
Ocean Warning: Avoid Drowning

Mark Heinrich
School of EECS

University of Central Florida
Orlando, FL 32816

Email: heinrich@cs.ucf.edu

Mainak Chaudhuri
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853

Email: mainak@csl.cornell.edu

Abstract— Ocean is a popular program from the SPLASH-2
parallel benchmark suite. A complete application, as opposed to
a computational kernel, Ocean is often used as a representative of
a well-tuned parallel program in architectural studies. However,
we find there is a danger in using Ocean to evaluate proposed
enhancements that purport to either improve scalability or reduce
synchronization overhead. The default Ocean code contains an
ill-advised code segment that seriously handicaps its “base”
performance in common architectural studies. We provide the
one-line fix for the offending code that improves performance
by as much as a factor of 2.3, and suggest that architecture
researchers using Ocean to evaluate their new ideas—especially
when discussing scalability or synchronization—change their
code immediately.

I. I NTRODUCTION

Ocean is an oft-used program from the SPLASH-2 parallel
application suite [3]. While no claim was ever made that the
SPLASH-2 programs are the most optimal parallel versions of
those applications, a serious effort was made to not handicap
the codes or prevent their scalability so that they would be
of general use to the architecture community. The care taken
in Ocean is case in point. Ocean uses a 4-D, as opposed
to a simpler 2-D, decomposition to ease page placement
requirements on ccNUMA machines. Ocean is also structured
so that reads are remote and writes are local, and so that
prefetches can be easily inserted to mitigate the impact of
large remote read latencies.

Unfortunately Ocean contains one vile code segment that
does much to undo its otherwise careful crafting, hampering
both its scalability and unduly increasing the percentage of
execution time spent in synchronization primitives. In Sec-
tion II we provide the one-line fix that significantly decreases
synchronization time in Ocean (inside both locks and barriers)
and correspondingly improves its performance and scalability.
Architecture studies using the original unnecessarily crippled
version of Ocean may result in misleading conclusions about
the efficacy of the proposed scheme, especially in studies
related to improvements in scalability or synchronization that
happen to address or remove the same inefficiency that should
have been removed in the code to begin with. We strongly
urge architects to remove the paper tiger and apply the one-
line patch in Section II to Ocean to yield more meaningful
comparisons of their architectural ideas.

In the next section we detail the problem and provide
the line of code that fixes it. Section III presents simulation
results for a variety of common configurations of both the

original “unoptimized” Ocean and the new version with our
fix properly applied. We conclude in Section IV.

II. PROBLEM

The problem in Ocean stems from the use of a lock that
protects the global error valuemulti->err multi . During
this phase of Ocean, each processor computes its local error
(local err) and tests to see if its local error is larger than
the global error. If so, it sets the new global error to the larger
local error value. The code to perform the error update resides
in file multi.C in the proceduremultig :

LOCK(locks->error lock)
if (local err > multi->err multi) {

multi->err multi = local err;
}
UNLOCK(locks->error lock)

The code first acquires a lock, then performs the error test
and possible set, then releases the lock. As the number of
processors increases, it is obvious that this lock can become
highly-contended and negatively impact performance. Unfor-
tunately, the lock is necessary for correctness, since the update
of the global error must be atomic. However, it is a relatively
rare event for the local error to be greater than the global
error (see Section III for statistics). That fact, coupled with the
observation that the global error is monotonically increasing,
means that the simple lock, test, and set sequence above, can
trivially be changed to a test, lock, test, and set sequence as
follows:

if (local err > multi->err multi) {
LOCK(locks->error lock)
if (local err > multi->err multi) {

multi->err multi = local err;
}
UNLOCK(locks->error lock)

}

The corrected code is identical except that the test inside the
critical section is also performedbefore acquiring the lock.
This has the effect of entirely eliminating most of the acquire
attempts for the error lock without changing the program
behavior, and as we shall see in the next section, dramatically
improves the performance of Ocean. Note that the test must
also be done a second time inside the critical section for
correctness.

III. S IMULATION RESULTS

Using the multi-threaded execution-driven simulator for
ccNUMA DSM machines that was validated against real hard-
ware in [1], with the parameters given in Table I, we present
Ocean simulation results for both the original code and the
version with our fix properly applied. The simulated machine
runs a directory-based cache coherence protocol similar to that
in the SGI Origin 2000 [2]. In all cases we use the standard
Ocean parameters of 20km grid resolution, 8hr relaxation time,
and relaxation tolerance of 1e−5. We also enable the standard
prefetching and data placement options.

TABLE I

SIMULATION PARAMETERS

Processor speed 2GHz
ITLB 8 entries/Fully Assoc./Random
DTLB 64 entries/Fully Assoc./Random
Page size 4KB
L1 I$ 32KB/64B lines/2-way/LRU
L1 D$ 32KB/32B lines/2-way/LRU
L2 cache 2MB/128B lines/2-way/LRU
Memory access time 90ns
Topology 2-way bristled hypercube
Router hop time 25ns

Figure 1 shows the results for 514x514 Ocean, a problem
size that scales to moderately large machines (64-128 pro-
cessors) that is often used in architectural studies. For each
processor count, the graph shows execution times forUNOPT
(the original SPLASH-2 code) andOPT (our fixed version)
normalized to the performance of the original code. Further,
each execution time bar is broken down into processor busy
time, memory stall time, barrier stall time, and lock stall time.

32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Processors

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
T

im
e

fo
r

51
4x

51
4

G
rid

Lock
Barrier
Read+Write
Busy

UNOPT

OPT

Fig. 1. Effects of optimization on 514x514 Ocean

The first thing to note from Figure 1 is that the optimized
Ocean code significantly improves execution time and its effect
becomes more important as the machine size scales. At 32
processors the optimized code is 8.4% faster than the original
code, at 64 processors it is 45.7% faster, and at 128 processors

it is 133% (2.3 times) faster. Note that as expected, this
optimization has no effect whatever on processor busy times
or memory stall times. However, lock stall time is dramatically
reduced for all three processor counts. Less obviously, the
barrier stall time is also reduced significantly because of
improved load balance resulting from the conversion of a
heavily-contended lock to a lock that is mostly free. The
combination of these effects yields impressive performance
improvement. We argue that it is this performance of Ocean
that should be treated as the “base” performance in architecture
studies that use Ocean to evaluate new designs or techniques,
especially when related to reducing synchronization overhead
or improving scalability.

Table II explains why such large reductions in synchroniza-
tion times are possible. The table lists the percentage of time
the global error lock is actually updated when the original
code grabs the error lock for the problem sizes used in both
Figures 1 and 2. As the table shows, the global error is updated
infrequently, and therefore most of the lock acquires (> 80%
in all cases and> 92% in all cases but one) in the original
code are useless and serve only to slow down the program.
Generally, the update frequency decreases with increasing
problem size and machine size, making our optimization all
the more effective.

TABLE II

DYNAMIC ERROR UPDATE FREQUENCY

Problem Size Processor Count Frequency
130x130 16 18.23%
258x258 64 4.89%
258x258 64 (small caches) 6.39%
514x514 32 7.81%
514x514 64 3.85%
514x514 128 2.16%

Figure 2 shows results for Ocean on other “popular” prob-
lem sizes. Because Ocean simulations can be long-running,
some studies use undersized problem sizes to save time. For
small processor counts, the woefully small problem size of
130x130 is sometimes used, and we show the results of our
optimization here for 16 processors, where the fixed code is
14.5% faster than the original. Though too small to scale
well, a 258x258 grid is sometimes used at larger machine
sizes. We present that problem size here for 64 processors,
where the fixed code is 79.2% faster. In recognition of running
the smaller grid size, some studies simultaneously run with
“small caches” to get the effect of running a bigger problem
on normally-sized caches. We show 258x258 with a 64 KB
secondary cache and 16 KB primary caches, where the fixed
code is 27.7% faster.

In all cases our optimization drastically reduces both lock
stall time and barrier stall time by reducing the number of lock
attempts in this critical parallel section of the Ocean code.
The performance effects are so drastic that we view our code
change more as a fix of a glaring omission in the original code
than as an optimization.

130x130, 16 Processors 258x258, 64 Processors 258x258, 64 Processors
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
N

or
m

al
iz

ed
 P

ar
al

le
l E

xe
cu

tio
n

T
im

e
Lock
Barrier
Read+Write
Busy

[Small Caches]

UNOPT

OPT

Fig. 2. Effects of optimization on smaller Ocean problems

IV. CONCLUSIONS

We show that the lack of a simple test before acquiring
the global error lock in Ocean significantly increases the syn-
chronization time, especially as you scale the size of the ma-
chine. Across several commonly-used problem size/processor
count configurations, we show how adding the one-line test
decreases not only the amount of time spent in lock acquires
(obviously) but also significantly decreases the barrier stall
time because of the resulting improved load balance. Analy-
sis of architectural enhancements that improve scalability or
synchronization overhead can be clouded by the use of the
original Ocean code. So do not drown the analysis of your
architectural ideas in an Ocean crippled by the unfortunate
absence of a single line of code. Change your code, and full
steam ahead!

REFERENCES

[1] J. Gibson et al. FLASH vs. (Simulated) FLASH: Closing the Simulation
Loop. In Proceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 49–58, November 2000.

[2] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly scalable
server. InProceedings of the 24th International Symposium on Computer
Architecture, pages 241–251, June 1997.

[3] S. C. Woo et al. The SPLASH-2 Programs: Characterization and
Methodological Considerations. InProceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 24–36, June
1995.

