
Sharing-aware Efficient Private Caching
in Many-core Server Processors

Sudhanshu Shukla Mainak Chaudhuri
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

{sudhan, mainakc}@cse.iitk.ac.in

Abstract— The general-purpose cache-coherent many-core
server processors are usually designed with a per-core private
cache hierarchy and a large shared multi-banked last-level cache
(LLC). The round-trip latency and the volume of traffic through
the on-die interconnect between the per-core private cache hi-
erarchy and the shared LLC banks can be significantly large.
As a result, optimized private caching is important in such
architectures. Traditionally, the private cache hierarchy in these
processors treats the private and the shared blocks equally. We,
however, observe that elimination of all non-compulsory non-
coherence core cache misses to a small subset of shared code
and data blocks can save a large fraction of the core requests to
the LLC indicating large potential for reducing the interconnect
traffic in such architectures.

We architect a specialized exclusive per-core private L2 cache
which serves as a victim cache for the per-core private L1 cache.
The proposed victim cache selectively captures a subset of the
L1 cache victims. Our best selective victim caching proposal is
driven by an online partitioning of the L1 cache victims based on
two distinct features, namely, an estimate of sharing degree and
an indirect simple estimate of reuse distance. Our proposal learns
the collective reuse probability of the blocks in each partition on-
the-fly and decides the victim caching candidates based on these
probability estimates. Detailed simulation results on a 128-core
system running a selected set of multi-threaded commercial and
scientific computing applications show that our best victim cache
design proposal at 64 KB capacity, on average, saves 44.1% core
cache miss requests sent to the LLC and 10.6% execution cycles
compared to a baseline system that has no private L2 cache. In
contrast, a traditional 128 KB non-inclusive LRU L2 cache saves
42.2% core cache misses sent to the LLC compared to the same
baseline while performing slightly worse than the proposed 64
KB victim cache. In summary, our proposal outperforms the
traditional design and enjoys lower interconnect traffic while
halving the space investment for the per-core private L2 cache.
Further, the savings in core cache misses achieved due to intro-
duction of the proposed victim cache are observed to be only 8%
less than an optimal victim cache design at 32 KB and 64 KB
capacity points.

Index Terms— Many-core server processors; Private victim
caches; Sharing-aware private caching.

I. INTRODUCTION

The emerging many-core server processors with tens of cores are
equipped with a per-core private cache hierarchy and a large multi-
banked on-die shared last-level cache (LLC). The cores along with
their private cache hierarchy and the LLC banks are distributed over
a scalable on-die interconnect. Due to the traversal through the inter-
connect, the core cache miss requests can experience large average
round-trip latencies even if they hit in the LLC. As the system grows
in terms of core-count, the average round-trip LLC hit latency as well
as the volume of traffic in the interconnect typically increase making

efficient private caching an important requirement for such systems.
In this paper, we squarely focus on the problem of architecting an
efficient private cache hierarchy for many-core server processors run-
ning multi-threaded workloads drawn from the domains of commercial
computing (web serving and data serving) and scientific computing.
Traditionally, a two-level private cache hierarchy is used per core where
the private L1 and L2 caches treat the private and shared blocks equally.
We start our exploration with a baseline design that does not have a
private L2 cache allowing us to understand the properties of the L1
cache misses. Our approach is to characterize the cores’ L1 cache
misses that hit in the LLC and exploit this run-time characterization to
eliminate a subset of these misses by architecting a specialized space-
efficient private L2 cache.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20
40
60
80

100

C
or

e
ca

ch
e

m
is

se
s

(%
) Code Data

Fig. 1. Non-compulsory non-coherence core cache misses that hit in LLC.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

10
20
30
40

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
)

Code +Data

Fig. 2. Execution time saved when non-compulsory non-coherence core cache
misses that hit in the LLC are treated as core cache hits.

To quantify the potential performance improvement achievable by
optimizing the core caches, we conduct an experiment on a simulated
128-core server processor with each core having private instruction
and data L1 caches (32 KB 8-way each) and a shared 32 MB 16-
way LLC partitioned into 128 set-interleaved banks. A 256 KB 16-way
LLC bank is attached to a core slice and the 128 slices are arranged
in a 16 × 8 mesh interconnect exercising dimension-order-routing and
having a four-stage routing pipeline at each switch clocked at 2 GHz.1

In this experiment, the non-compulsory non-coherence L1 cache misses
which hit in the LLC are assumed to hit in the L1 cache i.e., they
are charged only the L1 cache lookup latency and do not generate
any interconnect traffic. We note that the compulsory and coherence
misses cannot be reduced in number by optimizing the private cache
hierarchy (assuming a fixed block size). Figure 1 shows the percentage
core cache misses saved in this experiment partitioned into code and
data misses. On average, 78% core cache misses can be saved. For the
web and data serving workloads (TPC, SPEC Web, and SPEC JBB),
both code and data contribute significantly to the saved misses, while
for the remaining applications, the savings primarily arise from data
accesses. Figure 2 shows the percentage reduction in execution time
when this optimization is applied to only code misses and additional
reduction when it is applied to both code and data misses. On average,

1 Further details of our simulation environment can be found in Section IV.

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.85

485

30% execution time can be optimized away by eliminating the non-
compulsory non-coherence code and data L1 cache misses that hit in
the LLC. The savings in the execution time range from 14% (SPEC
JBB) to 40% (barnes and TPC-C). When only the non-compulsory non-
coherence code misses which hit in the LLC are eliminated, the average
saving in execution time is 12%. The savings in execution time correlate
well with the volume of saved misses shown in Figure 1.

Motivated by this large potential improvement in performance, we
thoroughly characterize the core cache misses that hit in the LLC (Sec-
tion II). Our characterization study reveals that a small subset of shared
code and data blocks contributes to a large fraction of the core cache
misses that hit in the LLC. This observation leads us to explore the
design of a per-core private L2 cache that can serve as an efficient
victim cache for the private L1 cache (Section III). The goal of our
victim cache designs is to capture the critical subset of the shared
blocks. Our best proposal classifies the L1 cache victims into distinct
partitions based on two features, namely, an estimate of sharing degree
and a simple indirect measure of reuse distance. The collective reuse
probability of each partition is learned on-the-fly and used to decide if
the L1 cache victims belonging to a partition should be inserted in the
victim cache. To the best of our knowledge, this is the first sharing-
aware private cache hierarchy design proposal for many-core server
processors. Simulation results obtained from a detailed model of a 128-
core server processor (Section IV) show that our best victim cache
design with 64 KB capacity saves 44.1% core cache misses sent to the
LLC and 10.6% execution cycles, on average slightly outperforming a
traditional non-inclusive per-core 128 KB L2 cache exercising LRU
replacement policy (Section V). Further, the savings in core cache
misses achieved by our best victim cache proposal are observed to be
only 8% less than an optimal victim cache design at 32 KB and 64 KB
capacity points.

II. CHARACTERIZATION OF CORE CACHE MISSES

In this section, we analyze the non-compulsory non-coherence L1
cache misses that hit in the LLC. Since both code and data have
important contributions to these misses, this analysis must characterize
these misses using features other than code and data. We begin by
partitioning these misses based on the sharing types of the LLC blocks
being accessed. The LLC block types are discussed below. An LLC
block is said to be temporally private if it never experiences any kind
of sharing between more than one core at the same time. A core X
accesses such a block from the LLC and caches it privately. It is
evicted from the private cache hierarchy of core X before the next LLC
access (from the same core X or from a different core Y) to the block.
All other LLC blocks are said to be shared. We partition the shared
blocks into two groups based on the degree of sharing. We attach a
Shared Read Access (SRA) counter with each block to measure its
degree of sharing. The SRA counter of a block is initialized to zero
when it is filled into the LLC from the main memory. This counter is
incremented for a block when an LLC read access (due to a core cache
data load or code read miss) to the block hits in the LLC and finds
the block in the shared state (S state in MESI coherence protocol). All
temporally private blocks have zero SRA. We put all shared blocks with
SRA=0 in one group (low degree of sharing) and the remaining shared
blocks in another group.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20
40
60
80

100

N
on

-c
om

pu
ls

or
y

no
n-

co
he

re
nc

e
co

re
ca

ch
e

m
is

se
s

w
hi

ch
hi

t
in

L
L

C
(%

) Shared [SRA > 0] Shared [SRA = 0] TempPrivate

Fig. 3. Distribution of non-compulsory non-coherence core cache misses that
hit in LLC based on the sharing types of the LLC blocks being accessed.

Figure 3 shows the distribution of non-compulsory non-coherence
L1 cache misses that hit in the LLC. “TempPrivate” represents the

temporally private category. On average, 76% of these misses access
shared blocks with positive SRA. For all the applications, except TPC-
E, more than half of these misses fall in this category. Figure 4 shows
the percentage reduction in execution time when these misses are
treated as L1 cache hits. The bottom segment of each bar shows the
percentage reduction in execution time when only the core cache misses
to the shared LLC blocks with positive SRA are treated as L1 cache
hits. The middle segment of each bar shows the additional saving in
execution time when the core cache misses to the shared LLC blocks
with zero SRA are also treated as L1 cache hits. The top segment of
each bar shows the additional saving in execution time when the core
cache misses to the temporally private LLC blocks are also treated
as L1 cache hits. On average, 19% execution time can be optimized
away by saving the core cache misses which hit the shared LLC
blocks with positive SRA. Saving the core cache misses to the shared
LLC blocks with zero SRA has negligible impact on performance.
These results clearly highlight that saving the core cache misses to the
shared LLC blocks with positive SRA is important for performance
and interconnect traffic. Figure 5 quantifies the percentage of the LLC
blocks that are shared and have positive SRAs. On average, just 12% of
the LLC blocks fall in this category. Barnes is a clear outlier with 78%
of the LLC blocks in this category. Among the rest, only bodytrack and
TPC-H have more than 2% of the LLC blocks that are in this category.
Therefore, on average, only 12% of the LLC blocks contribute to 76%
of the core cache misses that hit in the LLC.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

10
20
30
40

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
)

Shared [SRA > 0] + Shared [SRA = 0] + TempPrivate

Fig. 4. Execution time saved when non-compulsory non-coherence core cache
misses that hit in the LLC are treated as core cache hits.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0
3
6
9

12

L
L

C
bl

oc
ks

(%
) 78%

Fig. 5. Percentage of allocated LLC blocks that are shared with positive SRA.

We further classify the shared LLC blocks with positive SRA based
on a normalized SRA ratio. The SRA ratio for an LLC block at any
point in time is defined as the ratio of the SRA counter value to the
total number of LLC accesses to the block arising from the core cache
misses. We classify the shared LLC blocks with positive SRA into
three SRA ratio categories, namely, C1, C2, and C3. The C1 category
includes all LLC blocks with SRA ratio ∈ (0, 1

2
]. For C2 and C3,

the SRA ratio ranges are (1
2
, 3
4
], and (3

4
, 1], respectively. Figure 6

shows the distribution of the shared LLC blocks with positive SRA.
Recall that only 12% of the LLC blocks are shared with positive
SRA. Among these, on average, 49%, 10%, and 41% are in C1,
C2, and C3, respectively. Figure 7 shows the distribution of the non-
compulsory non-coherence L1 cache misses that hit in the LLC. On
average, 68% of these core cache misses access LLC blocks in C3

category. This is an important piece of data showing that only 41%
of 12% (or, overall 5%) LLC blocks cover 68% of non-compulsory
non-coherence L1 cache misses that hit in the LLC. Therefore, it
may be possible to capture a significant subset of these L1 cache
misses by incorporating a specialized per-core victim cache. Figure 8
further shows the percentage reduction in execution time when non-
compulsory non-coherence L1 cache misses that hit in the LLC are
saved and treated as L1 cache hits. For each application, we show
the gradual reduction in execution time as core cache misses to C3,
C3+C2+C1, C3+C2+C1+shared with zero SRA, and all LLC
blocks are saved. On average, 15.5% execution time can be optimized
away by saving the core cache misses to the C3 blocks.

486

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20
40
60
80

100

L
L

C
bl

oc
ks

w
it

h
no

n-
ze

ro
SR

A
ra

ti
o

(%
) C3 C2 C1

Fig. 6. Distribution of the shared LLC blocks into the SRA ratio categories.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20
40
60
80

100

N
on

-c
om

pu
ls

or
y

no
n-

co
he

re
nc

e
co

re
ca

ch
e

m
is

se
s

w
hi

ch
hi

t
in

L
L

C
(%

)

C3 C2 C1 Shared [SRA = 0] TempPrivate

Fig. 7. Distribution of non-compulsory non-coherence core cache misses that
hit in LLC based on the sharing status of the LLC block being accessed.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

10
20
30
40

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
)

C3 + C2 + C1 + Shared [SRA = 0] + TempPrivate

Fig. 8. Execution time saved when non-compulsory non-coherence core cache
misses that hit in the LLC are treated as core cache hits.

III. VICTIM CACHE DESIGN

In this section, we architect a private per-core unified victim
cache (VC) to capture a subset of the L1 instruction and data cache
victims. We begin our discussion by reviewing the basic VC architec-
ture that admits all L1 cache victims (Section III-A). Next, we present
two design proposals for selective victim caching (Section III-B) that
exploit the findings of our characterization results. All the VC designs
considered in this paper are 8-way set-associative. The L1 cache and
the VC are looked up serially to avoid lengthening the L1 cache access
latency. On an L1 cache miss, the VC is looked up. On a VC hit, the
block is invalidated from the VC and copied to the L1 instruction or
data cache depending on the request type. On a VC miss, the block is
fetched from the outer levels of the memory hierarchy (LLC or main
memory) and inserted into the L1 instruction or data cache. As a result,
the VC is equivalent to a private per-core L2 cache that is exclusive of
the L1 caches.

A. Victim Caching without Selection

The traditional VC architecture admits all L1 cache victims. We
evaluate two replacement policies for such a VC. The first one evicts
the least-recently-filled (LRF) block in a VC set.2 This design requires
three replacement state bits per block in an 8-way cache. This design
will be referred to as LRF-VC. The second design devotes only one
replacement state bit per block. This bit is set to one when a block is
inserted into the VC. If all blocks in a set have this bit set to one, all
the bits in that set are reset except the bit corresponding to the most
recently filled block. Within a set, the replacement policy victimizes
the block with the replacement state bit reset; a tie among multiple
such eligible candidates is broken by victimizing the block with the
lowest physical way id. This replacement policy will be referred to as
not-recently-filled (NRF) and this design will be referred to as NRF-
VC. The NRF policy is motivated by the observation that the first order
locality of a block inserted in the VC is already filtered by the L1 cache
and therefore, a precise fill order as maintained by the LRF policy may
not be necessary to achieve good performance.

2 A least-recently-used replacement policy has no meaning in a VC because
on a VC hit, a block is invalidated.

B. Selective Victim Caching
The two selective victim caching proposals discussed below consti-

tute the crux of our contributions. Our L1 cache miss characterization
study has established that the selective victim caching proposals must
primarily target the shared LLC blocks with positive SRA ratio and that
the C3 blocks are particularly important. In addition to the three cate-
gories (C1, C2, and C3) of non-zero SRA ratio, we use C0 to denote the
category of shared as well as temporally private blocks with zero SRA
ratio. To identify the category of an LLC block, the SRA ratio needs to
be estimated online. For this purpose, two six-bit saturating counters,
namely SRA Counter (SRAC) and Other Access Counter (OAC), are
maintained for the block. The SRAC is incremented on LLC read
accesses which find the block being requested in the shared state. The
OAC is incremented on all other LLC accesses (except writeback) to
the block. Both the counters of the block are halved when any of the
counters has saturated. The SRA ratio estimate for the block is given
by the fraction SRAC

SRAC+OAC
. The sparse directory entry that tracks

coherence of a block is extended by twelve bits to accommodate the
two counters. Once a block returns to the unowned/non-shared state, the
counters are reset and the SRA ratio for the block is deemed zero. Also,
when the sparse directory entry of a block is evicted, its SRA ratio is
assumed to become zero. When a block is fetched from the LLC into the
L1 cache, the block’s SRA ratio category is also fetched and maintained
by extending the L1 cache tag by two bits. A block fetched from main
memory (due to LLC miss) is assumed to belong to category C0. When
an L1 cache block is evicted, its SRA ratio category is used in deciding
whether the block should be admitted into the VC, as discussed in the
following designs. If an L1 cache victim is allocated in the VC, its SRA
ratio category is also maintained in the VC by extending the VC tag by
two bits. When a VC entry is copied into the L1 cache, its SRA ratio
category is also copied.

1) SRA-gNRF-VC: Our first selective VC design tries to capture
a subset of the high SRA ratio blocks and implements a generational
NRF (gNRF) replacement policy. First, we discuss the gNRF policy.
The design divides the entire execution into intervals or generations.
Each VC entry is extended with two state bits, namely, a fill (F) bit and
an eviction priority (EP) bit. When a VC block is filled, the F bit of
the block is set and the EP bit is reset, recording the fact that the block
has been recently filled and must not be prioritized for eviction in the
current interval. At the end of each interval, the EP bit of a VC entry is
set to the inverse of the F bit signifying that the entry can be considered
for eviction in the next interval if the F bit is reset. The F bits of all
VC entries are gang-cleared at the beginning of each interval signifying
the start of a new generation. Thus, a VC block becomes eligible for
eviction within two consecutive intervals.

Now, we discuss the victim caching protocol. On receiving an L1
cache victim block B, the SRA-gNRF-VC design first looks for an
invalid way in the target VC set. If there is no such way, it locates the
way w with the lowest SRA ratio category (say, Ci) in the target set.
If there are multiple ways with the lowest SRA ratio category, the ones
with their EP bits set are selected and then among them the one with
the lowest physical way id is selected. Let the SRA ratio category of
the L1 cache victim block B currently being considered for allocation
in the VC be Cj . The SRA-gNRF-VC design victimizes the entry w
to allocate block B only if one of the following two conditions is met:
(i) i < j, (ii) i == j and the EP bit of w is set. The first condition
helps attract a subset of high SRA ratio blocks into the VC, while the
second condition creates an avenue for replacing useless VC entries of
a certain SRA ratio category.

We set the generation length to the interval between the fill and
a hit to a VC entry, averaged across all entries that experience hits.
We dynamically estimate this interval as follows. The interval length
is measured in multiples of 4K cycles and the maximum interval
length that our hardware can measure is 4M cycles. The VC controller
maintains a ten-bit counter T which is incremented by one every 4K
cycles (measured using a twelve-bit counter P). Each VC entry is

487

extended by ten bits to record the value of counter T whenever the
entry is filled. On a hit to a VC entry, the value of counter T recorded
at the time of fill in the entry (Tfill) is compared with the current
value of counter T (Tcurrent). If Tfill < Tcurrent, the difference
between Tcurrent and Tfill is added to a counter A maintained in the
VC controller. The counter A records the accumulated time between a
fill and a hit to a VC entry. Another counter B maintained in the VC
controller records the number of values added to counter A. At any
point in time, the generation length is estimated as A

B
. At the beginning

of an interval, this value is copied to a generation length counter (GLC),
which is decremented by one every 4K cycles. A generation ends when
this counter becomes zero. Both the counters A and B are halved when
either of them has saturated. When counter T saturates, it is reset to
zero.

Overall, fourteen state bits are required per VC entry for imple-
menting the SRA-gNRF policy (SRA ratio category: 2 bits, Tfill: 10
bits, and F and EP bits) and two additional bits per L1 cache entry
for maintaining the SRA ratio category. For a 64 KB VC and 32 KB
instruction and data L1 caches with 64-byte blocks, this overhead is
equivalent to 16K bits (2 KB) per core. The counters T, P, A, B, and
GLC require a few tens of bits per core.

2) SRA-VCUB-RProb-VC: The SRA-gNRF-VC design assumes
that the high SRA ratio blocks will enjoy hits in the VC. However, this
may not be true in all phases of execution. Additionally, this design
also loses opportunity of caching some of the lower SRA ratio blocks
that may enjoy some hits in the VC. The SRA-VCUB-RProb-VC
design remedies these problems by directly considering the probability
that an L1 cache victim would be reused from the VC. It partitions
the L1 cache victims into several categories, estimates the collective
reuse probability (RProb) of each category, and caches only the L1
cache victims belonging to the categories with high enough reuse
probability. Additionally, this design substitutes the gNRF policy by
a more efficient replacement policy similar to the static re-reference
interval prediction (SRRIP) policy [16], which has been shown to out-
perform the not-recently-used and least-recently-used policies for large
inclusive LLCs. This policy, like gNRF, requires only two replacement
state bits used to encode four possible ages of a block in the VC.

The L1 cache victims are partitioned online based on the SRA ratio
categories and a simple estimate of reuse distance. The reuse distance
estimate is obtained as follows. The private cache residency of a block
begins when it is fetched into the L1 cache from either LLC or main
memory. Its private cache residency ends when it is evicted from the
VC or from the L1 cache and not admitted to the VC. During this
private cache residency, the block may make multiple trips between
the L1 cache and the VC. If a block enjoys at least one use in the VC,
it indicates a relatively short reuse distance of the block. We use this
indication as an estimate of the reuse distance of the block. This is
recorded by maintaining a VC use bit (VCUB) per block in the L1
cache and the VC. When a block is fetched into the L1 cache from the
LLC or the main memory, its VCUB is set to zero. The VCUB of a
block becomes one when it experiences its first hit in the VC. After
this, the VCUB remains set during the rest of the block’s private cache
residency. An L1 cache victim having VCUB=0 is estimated to have a
relatively larger reuse distance and smaller reuse probability compared
to an L1 cache victim with VCUB=1. The VCUB induces a top-level
partitioning of the L1 cache victims.

The L1 cache victims with VCUB=0 are further partitioned into
four classes based on the victims’ SRA ratio categories (C0, C1, C2,
C3). For each category, the collective probability of reuse in the VC is
estimated online as follows. Eight sets are sampled from the VC and
the accesses to these sampled sets for blocks with VCUB=0 are used
to estimate the reuse probabilities. The VC controller maintains two
counters for each SRA ratio category Ci. One counter (fi) maintains
the number of fills to the sampled sets for category Ci blocks with
VCUB=0. The other counter (hi) maintains the number of hits in the
sampled sets experienced by the blocks with VCUB=0 and category

Ci. The reuse probability pi of category Ci given VCUB=0 is hi/fi.
Periodically, all the eight counters are halved.

Next, we discuss the victim caching protocol of the SRA-VCUB-
RProb-VC design. The following two principles guide the VC alloca-
tion policy. First, all L1 cache victims mapping to the sampled sets are
allocated in the VC because the reuse probabilities are learned from the
behavior of the blocks in the sampled sets. Second, the age assigned
to a block allocated in the VC is zero, two, or three depending on
the estimated reuse probability of the partition containing the block. A
higher reuse probability is associated with a lower age, which, in turn,
signifies a lower eviction priority. The L1 cache victims with VCUB=1
are assumed to have the maximum reuse probability. The dynamic reuse
probability of the L1 cache victims with VCUB=0 are estimated on-the-
fly, as already discussed. On receiving an L1 cache victim block B, if
the VCUB of B is set, it is allocated in the VC and assigned an age zero.
If the VCUB of B is reset and B maps to a sampled set, it is allocated
in the VC and assigned an age two. If the VCUB of B is reset and B
does not map to a sampled set, its SRA ratio category Ci decides further
actions. Let the current reuse probability estimate of Ci be pi. If pi is at
least 1/8 (implemented as hi ≥ [fi shifted right by 3 bit positions]),
the block B is allocated in the VC and assigned an age two. If pi is less
than 1/8, but there is an invalid way in the target VC set, the block B
is allocated in that way and assigned an age three. If pi is less than 1/8
and there is no inavlid way, the block B is not allocated in the VC.
We have experimented with four reuse probability thresholds, namely,
1/2, 1/4, 1/8, and 1/16. Among these, 1/8 is found to achieve the best
performance. Tables I and II summarize the VC operations.

TABLE I
VC ALLOCATION PROTOCOL FOR AN L1 CACHE VICTIM BLOCK

Block attributes
Maps to a VC Doesn’t map to a VC

sample set sample set

VCUB=1 Allocate with age=0 Allocate with age=0

VCUB=0;
Allocate with age=2

SRA category Ci; pi ≥ 1/8 Allocate with age=2;
VCUB=0; fi++ Allocate with age=3 if an

SRA category Ci; pi < 1/8 invalid way is available

TABLE II
VC ACTIONS ON A HIT

Block attributes Maps to a VC sample set Doesn’t map to a VC sample set

VCUB=1 Invalidate; copy to L1 Invalidate; copy to L1

VCUB=0; Invalidate; copy to L1; Invalidate; copy to L1;
SRA category Ci hi++; VCUB←1 VCUB←1

Within a set, the VC policy evicts a block with age three; a tie among
multiple such blocks is broken by victimizing the block at the lowest
physical way. If no such block exists in the set, the ages of all blocks in
the set are incremented until a block with age three is found.

Overall, five state bits are required per VC entry for implementing
the SRA-VCUB-RProb policy (SRA ratio category: 2 bits, VCUB: 1
bit, age: 2 bits) and three extra bits per L1 cache entry (SRA ratio
category: 2 bits, VCUB: 1 bit). For a 64 KB VC and 32 KB instruction
and data L1 caches with 64-byte blocks, this overhead is equivalent
to 8K bits (1 KB) per core. The additional overhead of the hi and fi
counters (nine bits each) is 72 bits per core.

IV. SIMULATION ENVIRONMENT

We use an in-house modified version of the Multi2Sim simula-
tor [35] to model a chip-multiprocessor having 128 dynamically sched-
uled out-of-order issue x86 cores clocked at 2 GHz. The details of
the baseline configuration are presented in Table III. The interconnect
switch microarchitecture assumes a four-stage routing pipeline with
one cycle per stage at 2 GHz clock. The stages are buffer write/route
computation, virtual channel allocation, output port allocation, and
traversal through switch crossbar. There is an additional 1 ns link
latency to copy a flit from one switch to the next. The overall hop
latency is 3 ns.

We evaluate our VC proposals for two configurations, namely, 32 KB
8-way and 64 KB 8-way. These have lookup latencies of one and two

488

cycles, respectively. We also explore how our proposals fare against
traditional non-inclusive/non-exclusive 8-way L2 caches of capacity
32 KB, 64 KB, and 128 KB exercising fill-on-miss and LRU as well
as state-of-the-art replacement policies. These L2 cache configurations
have lookup latencies of one, two, and three cycles, respectively. The
latencies have been fixed using CACTI [12] assuming 22 nm technol-
ogy node (we use the version of CACTI distributed with McPAT [13]).

TABLE III
BASELINE SIMULATION ENVIRONMENT

On-die cache hierarchy, interconnect, and coherence directory

Per-core iL1 and dL1 caches: 32 KB, 8-way, LRU, latency 1 cycle
Shared LLC: 32 MB, 16-way, 128 banks, LRU,
bank lookup latency 4 cycles for tag + 2 cycles for data,
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction
Cache block size at all cache levels: 64 bytes
Interconnect: 2D mesh clocked at 2 GHz, two-cycle link latency (1 ns),
four-cycle pipelined routing per switch (2 ns latency);
Routing algorithm: dimension-order-routing;
Each switch connects to: a core, its L1 caches, one LLC bank,
one 4× (relative to per-core L1 caches) sparse directory slice [11], [31].
Sparse directory slice: 16-way, LRU replacement
Coherence protocol: write-invalidate MESI

Main memory

Memory controllers: eight single-channel DDR3-2133 controllers,
evenly distributed over the mesh, FR-FCFS scheduler
DRAM modules: modeled using DRAMSim2 [32], 12-12-12, BL=8,
64-bit channels, one rank/channel, 8 banks/rank, 1 KB row/bank/device,
x8 devices, open-page policy

The applications for this study are drawn from various sources and
detailed in Table IV (ROI refers to the parallel region of interest). Since
many-core shared memory processors are prevalently used for commer-
cial computing, we pick seven of our nine applications from the domain
of web and data serving (SPECWeb-B, SPECWeb-E, SPECWeb-S,
TPC-C, TPC-E, TPC-H, SPEC JBB). Additionally, we pick one appli-
cation (barnes) as a representative of scientific computing, which often
exercise large-scale shared memory servers. One application (body-
track) is selected from the domain of computer vision where parallel
processing is quite popular. The inputs, configurations, and simulation
lengths are chosen to keep the simulation time within reasonable limits
while maintaining fidelity of the simulation results. The PARSEC and
SPLASH-2 applications are simulated in execution-driven mode, while
the rest of the applications are simulated by replaying an instruction
trace collected through the PIN tool capturing all activities taking place
in the application address space. The PIN trace is collected on a 24-core
machine by running each multi-threaded application creating at most
128 threads (including server, application, and JVM threads). Before
replaying the trace through the simulated 128-core system, it is pre-
processed to expose maximum possible concurrency across the threads
while preserving the global order at global synchronization boundaries
and between load-store pairs touching the same 64-byte block.

V. SIMULATION RESULTS

In this section, we present a detailed evaluation of our proposal.
All results are normalized to a baseline design with 32 KB 8-way
instruction and data L1 caches per core and no L2 cache. The shared
LLC is 32 MB 16-way in all configurations.

A. Performance Evaluation
We begin the discussion on performance evaluation by comparing

the four VC designs presented in Section III. Figure 9 quantifies the
percentage reduction in core cache misses relative to the baseline for
the four VC designs, namely, LRF-VC, NRF-VC, SRA-gNRF-VC,
and SRA-VCUB-RProb-VC. We have also included the results for
an optimal VC design that implements Belady’s optimal replacement
algorithm [5], [30] extended with the option of not allocating a block
in the VC if its next-use distance is larger than all blocks in the

target set. The optimal design requires knowledge about the future
accesses. It is evaluated offline after collecting the access trace for
each application. All VC designs have 64 KB 8-way configuration. On
average, both LRF and NRF reduce the core cache misses by 40%,
while SRA-gNRF achieves a 41.3% reduction. The SRA-VCUB-RProb
design achieves a reduction of 44.1% having a less than 8% gap to
the optimal design, which achieves a reduction of 51.9%. Compared
to LRF and NRF, the top gainers of the SRA-VCUB-RProb design
include bodytrack, barnes, and TPC-C. For TPC-H, the SRA-VCUB-
RProb design achieves near-optimal core cache misses.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20
40
60
80

R
ed

uc
ti

on
in

co
re

ca
ch

e
m

is
se

s
(%

) LRF NRF SRA-gNRF SRA-VCUB-RProb OPT

Fig. 9. Reduction in core cache misses with 64 KB VC relative to baseline.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0
5

10
15
20
25

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
)

LRF NRF SRA-gNRF SRA-VCUB-RProb

Fig. 10. Reduction in execution time with 64 KB VC relative to baseline.

Figure 10 presents the percentage reduction in execution time for
the four VC designs with 64 KB capacity relative to the baseline.
The performance of the optimal design cannot be evaluated because
the future accesses cannot be fixed online. On average, LRF and NRF
save 9% execution time, while the SRA-gNRF and SRA-VCUB-RProb
designs reduce execution time by 9.9% and 10.6%, respectively. Within
each application, the savings in execution time correspond well to the
relative trend shown in Figure 9. Bodytrack fails to improve much
in performance because saving core cache misses is not particularly
important for its performance.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20

40

60

R
ed

uc
ti

on
in

co
re

ca
ch

e
m

is
se

s
(%

)

LRF NRF SRA-gNRF SRA-VCUB-RProb OPT

Fig. 11. Reduction in core cache misses with 32 KB VC relative to baseline.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0
5

10
15
20

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
)

LRF NRF SRA-gNRF SRA-VCUB-RProb

Fig. 12. Reduction in execution time with 32 KB VC relative to baseline.

Figures 11 and 12 evaluate the VC designs with 32 KB capacity. All
designs continue to be 8-way set-associative. On average, the SRA-
VCUB-RProb design saves 35% core cache misses relative to the
baseline and is only 8% away from the optimal design, which saves
43% core cache misses. Compared to LRF and NRF, bodytrack and
barnes continue to enjoy large savings in core cache misses with the
SRA-VCUB-RProb design. The SRA-VCUB-RProb design achieves a
7.9% reduction in execution time compared to the baseline, on average.
We will consider only the best performing VC design i.e., SRA-VCUB-
RProb in further evaluation.

Next, we compare the SRA-VCUB-RProb design with the tradi-
tional non-inclusive L2 caches exercising LRU replacement policy.
Figure 13 shows the percentage reduction in core cache misses relative
to the baseline for 32 KB and 64 KB SRA-VCUB-RProb-VC design
and 32 KB, 64 KB, and 128 KB traditional non-inclusive L2 cache
design. On average, the 32 KB traditional L2 cache design saves only
6% core cache misses, while the 32 KB VC design saves an impressive
35% core cache misses; the 64 KB traditional L2 cache design saves

489

TABLE IV
SIMULATED APPLICATIONS

Suite Applications Input/Configuration Simulation length

PARSEC bodytrack sim-medium Complete ROI

SPLASH-23 barnes 32K particles Complete ROI

TPC MySQL TPC-C 10 GB database, 2 GB buffer pool, 100 warehouses, 100 clients 500 transactions
MySQL TPC-E 10 GB database, 2 GB buffer pool, 100 clients Five billion instructions
MySQL TPC-H 2 GB database, 1 GB buffer pool, 100 clients, zero think time, Five billion instructions

even distribution of Q6, Q8, Q11, Q13, Q16, Q20 across client threads

SPEC Web Apache HTTP server v2.2 Banking (SPEC Web-B), Ecommerce (SPEC Web-E), Support (SPEC Web-S); Five billion instructions
Worker thread model, 128 simultaneous sessions, mod php module

SPEC JBB SPEC JBB 82 warehouses, single JVM instance Six billion instructions
3 The SPLASH-2 applications are drawn from the SPLASH2X extension of the PARSEC distribution.

22.3% core cache misses, while the 64 KB VC design saves 44.1% core
cache misses. Most importantly, a 128 KB traditional L2 cache design
saves 42.2% core cache misses. This saving is a couple of percentages
lower than what a half-sized (64 KB) VC exercising the SRA-VCUB-
RProb design achieves. Similarly, a 32 KB VC saves much higher
percentage of core cache misses than a traditional 64 KB L2 cache.
Compared to 128 KB traditional L2 cache, our 64 KB SRA-VCUB-
RProb-VC design saves 7.78 MB of on-die SRAM storage for our 128-
core configuration assuming 48-bit physical address (our proposal’s
overheads of VC/L1 cache state bits and additional 12 bits per directory
entry are accounted for).

Figure 14 compares the SRA-VCUB-RProb-VC design with the
traditional L2 caches in terms of percentage saving in execution time
relative to the baseline. Across the board, the VC design outper-
forms the same-sized traditional L2 caches by large margins. More
importantly, a 32 KB VC outperforms a 64 KB traditional L2 cache
and a 64 KB VC outperforms a 128 KB traditional L2 cache, on
average. These results strongly advocate the replacement of traditional
private L2 caches by specialized per-core VC designs that can achieve
significant space saving per core while delivering better performance at
lower interconnect traffic.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20

40

60

R
ed

uc
ti

on
in

co
re

ca
ch

e
m

is
se

s
(%

)

32KB L2 32KB VC 64KB L2 64KB VC 128KB L2

Fig. 13. Comparison between traditional non-inclusive L2 cache and SRA-
VCUB-RProb-VC in terms of reduction in core cache misses.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0
5

10
15
20

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
)

32KB L2 32KB VC 64KB L2 64KB VC 128KB L2

Fig. 14. Comparison between traditional non-inclusive L2 cache and SRA-
VCUB-RProb-VC in terms of reduction in execution time.

Figures 15 and 16 compare our SRA-VCUB-RProb-VC design with
iso-capacity baselines. A configuration with a 32 KB VC invests a total
of 96 KB cache per core when the 32 KB L1 instruction and data cache
capacities are included. This configuration should be compared against
a baseline that also invests 96 KB of L1 caches per core. So, we evaluate
a configuration that has 48 KB 6-way L1 instruction and data caches per
core. Similarly, we compare the 64 KB VC design with a configuration
that has 64 KB 8-way L1 instruction and data caches per core. The
48 KB L1 caches have a single-cycle lookup latency, while the 64 KB
L1 caches have two-cycle lookup latency. The results are shown relative
to the baseline with 32 KB L1 instruction and data caches per core. Fig-
ures 15 and 16 respectively show that the 48 KB L1 cache configuration
saves 20% core cache misses and 4.6% execution time, while the 32 KB
VC saves 35% core cache misses and 7.9% execution time, on average.
Both 32 KB and 64 KB VC designs save more core cache misses and

execution time than the 64 KB L1 cache configuration, on average. The
64 KB L1 cache configuration saves 32.5% core cache misses and 6.3%
execution time, while the 64 KB VC saves 44.1% core cache misses
and 10.6% execution time, on average. Overall, for all applications,
the SRA-VCUB-RProb-VC design comfortably outperforms the iso-
capacity baseline configurations.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

20

40

60

R
ed

uc
ti

on
in

co
re

ca
ch

e
m

is
se

s
(%

)

48KB L1 32KB VC 64KB L1 64KB VC

Fig. 15. Comparison between iso-capacity L1-only baselines and the SRA-
VCUB-RProb-VC configurations in terms of reduction in core cache misses.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
−5
0
5

10
15
20

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
)

48KB L1 32KB VC 64KB L1 64KB VC

Fig. 16. Comparison between iso-capacity L1-only baselines and the SRA-
VCUB-RProb-VC configurations in terms of reduction in execution time.

A cost-effective alternative to designing a specialized VC is to en-
hance the L1 caches in a traditional single-level private cache hierarchy
and the L2 cache in a traditional two-level private cache hierarchy
with state-of-the-art replacement/insertion policies. We explore how the
configurations equipped with the SRA-VCUB-RProb-VC design fare
against the traditional single-level (L1 cache only) and two-level (L1
and L2 caches) private cache hierarchies enhanced with the signature-
based hit prediction (SHiP) policy proposal [37]. The instruction L1
and the data L1 caches of the traditional single-level private cache
hierarchy are enhanced with the SHiP-mem and SHiP-PC policies,
respectively. The L2 cache in the traditional two-level private cache
hierarchy is enhanced with SHiP-mem for instruction blocks and SHiP-
PC for data blocks. We compare these configurations against the SRA-
VCUB-RProb-VC design working with the traditional baseline 32 KB
L1 caches exercising the LRU replacement policy. Figures 17 and 18
show the results normalized to the baseline with 32 KB L1 instruction
and data caches per core exercising the LRU replacement policy. The
single-level private cache hierarchy configurations with L1 caches
exercising SHiP policy are shown as 32 KB L1, 48 KB L1, and 64 KB
L1. The two-level private cache hierarchy configurations with non-
inclusive L2 cache exercising SHiP policy are shown as 32 KB L2,
64 KB L2, and 128 KB L2. The 32 KB and 64 KB VC configurations
use the SRA-VCUB-RProb design along with 32 KB instruction and
data L1 caches exercising LRU policy.

A comparison of Figures 17 and 18 with Figures 15 and 16 shows
that the SHiP policy is not particularly effective for L1 caches and
perform close to the LRU policy. On the other hand, a comparison
with Figures 13 and 14 shows that the SHiP policy when implemented
in the L2 cache is able to improve the performance by a reasonable
amount relative to LRU policy, on average. The SHiP policies are
designed to work well for caches that experience an access stream

490

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0

10
20
30
40
50
60
70

R
ed

uc
ti

on
in

co
re

ca
ch

e
m

is
se

s
(%

) 32KB L1 48KB L1 64KB L1 32KB L2 64KB L2 128KB L2 32KB VC 64KB VC

Fig. 17. Comparison of core cache miss savings between the SRA-VCUB-
RProb-VC design and single-level and two-level private hierarchy configura-
tions enhanced with the SHiP policy.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
−5
0
5

10
15
20

R
ed

uc
ti

on
in

ex
ec

ut
io

n
ti

m
e

(%
) 32KB L1 48KB L1 64KB L1 32KB L2 64KB L2 128KB L2 32KB VC 64KB VC

Fig. 18. Comparison of execution time savings between the SRA-VCUB-
RProb-VC design and single-level and two-level private hierarchy configura-
tions enhanced with the SHiP policy.

with filtered locality e.g., L2 and outer level caches. Nonetheless,
Figures 17 and 18 show that both 32 KB and 64 KB SRA-VCUB-
RProb-VC designs save more core cache misses and execution time
than all traditional configurations enhanced with the SHiP policies
except the 128 KB L2 cache configuration, on average. The 128 KB
L2 cache working with the SHiP policies outperforms the 64 KB VC
design only marginally (11.0% vs. 10.6% execution time saving) and
saves only a few percentage extra core cache misses (47.8% vs. 44.1%),
on average. Overall, the SRA-VCUB-RProb-VC design continues to
outperform the iso-capacity single-level as well as two-level private
cache hierarchies enhanced with the SHiP policies.

In summary, our detailed performance evaluation presents a com-
pelling case for the SRA-VCUB-RProb-VC design as the private per-
core L2 cache in many-core server processors. It comfortably out-
performs the iso-capacity traditional single-level and two-level non-
inclusive private cache hierarchy designs exercising LRU as well as
SHiP policies. Further, a 32 KB VC outperforms a 64 KB traditional
L2 cache and a 64 KB VC outperforms a 128 KB traditional L2 cache
exercising the LRU policy presenting an opportunity to halve the L2
cache space per core with better performance. When the traditional L2
cache is enhanced with the SHiP policy, a 128 KB L2 cache marginally
outperforms our 64 KB SRA-VCUB-RProb-VC design.

B. Interconnect Traffic Comparison
Figure 19 compares the on-die interconnect traffic (total number of

bytes transferred) for five different private cache configurations. For
each application, the leftmost two bars represent single-level private
cache configurations with 32 KB and 64 KB L1 caches exercising LRU
policy and no L2 cache. The next two bars represent configurations
with 64 KB and 128 KB non-inclusive L2 cache exercising LRU
policy. The rightmost bar represents a configuration with 64 KB VC
exercising our SRA-VCUB-RProb policy. The last three configurations
exercise 32 KB L1 caches with LRU policy. The interconnect traffic
for each configuration is divided into four categories. The private cache
misses and their responses constitute the processor traffic. The private
cache evictions to the LLC and their acknowledgements constitute the
writeback traffic. The requests and replies to and from the memory
controllers constitute the DRAM traffic. Everything else constitutes the
coherence traffic. The results are normalized to the total interconnect
traffic of the leftmost bar in each application. Across the board, our VC
proposal saves significant portions of the interconnect traffic arising
primarily from the savings in processor misses and private cache
evictions. Compared to the baseline 32 KB L1 configuration (leftmost
bar), our proposal saves 43.1% interconnect traffic. Compared to the
64 KB L1 and 64 KB L2 configurations, our proposal saves 11.5%
and 20.9% interconnect traffic, respectively. These two configurations

invest the same total cache (128 KB) to the per-core private cache
hierarchy as our proposal does using the 64 KB VC. It is encouraging to
note that compared to the 128 KB L2 configuration, our proposal saves
1.9% interconnect traffic while requiring only half the L2 cache space.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

In
te

rc
on

ne
ct

T
ra

ffi
c

32KB L1

64
K

B
L

1
64

K
B

L
2

12
8K

B
L

2
64

K
B

V
C

DRAM Coherence Writeback Processor

Fig. 19. Interconnect traffic for private cache hierarchy configurations.

C. Iso-capacity Energy Comparison
Figure 20 quantifies the total energy (dynamic and leakage together)

expended by the on-die cache hierarchy and the sparse directory for
three different iso-capacity (128 KB per core) private cache hierarchy
configurations assuming 22 nm technology nodes (determined with
CACTI). For each application, the leftmost bar (marked L1) shows
the total energy when the per-core private cache hierarchy has 64 KB
8-way L1 instruction and data caches and no L2 cache. The middle
bar (marked VC) shows the total energy when the per-core private cache
hierarchy has 32 KB 8-way L1 instruction and data caches and a 64 KB
8-way VC exercising the SRA-VCUB-RProb design. The rightmost
bar (marked L2) shows the total energy when the per-core private cache
hierarchy has 32 KB 8-way L1 instruction and data caches and a 64 KB
8-way traditional non-inclusive L2 cache exercising LRU replacement
policy. All L1 caches exercise LRU replacement policy. Each bar
shows the energy contributed by the instruction L1 cache (IL1), data
L1 cache (DL1), L2 cache (L2), LLC, and the coherence directory.
All results are normalized to the total energy of the leftmost bar. On
average, the VC configuration expends 1% less energy compared to the
L1 configuration, while the L2 configuration expends 3% more energy
than the L1 configuration. As a result, the 64 KB VC configuration has
6% and 10% less energy-delay product compared to the iso-capacity
L1 and L2 configurations, respectively.

bo
dy

tra
ck

ba
rn

es

TPC-C

TPC-E

TPC-H

SPECW
eb

-B

SPECW
eb

-E

SPECW
eb

-S

SPEC
JB

B

Ave
ra

ge
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

E
ne

rg
y

L
1

V
C

L
2

Directory LLC L2 IL1 DL1

Fig. 20. Total energy expended by the cache hierarchy for various private
cache hierarchy configurations with a per core private cache hierarchy budget
of 128 KB.

VI. RELATED WORK

Fully-associative very small (8 to 32 entries) victim caches were in-
troduced to handle conflict misses in small direct-mapped caches [17].
The existing selective victim caching proposals explore run-time strate-
gies for identifying the L1 cache evictions resulting from conflicts
and capture these evictions in the fully-associative L1 victim cache of
single-core processors [7], [14]. In contrast, our proposal targets larger
set-associative victim caches working with L1 caches having high set-
associativity where only conflict miss selection is not enough. To the
best of our knowledge, this is the first proposal on sharing-aware per-
core victim caching for server workloads.

The design of a large victim cache with selective insertion based on
frequency of misses has been explored and is shown to work well with
large inclusive LLCs [4]. Another proposal exploits the dead blocks in
a large inclusive LLC to configure an “embedded” victim cache [22].
These designs are not suitable for per-core mid-level victim caches.

Our victim cache, by design, introduces an exclusive L2 cache in
the per-core private cache hierarchy of the many-core processor. The
advantages and disadvantages of exclusive LLCs compared to their
inclusive counterparts have been explored by several studies [18], [38].
Bypass and insertion policy optimizations for large exclusive LLCs

491

have also been studied [6], [10]. In contrast, we architect a mid-level
exclusive victim cache per core in a many-core server processor.

The use of large private caches working with an exclusive LLC has
been explored for a small-scale (16 cores) server processor [15]. Our
proposal leaves the LLC unchanged and architects a space-efficient
private cache hierarchy. Also, specialized coherence protocols that
allow selective private caching of certain data based on temporal and
spatial locality estimates have been proposed [26].

Several studies have explored specialized architectures for the on-
die interconnect with the goal of optimizing the latency observed and
energy expended in ferrying information between the private cache
hierarchy and the shared last-level cache in server processors [23],
[27], [28], [29], [36]. The design innovations in these studies involve
the following: predicting the useful words within a requested cache
block and transmitting only the flits that contain these words [23]; ar-
chitecting specialized topologies and switches to accelerate instruction
delivery to the cores’ instruction caches [27]; designing a hybrid of
virtual cut-through and circuit switched routing protocols to improve
the communication latency [28]; selectively eliminating the per-hop
resource allocation delay through proactive resource allocation poli-
cies [29]; designing separate request and response networks to suit the
different demands of request and response packets [36]. In contrast, our
proposal uses a traditional interconnection network and optimizes the
interconnect traffic by designing a specialized private cache hierarchy.

A significant body of research has recognized the importance of
optimizing the instruction cache performance of the cores in the context
of commercial server workloads. One set of studies observes that there
is a large amount of overlap within and across transactions in terms
of instruction footprint and database operations in online transaction
processing (OLTP) workloads. These studies exploit this instruction
locality by judicious scheduling and migration of transaction threads
and database actions [1], [2], [3], [34]. Another class of proposals has
designed specialized instruction prefetchers [8], [9], [19], [20], [21],
[24], [25]. While prefetchers can hide the inefficiencies of the private
cache hierarchy, they cannot save interconnect traffic. Our proposal,
instead, focuses on the design of the private cache hierarchy to improve
the interconnect traffic as well as performance. The application domain
of our proposal is not limited to just OLTP or instruction delivery for
commercial workloads.

A recent proposal on ultra-low-overhead coherence tracking has ex-
ploited the observation that a small fraction of LLC blocks experience
frequent read-sharing [33]. We show that a small fraction of the shared
blocks contribute to a large fraction of core cache misses and design
victim caches to capture a subset of these blocks.

VII. SUMMARY

We have presented the designs of a victim cache working with
the per-core private L1 caches of a many-core server processor. The
victim cache effectively replaces the traditional private L2 cache. Our
best victim caching proposal partitions the L1 cache victim space
into different classes based on the degree of sharing and an indirect
estimate of the reuse distance. It estimates the reuse probability of
each partition dynamically and uses these estimates to decide the
partitions that should be retained in the victim cache. This selective
victim caching proposal, on average, saves 44.1% core cache misses
and 10.6% execution time compared to a baseline that does not have a
private L2 cache. Further, this proposal comfortably outperforms iso-
capacity traditional single-level and two-level private cache hierarchy
designs. Most importantly, 32 KB and 64 KB victim caches outperform
traditional 64 KB and 128 KB LRU L2 caches, respectively. This opens
up the opportunity of halving the L2 cache space investment per core
while offering better performance.

REFERENCES

[1] I. Atta, P. Tozun, X. Tong, A. Ailamaki, and A. Moshovos. STREX: Boosting In-

struction Cache Reuse in OLTP Workloads through Stratified Transaction Execution.

In ISCA 2013.

[2] I. Atta, P. Tozun, A. Ailamaki, and A. Moshovos. SLICC: Self-Assembly of Instruc-

tion Cache Collectives for OLTP Workloads. In MICRO 2012.

[3] I. Atta, P. Tozun, A. Ailamaki, and A. Moshovos. Reducing OLTP Instruction Misses

with Thread Migration. In DaMoN 2012.

[4] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez. Scavenger: A

New Last Level Cache Architecture with Global Block Priority. In MICRO 2007.

[5] L. A. Belady. A Study of Replacement Algorithms for a Virtual-storage Computer. In

IBM Systems Journal, 5(2): 78–101, 1966.

[6] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J. Nuzman. Introducing

Hierarchy-awareness in Replacement and Bypass Algorithms for Last-level Caches.

In PACT 2012.

[7] J. D. Collins and D. M. Tullsen. Hardware Identification of Cache Conflict Misses. In

MICRO 1999.

[8] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive Instruction Fetch. In MICRO 2011.

[9] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Temporal

Instruction Fetch Streaming. In MICRO 2008.

[10] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and Insertion Algorithms for

Exclusive Last-level Caches. In ISCA 2011.

[11] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements

for Scalable Directory-based Cache Coherence Schemes. In ICPP 1990.

[12] HP Labs. CACTI: An Integrated Cache and Memory Access Time,

Cycle Time, Area, Leakage, and Dynamic Power Model. Available at

http://www.hpl.hp.com/research/cacti/.

[13] HP Labs. McPAT: An Integrated Power, Area, and Timing Modeling

Framework for Multicore and Manycore Architectures. Available at

http://www.hpl.hp.com/research/mcpat/.

[14] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the Memory System: Predicting

and Optimizing Memory Behavior. In ISCA 2002.

[15] A. Jaleel, J. Nuzman, A. Moga, S. C. Steely Jr., and J. S. Emer. High Performing

Cache Hierarchies for Server Workloads: Relaxing Inclusion to Capture the Latency

Benefits of Exclusive Caches. In HPCA 2015.

[16] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer. High Performance Cache

Replacement using Re-reference Interval Prediction (RRIP). In ISCA 2010.

[17] N. P. Jouppi. Improving Direct-mapped Cache Performance by the Addition of a

Small Fully Associative Cache and Prefetch Buffers. In ISCA 1990.

[18] N. P. Jouppi and S. J. E. Wilton. Tradeoffs in Two-Level On-Chip Caching. In ISCA
1994.

[19] P. Kallurkar and S. R. Sarangi. pTask: A Smart Prefetching Scheme for OS Intensive

Applications. In MICRO 2016.

[20] C. Kaynak, B. Grot, and B. Falsafi. Confluence: Unified Instruction Supply for Scale-

out Servers. In MICRO 2015.

[21] C. Kaynak, B. Grot, and B. Falsafi. SHIFT: Shared History Instruction Fetch for Lean-

core Server Processors. In MICRO 2013.

[22] S. M. Khan, D. A. Jimenez, D. Burger, and B. Falsafi. Using Dead Blocks as a Virtual

Victim Cache. In PACT 2010.

[23] H. Kim, B. Grot, P. V. Gratz, and D. A. Jimenez. Spatial Locality Speculation to

Reduce Energy in Chip-Multiprocessor Networks-on-Chip. In IEEE TC, March 2014.

[24] A. Kolli, A. G. Saidi, and T. F. Wenisch. RDIP: Return-address-stack Directed

Instruction Prefetching. In MICRO 2013.

[25] R. Kumar, C-C. Huang, B. Grot, and V. Nagarajan. Boomerang: A Metadata-Free

Architecture for Control Flow Delivery. In HPCA 2017.

[26] G. Kurian, O. Khan, and S. Devadas. The Locality-aware Adaptive Cache Coherence

Protocol. In ISCA 2013.

[27] P. Lotfi-Kamran, B. Grot, and B. Falsafi. NOC-Out: Microarchitecting a Scale-Out

Processor. In MICRO 2012.

[28] P. Lotfi-Kamran, M. Modarressi, and H. Sarbazi-Azad. An Efficient Hybrid-Switched

Network-on-Chip for Chip Multiprocessors. In IEEE TC, 65(5): 1656–1662, May

2016.

[29] P. Lotfi-Kamran, M. Modarressi, and H. Sarbazi-Azad. Near-Ideal Networks-on-Chip

for Servers. In HPCA 2017.

[30] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques for

Storage Hierarchies. In IBM Systems Journal, 9(2): 78–117, 1970.

[31] B. O’Krafka and A. Newton. An Empirical Evaluation of Two Memory-efficient

Directory Methods. In ISCA 1990.

[32] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate Memory

System Simulator. In IEEE CAL, January-June 2011.

[33] S. Shukla and M. Chaudhuri. Tiny Directory: Efficient Shared Memory in Many-core

Systems with Ultra-low-overhead Coherence Tracking. In HPCA 2017.

[34] P. Tozun, I. Atta, A. Ailamaki, and A. Moshovos. ADDICT: Advanced Instruction

Chasing for Transactions. In PVLDB 2014.

[35] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A Simulation

Framework for CPU-GPU Computing. In PACT 2012.

[36] S. Volos, C. Seiculescu, B. Grot, N. K. Pour, B. Falsafi, and G. De Micheli. CC-

NoC: Specializing On-Chip Interconnects for Energy Efficiency in Cache-Coherent

Servers. In NOCS 2012.

[37] C-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr., and J. Emer.

SHiP: Signature-Based Hit Predictor for High Performance Caching. In MICRO
2011.

[38] Y. Zheng, B. T. Davis, and M. Jordan. Performance Evaluation of Exclusive Cache

Hierarchies. In ISPASS 2004.

492

