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Abstract—Graphics processing units (GPUs) have emerged
as a strong candidate for high-performance computing. While
regular data-parallel computations with little or no synchro-
nization are easy to map on the GPU architectures, it is a
challenge to scale up computations on dynamically chang-
ing pointer-linked data structures. The traditional lock-based
implementations are known to offer poor scalability due to
high lock contention in the presence of thousands of active
threads, which is common in GPU architectures. In this paper,
we present a performance evaluation of concurrent lock-free
implementations of four popular data structures on GPUs. We
implement a set using lock-free linked list, hash table, skip
list, and priority queue. On the first three data structures,
we evaluate the performance of different mixes of addition,
deletion, and search operations. The priority queue is designed
to support retrieval and deletion of the minimum element and
addition operations to the set. We evaluate the performance of
these lock-free data structures on a Tesla C2070 Fermi GPU
and compare it with the performance of multi-threaded lock-
free implementations for CPU running on a 24-core Intel Xeon
server. The linked list, hash table, skip list, and priority queue
implementations achieve speedup of up to 7.4, 11.3, 30.7, and
30.8, respectively on the GPU compared to the Xeon server.
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I. INTRODUCTION

Graphics processing units (GPUs) have become one of the pre-
ferred vehicles for high-performance general purpose computing.
This computing paradigm is commonly known as general purpose
computing on GPU (GPGPU) or GPU computing. Regular data-
parallel computations with little or no synchronization have been
efficiently mapped on the GPUs. However, a large number of
general purpose ordinary programs have irregular accesses to
pointer-linked data structures that change dynamically through
addition and deletion of items. Achieving scalable performance on
such data structures requires highly concurrent implementations.
In small to medium-scale parallel machines with tens of active
thread contexts, it may be acceptable to have some amount of lock-
based synchronization. However, this would introduce prohibitive
performance overhead in GPUs where the number of active threads
can easily extend to thousands. Possibility of high lock contention
at this scale rules out lock-based implementations.

In this paper, we present an evaluation of lock-free concurrent
implementation of a few important data structures on GPUs. To
the best of our knowledge, this is the first detailed evaluation of a
number of lock-free data structures on GPUs. We present four im-
plementations of a set with the help of linked list, hash table, skip

list, and priority queue. The first three data structures support con-
current lock-free addition, deletion, and search operations on the
set, while the concurrent priority queue offers lock-free retrieval
and deletion of the minimum element and addition operations. Our
choice of data structures is governed by their importance in general
purpose computing. Linked lists form the building block for many
important data structures, such as, graphs. Hash tables are often
used to reduce average case search time. We present a lock-free
design of a closed-address hash table, which builds upon our lock-
free linked list design. Skip lists offer expected logarithmic search
time and our lock-free priority queue builds upon a lock-free
implementation of the skip list. All our implementations use the
CUDA (Compute Unified Device Architecture) C++ programming
model and rely on the CUDA atomic primitives such as atomic
compare-and-swap (CAS), atomic increment, etc..

We measure the performance of these data structures by execut-
ing a mix of the concurrent operations supported by each of the
data structures. Our evaluation is carried out on a Tesla C2070
Fermi GPU as well as a 24-core Intel Xeon server. The GPU
implementations of the lock-free linked list, hash table, skip list,
and priority queue achieve speedup of up to 7.4, 11.3, 30.7, and
30.8, respectively compared to the lock-free multi-threaded CPU
execution.

The concurrent implementations of the four data structures
chosen by us have been studied in great detail in the context of
CPUs and we review some of these contributions in Section I-A.
Section II summarizes the CUDA programming environment.
Section III presents the lock-free implementations of the four data
structures on GPU. We discuss the evaluation methodology and
the performance results in Sections IV and V.

A. Related Work

In this paper, we have implemented four lock-free data struc-
tures on CUDA-enabled GPUs. While a significant amount of
research has been done on lock-free data structures in the context
of traditional CPUs, there is very little known about the perfor-
mance of these data structures on the GPUs. Herlihy and Shavit
discuss concurrent implementations of several data structures on
shared memory multiprocessors using JAVA [10]. We summarize
relevant portions of this literature on CPU-based implementations
and discuss a few studies relevant to GPU implementations.

Lock-free linked list implementation using atomic CAS oper-
ations is proposed by Valois [29]. This implementation supports
linearizable operations [12] i.e., each operation appears to take
place atomically at some point (the linearization point) during its
execution. Valois also proposes a reference count-based solution
to the ABA problem related to memory management of data
structures operated on by atomic CAS. Subsequently, Harris [9]



presents improved algorithms for lock-free linked lists supporting
linearizable addition and deletion operations. Michael further im-
proves this implementation to be compatible with lock-free mem-
ory management and shows how to use his lock-free linked list
implementation to construct a lock-free hash table [19]. This lock-
free implementation of linked list has been known as the Harris-
Michael algorithm. We will detail a variation of this algorithm in
Section III-A.

Hsu and Yang present the design of a concurrent extensible
closed-address hash table with minimal locking with the help of
optimistic concurrency control protocols via dynamic verifica-
tion of consistent view of the hash buckets (or directories) [13].
Ellis [6] details the design of lock-based linear hashfiles in the
context of databases with the help of the lock-coupling protocol [3]
where an algorithm locks the next component of a data structure
before releasing the lock on the current component. Kumar’s
construction of concurrent extensible hash tables further lowers
the locking overhead [16]. Greenwald implements a non-blocking
resizable and linearizable closed-address hash table using double-
word CAS (DCAS) operations that can atomically operate on two
independent memory locations [8]. Shalev and Shavit present a
lock-free resizable and linearizable hash table employing CAS
operations via a technique called recursive split-ordering [24]. The
central observation in this design is that all items of the hash table
can be maintained in a single lock-free linked list and new buckets
can be introduced via references into this list. As aresult, a resizing
operation does not require moving an item from an old bucket to a
new bucket atomically.

Sequential as well as concurrent skip lists are introduced by
Pugh as a randomized alternative to the deterministic balanced
search trees [21], [22]. Skip lists enjoy simpler operations to
maintain an expected logarithmic search time compared to the
complex balancing operations in a search tree. This simplicity
of skip lists becomes especially important in efficient concurrent
implementations [7]. While Pugh’s concurrent implementation is
lock-based, Fraser presents a CAS-based lock-free skip list by
treating each level of a skip list as a lock-free linked list [7].
Herlihy, Lev, and Shavit present a lock-free skip list [10] that
is partially based on Fraser’s construction. We will discuss the
construction due to Herlihy, Lev, and Shavit in Section III-C. Ced-
erman, Tsigas, and Chaudhry present a brief evaluation of a lock-
free skip list on GPUs and show that it performs significantly better
than a software transactional memory-based implementation [5].
Their lock-free construction is based on the implementation due to
Sundell and Tsigas [28].

Rao and Kumar present lock-based designs of concurrent pri-
ority queues [23]. A fine-grain lock-based priority queue design
is discussed by Hunt et al. [14]. Shavit and Zemach present lock-
free bounded priority queues based on arrays and trees [25]. Lotan
and Shavit [18] discuss lock-free quiescently consistent [1], [25]
as well as linearizable priority queues based on lock-free skip
lists. We will present the details of the quiescently consistent
implementation in Section III-D. Sundell and Tsigas discuss an-
other lock-free implementation of priority queues based on skip
lists [27]. Finally, there have been efforts among the hardware
designers to pipeline the priority queue operations for efficient
cache replacement policies [2] and smart scheduling in high-speed
networks [15].

Xiao and Feng present lock-based and lock-free implementa-
tions of global barriers to synchronize independent thread blocks

on a GPU [30]. Stuart and Owens explore implementations of
barriers, mutexes, and semaphores on GPUs [26].

Our evaluation of the lock-free data structures considered in
this paper is the first attempt to gain a detailed understanding of
the performance of these data structures on GPUs. We note that a
recent study has explored the performance of lock-based and lock-
free queues on GPUs [4].

II. BACKGROUND: PROGRAMMING WITH CUDA

Our implementations use the CUDA C++ programming model.
A detailed introduction to CUDA can be found in [20]. CUDA
is a parallel computing architecture consisting of a parallel pro-
gramming model and a parallel thread execution (PTX) instruction
set architecture that can leverage the parallelism available in the
Nvidia GPUs. CUDA offers a software development environment
that extends a traditional high-level language such as C, C++,
Fortran, etc. to help programmers express the parallelism in the
applications. The CUDA API provides libraries that can be called
from the high-level language code. In the following, we discuss
some of the features of this API.

The functions that are launched on the GPU for concurrent
execution are called kernel functions. The declaration of kernel
functions must be preceded by __global__ . The CUDA key-
words __device__ and __host__ are used with function
declarations and indicate whether a function will be called from
the GPU code or the CPU code, respectively. The default is the
latter when no keyword is specified, but both must be specified
if a function must be compiled for the GPU as well as the CPU.
Before a kernel is launched, a thread grid configuration is specified
and the threads in this configuration will execute the launched
kernel on the GPU. The grid is logically arranged in a one, two, or
three dimensional array of thread blocks. A thread block is further
organized into a one, two, or three dimensional array of threads.
A thread block may contain up to 1024 threads on Fermi GPUs
that we use. A typical grid would have several tens of thousand of
threads. Each thread within a thread block and each block within
a grid receives a unique identifier through thread-private in-built
variables. These are initialized depending on the position of a
thread within a grid and can be accessed by a thread from the
kernel function. Each thread executes an instance of the kernel
function. Usually each instance operates on a different segment
of input decided by the id of the thread executing that instance.

The CUDA thread model is tied closely to the array of streaming
multiprocessors (SMs) that the GPU hardware consists of. The
Fermi GPU that we use in this study has 14 SMs and each SM has
32 CUDA cores, 16 load/store units, and four special function units
for executing the transcendental functions. Each of the 448 CUDA
cores on the GPU is equipped with fully pipelined integer and
floating-point units, but does not have any support for out-of-order
instruction issue, branch prediction, or speculative execution. Each
SM has a large register file and a configurable shared memory and
L1 cache.

Individual thread blocks are scheduled on different SMs and
all the threads of a thread block execute concurrently on one SM.
Multiple thread blocks can execute concurrently on one SM obey-
ing the scheduling constraints. When a thread block terminates on
an SM, a new thread block is scheduled on the SM. Each SM is
designed to manage and schedule hundreds of concurrent threads
through a single instruction multiple thread (SIMT) architecture.
The threads in a block can communicate through the shared
memory and synchronize with barriers.



The SM schedules and executes the threads in groups of 32
parallel threads called warps. The threads in a warp start execution
at the same program counter, but they can branch and diverge
independently. If threads of a warp diverge due to a conditional
branch, the warp sequentially executes each taken branch path by
disabling the threads that are not on that path. When all such paths
are executed, the threads in a warp converge back to a common
path. Frequent control flow divergences can hurt performance
severely. When an SM receives one or more thread blocks, it
partitions them into warps and executes each warp independently.
A warp scheduler switches out the warp blocked on a long-latency
event (such as global memory access) and schedules a ready-to-
execute warp. The context of a warp remains in the SM throughout
the life time of a warp. As a result, warp scheduling is very fast
on GPUs. The number of thread blocks and warps that can reside
on an SM depends on the register and shared memory need of
each concurrent instance of the executing kernel function. In Fermi
GPUs, an SM can accommodate up to 1536 threads.

Different thread blocks cannot communicate through the per-
SM shared memory and must use the global memory for this
purpose. While there are different flavors of memory fence instruc-
tions to maintain memory consistency within a thread block and
across thread blocks, the only way to implement synchronization
between arbitrary threads in a grid is through the atomic operations
executing in the relatively slow global memory. Although the data
in global memory can be cached in the globally shared 768 KB
L2 cache of the Fermi architecture, the access latency is still much
higher than the L1 cache or the per-SM shared memory. Since all
the states of a data structure that we implement must be shared
across all the threads to support concurrent operations on arbitrary
elements in the data structure, all our data structures are kept in the
global memory. The global memory to be used by a kernel on the
GPU can be allocated from the CPU before launching the kernel
with the help of CUDA APIs. The CUDA memory allocation
function (cudaMalloc) returns a pointer to the global memory
allocated on the GPU and this pointer must be passed to the kernel
so that it can access the allocated memory. CUDA APIs further
offer memory copy functions (cudaMemcpy) to copy contents
between the CPU memory and the GPU global memory. These
calls are useful in setting up kernel inputs in the GPU memory and
bringing back kernel outputs from GPU memory to CPU memory.

We close this section with a brief discussion on the atomic oper-
ations that we use in this study. We use two atomic operations of-
fered by CUDA, namely, atomicCAS and atomiclnc, to implement
our lock-free data structures. The atomicCAS operation takes three
arguments, namely, an address A, an expected value V.., and a
new value V;,¢,,. It reads the value V4 at address A. If V,,;4 equals
Veap, it stores V., at address A; otherwise it leaves the contents
of A unchanged. It always returns V4. By comparing the return
value with V., one can check if the execution of atomicCAS has
successfully stored Ve An atomicCAS operation of a thread
T: to address A may fail if some other thread 7% updates the
contents of A with a value different from V.5, of 7. We note that
single-word atomicCAS has an infinite consensus number [11],
thereby offering the most powerful synchronization primitive for
implementing lock-free and wait-free operations.

The atomiclnc operation takes two arguments, namely, an ad-
dress A and a value V4. It reads the value V4 at address A. If
Voia is greater than or equal to Vinqz, it resets the contents of A to
zero; otherwise it stores V4 + 1 at address A. It always returns

Voia. The atomiclnc operation atomically increments a memory
location with wrap around at a chosen maximum value.

III. LOCK-FREE DATA STRUCTURES

This section presents the design of the lock-free data structures.
We use quiescent consistency and linearizability as the correctness
criteria of our concurrent data structures. A data structure is said
to follow quiescent consistency if all operations (or function calls)
on the data structure appear to happen in some sequential order
and two groups of operations separated by a period of quiescence
appear to take effect in their real-time order. For example, consider
two concurrent enqueue operations to a FIFO queue adding ele-
ments z and y to the queue. After these two operations complete, a
third enqueue operation adds z to the queue. If the implementation
of the FIFO queue follows quiescent consistency, z will appear
after both x and y, although the relative order of x and y is
arbitrary. A data structure is linearizable if its implementation
supports linearizable operations i.e., each operation appears to take
place atomically at some point (the linearization point) during its
execution.

Before we move on to the discussion of the data structures,
we formally define two terms that we will use: lock-freedom and
wait-freedom. An implementation of an operation or a function
is lock-free if infinitely often some call to the function among a
number of concurrent calls finishes in a finite number of steps. An
implementation of an operation or a function is wait-free if every
call to the function finishes in a finite number of steps [17]. Every
wait-free implementation is also lock-free. Lock-free and wait-free
implementations guarantee forward progress without depending
on warp scheduling and other thread scheduling policies.

A. Linked List

The linked list implements a set supporting three operations,
namely, add, delete, and search. The elements in the linked list
are kept sorted in the ascending order starting from the head. The
add(z) call adds the element z to the set, if it is already not in the
set and returns one. If = is already in the set, it does not insert
x and returns zero. The delete(x) call removes the element x
from the set, if it is in the set and returns one. If z is not in the
set, it returns zero. The search(z) call returns one, if z is in the
set and zero otherwise. The add and delete implementations are
lock-free, while the search implementation is wait-free. All the
three operations are linearizable. Our implementation follows the
construction presented in [10], which is a variation of the Harris-
Michael construction. In the following, we assume that each linked
list node has two fields, namely, element holding the value and
next holding the address of the next node.

The add(xz) and delete(x) functions first walk through the
sorted list trying to locate x. Let the address of the node holding
the minimum element k such that ¥ > z be CURR(z) and
the address of the node before CURR(x) be PRED(z) i.e.,
PRED(z) — next is equal to CURR(zx). If k is not equal to
x, the delete operation returns zero. However, in this case, the add
operation creates a new linked list node with element value x and
makes its next field hold CURR(z). Finally, the add operation
executes an atomicCAS on the location &(PRED(x) — next) to
make PRED(z) — next point to the newly created node. If the
atomicCAS is successful, the add operation returns one; otherwise
the entire add operation starts over again by trying to locate x.

If k is equal to x, the add operation returns zero. In this case, the
delete operation needs to remove the node containing = from the



list. This node is pointed to by CURR(x). It is important to note
that changing the value of PRED(z) — next from CURR(z)
to CURR(x) — next through an atomicCAS operation does not
work because concurrent deletion of two consecutive nodes (e.g.,
pointed to by CURR(z) and CURR(xz) — next) using this
protocol may not, in fact, delete the second node. We follow
the well-known pointer marking protocol to implement lock-free
delete. Each linked list node has a single-bit mark field, which
is normally reset. When a node is deleted, this bit is set in that
node with the help of atomicCAS signifying logical deletion of
the node. The delete(x) operation, in addition to marking the node
being deleted, tries to delete the node physically by an invocation
of atomicCAS. If the atomicCAS fails, it just leaves the node
logically deleted and returns one.

The responsibility of physically removing a marked node falls
on subsequent add and delete operations. Recall that these oper-
ations first walk the linked list looking for the addition/deletion
site in the list. Any marked node encountered during this walk are
physically removed. This is done with the help of an atomicCAS
operation by changing the next field of the node previous to the
marked node. Let the previous node be PREYV . There is a danger
that before the change in the next field of PREV is affected,
PREYV may get marked and in such a situation proceeding with
the atomicCAS on &(PREV — next) may lead to an inconsis-
tent state of the list. Therefore, it is important that the mark and
the next fields be changed together by the atomicCAS operation
and if any one of these is modified by some other concurrent
operation before the atomicCAS is completed, the atomicCAS
will fail. This is achieved by stealing the least significant bit of
the next field to store the mark bit. Since the least significant
two bits of a word-aligned 32-bit CUDA pointer would be zero,
whenever the next field is used as a pointer, the least significant
bit is zeroed. If the atomicCAS operation fails during the physical
removal of a marked node, the entire list walk starts over from the
head.

The search(z) operation walks the list from the head looking
for z. If z is found and its node is not marked, the function returns
one; otherwise it returns zero. Since this operation does not involve
any atomicCAS calls, it is guaranteed to finish in a finite number
of steps, and hence, is wait-free.

B. Hash Table

We implement a lock-free closed-address hash table by lever-
aging our linked list construction. The hash table implements a
set and supports the same three functions as the linked list. The
hash table is implemented as a single linked list and an array of
pointers into the list stores the starting points of the buckets. Our
hash table supports a constant number of buckets and this number
is fixed at the time of CUDA kernel launch. The linked list node
that starts a bucket stores a special key value so that this can be
used to indicate the end of the previous bucket as well as the
beginning of a new bucket. Specifically, the head node of bucket
i stores the key (0x80000000 OR ), where “OR” is the bitwise
OR operation. The add, delete, and search operations for bucket
i begin at this node of the linked list. The bucket ends with the key
value (0x80000000 OR (¢ + 1)). This design limits the actual key
values to be of 31 bits and the number of buckets to 23! (in a 64-bit
implementation, the key range and the number of buckets can be
expanded by choosing a different key pattern for the head nodes).
The segment of the linked list within each bucket is sorted as in the

original linked list implementation. The tail node of the complete
linked list stores the special key Oxffffftff. This node is necessary
to indicate the end of the last bucket. The head nodes and the tail
node can never be deleted.
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Figure 2. Hash table with a few keys inserted.

Figure 1 shows an example hash table with four buckets just
after initialization. Figure 2 shows the same hash table after a few
keys are inserted. The hash function used is key value modulo
number of buckets. On an identical mix of add, delete, and search
operations, the set implemented with a hash table is expected to of-
fer better throughput compared to a single linked list even though
the hash table is implemented using a single linked list. This is
because in the hash table, multiple non-interfering operations can
be in flight in the independent segments of the linked list belonging
to different buckets.

C. Skip List

Our lock-free skip list implementation follows the linearizable
construction presented in [10]. We implement a set supporting the
usual add, delete, and search operations. A skip list can be seen
as a hierarchy of linked lists as shown in Figure 3. The keys present
in level n + 1 form a subset of the keys present in level n. For
example, in Figure 3, at level zero, all the keys are present and
the keys are linked up through an ordinary sorted linked list. At
level one, however, only the keys 3, 7, and 16 are present and they
are linked up through a separate linked list at level one. When a
new key is inserted in the skip list, a random level r is generated
with expected value ;= for some predefined p € [0 1], where p
is the probability of ﬁndmg a key at level n + 1, given that the
key is present at level n. This value r serves as the maximum level
up to which the new key can be present. If this value is bigger
than a predefined maximum level, the new key is inserted in all the
levels. One such function for generating the maximum level for a
new key is presented in [21]. Assuming that the maximum number
of levels is N, levels zero to N — 2 are used for maintaining the
keys in the skip list. Level NV — 1 is reserved for linking up the
head and the tail nodes of the list. The head node holds a key (m
in Figure 3) smaller than all the keys in the allowable range, while
the tail node holds a key (M in Figure 3) bigger than all the keys
in the allowable range.

The linked lists at different levels in a skip list should be seen
as shortcuts for reaching a particular key skipping over several
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elements at level zero. For example, Figure 3 shows the search path
for key 13. The search always starts at the highest level of the head
node. It compares the search key with the key of the next node at
that level. If the search key is smaller, the operation climbs down
the levels until it reaches a level where the key in the next node
is smaller than or equal to the search key. The search operation
moves on to the next node at this level and the process is repeated
until the key is found or it becomes evident that the key is not
present in the list.

An add(x) operation for a new key z locates the site of insertion
by traversing the skip list, generates a random maximum level r
for this key, and inserts a new node in the linked lists at levels
zero to r. A delete(z) operation for a key x already present in
the skip list locates the key and removes the node from all the
linked lists it is present in. Clearly, a lock-free skip list can leverage
our lock-free linked list implementation. The only difference is
that the physical removal of a marked node may require physical
removals in multiple linked lists. Also, an add operation may
have to insert into multiple linked lists. It is not possible to make
multiple physical removals or insertions atomic with single-word
atomicCAS. Also, depending on the path followed by an add or
delete operation, some middle level of a marked node may be
removed physically leaving the other levels unchanged, thereby vi-
olating the subset property of two consecutive levels. Nonetheless,
the implementation guarantees linearizable operations by making
sure that an add operation links a new node at level zero first and
moves bottom-up; a delete operation marks the node to be deleted
starting from its maximum level and moves top-down. A key is
defined to be present in the skip list until it is found unmarked at
level zero.

Due to the complex code structure of a skip list and the poten-
tially multiple atomicCAS operations (executing in the relatively
slow global memory) needed to insert a key or physically remove a
key, we expect the hash table to offer better throughput compared
to a skip list on identical mix of operations. Particularly worri-
some are the control flow divergences introduced by the complex
structure of the skip list code. However, we expect the skip list to
perform better than the linked list on identical mix of operations
because the skip list guarantees an expected logarithmic search
time.

D. Priority Queue

We design the lock-free priority queue by leveraging the lock-
free skip list, as outlined in [10]. The keys are essentially the
priorities of the elements. We implement a set using the priority
queue and we support two operations on the set, namely, add and
delete M in. To implement the deleteMin operation, we internally
support a delete operation as well.

The delete Min operation walks the level zero list starting from
the head looking for the first unmarked node. Once it finds this
node, it tries to mark it using atomicCAS. If the atomicCAS fails,

it just continues walking the level zero list. Once the delete Min
operation successfully marks an unmarked node, it notes its key «
and calls delete(r) on the skip list. A large number of concurrent
deleteMin operations can cause heavy contention near the head
of the skip list leading to a number of atomicCAS failures. The add
operation works identically as in the lock-free skip list and takes
an expected amount of time that is logarithmic in the number of
keys.

This lock-free construction of the priority queue is quiescently
consistent and not linearizable. A deleteMin operation execut-
ing concurrently with but completing after two sequential add
operations, namely, add(z) and add(y) with < y may return
y because it may have passed the insertion site of = before x is
inserted. Therefore, these operations are not linearizable.

E. Memory Management

All the four data structures build on the lock-free linked list.
As a result, all of these data structures share a generic node
structure. We pre-allocate a large number of such nodes in word-
aligned manner in the GPU memory from the CPU before the
GPU kernel is launched. The pointers to these pre-allocated nodes
are stored in an array P_array in the GPU memory. This setup
is carried out with the help of cudaMalloc and cudaMemcpy
calls. We also maintain an index in the GPU global memory and
it is initialized to zero. When an add operation needs to create
and insert a new node, it executes an atomicInc on the index and
uses the return value v to index into P_array. The node pointed
to by the pointer stored in P_array[v] is used as the new node
for insertion. In this study, we pre-allocate enough number of
nodes so that we never have to invoke dynamic memory allocation
from the GPU (which is possible in the Fermi architecture). This
makes sure that our performance evaluation can focus on the raw
throughput achievable from the lock-free data structures without
any perturbation from memory allocation overhead.

In this study, we do not reuse any of the deleted nodes because
that would require a solution to avoid the ABA problem. We leave
this to the future research and focus on evaluating the primary
benefits of the lock-free data structures in this study.

IV. EVALUATION METHODOLOGY

We implement the four lock-free data structures on a Tesla
C2070 Fermi GPU as well as a 24-core Intel Xeon server. The
core and memory clock frequencies of the GPU are 1.15 GHz
and 1.49 GHz, respectively. We configure the GPU to have 48 KB
shared memory and 16 KB L1 cache per thread block. It also has a
globally shared 768 KB L2 cache and a 384-bit wide memory bus.
The Xeon server is a quad-processor SMP with each processor
being hex-core (Intel X7460 CPU) running at 2.66 GHz. Each
of the four processors has a 16 MB L3 cache shared by the six
cores of that processor. The CPU implementation uses POSIX
threads and the x86 cmpxchg instruction to realize the atomicCAS
primitive.

The performance of a lock-free data structure for a fixed number
of threads may depend on the range of keys, the mix of operations
done on the keys, and the total number of operations. We evaluate
each data structure for a number of different mix of operations.
For linked list, hash table, and skip list, we represent each different
mix as a three-tuple [z, y, z], where the operation stream has 2%
add, y% delete, and z% search. For priority queue, we represent
each different operation mix as a pair [z, y], where the operation



stream has % add and y% deleteMin. We evaluate the data
structures on each operation mix for four different integer key
ranges, namely, [0,100), [0,1000), [0,10000), and [0, 100000).
Further, for each operation mix and each key range, we vary the
total number of operations from 10000 to 100000 in steps of
10000.

The input to a CUDA kernel for a particular data structure
and a particular key range consists of a string of operations.
This string is generated as follows. The operations are generated
from the supported set of operations for the data structure under
evaluation such that the required mix of operations is achieved.
The arguments to the operations (e.g., add, delete, and search)
are generated uniformly at random from the key range under
evaluation. Each such input string is evaluated on the GPU as well
as the CPU thrice and we report the results based on the median
execution time for each experiment.

For each data structure we have optimized the number of
threads per block and the number of thread blocks for the CUDA
kernel. For linked list, we use 64 threads per block, while for
the other three data structures, we use 512 threads per block. To
determine the number of thread blocks, we execute the kernel for
four different configurations. In these configurations the number
of thread blocks is selected such that a thread executing the kernel
carries out 1, 4, 8, or 16 operations from the input string. We pick
the best of these four configurations. In most of the cases, the
best configuration is the one in which a thread carries out just one
operation in the kernel. This configuration essentially maximizes
the number of CUDA threads. For the CPU executions, it is not
always the case that implementing a lock-free data structure on 24
threads offers the best performance. We pick the thread count (at
most 24) that achieves the best performance. In summary, in each
result that we present in the next section, we report/compare the
best possible performance on the GPU and the CPU among the
configurations that we have considered.

Our lock-free hash table implements ten thousand buckets and
the skip list uses p = 0.5 and 32 levels.

V. PERFORMANCE RESULTS

We evaluate the lock-free linked list, hash table, and skip list on
two different types of operation mixes. One is search-dominated
and has 20% add, 20% delete, and 60% search operations. The
other one is add and delete-dominated and has 40% add, 40%
delete, and 20% search. The priority queue is also evaluated
on two types of operation mixes. One is unbiased and has 50%
add and 50% deleteMin operations, while the other one is add-
dominated and has 80% add and 20% delete Min operations.
Each data structure is evaluated on four key ranges and ten
different operation counts, as already mentioned.

Figure 4 shows the speedup achieved by our CUDA imple-
mentation of the lock-free linked list over the CPU implementa-
tion. The upper panel shows the results for an operation mix of
[20, 20, 60] i.e., 20% add, 20% delete, and 60% search opera-
tions. The lower panel is for an operation mix of [40, 40, 20]. In
each panel, each of the four groups of bars represents one key
range indicated on the z-axis. Within each group, the leftmost bar
represents an input operation string with ten thousand operations
and the rightmost bar represents an operation count of hundred
thousand. The number of operations increases in steps of ten
thousand within a group of bars from left to right.

While the speedup trends observed in both the operation mixes
is same, we note that the GPU implementation loses its advantage
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Figure 4. Speedup of lock-free linked list on GPU relative to CPU.

over the CPU as the key range increases. For small key ranges,
many of the add operations actually do not insert any node in
the list because the element to be added is already in the list.
This reduces the overall contention and control flow divergences
in the GPU. Also, we observe that for small to medium key
ranges, increasing the total number of operations exposes more
concurrency in the GPU and leads to better speedup. For large
key ranges, the GPU and CPU offer almost the same performance
for the lock-free linked list. Even though the GPU implementation
can expose more concurrency, the overhead of the slow atomic-
CAS operations outweighs this benefit. The atomicCAS operations
execute in the global memory of the GPU, while in the CPU,
the atomic instructions execute in the coherent L1 caches and
hence, are much faster. Overall, the GPU implementation benefits
moderately for small to medium key ranges with the best speedup
being 7.4 compared to the CPU implementation.

Figure 5 shows the speedup results for our lock-free hash
table. As expected, the hash table benefits significantly from the
GPU implementation and the benefits are consistent across all the
key ranges. The best achieved speedup is 11.3 compared to the
CPU implementation. The primary advantage of the hash table is
that the contention is distributed across multiple buckets, which
naturally exposes more concurrency.
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Figure 5. Speedup of lock-free hash table on GPU relative to CPU.
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Figure 6. Speedup of lock-free skip list on GPU relative to CPU.
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Figure 7. Speedup of lock-free priority queue on GPU relative to CPU.

Figure 6 presents the performance results for our lock-free skip
list implementation. This data structure enjoys significant speedup
on the GPU compared to the CPU implementation for small
and medium key ranges. As the key range increases, more add
and delete operations have to modify the data structure through
atomicCAS operations. As a result, the speedup drops sharply due
to the overhead of atomicCAS operations and complicated control
flow of the implementation. Nonetheless, the [40, 40, 20] mix still
enjoys a speedup of nearly 4.0 on large key ranges with hundred
thousand operations. Interestingly, we observe that as the percent-
age of add operations increases, the speedup also increases (com-
pare the upper panel with the lower panel in Figure 6). This is
primarily because with more add operations, the expected number
of shortcuts in the skip list increases leading to relatively less
number of traversed nodes (log is a slowly increasing function) and
hence, less control flow in the traversal. This is the reason for better
performance in the GPU. As expected, this phenomenon affects
the GPU performance much more than the CPU performance.
Overall, the best speedup achieved by the skip list implementation
is 30.7 compared to the CPU implementation.

Figure 7 shows the performance results for our lock-free pri-
ority queue. The upper panel shows the results for an input
operation string with equal mix of add and delete Min, while the
lower panel has 80% add and 20% deleteMin operations. The

performance trends are similar to that of the skip list, as expected.
The best speedup achieved by the priority queue is 30.8 on the
GPU compared to the CPU implementation.
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Figure 8. Comparison of hash table and skip list relative to linear list.

We close the discussion of the results by comparing the per-
formance of the lock-free hash table and the skip list with that
of the lock-free linked list on the GPU as well as the CPU. We
carry out this comparison for the largest key range among the four
ranges. The top-left panel of Figure 8 shows the performance of
the lock-free hash table relative to the lock-free linked list when
both are executed on the GPU. The top-right panel shows the same
comparison when both are executed on the CPU. Interestingly, the
hash table is better than the linked list by a factor of 36 to 538 on
the GPU. However, this performance ratio varies from 8 to 54 on
the CPU. Referring back to Figure 4, we note that the lock-free
linked list delivers almost similar performance on the CPU and the
GPU for the largest key range. Therefore, we can conclude from
the top-left and top-right panels of Figure 8 that the GPU helps
expose more performance potential of the lock-free hash table than
what a CPU implementation can do. This is primarily due to the
fact that the GPU implementation can leverage much higher degree
of concurrency than a CPU implementation. We find that for the
largest key range, the throughput of the lock-free hash table on
GPU varies from 28.6 MOPS (million operations per second) to
98.9 MOPS for the [20, 20, 60] operation mix. For the [40, 40, 20]
mix, the throughput ranges from 20.8 MOPS to 72.0 MOPS.

The lower left panel of Figure 8 shows the performance of the
lock-free skip list relative to the lock-free linked list when both
are executed on the GPU. The lower right panel shows the same
comparison when both are executed on the CPU. Here also we
observe that the GPU exposes bigger performance potential of
the lock-free skip list than the CPU. The skip list is about two to
twenty times better than the linked list when both are implemented
for the GPU. However, as we speculated in Section III-C, the
lock-free hash table offers far better performance than the skip
list on both GPU and CPU. The performance gap between the
hash table and the skip list is much bigger on the GPU due to the
performance drawback of the control flow divergences of the skip
list implementation.

VI. SUMMARY

This study evaluates the performance of four lock-free data
structures on Fermi GPU. All these data structures build upon



the lock-free linked list implementation. Our evaluation shows
that for small to medium key ranges, all the four data structures,
namely, linked list, hash table, skip list, and priority queue, enjoy
moderate to high speedup (up to 30.8) on the GPU over multi-
threaded lock-free CPU implementations. For large key ranges,
the linked list, skip list, and priority queue do not benefit much
from the GPU implementation due to slow atomicCAS operations
on the global memory and the complex control flow of some of
the lock-free implementations. The hash table emerges the best
lock-free data structure among the ones we have evaluated for
carrying out addition, deletion, and search operations on arbitrary
key ranges. It offers consistently good performance for small as
well as large key ranges with the GPU implementation showing
significant benefit over the CPU implementation (more than eleven
times better performance).

We feel that the best way to improve the performance of
irregular pointer-based data structures on the GPUs is to incorpo-
rate support for fast atomic operations, especially compare-and-
swap. Although our lock-free implementations already achieve
good performance compared to equivalent CPU implementations,
this study offers a strong motivation for exploring architectural
techniques to further improve the performance of atomicCAS
operations on the GPU. Techniques to reduce the overhead of
control flow divergence in the GPU architectures would also be
beneficial to the lock-free implementations.
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