plot. The simulations are carried out on the
traditional pipeline without Runahead or CLEAR support, but
we maintain the dependence tree of each load missing in the
L1 data cache to achieve similar effects.

ACM SIGARCH Computer Architecture News

14

Distribution of applications based on sensitivity to long-latency branches in a 38-stage pipeline with unpruned dependence tree

In Figure 3 we notice that the percentages on the y-axis
are much higher now, as expected. However, applications
with high IPC gap between the 2Bc-gskew and the perfect
predictor still fail to offer much opportunity. From the plot we
observe that gzip, vpr, parser, twolf, and bzip are the
most promising ones. Table V presents the IPC after correctly
predicting all the branches dependent on loads missing in
the L1 data cache. It also shows the baseline IPC with the
2Bc-gskew predictor. Interestingly, gzip shows a significant
improvement in IPC (13%) as predicted by Figure 3, while
vpr, bzip, and twolf show some visible improvement in
IPC (5.6% to 7.1%). Only slight performance improvement
is achieved by gap and vortex. In summary, under the
ideal conditions where all the branches, belonging to the
dependence chain of a load that misses in the L1 data cache,
can be predicted correctly, four out of twelve applications
show more than 5% IPC improvement. However, it is not clear
how many of these branches would really come under the L2
cache miss shadow in the Runahead or CLEAR architecture.
Once the refill completes, the subsequent branches in the
dependence chain will get the operands quickly and can verify
the prediction, as usual. The improvement projected in Table V
is, indeed, an upper bound on the achievable performance gain
because of two reasons. First, we consider the branches in
the dependence chain of loads missing not only in the L2
cache, but also in the L1 data cache. Second, the dependent
branches that enter the pipeline even after the load refills are
also considered. However, it is interesting to note that as the
memory latency increases relative to the processor speed, we
would approach the IPC improvement depicted in Table V.

V. CONCLUSIONS

In this paper we have explored the performance potential of
correctly predicting the long-latency branches i.e. the branches

Vol. 34, No. 3, June 2006

TABLE V
IPC WITH PERFECT PREDICTION OF THE LONG-LATENCY BRANCHES IN UNPRUNED DEPENDENCE TREE

| Application [2Bc-gskew IPC | PerfectLLB IPC || Application | 2Bc-gskew IPC [PerfectLLB IPC |
002.tiger 0.45 0.45 197.parser 0.47 0.47
003.clustalw 0.65 0.65 253 .perlbmk 0.39 0.39
164.gzip 0.46 0.52 254 .gap 0.36 0.37
175.vpr 0.44 0.47 255.vortex 0.96 0.97
176 .gcc 0.49 0.49 256.bzip 0.36 0.38
186.crafty 0.63 0.63 300.twolf 0.28 0.30
that belong to the dependence chains of loads missing in the L1 [10] T. Karkhanis and J. E. Smith. A Day in the Life of a Data Cache Miss.

data cache. We find that for traditional pipelines these branches
are not critical for performance. Due to the limited size of the
active list, not too many mispredicted branches depending on
the missed loads actually come into the pipe. For architectures
where the size of the active list is virtually extended by
checkpoint-assisted early load retirement, we find that only
one application (gzip) enjoys 13% performance improvement
in the ideal situation where all the branches belonging to the
dependence chains of missing loads are correctly predicted.
Three other applications (vpr, bzip, and twolf) achieve
up to 7.1% performance improvement.

We conclude that although a large performance gap remains
between the state-of-the-art branch predictors and a perfect
predictor, the branches belonging to the dependence chains of
the long-latency loads should not be the target for improving
control speculation. Even though these branches, if mispre-
dicted, suffer from a large misprediction penalty, they are often
predicted correctly.

REFERENCES

[1] K. Albayraktaroglu et al. BioBench: A Benchmark Suite of Bioinformat-
ics Applications. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software, pages 2-9, March
2005.

J. L. Aragon et al. Selective Branch Prediction Reversal by Correlating
with Data Values and Control Flow. In Proceedings of the 19th Inter-
national Conference on Computer Design, pages 228-233, September
2001.

D. N. Armstrong et al. Wrong Path Events: Exploiting Unusual and
Illegal Program Behavior for Early Misprediction Detection and Re-
covery. In Proceedings of the 37th Annual International Symposium on
Microarchitecture, pages 119-128, December 2004.

A. Falcon et al. Prophet/Critic Hybrid Branch Prediction. In Proceedings
of the 31st Annual International Symposium on Computer Architecture,
pages 250-261, June 2004.

J. Gonzélez and A. Gonzilez. Control-fbw Speculation through Value
Prediction for Superscalar Processors. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
pages 57-65, October 1999.

G. Hinton et al. The Microarchitecture of the Pentium 4 Processor. In
Intel Technology Journal, Q1, 2001.

T. H. Heil, Z. Smith, and J. E. Smith. Improving Branch Predictors
by Correlating on Data Values. In Proceedings of the 32nd Annual
International Symposium on Microarchitecture, pages 28-37, November
1999.

D. A. Jiménez. Fast Path-based Neural Branch Prediction. In 36th
Annual International Symposium on Microarchitecture, pages 243-252,
December 2003.

D. A. Jiménez and C. Lin. Neural Methods for Dynamic Branch
Prediction. In ACM Transactions on Computer Systems, 20(4): 369-397,
November 2002.

[3]

[4

=

[5]

[6]
[71

[8]

[9]

ACM SIGARCH Computer Architecture News

15

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

In Proceedings of the 2nd Annual Workshop on Memory Performance
Issues, May 2002.

R. E. Kessler. The Alpha 21264 Microprocessor. In IEEE Micro,
19(2):24-36, March 1999.

N. Kirman et al. Checkpointed Early Load Retirement. In Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture, pages 2—13, February 2005.

S. McFarling. Combining Branch Predictors. Technical Note, DEC
Western Research Laboratory, June 1993.

P. Michaud, A. Seznec, and R. Uhlig. Trading Confict and Capacity
Aliasing in Conditional Branch Predictors. In Proceedings of the 24th
Annual International Symposium on Computer Architecture, pages 292—
303, June 1997.

O. Mutlu et al. Runahead Execution: An Alternative to Very Large In-
struction Windows for Out-of-order Processors. In Proceedings of the 9th
International Symposium on High-Performance Computer Architecture,
pages 129-140, February 2003.

S. Rixner. Memory Controller Optimizations for Web Servers. In Pro-
ceedings of the 37th International Symposium on Microarchitecture,
pages 355-366, December 2004.

A. Seznec. An Optimized 2Bc-gskew Branch Predictor. Technical Re-
port, September 2003.

A. Seznec et al. Design Trade-offs for the Alpha EV8 Conditional
Branch Predictor. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, pages 295-306, May 2002.

T. Sherwood et al. Automatically Characterizing Large-scale Program
Behavior. In Proceedings of the 10th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
pages 45-57, October 2002.

J. E. Smith. Is There Anything Left to Learn about High Performance
Processors? Keynote Talk in 17th Annual ACM International Conference
on Supercomputing, June 2003.

L. Spracklen and S. G. Abraham. Chip Multithreading: Opportunities
and Challenges. In Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, pages 248-252, February
2005.

Z.Zhang, Z. Zhu, and X. Zhang. A Permutation-based Page Interleaving
Scheme to Reduce Row-buffer Conficts and Exploit Data Locality. In
Proceedings of the 33rd International Symposium on Microarchitec-
ture,pages 3241, December 2000.

Vol. 34, No. 3, June 2006

