Improving Speculative Loop Parallelization via
Selective Squash and Speculation Reuse

Santhosh Sharma
Ananthramu
Indian Institute of Technology,
Kanpur
sharma.santhosh@gmail.com

ABSTRACT

Speculative parallelization is a powerful technique to paral-
lelize loops with irregular data dependencies. In this poster,
we present a value-based selective squash protocol and an
optimistic speculation reuse technique that leverages an ex-
tended notion of silent stores. These optimizations focus on
reducing the number of squashes due to dependency viola-
tions. Our proposed optimizations, when applied to loops
selected from standard benchmark suites, demonstrate an
average (geometric mean) 2.5x performance improvement.
This improvement is attributed to a 94% success in specu-
lation reuse and a 77% reduction in the number of squashed
threads compared to an implementation that, in such cases
of squashes, would have squashed all the successors starting
from the oldest offending one.

Categories: D.1.3 [Software]: Programming Techniques—
parallel programming

General Terms: Design, Performance

Keywords: Thread-level speculation, Mis-speculation over-
head

1. INTRODUCTION

The basic principle of software-only speculative paralleliza-
tion [1, 2] is to execute the iterations of the loop concurrently
speculating that there is no carried true dependence. How-
ever, violation of data dependency, if any, is caught on the
fly with the help of additional data structures and book-
keeping information. The book-keeping overhead and the
lost cycles due to mis-speculations leading to squashes can
impose a significant performance penalty. In this paper, we
squarely focus on improving the performance of software-
only speculative parallelization by reducing the cycles lost
in mis-speculations.

Our solution for reducing the squash overhead involves
two components, Selective Squash and Speculation Reuse.
Both the components are enabled by the simple observation
that retaining the state (store values) generated by a thread
during the last mis-speculated iteration can be helpful in the
subsequent re-execution of the iteration. Traditional specu-
lative parallelization techniques discard these states before
re-execution is initiated. We propose another improvement
related to making the commit operation less lock-intensive.

*This work has been done while Deepak was at IIT Kanpur.

Copyright is held by the author/owner(s).
PACT’10, September 11-15, 2010, Vienna, Austria.
ACM 978-1-4503-0178-7/10/09.

Deepak Majeti
Dept. of Comp. Sci.
Rice University
dm14@rice.edu

543

Sanjeev Kumar Aggarwal

and Mainak Chaudhuri
Indian Institute of Technology,
Kanpur
{ska,mainakc}@cse.iitk.ac.in

2. FRAMEWORK

Our framework is designed after the proposals in the base-
line [2]. The global array and the index matrix are same as
in the baseline. The version matrix must now accommodate
both read and write values of a datum. A new state called
the OLD state must be introduced to help us retain the
speculatively generated states. A datum in a MOD (specu-
latively written) state transitions to OLD_MOD state when
the thread associated with the sliding window slot suffers
from a squash. The access matrix must now handle the
OLD states.

3. SELECTIVE SQUASH, SPECULATION

REUSE AND OPTIMIZING COMMIT

We have already discussed the newly introduced OLD
state in the access matrix which helps us retain the spec-
ulatively generated versions during a mis-speculated execu-
tion of a task. Our implementation attempts to reuse these
versions in the re-execution that immediately follows the
squash.

A silent store is a write to memory that does not alter the
value already present at the target address X.

An eztended silent store is a write to memory that pro-
duces the same value at the target address X, as in the
previous mis-speculated execution of the same task.

In the next definition, we present our selective squash pro-
tocol. This protocol leverages the extended silent stores to
reduce the number of squashes.

Extended silent store-based squash A thread ¢ produc-
ing a value for a target address X either through a silent
store or an extended silent store is not required to check its
successors for dependence violation involving X if t forwards
versions in the OLD state to a requesting successor.

This means that a dependence violation check is invoked
only if a speculative version for a variable is generated for
the first time or if the generated version does not qualify as
a silent store or an extended silent store.

We now turn to our second contribution, namely, specula-
tion reuse. We have already discussed how speculation reuse
helps us define extended silent stores and how we use ex-
tended silent stores to reduce the volume of squashes. How-
ever, the extended silent stores make use of only the OLD
write versions. A second benefit of speculation reuse is that
it can consume the speculatively written private versions
from the previous mis-speculated execution as long as the
versions have not expired due to a store from a predecessor.

This reduces the interference with shared memory values be-
ing committed and opens up the opportunity of reducing the
re-execution latency as long as the thread scheduler is made
aware of this.

Through a careful implementation, we make the commit
protocol as lock-free as possible. Our implementation needs
one critical section for allocating a new window slot as op-
posed to two in the baseline. The following protocol achieves
this and we will refer to it as the quasi-lock-free commit pro-
tocol. First, we copy valid write versions to shared memory.
We then clean up the access matrix structures and mark
the window slot FREE. We now make the next slot non-
speculative.

4. EXPERIMENTAL RESULTS

We select five loops from the SPEC 2000, SPEC 2006, and
PERFECT Club benchmark suites. From the SPEC 2006
suite, the loop at approx_cont_mgau.c:279 of 482.sphinx3
and the loop at innerc.c:4160 of 435.gromacs have a high
dependence density. The loop at blocksort.c:551 of 401.bzip2
has a moderate dependence density. From the SPEC 2000
suite, the loop at vbrender.c:897 of 177.mesa exhibits a low
dependence density. From the PERFECT Club suite, the
loop interf-1000 of MDG has a zero dependence density.
The dependence density of these loops are expressed only
qualitatively.

We run our experiments on a multiprocessor system which
has four Intel quad-core E7330 Xeon processors (2.40 GHz
2x3 MB L2 cache). The shared main memory size is 32 GB
and the system runs Red Hat Enterprise Linux Server 5.3.
The applications are compiled with the Intel C4++ and For-
tran Compilers 11.0 with level 2 optimizations. We use the
standard production data sets provided with the applica-
tions. OpenMP 2.0 is used to put the parallelization direc-

This translates to a parallel efficiency of 0.17 in CL and 0.43
in SSSR for the selected loop nests.

9 rermewy
8 SSSR(16W) 7.5
cL(z2wW)

> 7 msssr(zzW)
§ - 6 | 5 55
:rg 5
@3 | 4
L=4a
= = |
823 |
> 2 1.5
0 1

1 I 0.3 0.2

0

Sphinx3 Bzip2

Figure 2: Frequency of squashes for 8 processors.

Figure 2 presents the frequency of squashes (ratio of num-
ber of squashes generated to the number of iterations) for
the selected loops in sphinx3 and bzip2. The number of
threads are set to 8 and two windows of size 16 and 32
are considered. The frequency of squashes generated by CL
is much more than the squashes generated by SSSR. The
frequency of squashes also increases with CL as the window
size increases. This is because CL squashes all the successive
threads. So a higher window size implies a higher number
of resultant squashes. On the other hand, the squash fre-
quency in SSSR is less because SS in SSSR squashes only
those threads which have violated a dependency. The rest of
the threads are spared. Finally, when using SSSR, the num-
ber of squashes tend to become independent of the window
size. This makes SSSR more scalable.

Table 1: Reuse and squash statistics for SSSR
|| Attribute

| sphinx3 | bzip2 | mesa | gromacs ||

tives around the selected loops. Silent store 1% 0% 0% 0%

10 Ex. silent store 100% 0% | 100% 84%
T o0 8.5 88 8892 Successors spared 99% 5% | 99% 35%
S8
g7 6.1 i .
&h e Table 1 further quantifies the benefits of speculation reuse
%’ i 26 and selective squash. Overall, we find that 94% of silent
23| 24 2.9 2.8 store versions and extended silent store versions can be reused,
§ 2 EI 1.4 while 77% of successor threads can be spared by supporting
= ; i - mE B B selective squash.

Sphinx3 Bzip2 Mesa Gromacs MDG gmean

Figure 1: Performance on sixteen threads.

Figure 1 presents the self-relative speedup comparison be-
tween the baseline and our implementation for the selected
loops. The baseline is labeled CL after the proposers [2].
Our implementation is labeled SSSR (Selective Squash Spec-
ulation Reuse). Note that SSSR also turns on our quasi-
lock-free commit optimization. For each application loop,
the speedup over a sequential execution of the loop is shown
for sixteen threads. The last two bars present the geometric
mean speedup over sequential execution for CL and SSSR on
sixteen threads. For 177.mesa, 482.sphinx3, 401.bzip2 and
435.gromacs, SSSR is successful in dramatically improving
the scalability compared to CL. Finally, for MDG, the two
schemes deliver almost the same performance. Overall, the
geometric mean speedup delivered by CL for these loops is
2.8, while SSSR exhibits a speedup of 6.9 on sixteen threads.

544

5. CONCLUSIONS

In this paper, we have explored the benefits of selective
squash and speculation reuse in the context of software-
only speculative loop parallelization. These techniques are
enabled by value-based dependence check, extended silent
stores, and retention of speculatively consumed and gen-
erated versions in the last mis-speculated execution of a
task. As a third contribution, we bring the commit oper-
ation closer to being lock-free.

6. REFERENCES

[1] L. Rauchwerger and D. Padua, “The Irpd test: speculative
run-time parallelization of loops with privatization and
reduction parallelization,” in PLDI ’95, pp. 218-232, 1995.
M. Cintra and D. R. Llanos, “Design space exploration of a
software speculative parallelization scheme,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 6, pp. 562-576, 2005.

(2]

