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Abstract

Ever-increasing memory footprint of applications and
increasing mainstream popularity of shared memory paral-
lel computing motivate us to explore memory compression
potential in distributed shared memory (DSM) multiproces-
sors. This paper for the first time integrates on-the-fly cache
block compression/decompression algorithms in the cache
coherence protocols by leveraging the directory structure
already present in these scalable machines. Our proposal is
unique in the sense that instead of employing custom com-
pression/decompression hardware, we use a simple on-die
protocol processing core in dual-core nodes for running our
directory-based coherence protocol suitably extended with
compression/decompression algorithms. We design a low-
overhead compression scheme based on frequent patterns
and zero runs present in the evicted dirty L2 cache blocks.
Our compression algorithm examines the first eight bytes
of an evicted dirty L2 block arriving at the home memory
controller and speculates which compression scheme to in-
voke for the rest of the block. Our customized algorithm for
handling completely zero cache blocks helps hide a signif-
icant amount of memory access latency. Our simulation-
based experiments on a 16-node DSM multiprocessor with
seven scientific computing applications show that our best
design achieves, on average, 16% to 73% storage saving
per evicted dirty L2 cache block for four out of the seven
applications at the expense of at most 15% increased par-
allel execution time.

1. Introduction

The memory footprint of high-end data-intensive appli-
cations is ever-increasing. While parallel computing makes
inroad to mainstream applications, efficient management of
physical memory will be an important issue affecting the
end-performance of these applications as well as the energy
consumption of the system. In this paper we explore the
performance of memory compression in a medium-scale
distributed shared memory (DSM) multiprocessor execut-
ing some popular scientific computing parallel workloads.
We integrate the compression/decompression algorithms in

the underlying directory-based cache coherence protocol.
To the best of our knowledge, this is the first attempt to
look at memory compression as a coherence protocol ex-
tension. When a dirty cache block is evicted from the last
level of cache hierarchy (in this paper, we consider a two-
level hierarchy), it is sent to the home memory controller
for appropriate coherence book-keeping and updation of
main memory. Our compression algorithm is invoked at
this point and a compressed cache block is written back to
main memory, thereby reducing the pressure on the mem-
ory. When a cache block is requested by a node (on an L2
cache miss), the request is forwarded to the home memory
controller and at this point our decompression algorithm is
invoked. Therefore, the main processor always receives un-
compressed cache blocks and its cache hierarchy does not
require any modification at all. All the modifications come
in the form of a new coherence protocol which integrates the
compression and the decompression algorithms. We lever-
age the directory structure and a small header to store com-
pression information on a per cache block basis (each L2
cache block has its own directory entry, as in the usual pro-
tocols).

We exploit the flexibility of a simple protocol core
per node to design compression-aware coherence protocols
without any extra hardware in the memory controller. Such
protocol processors are used in an array of DSM multipro-
cessors [4, 21, 24, 27, 28] to increase the flexibility in the
choice of the protocol and in some cases to simplify the pro-
tocol verification process. Although these designs did not
consider using a spare core sharing the same die with the
main core for executing the coherence protocol, in this work
we envision an architecture that uses simple and less pow-
erful spare cores for running the directory-based coherence
protocol in software. With the trend toward larger num-
ber of on-die cores, such an architecture presents a cost-
effective design point for the next-generation scalable DSM
multiprocessors. In our case we can execute a compression-
enabled protocol or a vanilla baseline bitvector protocol
without requiring any hardware changes. Essentially, the
integrated protocol core executes a chosen coherence pro-
tocol in software. We present two simple compression al-
gorithms and combine them in the coherence protocol. Our
execution-driven simulations on a 16-node DSM multipro-
cessor running seven explicitly parallel scientific computing



workloads show that our best configuration saves up to 73%
storage of an L2 cache block on average while experiencing
at most 15% increase in execution time. The major chal-
lenge in the design is to maintain a good compression ratio
while keeping the performance overhead at an acceptable
level.

In the following, we briefly mention prior research in the
area of cache and memory compression. Section 2 presents
the details of our simulation environment. We discuss the
extensions to the baseline bitvector coherence protocol in
Section 3. The compression and decompression algorithms
are discussed in Section 4 while the detailed simulation re-
sults for these algorithms are presented in Section 5. We
conclude in Section 6.
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A significant amount of research has been done in the
area of memory and cache compression for single-threaded
systems. Historically, dictionary-base memory compres-
sion has received wide attention. IBM’s MXT technol-
ogy [1, 13, 31] implements a parallel block referential com-
pression algorithm in hardware and employs a large 32 MB
tertiary cache to hide the memory decompression overhead
as much as possible. The IBM MXT algorithm is recently
extended to compress on-chip cache [16] using indirection-
based full associativity [17]. X-Match algorithm [20] car-
ries out compression in the presence of full or partial match
with a dictionary entry. Principle of locality is used in [8] to
compress the address and data streams on the system bus.
Profile-driven and differential compression/decompression
algorithms for memory blocks on the path between cache
and memory are explored in [5, 6]. The profile-driven
scheme builds a CAM dictionary from profile information
and maintains a RAM for decompression, while the on-
line differential scheme relies on the fact that several bits
in different words of a cache block may be common (e.g.,
the higher order bits). X-RL algorithm [23] compresses
L2 cache and memory blocks with X-Match algorithm en-
hanced with a special treatment for zero runs. Since the
dictionary-based compression techniques work best for data
granularity larger than cache blocks, they have been used to
compress physical page frames, thereby accommodating a
larger working set in memory [10, 11]. Compiler transfor-
mations to exploit common prefix and narrow data for com-
pressing dynamic data structures (32-bit address pointers as
well as integer fields) have been explored in [34].

Our work is most closely related to the computation-
ally less demanding compression/decompression schemes
presented in [2, 3, 12]. While frequent pattern-based
compression schemes are implemented for on-chip cache
blocks in [2, 3] to increase the effective cache area, an in-
depth study of zero-aware compression schemes for mem-
ory blocks (off-chip compression) is presented in [12]. Our
compression algorithms are influenced by the findings of
these studies. However, none of these studies explore the
effectiveness of compression algorithms in a scalable DSM
multiprocessor environment. We present an effective way
of combining frequent pattern and zero-aware compression
schemes. Our design does not require any extra hardware,
as we integrate the compression/decompression algorithms

in the software cache coherence protocols executing on pro-
tocol cores of a hardware DSM multiprocessor.

2. Simulation Environment

This section presents our simulated DSM multiproces-
sor environment and the benchmark applications we use for
evaluating our compression algorithms. We simulate a 16-
node system where each node contains a modern out-of-
order eight-wide core, an on-die integrated memory con-
troller [9, 18, 19, 29, 30] clocked at half the frequency of the
main core, an on-die in-order static dual-issue protocol core
clocked at the same frequency as the memory controller, an
on-die integrated e-cube router, and off-chip local SDRAM
banks. Figure 1 shows a high-level block diagram of one
node. The nodes are interconnected by a scalable hyper-
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Figure 1. Simulated node architecture. AT
denotes the application thread which runs
on the out-of-order (OOO) main core. PT
denotes the directory protocol thread which
runs on the protocol core. Each core has
its own L1 instruction (IL1) and data (DL1)
caches while only the main core has an L2
cache. The network interface (NI), which talks
to the router, is integrated into the memory
controller. Everything except the SDRAM is
on the same die.

cube network. The in-order static dual-issue protocol core
executes a directory-based coherence protocol. The proto-
col core design is derived from the Memory and General
Interconnect Controller (MAGIC) of the Stanford FLASH
multiprocessor [15, 21]. However, we have extensively
modified the design of MAGIC to closely resemble the hub
of the SGI Origin 2000 [22]. The directory-based coherence
protocol is similar to the write-invalidate full-map bitvec-
tor protocol implemented in the SGI Origin for small and
medium-scale servers. We simulate a 64-bit directory en-
try (to match the datapath width of the protocol core), of
which 16 bits are used to maintain sharer and owner infor-
mation and four bits are used for coherence states (dirty,
local, and two flavors of busy states). As discussed in the
next section, compressed memory block’s metadata is main-
tained in 38 out of the remaining 44 bits. The protocol core



has a MIPS-like ISA and enjoys its own single-level of in-
struction and data caches backed by local SDRAM. Both
the caches are sized for single-cycle access at 65 nm. In
this study, one or two protocol cores may be present per
node. We also explore the impact of both in-order and out-
of-order network interface (NI) message scheduling in the
memory controller. Table 1 summarizes the salient param-
eters. In the rest of this article we will interchangeably
use the terms protocol core and protocol processor (PP).
We evaluate our compression algorithms on seven explic-
itly parallel applications, six of which are selected from the
SPLASH-2 suite [32]. The details are in Table 2.

Table 1. Simulated DSM architecture

Parameter Value
Number of nodes 16

Main core
Frequency 3.2 GHz
Pipe stages 22
Front-end/Commit width 8/8
BTB 256 sets, 4-way
Branch predictor Tournament (Alpha 21264)
RAS 32 entries
Branch mispred. penalty 18 cycles (minimum)
ROB size 192 entries
Integer/FP Register 224/224
Integer/FP/LS issue queue 48/48/64 entries
ALU/FPU 8 (two for addr. calc.)/3
Integer mult./div. latency 6/35 cycles
FP mult./div. latency 2/12 cycles
Data cache ports 2
ITLB, DTLB 128/fully assoc./LRU
Page size 4 KB
L1 Icache 32 KB/64B/2-way/LRU
L1 Dcache 32 KB/32B/2-way/LRU
Unified L2 cache 512 KB/128B/8-way/LRU
L1 cache hit latency 3 cycles
L2 cache hit latency 11 cycles (round trip)

System
System bus width 64 bits
System bus frequency 1.6 GHz
Memory controller freq. 1.6 GHz
SDRAM frequency DDR2 400 MHz
SDRAM page hit latency 40 ns
SDRAM page miss latency 80 ns
SDRAM bandwidth 6.4 GB/s
PP frequency 1.6 GHz
PP Icache 32 KB/128B/direct map
PP Dcache 128 KB/128B/direct map
Router ports 6 (SGI Spider)
Network topology 2-way bristled hypercube
Hop time, link bandwidth 10 ns, 3.2 GB/s

Table 2. Simulated applications

Application Problem size
Barnes-Hut [32] 8192 particles, three time steps
FFT [32] 1M complex double points,

tiled for DTLB
FFTW [14] 8192 � 16 � 16 complex double points,

32 � 32 tiles
LU [32] 512 � 512 matrix, 16 � 16 tiles
Ocean [32] 514 � 514 grid, 1e-5 tolerance
Radix-Sort [32] 2M integer keys, radix 32
Water [32] 1024 molecules, three time steps

3. Directory Protocol Extensions

Before we proceed to discuss the compres-
sion/decompression algorithms in the next section, in
the following we point out the directory protocol exten-
sions. Essentially, this involves figuring out the places
where our compression or decompression algorithm needs
to be invoked. In general, the compression extensions are
needed in all places where the directory protocol initiates a
memory write. Note that this can happen only in the home
node because a cache block can be written to the home
memory only. In the following discussion, we assume a
simple MSI coherence protocol. However, extension to
other coherence protocols (e.g., MESI, MOESI, or MOSI)
can be handled in the same fashion. We will denote a
processor requesting a cache block by RP, the protocol
processor in the requesting node by RPP, the protocol
processor at the home node of a requested cache block
by HPP, the local main processor at the home node by
HP, and a processor holding a cache block in dirty state
by DP. We will also denote a read request by GET, a
read-exclusive request by GETX, a writeback by WB, a
writeback acknowledgment by WB ACK, a read reply by
PUT, and a read-exclusive reply by PUTX.

There are two categories of situations where a cache
block compression would be invoked. The first category
pertains to the arrival of a writeback message at the home
node. The two cases in this category are shown in Figure 2.
In the first case the writeback is originated from a non-home
node while in the second case the writeback comes from
the home’s local processor. In both cases the home protocol
processor compresses the evicted cache block before writ-
ing it back to memory.

WB

WB_ACK

HPP

COMPRESS

HPP

COMPRESS

WB

RP

RPP
2

3

HP

WB 1

Figure 2. Compression cases for writeback
The second category of situations where a cache

block compression is invoked pertains to the arrival of a
read (GET) intervention reply at the home node. A typical
example is shown in Figure 3 (a) where RP sends a cache



block read request to the home node and the message is han-
dled by the HPP at the home node. On consulting the direc-
tory entry, HPP finds that the requested cache block is dirty
in processor DP meaning that the most up-to-date copy of
the block is in the cache of DP. Therefore, the read request
is forwarded to DP. DP sends a put reply to RP and also a
sharing writeback (SWB) message to HPP. Both the mes-
sages carry the cache block. The SWB message is needed
because now the directory state will be demoted from dirty
to shared with both RP and DP marked as sharers. Subse-
quent requests to this cache block must be satisfied by the
home memory itself. Therefore, the home memory must be
updated with the most up-to-date copy of the block. On ar-
rival of the SWB message, the HPP compresses the cache
block and writes it back to memory. Two slight variations of
this case are shown in Figures 3 (b) and 3 (c). In Figure 3 (b)
the dirty processor is the local processor of the home node
itself with the cache block residing in the local processor’s
cache in the dirty state. On the other hand, in Figure 3 (c)
the requesting processor is the local processor of the home
node itself.

Note that a read-exclusive (GETX) intervention does not
update the home memory because it involves only an own-
ership hand-over and there is no demotion of state in the di-
rectory entry. Therefore, the GETX interventions do not in-
voke compression. There are few other cases where a cache
block compression may be needed. But these are tied to
some of the lower level details of how intervention races are
handled in the underlying coherence protocol and in favor
of brevity we omit the discussion of these.
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Figure 3. Compression cases for GET inter-
vention

The decompression cases are relatively easier to iden-
tify. In general, when a cache block request (either GET
or GETX) arrives at the home node, the HPP must decom-
press the memory block and send the decompressed block
with the reply message (PUT or PUTX, respectively). The
two cases are shown in Figure 4. In one case the requester
is a non-home node while in the other the local processor
of the home is the requester. In case of an upgrade request,
the directory state may not indicate the requester as a sharer.
Such a situation arises due to certain protocol races. In this
case also the home protocol processor may have to decom-
press the memory block depending on the directory state
and send it to the requester as a PUTX reply. Having found
out the places where the compression/decompression algo-
rithms should be invoked, now we are ready to discuss the
design of these algorithms.

1
HPP
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DECOMPRESS

HPP

GET/GETX

PUT/PUTX

2
DECOMPRESS

RPP

PUT/PUTX
PUT/PUTX

GETX
GET/

2

3

1 4

HP

RP

Figure 4. Decompression cases

4. Compression/Decompression Algorithms
We experimented with various potential bit patterns

present in the evicted L2 cache blocks of the applications
for a range of machine sizes and settled with three com-
pression algorithms. All the algorithms consider 64 bits of a
128-byte cache block at a time. Thus, each of the 16 double
words in a cache block may potentially undergo different
compression algorithms. One of the compression schemes
is very specific to the IEEE 754 double-precision floating-
point format. Extensive use of double-precision floating-
point numbers in the chosen applications (only Radix-Sort
is a purely integer application) motivated us to experiment
with this algorithm. Each of the algorithms can use one of
four subschemes to compress the 64 bits under considera-
tion. We start with the floating-point algorithm. The four
subschemes are presented below.
� Encoding 00: 52-bit mantissa is zero. Only the sign bit

and 11-bit exponent are stored.
� Encoding 01: 11-bit exponent is zero. Only the sign

bit and 52-bit mantissa are stored.
� Encoding 10: 11-bit exponent is 1023 (this corre-

sponds to exponent value zero). Only the sign bit and
52-bit mantissa are stored.

� Encoding 11: uncompressed. Full 64 bits are stored.

Although this algorithm produced good compression ratio,
we dropped it from our final design due to extremely high
decompression time.

The four subschemes of the second compression algo-
rithm are presented below. This algorithm exploits zero
runs as well as repeated word patterns within 64-bit dou-
ble words.
� Encoding 00: 64-bit zero run. No data is stored.
� Encoding 01: the most significant 32 bits are zero. The

least significant 32 bits are stored.
� Encoding 10: the most and the least significant 32 bits

are equal. One of them is stored.
� Encoding 11: uncompressed. Full 64 bits are stored.

The four subschemes of the third algorithm are presented
below. This algorithm exploits only zero runs.
� Encoding 00: 64-bit zero run. No data is stored.
� Encoding 01: the most significant 32 bits are zero. The

least significant 32 bits are stored.
� Encoding 10: the least significant 32 bits are zero. The

most significant 32 bits are stored.



� Encoding 11: uncompressed. Full 64 bits are stored.

As the evicted dirty cache blocks (clean evictions are
dropped silently by the L2 cache controller) arrive at the
home memory controller, it invokes the appropriate coher-
ence protocol handler. Since the compression algorithms
are integrated in the protocol handlers, the compression ac-
tivity also gets carried out at this point. However, we found
it impossible to run all the three algorithms one after another
on each 64-bit chunk and store the best compressed block in
memory. This would impose extremely high compression
overhead. So our compression scheme unifies the afore-
mentioned last two algorithms based on speculation (we
drop the floating-point specific algorithm from further dis-
cussion due to high decompression overhead). We inspect
the first 64 bits of a 128-byte cache block and decide which
of the two algorithms should be invoked. If within the first
64 bits, the most and the least significant 32 bits match,
we decide to use the first algorithm to compress all the 16
double words in the cache block. On the other hand, if at
least one of the two 32-bit words is zero within the first 64
bits, we decide to compress all the 16 double words in the
cache block using the second algorithm. If none of these
tests on the first 64 bits pass, the cache block is stored un-
compressed. While compressing a cache block, the running
size of the compressed block is compared against a recon-
figurable parameter, maxCsz. Only if the compressed size at
the end is within this limit, is the compressed cache block
written back to memory. As soon as the running size ex-
ceeds maxCsz, the compression is aborted and the block is
stored in memory uncompressed. This parameter presents
a flexible trade-off between the performance overhead and
the compression ratio. We found that careful choice of this
parameter is critical for performance.

Next, we turn to the decompression process. The main
processors (specifically the TLBs) are not made aware of
the compressed blocks. So they keep on generating uncom-
pressed cache block addresses. When such an address ar-
rives at the home memory controller (resulting from an L2
cache miss), the directory entry for the block is looked up
first. In the following, we systematically derive the infor-
mation required to generate the decompressed cache block.
While decompressing a memory block, we need to know
which algorithm was used to compress it. Since we have
three choices (two algorithms and uncompressed), two bits
out of the free 44 bits in the directory entry are sufficient.
We call these two bits the compression state. Next, we need
to locate the compressed cache block in the main mem-
ory. We use 32 bits out of the left-over 42 bits in the di-
rectory entry to store the address of a compressed cache
block. It is clear from the algorithms that a compressed
cache block’s size will always be a multiple of four bytes.
However, to minimize relocation we always make it a mul-
tiple of eight bytes potentially providing a cushion for use
later, if needed. So, a compressed cache block’s address
will have the last three bits zero and there is no need to
store these bits. Therefore, with 32 bits, we can access a
total of 32 GB of compressed memory. Finally, we need to
know within each algorithm which of the four subschemes
is used for each 64-bit chunk of a 128-byte cache block.
This is achieved by storing a 32-bit header with each com-
pressed block (two bits are needed for each of the 16 dou-

ble words to remember the subscheme used for that double
word). Note that a fully uncompressed memory block does
not store this header.

As an optimization, we decide to store the size of the
compressed block in the directory entry also. This re-
quires four bits, since a 128-byte cache block can contain
at most 16 eight-byte chunks (compressed block size is al-
ways a multiple of eight bytes). This information helps us
in quickly triggering a relocation, if the newly compressed
size exceeds the last compressed size of a cache block. Fi-
nally, we take special care of completely zero cache blocks.
In these cases, we do not store anything in memory (not
even the 32-bit header). Instead, we use the fourth unused
state in the directory entry’s two compression state bits to
identify such cache blocks. When such a cache block is
identified from the directory entry of the requested address,
the home memory controller immediately replies to the re-
quester node with a zero cache block obviating the need
to access the main memory. A careful reader may notice
that we leave six bits in the 64-bit directory entry unused.
These bits can be used later to further expand the com-
pressed memory size or to store information about a more
complex compression algorithm. In this paper, 70 bits (38
bits in directory entry and 32 bits in header) are used to store
compression information per compressed block.
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The protocol processor occupancy is the most impor-

tant determinant of performance in the DSM multiproces-
sors [7]. In spite of delivering excellent compression ratio,
the floating-point compression algorithm had to be dropped
due to high occupancy. We found that one big bottleneck to
compression performance is accessing the memory-mapped
uncached data buffer containing the evicted dirty cache
block to be compressed. This buffer is filled with the data
payload coming through the network or processor interface
of the home memory controller. Given a 64-bit datapath,
sixteen uncached loads are needed to compress 128 bytes
of data. Uncached accesses to these buffers are extremely
slow. Therefore, in this paper we explore the possibility
of caching the data buffer storage in the protocol proces-
sor’s data cache. However, this leads to a coherence prob-
lem when the same data buffer is used next time. To solve
it, the protocol processor, at the end of the decompression
or compression, flushes the cache block containing the data
buffer using cache index invalidate or cache index write-
back instruction available in the MIPS ISA [26]. However,
we found that draining a dirty block containing a modified
buffer from the protocol processor’s data cache hurts perfor-
mance significantly. Therefore, our best design implements
only cached loads to the data buffer space and continues to
use uncached stores. Our algorithms running on the pro-
tocol core are tuned in such a way that they never require
simultaneous loads and stores to the same data buffer. This
allows us to implement independent policies for loads and
stores to the data buffer space (e.g., cached loads and un-
cached stores).

To further reduce the protocol processor’s occupancy, we
explore the use of dual protocol cores per node. However,
the L1 instruction and data caches are not replicated and are
shared among the cores. Therefore, the designs with two



protocol cores do not have a high area overhead. We mod-
ify the memory controller’s request scheduler to guarantee
mutual exclusion among addresses being handled by the
two protocol processors simultaneously. The critical sec-
tions in the protocol handlers containing the compression
and decompression algorithms are appropriately guarded
by high-throughput test-and-set locks. To further improve
the concurrency in protocol processing, we explore out-
of-order network message scheduling in the memory con-
troller. Usually, the network interface (NI) queues are FIFO
and it may happen that in a cycle none of the requests at
the heads of these queues can be scheduled due to address
conflicts with the requests currently being handled by the
protocol processors on a node. Out-of-order scheduling has
the potential to improve the utilization of the protocol pro-
cessors by considering all the requests (as opposed to just
the heads) in the queues.

Finally, before closing this discussion, we would like to
point out two major implementation issues that are left open
and need to be addressed in future efforts. Enabling mem-
ory compression requires significant changes in the operat-
ing system. The page replacement and migration algorithms
need to be modified so that these become compression-
aware. Second, relocation of compressed memory blocks
leads to fragmentation in the physical frames. Efficient
memory compaction algorithms would be needed to fully
utilize the potential of compressed main memory.

5. Simulation Results

This section presents our simulation results. We show re-
sults only for the best maxCsz of 48 bytes decided through
simulation. In all the results we show the L2 cache block
compression achieved by each of the seven applications
along with the experienced slowdown in execution time.
For a particular L2 cache block, the achieved compression is
computed as saved bytes divided by the size of an L2 cache
block i.e. 128 bytes (presented as a percentage). First, this
is computed on average for each unique written back L2
cache block. Note that the same L2 cache block can be
written back multiple times and each time a different com-
pression ratio may be achieved. So an average is needed.
Finally, this number is averaged over all unique written back
L2 cache blocks. In summary, this is precisely the percent
saved memory space (we include the overhead of storing the
32-bit header). The slowdown is computed as the ratio of
the execution time with compression enabled to the baseline
execution time on 16 nodes.

Figure 5 shows the achieved storage saving and execu-
tion slowdown for all the seven applications running on a
16-node DSM multiprocessor. Barnes and Water achieve
excellent compression (77% and 70% savings) while suf-
fering from at most 10% increase in execution time. Barnes
enjoys a significant amount of memory access reduction due
to the presence of a large number of completely zero cache
blocks. This helps us nullify a sizable proportion of com-
pression overhead. LU and Ocean achieve mediocre com-
pression (18% and 26% savings). FFT, FFTW, and Radix-
Sort are not compressible at all. Radix-Sort suffers from a
54% increase in execution time due to lost cycles in futile
compression activity. Initialization with random data val-
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Figure 5. Performance with one PP per node
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Figure 6. Performance with two PPs per node
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Figure 7. Performance with two PPs and OOO
NI scheduling

ues is the main reason why these three applications fail to
deliver any compression at all.

Figure 6 shows the results after incorporating a sec-
ond protocol core per node. While the achieved compres-
sion remains largely unchanged, the slowdown factors of
FFTW, Ocean, and Radix-Sort have gone down dramati-
cally. Radix-Sort now experiences a 36% increase in ex-
ecution time. Note that the baseline system (without com-
pression enabled) also employs two protocol processors per



node.
Figure 7 shows dramatic improvement in performance

across the board after employing out-of-order NI message
scheduling. Compared to the baseline system Barnes, FFT,
and LU suffer from negligible slowdown, while FFTW,
Ocean, and Water suffer from at most 10% increase in exe-
cution time. Radix-Sort experiences only a 20% increase in
execution time.
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Figure 8. Performance with two PPs, OOO NI
scheduling, and cached load/store to com-
pression/decompression buffer space

Figure 8 shows the results after implementing cached
load/store to the compression/decompression buffer space.
However, performance of this optimization is worse com-
pared to the design without it. Only Barnes and LU re-
main unaffected, while Radix-Sort now experiences a 31%
increase in execution time compared to the baseline system.
As already pointed out in the last section, flushing of dirty
buffers from protocol core’s L1 data cache keeps the datap-
ath occupied leading to slowdown.
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Figure 9. Performance with two PPs, OOO NI
scheduling, and cached loads to compres-
sion/decompression buffer space

Figure 9 presents the results of our best design which
incorporates two protocol cores per node, out-of-order NI
message scheduling, and cached loads to the compres-
sion/decompression buffer area. Interestingly, FFT, FFTW,

and Ocean suffer from a slight performance degradation
when compared to the design without cached loads to the
buffer area (compare Figure 7 and Figure 9). We found that
for these three applications, the majority of the decisions to
store a cache block uncompressed are based on the specu-
lation of the first 64 bits of the block. While reading the
first 64 bits from a buffer through a single uncached ac-
cess requires only two cycles, loading the entire 128-byte
buffer into cache before the first load can be executed re-
quires 16 cycles. Therefore, with cached loads, a load to
the first 64 bits sees this 16-cycle latency resulting in de-
graded performance for applications that carry out success-
ful speculations based on the first 64 bits. On the other
hand, Radix-Sort suffers from a large number of aborted
compressions due to the chosen value of maxCsz (this value
was chosen to offer good average performance across the
board) and therefore, shortening the latency of these futile
compression attempts by executing pipelined cached loads
to the buffer area helps improve performance (note that once
the buffer is brought into the cache, every cycle a load can
be issued, unlike the uncached loads). Overall, this design
achieves a storage saving of 73%, 16%, 21%, and 66% re-
spectively for Barnes, LU, Ocean, and Water. The increases
in execution times of these applications are 2%, 1%, 11%,
and 8%, respectively. FFT, FFTW, and Radix-Sort do not
benefit from any compression, but suffer from 5%, 7%, and
15% increase in execution time, respectively. Overall, while
the maximum performance loss in a 16-node DSM multi-
processor employing our compressed memory is only 15%,
four of the seven applications achieve reasonable compres-
sion. The remaining three applications that fail to achieve
any compression initialize the data points with random val-
ues, thereby increasing the entropy of the cache block con-
tents dramatically. It is unlikely that any compression algo-
rithm would be able to achieve good compression ratio for
these three applications.
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In this section, we try to further understand the additional
overhead of protocol processing when the baseline direc-
tory protocol is extended with compression/decompression
algorithms. We start by analyzing the memory stall cycles
experienced by the applications. These cycles are counted
at the commit stage of the main core pipeline whenever
the re-order buffer (ROB) is blocked with an outstand-
ing load/store instruction at the head. Note that follow-
ing the design of the MIPS R10000 [33] our main core
implements sequential consistency and therefore, outstand-
ing stores remain in the ROB until completed. Figure 10
shows the memory stall cycles of the compression-enabled
architectures relative to the corresponding baseline architec-
tures without compression. For each application we show
a set of five bars representing the five design options dis-
cussed in the last section. “CachedRW” denotes the design
with cached load/store of the compression/decompression
buffer enabled, while “CachedR” denotes the design with
only cached load of the compression/decompression buffer
space enabled. We observe that the design with either
out-of-order NI scheduling or cached loads to compres-
sion/decompression buffer space achieves the lowest extra



memory stall cycles compared to the baseline architecture.
For the best design this overhead ranges from 5% (Barnes
and LU) to as large as 28% (Radix-Sort). In all applications,
except FFT, LU, and Water, introduction of a second proto-
col core (“Two PPs”) reduces the memory stall overhead
significantly. In FFT, LU, and Water we found that the ex-
tra synchronization instruction overhead in the concurrent
directory protocol running on the “Two PPs” configuration
outweighs the benefits. This point is further explained be-
low. Nonetheless, enabling both cached loads and stores to
the compression/decompression buffer space significantly
increases the memory stall cycles across the board. Finally,
as expected, we observe that the trends presented in these
results closely track the performance trends discussed in the
last section.
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Figure 10. Memory stall cycles of the
compression-aware architectures relative to
the baseline architectures

To further understand the origin of the memory stall cy-
cle overhead, we next focus on the average busy cycle count
of the protocol core. This number is computed by taking
an average of the busy cycles of all the 16 or 32 protocol
cores (one or two per node). Figure 11 shows the average
protocol core busy cycles for all the five design options rel-
ative to the corresponding baseline architectures. As ex-
pected, we find that the trends in memory stall cycle over-
head are closely reflected in the trends of the protocol core
busy cycle overhead. The best compression-aware design
introduces 40% (Water) to as large as three times (Radix-
Sort) extra protocol core busy cycles. We observe that even
though for some of the applications this overhead is ex-
tremely high, the corresponding memory stall cycle over-
head is not that significant. For example, Barnes suffers
from a 2.8 times protocol core busy cycle overhead in the
best design, while the corresponding memory stall cycle
overhead is only 5%. The main reason for this seemingly
anomalous result is that in some of the applications even
though the protocol core busy cycle overhead is high, the
protocol core is busy for an extremely small percentage of
the total execution time. Barnes and LU are the best exam-
ples of such applications.

In Table 3 we present the root cause of such a high proto-
col core busy cycle overhead when compression is enabled.
This table compares the dynamic instruction count (M de-
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Figure 11. Average protocol processor busy
cycles of the compression-aware architec-
tures relative to the baseline architectures

notes million) of the compression-aware protocol with that
of the baseline protocol. This count is the aggregate of all
the instructions executed by all the 16 protocol cores (one
per node). Note that these counts do not include the extra
synchronization instruction overhead that would be needed
when executing on the “Two PPs” configuration. Further,
out-of-order NI scheduling and caching buffer spaces do
not alter this count much because these are largely hard-
ware enhancements. This table clearly brings out the high
overhead of the compression algorithm. In Barnes the dy-
namic instruction count increases by almost seven times,
but many of these do not affect the critical path of execu-
tion. On the other hand, in Radix-Sort although the proto-
col instruction count increases by roughly a factor of 3.5,
almost all of these fall in the critical path, thereby affect-
ing the memory stall cycles significantly. Ocean has a large
number of L2 cache misses and they translate into a large
protocol instruction count.

Finally, to guage how much of the protocol processing
overhead can be hidden under the memory access latency,
in Table 4 we present the average occupancy of a protocol
handler with and without compression. We also include the
occupancy numbers when the protocol is augmented with
proper synchronization instructions (test-and-set) to be used
with two protocol processors. We observe that with com-
pression enabled, the average handler occupancy increases
significantly for all applications except Water. Radix-Sort
has the maximum handler occupancy of 36.9 ns. However,
the most interesting observation is that when compared to
the fastest memory access latency of 40 ns (in case of a
page hit as shown in Table 1), all these occupancy numbers
are less than that. Even though we can hide the handler
occupancy under the memory access latency, we need to re-
member that a bigger handler occupancy will in any case
introduce contention in the interface queues connecting the
protocol core and the memory controller, thereby lengthen-
ing the waiting time of the outstanding requests. This effect
quickly builds up especially when the protocol requests are
bursty leading to an increase in memory stall cycles seen
by the applications. Radix-Sort is known to have bursty
writes in the histogram permutation phase and that clearly



Table 3. Dynamic instructions executed by protocol processor
Config. Barnes FFT FFTW LU Ocean Radix-Sort Water

Without compression 29.1 M 82.7 M 177.8 M 11.4 M 376.6 M 24.7 M 62.4 M
With compression 215.5 M 185.6 M 417.6 M 29.2 M 1553.5 M 87.0 M 137.3 M

Table 4. Average protocol handler occupancy
Config. Barnes FFT FFTW LU Ocean Radix-Sort Water

Without compression one PP 7.5 ns 6.7 ns 10.5 ns 6.3 ns 6.7 ns 8.1 ns 5.5 ns
With compression one PP 31.9 ns 16.7 ns 22.7 ns 14.8 ns 24.1 ns 36.9 ns 8.8 ns
Without compression two PPs 8.4 ns 7.7 ns 13.3 ns 6.6 ns 7.0 ns 8.3 ns 5.6 ns
With compression two PPs 31.9 ns 26.7 ns 20.9 ns 24.4 ns 33.1 ns 45.6 ns 9.8 ns

explains why it is the most affected application. Nonethe-
less, the handler occupancy numbers are quite encouraging
for most of the applications and they will improve compared
to the memory access latency as the gap between process-
ing speed and memory speed widens in future. Finally, we
observe that the average occupancy of the handlers running
on two PP configuration is higher than that in the one PP
protocol in most of the applications. The synchronization
overhead is the main reason for this. We found that in FFT
and LU, this overhead outweighs all benefits of concurrent
handler execution and increases the memory stall cycles, as
already shown in Figure 10.
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One needs to be careful when evaluating a memory com-

pression technique. The trade-off here is usually between
the execution time overhead and the compressed memory
size. Complex algorithms achieve better compression ra-
tio while running the risk of degrading the performance.
On the other hand, energy consumption is increasingly be-
coming a first class citizen in system design. In this sec-
tion we develop a useful relationship involving the energy-
delay product as the metric for evaluating compression tech-
niques. Let the execution time without compression be C
and with compression be DFEHGJI�KFC for some non-negativeI . Before compression is enabled let the average power
consumption be L and therefore, the total energy is LMC .
After compression is enabled extra energy is consumed due
to increased execution time and increased activity of the
protocol core. Assuming that the average energy per in-
struction of the protocol core is NOLQPSR�R and that it executes
extra T instructions to achieve compression, the total en-
ergy overhead coming from the protocol core is NOLQP R�R T .
The energy impact of memory compression can be evalu-
ated in two ways. One effect could be that due to smaller
amount of memory needed, dynamic energy per memory
access is reduced (it is natural to assume that dynamic en-
ergy per memory access is proportional to the size of the
memory per module [25]). The second effect could be
that due to bigger amount of effective memory available,
less frequent accesses are made to the next level of mem-
ory (e.g., hard disk) leading to lower energy consumption.
Nonetheless, in the following analysis we assume that the
energy saved due to compression is U
V where a fraction U
of the original memory space is saved and V is the energy

consumption by the memory modules without compression.
Therefore, total energy consumption after compression isDFE�GBI�KWLMCOGXNOLQPYR�R�T[Z\U%V and hence, the energy-delay
product is DWE�G8I]KW^YLMC_^�G\DFE�G5I�KFC_NOLQPYR�R-T`Z=DFE�G5I�KFC>U%V .
Without compression, energy-delay product is LMC�^ . There-
fore, memory compression is beneficial if DFEaGbI]K ^ LMC ^ G
DFE�GcI�KFC_NOLQPYR�R�TdZeDFE�GcI]KfC>U
V�ghLMC_^ . On simplification,
we get Uji`DWE+GXI\Z kkWl�m K

R�no Gqp R�rfstso Tvu
This inequality is extremely useful in determining the

minimum required memory saving due to compression so
that the resulting design is energy-delay effective. For com-
plex compression algorithms, both I and T will increase
leaving the other quantities unchanged. This will raise the
required minimum compression ratio, as expected. We ob-
serve that the fraction p R�r s>so is going to be extremely
small, given the simplicity of the protocol core. From our
experience of preliminary power simulations at 65 nm we
expect NOLQP R�R to be tens of pico Joules. Therefore, p R�rfs>so
is expected to be of the order of Exw:y
z or even less depending
on SDRAM power consumption and activity factors. Even
though this fraction is multiplied by the extra dynamic in-
struction count of the protocol core, we do not expect the
overall product to be large. On the other hand R�no is going
to be bigger than one and therefore, the first term of the in-
equality is expected to have more influence on the minimum
required U . However, it would be wrong to conclude that
we can design complex compression algorithms and still
end up not affecting the minimum required U because the
protocol core related term in the inequality does not have
much influence. We need to note that the two terms in the
inequality are not independent. The value of I is expected
to be a monotonically increasing function of T , although
the shape of the function may be quite complex and may
vary from application to application. We recommend that
the designers of memory compression techniques use this
inequality to pick the appropriate design. Currently, we do
not have a good DDR2 SDRAM power estimator integrated
with our simulator. In future we will use this inequality to
evaluate the five design options presented in this paper in
terms of the energy-delay product.

6. Conclusions

In this paper, we have explored the performance poten-



tial of a simple hybrid of frequent pattern and zero run-
based memory block compression/decompression scheme
integrated with the directory-based cache coherence pro-
tocol in DSM multiprocessors. Our design exploits the
flexibility of on-die protocol cores, thereby obviating the
need for any extra hardware while enabling on-the-fly cache
block compression and decompression in the home memory
controller. Our results highlight the importance of coher-
ence throughput in the end-performance of such systems.
Even when the protocol processor is clocked at half the fre-
quency of the main processor we find that two protocol pro-
cessors per node with out-of-order NI message scheduling
are needed to keep the performance overhead acceptable.
Caching of compression/decompression buffers also turns
out to be critical for performance. Although cached loads to
the buffers are helpful, cached stores hurt performance due
to subsequent expensive flushes from the protocol core’s L1
data cache. Overall, our best design suffers from at most
15% increased execution time while delivering 16% to 73%
memory block storage saving for four out of seven scientific
computing workloads.
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