
Improving CPU Performance through Dynamic GPU Access Throttling in
CPU-GPU Heterogeneous Processors

Siddharth Rai and Mainak Chaudhuri

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur, INDIA

{sidrai, mainakc}@cse.iitk.ac.in

Abstract—Heterogeneous chip-multiprocessors with inte-
grated CPU and GPU cores on the same die allow sharing
of critical memory system resources among the applications
executing on the two types of cores. In this paper, we ex-
plore memory system management driven by the quality of
service (QoS) requirement of the GPU applications executing
simultaneously with CPU applications in such heterogeneous
platforms. Our proposal dynamically estimates the level of
QoS (e.g., frame rate in 3D scene rendering) of the GPU
application. Unlike the prior proposals, our algorithm does not
require any profile information and does not assume tile-based
deferred rendering. If the estimated quality of service meets the
minimum acceptable QoS level, our proposal employs a light-
weight mechanism to dynamically adjust the GPU memory
access rate so that the GPU is able to just meet the required
QoS level. This frees up memory system resources which
can be shifted to the co-running CPU applications. Detailed
simulations done on a heterogeneous chip-multiprocessor with
one GPU and four CPU cores running heterogeneous mixes
of DirectX, OpenGL, and CPU applications show that our
proposal improves the CPU performance by 18% on average.

Keywords-CPU-GPU heterogeneous processors; 3D scene
rendering; shared last-level cache; DRAM bandwidth; access
throttling;

I. INTRODUCTION

The drivers of the microprocessor evolution, such as,

shrinking transistor size, improvement in clock frequency,

and increase in high-performance core count are approaching

a practical limit [8], [43]. Heterogeneous processing has

emerged as one of the new paradigms for extracting perfor-

mance from the processors in an energy-efficient manner. A

CPU-GPU heterogeneous chip-multiprocessor (CMP) imple-

ments one such design where a set of latency-optimized CPU

cores along with a throughput-optimized GPU having a large

number of shader pipelines are integrated on one die. More-

over, to maximize the on-chip resource utilization, the CPU

and GPU cores share a substantial part of the memory sys-

tem. For example, AMD’s accelerated processing unit (APU)

architecture shares everything beyond the on-chip cache

hierarchy (including the coherent request buffers) between

the CPU and the GPU cores [4], [17], [41]. On the other

hand, Intel’s Sandy Bridge, Ivy Bridge, Haswell, Broadwell,

Skylake, and Kabylake series of processors share even the

on-die last-level cache (LLC) in addition to sharing the

on-chip interconnect, memory controllers, and in-package

eDRAM cache (available in Haswell onward processors) [6],

[9], [15], [16], [30], [35], [42].

A heterogeneous processor can be used in various dif-

ferent computing scenarios. For example, only the CPU

cores can be used to carry out traditional general-purpose

computing. Only the GPU can be used to execute 3D

animation utilizing the entire rendering pipeline or to do

general-purpose computing utilizing only the shader cores

of the GPU (typically known as GPU computing or GPGPU

computing). However, to maximize the computational use

of a heterogeneous processor, one needs to simultaneously

utilize the CPU cores and the GPU. The focus of this paper

is one such scenario where the GPU of a heterogeneous

processor is used to execute 3D animation utilizing the entire

rendering pipeline and at the same time the CPU cores

are used to carry out general-purpose computing. Such a

scenario arises in various real-world situations. For example,

when the GPU is rendering a 3D animation frame, the CPU

cores are typically engaged in preparing the geometry of the

next frame requiring AI and physics computation. Also, in

a high-performance computing facility, while the CPU cores

do the heavy-lifting of scientific simulation of a certain time

step, the GPU can be engaged in rendering the output of the

last few time steps for visualization purpose [25], [38].

In this paper, we execute 3D animation workloads drawn

from DirectX and OpenGL games along with general-

purpose CPU computation workloads drawn from the SPEC

CPU 2006 suite1 on a heterogeneous architecture akin to

Intel’s design, where, the LLC, the on-chip interconnect,

the memory controllers, and the DRAM banks are shared

between the CPU and the GPU cores. We motivate our

study by showing that tightly coupled sharing of memory

system resources in such architectures leads to significant

degradation in performance of co-running CPU and GPU

applications compared to when they are run standalone (Sec-

tion II). However, we find that there are several GPU

1 The SPEC CPU workloads are identified to have similarity with the
PC games [1].

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.37

18

applications that deliver performance much higher than the

minimum quality of service (QoS) level required for visual

satisfaction of the end-user utilizing the GPU for running

3D animation. This observation opens up opportunities for

improving the CPU performance by dynamically shifting the

memory system resources to the CPU workloads from the

GPU workloads in the phases where the GPU delivers a

level of performance that is higher than necessary. More

specifically, our proposal (Section III) involves an accurate

algorithm for dynamically estimating the frame rate of the

GPU application without relying on any profile information

or assumption related to the rendering algorithm imple-

mented by the GPU. Based on the estimated frame rate,

our proposal employs a light-weight mechanism to throttle

the shared LLC access rate from the GPU so that the GPU

is just able to deliver the required level of performance.

Throttling the LLC access rate from the GPU frees up

LLC capacity as well as DRAM bandwidth which can

be dynamically shifted to the co-running CPU workloads.

Detailed simulations of a heterogeneous CMP (Section V)

having four CPU cores and a GPU show that our proposal is

able to improve the performance of the CPU workloads by

18% on average (Section VI). Our two major contributions

are summarized in the following.

1) We propose a highly accurate dynamic frame rate

estimation algorithm that does not require any pro-

file information and can work with both tile-based

deferred rendering and immediate mode rendering

pipelines.

2) We propose a simple and low-overhead memory ac-

cess throttling mechanism for GPUs that can effec-

tively and accurately maintain a given QoS target

while freeing up LLC capacity and DRAM bandwidth

for the co-running CPU applications.

II. MOTIVATION

In this section, we first motivate the necessity to study

memory system resource management techniques in CPU-

GPU heterogeneous processors by showing that the co-

running CPU and GPU applications in such systems suffer

from significant performance degradation compared to when

they are run standalone. However, we observe that several

GPU applications continue to deliver a level of performance

that is higher than necessary. When GPUs are used for

rendering 3D scenes, it is sufficient for them to achieve a

minimum acceptable frame rate. This relaxation is guided

by the fact that due to the persistence of vision, human eyes

cannot perceive a frame rate that is above a limit. This obser-

vation motivates us to explore mechanisms to dynamically

shift memory system resources from the GPU to the CPU

cores so that the GPU can just meet the minimum frame rate

requirement. Prior studies have explored LLC bypassing as

a technique to dynamically shift cache capacity from the

GPU to the CPU cores in heterogeneous processors [24]. In

this section, we argue that throttling the GPU access rate

to the memory system is a more effective technique for

shifting memory system resources to the co-running CPU

applications.

To understand the implication of heterogeneous execution

on the performance of the CPU and the GPU applications

when they execute together and contend for the memory

system resources, we conduct a set of experiments. In these

experiments, the heterogeneous CMP has one CPU core

and a GPU clocked at 4 GHz and 1 GHz, respectively.

The shared LLC is of 16 MB capacity and there are two

on-die single-channel DDR3-2133 memory controllers.2 In

the first of these experiments, we run a CPU job (SPEC

CPU 2006 application) on the CPU core and keep the

GPU free (standalone CPU workload execution). In the

second experiment, we run a 3D animation job (drawn from

DirectX and OpenGL games) on the GPU and keep the CPU

free (standalone GPU workload execution). Finally, we run

both jobs together to simulate a heterogeneous execution

scenario. Figure 1 shows the performance of the CPU job

and the GPU job in the heterogeneous mode normalized

to the standalone mode for fourteen such heterogeneous

workload mixes. Each workload mix contains one DirectX

or OpenGL application and a SPEC CPU 2006 application.

On average, both the CPU and the GPU lose 22% of

performance when going from the standalone mode to the

heterogeneous mode (see the GMEAN group of bars).3 This

loss in performance results from the contention for LLC

capacity and DRAM bandwidth between the two types of

applications running simultaneously. Prior studies have also

observed large losses in performance due to memory system

resource interference between the co-running CPU and GPU

applications [3], [11], [18], [23], [24], [28], [31], [36], [37],

[40].

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10W11W12W13W14
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

G
M

E
A

N

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

CPU GPU

Figure 1. Performance of CPU and GPU in heterogeneous execution
normalized to standalone execution. The y-axis shows the ratio of the
standalone execution time to the heterogeneous execution time.

Even though a 3D scene rendering workload suffers

from a large loss in performance when going from the

standalone mode to the heterogeneous mode of execution,

this loss may not be noticed by an end-user if the frame

2 Section V discusses our simulation environment in more detail.
3 The CPU application in W7 enjoys a 20% improvement in performance

in the heterogeneous mode compared to the standalone mode due to an
unpredictable improvement in DRAM row-buffer locality.

19

rate continues to be above the level required for visual

satisfaction. Figure 2 shows the frame rates of the individual

GPU applications belonging to the fourteen heterogeneous

mixes for both standalone and heterogeneous modes of

execution. We observe that even in the heterogeneous mode

several GPU applications continue to deliver a frame rate

that is comfortably above the 30 frames per second (FPS)

mark, which is generally considered to be the acceptable

frame rate for visual satisfaction. Ideally, such applications

should relinquish part of the memory system resources so

that they can be utilized by the CPU applications. The

challenge in designing such a dynamic memory system

resource allocation scheme is two-fold. First, one needs to

estimate and accurately project the frame rate of a GPU

application. Second, based on this projection, one needs to

design a memory system resource shifting algorithm that

moves an appropriate amount of memory system resources

from the GPU to the CPU cores so that the GPU continues

to perform just around the target QoS threshold. These two

algorithms form the crux of our proposal. In the rest of the

study, we consider 40 FPS to be the target QoS threshold for

3D scene rendering leaving a 10 FPS cushion for handling

any momentary dip.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10W11W12W13W14
0

50

100

150

200

250

F
ra

m
es

 p
er

 s
ec

on
d

(F
P

S
)

A
ve

ra
ge

Standalone Heterogeneous

Figure 2. Comparison of GPU frame rate in standalone and heterogeneous
execution. The reference line shows 30 FPS mark.

Two primary memory system resources that are shared

between the GPU and the CPU cores are LLC capacity

and DRAM bandwidth. Therefore, for best outcome, an

algorithm that dynamically shifts memory system resources

from the GPU to the CPU applications based on estimated

performance levels would try to focus on both LLC capacity

and DRAM bandwidth. Prior studies have explored bypass-

ing the LLC for GPU read misses thereby targeting only

the LLC capacity [24]. An ideal LLC bypass algorithm for

GPU applications would only free up portion of the LLC for

CPU applications while leaving the DRAM bandwidth con-

sumption of the GPU unchanged. However, since designing

an ideal bypass algorithm is difficult, it is expected that the

DRAM bandwidth consumption of the GPU will increase

when LLC bypassing for GPU read misses is enabled. Since

the GPU is designed to have high latency-tolerance, these

additional LLC misses may not hurt the GPU performance.

However, the extra DRAM bandwidth consumed by these

additional GPU LLC misses can lead to significant drop in

CPU performance.

Figure 3 shows the impact on CPU workload performance

when all GPU read misses are forced to bypass the LLC.

On average, compared to the heterogeneous mode of execu-

tion without LLC bypass for GPU read misses, the CPU

applications lose 2% performance. While there are CPU

applications that gain as much as 10% (W4), there are also

applications that lose as much as 14% (W9). The CPU

applications which fail to utilize the additional LLC capacity

created through GPU read miss bypass start suffering due to

increased DRAM bandwidth contention. The GPU applica-

tions enjoy a significant volume of reuses from the LLC in

the baseline. When all GPU fills bypass the LLC, the GPU

applications lose these reuses and significantly increase the

DRAM traffic. This increased DRAM bandwidth pressure

hurts the performance of both CPU and GPU. We revisit this

aspect in Section VI when we evaluate HeLM, the state-of-

the-art LLC management policy that relies on selective LLC

bypass of GPU fills [24]. In summary, any algorithm that

dynamically shifts memory system resources from the GPU

to the CPU applications must be able to create LLC capacity

as well as DRAM bandwidth for the CPU applications. In

our proposal, we use the important insight that throttling the

GPU access rate to the LLC can achieve both the goals.

A slowed down GPU access rate automatically ages the

GPU blocks faster in the LLC leading to their eviction

from the LLC and creating more LLC capacity for the

CPU applications. Also, a slowed down GPU access rate

to the LLC naturally lowers the GPU’s demand on the

DRAM bandwidth; even though the volume of GPU LLC

misses increases, these misses are sent to the DRAM at a

dynamically controlled rate that is just enough for the GPU

application to meet the target QoS threshold.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10W11W12W13W14
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

C
P

U
 s

pe
ed

up

G
M

E
A

N

Figure 3. CPU speedup when all GPU read miss fills are forced to bypass
the LLC.

III. MEMORY ACCESS MANAGEMENT

In this section, we present our proposal on memory access

management for CPU-GPU heterogeneous processors. Our

proposal involves a three-step algorithm. In the first step, we

dynamically estimate the frame rate of the GPU application.

In the second step, depending on the estimated frame rate,

we determine an appropriate rate at which GPU accesses

are sent to the LLC. In the third step, depending on the

estimated frame rate, the CPU access priority is altered in

the DRAM access scheduler. If the estimated frame rate falls

below the target QoS threshold, the second and the third

20

steps are not invoked and the GPU application continues to

run in the baseline heterogeneous mode without any change

in the LLC access rate. The predictive model for online

frame rate estimation used in the first step is discussed in

Section III-A. The access throttling mechanism is discussed

in Section III-B. The changes in the DRAM access scheduler

are discussed in Section III-C. Section III-D quantifies the

storage overhead of our proposal.

A. Dynamic Frame Rate Computation

For the 3D scene rendering workloads, our proposal

requires knowledge of the frame rate ahead of the actual

completion of the frame so that the GPU access rate and the

DRAM access scheduler can be adapted accordingly. Such

dynamic prediction of the frame rate requires answering the

following two questions.

1. How much is the amount of work per frame?

2. Given the rendering speed and the amount of work per

frame, how to predict the frame rate?

To answer these questions, we divide the entire rendering

process into two phases, namely, learning phase and pre-

diction phase. In the learning phase, we monitor rendering

of a frame and measure the amount of work done and the

time it takes to complete. Once this information is obtained

for one complete frame, we switch to the prediction phase.

In this phase, the data collected in the learning phase is

used to predict the frame rate. To ensure that the observed

data follows the collected data, new observations are cross-

verified against the learned data. If it is found that the

observed values differ from the learned values by more than

a threshold amount, the learned data is discarded and we

switch back to the learning phase. Figure 4 demonstrates a

sequence of phase transitions that happen in a hypothetical

rendering job. Rendering begins in the learning phase and

continues to remain in that phase till point A, where it is

determined that the data for one complete frame has been

collected. Thus, at this point we transition into the prediction

phase. Now, rendering continues in this phase up to point

B, where it is found that the learned data is no more valid

and thus, we transition back to the learning phase to collect

fresh data. At point C, we again transition to the prediction

phase. This cycle is repeated until the entire rendering job

completes. Since we would like to maximize the number of

frames in the prediction phase for having good prediction

coverage, the success of this scheme improves if the amount

of work in each frame within a set of consecutive frames

remains more or less constant.

1) Learning Phase: Rendering of a frame in a rudimen-

tary sense boils down to computing the color values of all

pixels from the input geometry and updating these values

into a buffer commonly known as the render target (RT). In

general, a single pixel in the RT can get overdrawn multiple

A B C D

Learning phase Prediction phase

Figure 4. Rendering phases

times depending on the order in which the geometry primi-

tives arrive for rendering and their depth. This complicates

the estimation of the amount of work involved in rendering

a frame. We divide the RT into equal sized t×t render target

tiles (RTT). We divide the entire rendering of a frame into

render target planes (RTP). Each RTP represents a batch of

updates that cover all tiles of the RT. Therefore, the number

of RTPs is the number of updates that cover all tiles of the

RT. This arrangement is shown in Figure 5.

Y

X

Render-Target tile

Render-Target plane

Figure 5. Render-target plane and tile

We maintain a 64-entry RTP information table in the

GPU. For a frame, each entry of this table maintains a

valid bit and four pieces of information about a distinct

RTP. These four pieces of information are: (i) total number

of updates to the RTP, (ii) the number of cycles to finish

the RTP, (iii) the number of RTTs in the RTP, and (iv)

the number of shared LLC accesses (i.e., GPU render

cache misses) made by the GPU for the entire RTP. Our

implementation assumes each of the four fields to be four

bytes in size. The first three fields are used in the prediction

phase. The LLC access count is passed on to the access

throttling algorithm (see Section III-B) for computing the

maximum throttling rate. If the number of RTPs in a frame

exceeds 64, the last entry of the table is used to accumulate

the data for all subsequent RTPs.

2) Prediction Phase: Our frame rate prediction model

uses the RTP count and cycles per RTP recorded during the

learning phase to predict the current number of cycles per

frame. If the number of RTPs in a frame i is N i
rtp and the

average number of cycles per RTP is Ci
rtp, then the number

21

of estimated cycles Fi required to render frame i is given

by Equation 1.

Fi = Ci
rtp ×N i

rtp (1)

Although N i
rtp is obtained directly from the data collected

during the learning phase, Ci
rtp for the frame being rendered

currently has to be extrapolated using the number of cycles

the frame has taken so far and the cycles recorded in the RTP

table, so that the current rendering speed of the frame can be

taken into account for obtaining the full frame cycle count.

Suppose the fraction of a frame that has been rendered so

far is λ, the average number of cycles per RTP seen in the

current frame is Ci
inter, and the average number of cycles per

RTP recorded during the learning phase is Ci
avg. Therefore,

Ci
rtp can be computed using Equation 2.

Ci
rtp = λ× Ci

inter + (1− λ)× Ci
avg (2)

If we substitute Equation 2 into Equation 1, we obtain the

final expression for the predicted number of cycles per frame

as shown in Equation 3.

Fi = (λ× Ci
inter + (1− λ)× Ci

avg)×N i
rtp (3)

We note that λ is computed as the ratio of the number of

RTPs completed so far in the frame being currently rendered

to the total number of RTPs observed during the learning

phase.

B. Access Throttling Mechanism

In this section, we discuss our GPU access throttling

mechanism. This mechanism is invoked only if the GPU

is found to be meeting a target frame rate. For the 3D scene

rendering workloads that are predicted to meet a target frame

rate, the rate with which the GPU can send access requests to

the shared LLC is throttled down. Throttling GPU accesses

before the LLC has two implications. First, the GPU blocks

in the LLC are accessed less frequently causing them to

age faster compared to the CPU blocks. This replaces the

GPU blocks early increasing the number of GPU misses

and creating more space for the CPU blocks in the LLC.

Second, the GPU accesses that miss in the LLC are seen by

the DRAM at a slower rate automatically shifting a bigger

proportion of the DRAM bandwidth to the CPU workloads.

Our access throttling proposal allows NG GPU accesses

within a window of WG GPU cycles, thereby enforcing an

average GPU access rate of NG/WG. This is implemented

as follows.

Every GPU access must go through a translation from the

GPU address to the global physical address before the access

can be routed to the correct LLC bank. This translation is

accomplished by looking up a GPU translation table (GTT)

resident in the GPU. At the beginning of a window, NG and

WG are initialized. WG is decremented on every GPU cycle

and NG is decremented on every GPU access to the GTT.

As soon as NG reaches zero, the GTT ports are disabled

until WG reaches zero. As a result, during this period the

GPU is denied access to the LLC. When the GPU requests

are denied access to the LLC, they are held back inside

the GPU and occupy GPU resources such as request buffers

and MSHRs attached to the caches internal to the GPU. This

resource contention is modeled in detail in our evaluation.

Any negative influence that this resource contention may

have on performance automatically gets reflected in the

progress of rendering and is captured by our frame rate

estimation algorithm. The estimation, in turn, feeds back

into the throttling mechanism.

Choosing Values for WG and NG. We need an algo-

rithm that automatically adjusts NG and WG based on the

estimated and the target frame rates. Let the number of

cycles per frame at the current predicted frame rate be CP ,

the number of cycles per frame at the target frame rate be

CT , and the number of LLC accesses per frame be A (this

is recorded during the learning phase of the frame rate

prediction model as discussed in Section III-A1). Therefore,

if CP < CT meaning that the GPU is delivering better

frame rate than the target, we would like to increase WG

by (CT −CP)/A while holding NG at one. This increment

is done gradually at a step of two in each window. On

the other hand, if CP ≥ CT , access throttling is disabled

by setting WG to zero and NG to one. Small oscillation

around the target frame rate can be avoided by disabling

throttling within a small guard-band around the target frame

rate. Figure 6 shows the flow of the throttling mechanism.

C. DRAM Access Scheduler

The goal of our DRAM scheduling policy is to shift

bandwidth to the CPU if the GPU is able to meet target

QoS. This is implemented using a simple scheme. If the

GPU is currently predicted to meet the target frame rate, the

CPU requests are prioritized over the GPU requests. Within

a bank, among the requests that can enjoy row buffer hits,

the scheduling policy first schedules the CPU accesses in

FCFS order and then considers the rest. When a new row

needs to be activated in a bank, the oldest CPU access is

given priority over the global oldest access. The scheduler

follows the baseline FR-FCFS algorithm if the GPU fails to

meet the target frame rate. Figure 7 summarizes our entire

proposal.

D. Storage Overhead

The storage overhead of our proposal is small. It involves

the RTPi table having 64 entries, each entry being 129 bits

leading to a total investment of just over 1 KB. Our proposal

also requires two short registers to maintain WG and NG.

One state bit is required to indicate whether the DRAM

access scheduler should invoke the baseline policy or the

22

A, CT , CP as input

CP > CT
NG = 1
WG = 0

NG = 1

WG <
(CT−CP)/A

WG += 2

WG, NG as output

yes

no

yes

no

Figure 6. Flow of the algorithm that throttles LLC accesses from the
GPU. A, CT , and CP are input parameters. WG and NG are outputs.

REMAINING

PARTS OF THE

HETEROGENEOUS

CMP

M
E

M
O

R
Y

IN
T

E
R

-

F
A

C
E

F
O

R
G

P
U

GPU PIPELINE

RTPi TABLE

ATU FRPU

Figure 7. Architecture of the frame rate prediction and access throttling
mechanism. FRPU is the frame rate prediction unit. ATU is the access
throttling unit.

policy with enhanced CPU priority. The primary storage

overhead arises from the RTPi table and it is important to

note that the accesses to this table are not on the critical

path of the GPU accesses. Updates to this table happen off

the critical path and this table is read only periodically at a

certain interval for computing the projected frame rate.

IV. RELATED WORK

Dynamic frame rate estimation has been studied in the

context of mobile SoCs with GPUs implementing tile-based

deferred rendering (TBDR) [11], commonly found in mobile

GPUs [29], [32]. Dynamic progress estimation of GPUs

has also been explored in the presence of prior profile

information such as the number of memory accesses issued

by the GPU application [40]. In contrast, our proposal does

not make any assumption about the implementation of the

rendering pipeline and nor does it require a profile pass.

Request throttling to reduce unfairness in the memory

system of CPU-based CMPs has been explored [7]. The

mechanism and goal of our proposed GPU access throttling

are, however, entirely different. Also, in the context of

GPGPU applications, there have been studies to throttle

up/down the number of active warps and active thread blocks

in the shader cores based on memory system congestion

and GPU idle cycles [18], [19]. These are primarily shader

core-centric proposals and are not effective for the 3D scene

rendering workloads that generate a large volume of memory

accesses from the fixed function units such as the texture

samplers, color blenders, depth test units, etc..

To gain better understanding of this class of shader core-

centric throttling mechanisms, we explore the performance

of the balanced concurrency management (CM-BAL) pro-

posal [18] in detail for our heterogeneous mixes. CM-BAL

scales up or down the maximum number of ready shader

threads based on the average stalls observed with different

thread configurations. We observe that CM-BAL fails to

adequately throttle the GPU frame rate for three reasons.

First, throttling the shader threads has a first order effect

on the texture access rate to the LLC because the texture

samplers are directly attached to the shader cores and the

texture accesses are triggered by texture filtering instructions

of the shader program. However, in the 3D scene rendering

workloads considered by us, the texture accesses, on aver-

age, constitute only 25% of all LLC accesses coming from

the GPU. As a result, throttling only the texture access rate is

not enough. The render output pipeline (ROP) consisting of

the color blenders, depth test units, and color writers receives

shaded and textured fragments from the shader cores and is

responsible for writing out the final pixel colors to the render

buffer. It is necessary to drive the usually over-utilized ROP

to an under-utilized region of operation to be able to see

an effect of shader core throttling on the LLC access rate

from the ROP. In practice, this is impossible to achieve

through shader core throttling alone. While it is feasible

to throttle individual units of the 3D rendering pipeline at

appropriate rates, this leads to a design that is far more

complex than what we propose. Our proposal does not focus

on any particular unit in the rendering pipeline; it throttles

the collective rate at which the GPU can access the LLC.

Second, different applications show different performance

sensitivity toward texture access rate, which experiences the

first order impact of shader core throttling. So, throttling the

texture access rate is not guaranteed to have a significant

performance influence on the GPU. Third, at run-time when

the CM-BAL policy is applied, only a fraction of the texture

accesses undergo throttling further diminishing the overall

23

performance impact. We do not consider these shader core-

centric GPU throttling proposals in the rest of this study.

DRAM access scheduling has been explored for CPU-

based platforms, discrete GPU parts, and heterogeneous

CMPs. In the following, we discuss the contributions rel-

evant to the discrete GPU parts and heterogeneous CMPs.

The memory access scheduling studies for the discrete

GPU parts have been done with the GPGPU applications.

These studies have explored memory access scheduling to

minimize the latency variance among the threads within

a warp [5], to accelerate the critical shader cores that do

not have enough short-latency warps which could hide long

memory latencies [14], and to minimize a potential function

so that an appropriate mix of shortest-job-first and FR-FCFS

can be selected with the overall goal of accelerating the less

latency-tolerant shader cores [20]. There have been studies

on warp and thread block schedulers for improving the

memory system performance [2], [12], [13], [19], [21], [22].

Motivated by the bandwidth-sensitive nature of the mas-

sively threaded GPU workloads and the deadline-bound

nature of the 3D scene rendering workloads executed on the

GPUs, prior proposals have explored specialized memory

access schedulers for heterogeneous systems [3], [11], [28],

[37]. The staged memory scheduler (SMS) clubs the memory

requests from each source (CPU or GPU) into source-

specific batches based on DRAM row locality [3]. Each

batch is next scheduled with a probabilistic mix of shortest-

batch-first (favoring latency-sensitive CPU jobs) and round-

robin (enforcing fairness among bandwidth-sensitive CPU

and GPU jobs). The dynamic priority (DynPrio) sched-

uler [11], proposed for mobile heterogeneous platforms,

employs dynamic progress estimation of tile-based deferred

rendering (TBDR) and offers the GPU accesses equal pri-

ority as the CPU accesses if the GPU progress lags behind

the target frame rendering time. Also, during the last 10%

of the left time to render a frame, the GPU accesses are

given higher priority than the CPU accesses. The progress

estimation algorithm used by DynPrio is designed specifi-

cally for the GPUs employing TBDR, typically supported

only in mobile GPUs such as ARM Mali [29], Kyro,

Kyro II, and PowerVR from Imagination Technologies, and

Imageon 2380, Xenos, Z430, and Z460 from AMD [32]. The

DynPrio scheduler study, however, shows the inefficiency of

a previously proposed static priority scheduler that always

offers higher priority to the CPU accesses [37]. The option

of statically partitioning the physical address space between

the CPU and GPU datasets and assigning two independent

memory controllers to handle accesses to the two datasets

has been explored [28]. A subsequent study has shown that

such static partitioning of memory resources can lead to

sub-optimal performance in heterogeneous systems [18]. In

Section VI, we present a quantitative comparison of our

proposal with DynPrio and two variants of SMS.

There have been studies on managing the shared LLC

in a CPU-GPU heterogeneous processor. Two of these stud-

ies (thread-aware policy [23] and dynamic reuse probability-

aware policy [31]) propose new insertion, promotion, and

replacement policies for LLC blocks. Another study (HeLM)

proposes to selectively bypass the LLC for GPU read misses

coming from the shader cores that are dynamically identified

to be latency-tolerant, thereby opportunistically shifting LLC

capacity to the co-executing CPU workloads [24]. In Sec-

tion II, we have already pointed out the shortcomings of such

a mechanism that is based purely on LLC bypass techniques.

Nonetheless, since our proposal is closer to HeLM in its

goal, we present a quantitative comparison of our proposal

with HeLM in Section VI.

V. SIMULATION ENVIRONMENT

In the following, we discuss the simulated heterogeneous

CMP model and the workloads used in this study.

A. Heterogeneous CMP Model

The details of the simulated environment are presented

in Table I. We use a modified version of the Multi2Sim

simulator [39] to model the CPU cores of the simulated het-

erogeneous CMP. Each dynamically scheduled out-of-order

issue x86 core is clocked at 4 GHz. The GPU is modeled

with an upgraded version of the Attila GPU simulator [26].

The simulator has enough details to capture all the phases

of the entire rendering pipeline. The simulated GPU uses a

unified shader model where the same set of shader cores

is used to carry out vertex shading as well as pixel (or

fragment) shading. The overall single-precision floating-

point operation throughput of the GPU is one tera-FLOPS.

The shared LLC of the heterogeneous CMP receives requests

that miss in the CPU cores’ L2 caches or GPU’s vertex

cache, hierarchical depth cache, shader caches, L2 texture

cache, L2 depth cache, or L2 color cache. The DRAM

modules are modeled using DRAMSim2 [33]. The CPU

cores along with their private caches, the GPU, the LLC,

and the memory controllers are arranged on a bidirectional

ring interconnect having a single-cycle hop time. We will

evaluate our proposal for a configuration with four CPU

cores and one GPU.

B. Workload Selection

We target computational scenarios where the GPU in a

heterogeneous processor renders 3D animation while the

CPU is busy with general-purpose computing. Such com-

putational scenarios are encountered in high-performance

computing facilities where the CPU is busy with simulating

the current time-step of some scientific phenomenon, while

the GPU renders the output of the last few time-steps for

visualization purpose [25], [38]. Also, in general, when the

24

Table I
SIMULATION ENVIRONMENT

CPU cache hierarchy

Per-core iL1 and dL1 caches: 32 KB, 8-way, 64B blocks, 2 cycles,
LRU replacement policy

Per-core unified L2 cache: 256 KB, 8-way, 64B blocks, 3 cycles,
LRU replacement policy

GPU model

Shader cores: 64, 1 GHz, four ALUs per core,
each ALU has a 4-way SIMD unit and a scalar unit

Shader threads (same as warps/wavefronts): 4096 in-flight contexts,
each thread context is scheduled on a shader core,
each instruction of a context is a 16-way vector operation
Thread context scheduler: round-robin among ready contexts,
an executing context is blocked on issuing a branch or texture load
Texture samplers: two per shader core, total fill rate 128 GTexel/s
Render output pipelines (ROPs): 16, total fill rate 64 GPixel/s,
each ROP has a depth test unit, a color blender, and a color writer
Texture caches: three-level non-inclusive hierarchy,
L0: 2 KB, fully-associative, 64B blocks, private per texture sampler,
L1: 64 KB, 16-way set-associative, 64B blocks, shared by samplers,
L2: 384 KB, 48-way set-associative, 64B blocks, shared by samplers
Depth caches: two-level non-inclusive hierarchy,
L1: 2 KB, fully-associative, 256B blocks, private per ROP,
L2: 32 KB, 32-way set-associative, 64B blocks, shared by all ROPs
Color caches: two-level non-inclusive hierarchy,
L1: 2 KB, fully-associative, 256B blocks, private per ROP,
L2: 32 KB, 32-way set-associative, 64B blocks, shared by all ROPs
Vertex cache: 16 KB fully-associative
Hierarchical depth cache: 16 KB, 16-way
Shader instruction cache: 32 KB, 8-way

Shared LLC and interconnect

Shared LLC: 16 MB, 16-way, 64B blocks, lookup latency 10 cycles,
inclusive for CPU blocks, non-inclusive for GPU blocks,
two-bit SRRIP insertion/replacement policy [10],
a replacement sends back-invalidation to CPUs, but not to GPU
Interconnect: bi-directional ring, single-cycle hop

Memory controllers and DRAM

Memory controllers: two on-die single-channel, DDR3-2133,
FR-FCFS access scheduling in baseline
DRAM modules: 14-14-14, 64-bit channels, BL=8, open-page policy,
one rank/channel, 8 banks/rank, 1 KB row/bank/device, x8 devices

GPU renders the current frame of an animation sequence,

some of the CPU cores are busy computing the physics

and AI of the next frame leading to the input geometry

to the GPU; completely unrelated jobs can get scheduled

on the rest of the cores of the CPU. The heterogeneous

workloads used in this study are built by mixing CPU

applications drawn from the SPEC CPU 2006 suite and 3D

scene rendering jobs drawn from fourteen popular DirectX 9

and OpenGL game titles. The DirectX and OpenGL API

traces for the selected 3D animation frames are obtained

from the Attila simulator distribution and the 3DMark06

suite [44]. The simulated game regions (i.e., sequences of

multiple consecutive frames) are selected at random after

skipping over the initial sequence and detailed in Table II.

The “Frames” column of the table shows the sequence of

selected frames for each application. The sequence length

ranges from two to eighteen frames. The “Res” column

shows the frame resolution for each application. The last

column of this table lists the baseline average frames per

second (FPS) achieved by each GPU application for a

configuration having four CPU cores and one GPU running

heterogeneous mixes consisting of four CPU applications

and the GPU application.

Table II
GRAPHICS FRAME DETAILS

Application, DX/OGL4 Frames Res.5 FPS

3DMark06 GT1, DX 670–671 R1 6.0
3DMark06 GT2, DX 500–501 R1 13.8
3DMark06 HDR1, DX 600–601 R1 16.0
3DMark06 HDR2, DX 550–551 R1 20.8
Call of Duty 2 (COD2), DX 208–209 R2 18.1
Crysis, DX 400–401 R2 6.6
DOOM3, OGL 300–314 R3 81.0
Half Life 2 (HL2), DX 25–33 R3 75.9
Left for Dead (L4D), DX 601–605 R1 32.5
Need for Speed (NFS), DX 10–17 R1 62.3
Quake4, OGL 300–309 R3 80.8
Chronicles of Riddick 253–267 R1 111.0
(COR), OGL
Unreal Tournament 2004 200–217 R3 130.7
(UT2004), OGL
Unreal Tournament 3 955–956 R1 26.8
(UT3), DX

4 DX=DirectX, OGL=OpenGL
5 R1=1280×1024, R2=1920×1200, R3=1600×1200

Each heterogeneous mix used for evaluating our proposal

on a configuration with four CPU cores and one GPU

consists of four SPEC CPU 2006 applications and one GPU

application. There are a total of fourteen mixes, one corre-

sponding to each GPU application. These mixes, denoted by

M1-M14, are shown in Table III. These mixes are prepared

by drawing fourteen distinct sets of four SPEC CPU 2006

applications at random and combining each of these sets

with a distinct GPU application. Each CPU application is

identified by its SPEC id. For completeness, we also list the

workloads W1-W14 each having one CPU application and

one GPU application. These mixes were used in Section II

for a configuration with one CPU core and one GPU.

Table III
HETEROGENEOUS WORKLOAD MIXES

GPU application CPU workload mix

3DMark06GT1 M1: 403,450,481,482; W1: 481
3DMark06GT2 M2: 403,429,434,462; W2: 471
3DMark06HDR1 M3: 401,437,450,470; W3: 470
3DMark06HDR2 M4: 401,462,470,471; W4: 482
COD2 M5: 401,437,450,470; W5: 470
Crysis M6: 429,433,434,482; W6: 429
DOOM3 M7: 410,433,462,471; W7: 462
HL2 M8: 410,429,433,434; W8: 403
L4D M9: 410,433,462,471; W9: 462
NFS M10: 410,429,433,471; W10: 437
Quake4 M11: 401,437,450,481; W11: 410
COR M12: 403,437,450,481; W12: 434
UT2004 M13: 401,437,462,470; W13: 450
UT3 M14: 403,437,450,481; W14: 434

Within each mix, the first 200M instructions retired by

each CPU core are used to warm up the caches. After

25

the warm-up, each CPU application in a mix commits at

least 450M representative dynamic instructions [34]. Early-

finishing applications continue to run until each CPU appli-

cation commits its representative set of dynamic instructions

and the GPU completes rendering the set of 3D frames as-

signed to it. The performance of the CPU mixes is measured

in terms of weighted speedup. The GPU performance is

measured in terms of average frame rate.

VI. SIMULATION RESULTS

In this section, we evaluate our proposal on a simulated

heterogeneous CMP with four CPU cores and one GPU.

With each GPU workload, we co-execute a mix of four CPU

applications. We divide the discussion into evaluation of the

individual components that constitute our proposal.

Accuracy of Dynamic Frame Rate Estimation. Figure 8

shows the percent error observed in our dynamic frame

rate estimation technique. A positive error means over-

estimation and a negative error means under-estimation.

Several applications have zero error. Among the applications

that have non-zero error, the maximum over-estimation error

is 6% (UT2004) and the maximum under-estimation error is

4% (COR). The average error across all applications is less

than 1%.

−4
−2

0
2
4
6

P
er

ce
nt

 e
rr

or

3D
Mar

k0
6G

T1

3D
Mar

k0
6G

T2

3D
Mar

k0
6H

DR1

3D
Mar

k0
6H

DR2
UT3

UT20
04

CRYSIS

COR
COD2

L4D

DOOM3
NFS

HL2

QUAKE4

Ave
ra

ge

Figure 8. Percent error in dynamic frame rate estimation.

Evaluation of Access Throttling. Figure 9 quantifies the

performance of our GPU access throttling mechanism. In

this evaluation, we set the target frame rate as 40 FPS for the

GPU applications. Referring to Table II, we see that there

are six applications that have frame rates higher than this

target. The rest of the applications never go above 40 FPS

for the selected frame sequence. Therefore, our proposal will

be able to apply access throttling to these six applications.

The left panel of Figure 9 quantifies average FPS for the

GPU applications. For each application, we show three bars.

The leftmost bar corresponds to baseline. The middle bar

corresponds to a system with access throttling enabled. The

rightmost bar corresponds to a system with access throttling

enabled and the CPU applications given higher priority over

the GPU in the DRAM access scheduler. The right panel of

this figure shows the weighted speedup (normalized to the

baseline, which is at 1.0) achieved by the four-way multi-

programmed CPU workloads when the corresponding GPU

workload in the mix is undergoing access throttling. We

identify each CPU application in a mix by its SPEC id.

The GPU application results confirm that the six applications

operate just around 40 FPS when access throttling is enabled.

While this represents the average frame rate over the multi-

frame sequence for each application, we also verified that

each frame within the sequence meets the target frame rate.

For the CPU applications, the mixes improve significantly

offering an average 11% speedup with GPU access throttling

alone; the average speedup improves to 18% when higher

CPU priority is enabled in the DRAM access scheduler.

0

20

40

60

80

100

120

140

Fr
am

es
 p

er
 s

ec
on

d
(F

P
S

)

DOOM3
HL2

NFS

QUAKE4
COR

UT20
04

Baseline Throttled Throttled+CPU priority

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

N
or

m
al

iz
ed

 w
ei

gh
te

d
C

P
U

 s
pe

ed
up

41
0,4

33
,46

2,4
71

41
0,4

29
,43

3,4
34

41
0,4

29
,43

3,4
71

40
1,4

37
,45

0,4
81

40
3,

43
7,

45
0,

48
1

40
1,

43
7,

46
2,

47
0

GEOMEAN

Figure 9. Left: FPS of GPU applications that are amenable to access
throttling. Right: weighted CPU speedup for the mixes when the GPU
application in the mix is throttled. The CPU application mixes are shown
in terms of the combination of the SPEC application ids along the x-axis
of the right panel.

To further understand the sources of CPU performance

improvement, Figure 10 quantifies the LLC miss count of the

GPU applications (left panel) and the corresponding CPU

workload mixes (right panel) normalized to the baseline.

The GPU applications suffer from an average 39% increase

in LLC miss count when GPU access throttling is enabled.

This number further increases to 42% when CPU priority in

the DRAM access scheduler is boosted in addition to GPU

access throttling. As already explained, this is an expected

behavior resulting from faster aging of the GPU blocks

in the LLC due to lowered LLC access rate of the GPU

application. In addition to GPU access throttling, when the

CPU priority in the DRAM access scheduler is boosted,

the CPU fills return faster to the LLC, thereby evicting the

aged GPU blocks even more quickly. The right panel shows

that the additional LLC space created due to this leads to a

4% and 4.5% average reduction in CPU LLC miss counts

for the throttled and throttled+CPUpriority configurations,

respectively.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

N
or

m
al

iz
ed

 L
LC

 m
is

s
co

un
t

Ave
ra

ge

UT20
04

COR

QUAKE4
NFS

HL2

DOOM3

Throttled Throttled+CPU priority

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

N
or

m
al

iz
ed

 L
LC

 m
is

s
co

un
t

Ave
ra

ge

41
0,4

33
,46

2,4
71

41
0,4

29
,43

3,4
34

41
0,4

29
,43

3,4
71

40
1,4

37
,45

0,4
81

40
3,4

37
,45

0,4
81

40
1,4

37
,46

2,4
70

Figure 10. Left: normalized LLC miss count of GPU applications that are
amenable to access throttling. Right: normalized LLC miss count of CPU
workloads when the GPU application in the mix is throttled.

26

The significant increase in the LLC miss count of the

GPU applications can be of concern because this may lead

to higher DRAM bandwidth consumption defeating the very

purpose of GPU access throttling. However, it is important

to note that these misses occur over a much longer period

of time due to a lowered frame rate. Our access throttling

algorithm automatically adjusts the throttling rate taking

all these into consideration so that the frame rate hovers

close to the target level. Figure 11 substantiates this fact

by quantifying the average DRAM bandwidth (read and

write separately shown) consumed by the GPU applications

normalized to the baseline.6 On average, the GPU bandwidth

demand reduces by 35% and 37% for the throttled and throt-

tled+CPUpriority configurations, respectively. Both read and

write bandwidth demands go down by significant amounts,

across the board. In summary, our proposal frees up more

than one-third GPU bandwidth for the CPU workloads to

consume. A comparison with the right panel of Figure 10

reveals that DRAM bandwidth shifting is a bigger benefit of

our proposal than LLC miss saving for CPU workloads.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
or

m
al

iz
ed

 G
P

U
 b

an
dw

id
th

B
as

el
in

e
T

h
ro

tt
le

d
T

h
ro

tt
le

d
+C

P
U

 p
ri

o
ri

ty

AverageDOOM3 HL2 NFS QUAKE4 COR UT2004

DRAM read DRAM write

Figure 11. Normalized DRAM bandwidth (read and write) consumed by
GPU applications that are amenable to access throttling.

Comparison to Related Proposals. Several DRAM

scheduling policies have been proposed for heterogeneous

CMPs and evaluated on mixes of 3D scene rendering work-

loads and CPU workloads. In the following, we compare

our proposal against staged memory scheduling (SMS) [3]

and dynamic priority scheduler (DynPrio) [11]. Additionally,

we present a comparison with HeLM, the state-of-the-

art LLC management policy for CPU-GPU heterogeneous

processors [24]. These proposals were briefly introduced in

Section IV. We evaluate two versions of SMS, namely, one

with a probability of 0.9 of using shortest-job-first (SMS-

0.9) and the other with this probability zero i.e., it always

selects a round-robin policy (SMS-0). SMS-0.9 is expected

to favor latency-sensitive CPU jobs while SMS-0 is expected

to favor GPU jobs. DynPrio makes use of our frame rate

estimation technique to compute the time left in a frame.

Figure 12 compares the proposals for the heterogeneous

mixes containing GPU applications that meet the target 40

6 In a few GPU applications (e.g., DOOM3 and HL2), the volume of
writes can be more than the volume of reads because the rendering pipeline
can create fully dirty color or depth lines in the internal ROP caches and
later flush them out to the LLC for allocation without doing a DRAM read.

FPS. The upper panel shows that all proposals deliver higher

than 40 FPS. Our proposal (ThrotCPUprio) opportunistically

applies GPU access throttling and CPU prioritization in the

DRAM scheduler to deliver an FPS that is just around the

target. As a result, our proposal is able to improve the CPU

mixes most (lower panel of Figure 12). On average, SMS-

0.9, SMS-0, DynPrio, HeLM, and our proposal improve the

performance of the CPU mixes by 4%, 4%, 10%, 3%, and

18%, respectively. The performance improvement achieved

by HeLM is low because it suffers from an increased DRAM

bandwidth consumption arising from the additional GPU

misses that result from aggressive LLC bypass of GPU fills.

0
20
40
60
80

100
120
140

F
P

S

DOOM3 HL2 NFS QUAKE4 COR UT2004

Baseline SMS−0.9 SMS−0 DynPrio HeLM ThrotCPUprio

1

1.1

1.2

1.3

1.4

C
P

U
 s

p
e

e
d

u
p

GMEAN

41
0,
43

3,
46

2,
47

1

41
0,
42

9,
43

3,
43

4

41
0,
42

9,
43

3,
47

1

40
1,
43

7,
45

0,
48

1

40
3,
43

7,
45

0,
48

1

40
1,

43
7,

46
2,

47
0

Figure 12. FPS of GPU applications (top panel) and normalized weighted
CPU speedup (bottom panel) for the mixes with high frame rate GPU
applications.

Our proposal remains disabled in the remaining mixes

containing the GPU applications that fail to meet the target

FPS. For completeness, Figure 13 shows the comparison

for these mixes. The upper panel evaluates the proposals

for the GPU applications. SMS suffers from large losses

in FPS due to the delay in batch formation. DynPrio fails

to observe any overall benefit because it offers express

bandwidth to the GPU application only during the last

10% of a frame time and otherwise the CPU and GPU

are offered equal priority as in the baseline FR-FCFS.

HeLM suffers from an average loss of 7% in FPS due to

DRAM bandwidth shortage resulting from the additional

GPU misses that arise due to aggressive LLC bypass. SMS-

0.9 and SMS-0 improve CPU mix performance (lower panel

of Figure 13) by 7% and 6%, respectively, while suffering

large losses in GPU performance. DynPrio delivers the same

level of performance as the baseline for both GPU and CPU

workloads. HeLM enjoys a 4% average improvement in CPU

mix performance. In summary, these results clearly indicate

that the GPU performance can be traded off to improve

CPU performance and vice-versa in such heterogeneous

platforms. To understand the overall performance in such

scenarios, we assign equal weightage to the CPU and GPU

performance and derive the overall performance of the

heterogeneous processor. Figure 14 shows these results for

the mixes containing the GPU applications that fail to meet

27

the target FPS.7 On average, our proposal and DynPrio both

deliver baseline performance for these mixes, while both

variants of SMS suffer from large losses. HeLM performs

1% worse than the baseline on average.

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o
rm

a
liz

e
d
 F

P
S

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
DR1

3D
M

ar
k0

6H
DR2

COD2

CRYSIS
L4D UT3 GMEAN

Baseline SMS−0.9 SMS−0 DynPrio HeLM ThrotCPUprio

0.6

0.7

0.8

0.9

1

1.1

1.2

C
P

U
 s

p
e
e
d
u
p

GMEAN

40
3,

43
7,

45
0,

48
1

41
0,

43
3,

46
2,

47
1

40
3,

45
0,

48
1,

48
2

40
3,

42
9,

43
4,

46
2

40
1,

43
7,

45
0,

47
0

40
1,

46
2,

47
0,

47
1

40
1,

43
7,

45
0,

47
0

42
9,

43
3,

43
4,

48
2

Figure 13. FPS speedup (top panel) and weighted CPU speedup (bottom
panel) over the baseline for the mixes with low frame rate GPU applications.

M1 M2 M3 M4 M5 M6 M9 M14 GMEAN
0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
ce

Baseline SMS−0.9 SMS−0 DynPrio HeLM ThrotCPUprio

Figure 14. Normalized performance of the heterogeneous processor for
the mixes with low frame rate GPU applications when the CPU and GPU
are given equal weight in terms of performance.

VII. SUMMARY

We have presented a novel memory access manage-

ment mechanism for heterogeneous CMPs. The proposed

mechanism dynamically shifts LLC capacity and DRAM

bandwidth to CPU applications from the co-executing GPU

application whenever the GPU application meets the target

frame rate. Two light-weight, yet highly effective, algorithms

form the crux of our proposal. The first algorithm accurately

estimates the projected frame rate of a GPU application.

Based on this estimation, the second algorithm computes

the effective GPU access rate to the LLC and assists the

DRAM access scheduler to decide if CPU priority should be

boosted. Detailed simulation studies show that our proposal

achieves its goal of offering a bigger share of the memory

7 For the mixes where the GPU application already meets the target
FPS, this kind of a combined CPU-GPU performance metric is irrelevant
because the GPU performance goal is already satisfied and an evaluation
of the CPU performance improvement, as shown in Figure 12, is sufficient.

system resources to the CPU when the GPU does not need

it. For the heterogeneous mixes containing GPU applications

that meet the target frame rate, our proposal improves the

CPU performance by 18% on average while requiring just

over a kilobyte of additional storage.

REFERENCES

[1] K. Asanovic et al. A View of the Parallel Computing
Landscape. In Communications of the ACM, 52(10): 56–67,
October 2009.

[2] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R.
Das, M. T. Kandemir, and O. Mutlu. Exploiting Inter-Warp
Heterogeneity to Improve GPGPU Performance. In Proceed-
ings of the International Conference on Parallel Architecture
and Compilation Techniques, pages 25–38, October 2015.

[3] R. Ausavarungnirun, K. K-W. Chang, L. Subramanian, G. H.
Loh, and O. Mutlu. Staged Memory Scheduling: Achieving
High Performance and Scalability in Heterogeneous Systems.
In Proceedings of the 39th International Symposium on
Computer Architecture, pages 416–427, June 2012.

[4] D. Bouvier, B. Cohen, W. Fry, S. Godey, and M. Mantor.
Kabini: An AMD Accelerated Processing Unit System on a
Chip. In IEEE Micro, 34(2):22–33, March/April 2014.

[5] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and
R. Balasubramonian. Managing DRAM Latency Divergence
in Irregular GPGPU Applications. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 128–139, November
2014.

[6] M. Demler. Iris Pro Takes On Discrete GPUs. In Micropro-
cessor Report, September 9, 2013.

[7] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness
via Source Throttling: A Configurable and High-performance
Fairness Substrate for Multi-core Memory Systems. In Pro-
ceedings of the 15th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 335–346, March 2010.

[8] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankar-
alingam, and D. Burger. Dark Silicon and the End of
Multicore Scaling. In Proceedings of the 38th International
Symposium on Computer Architecture, pages 365–376, June
2011.

[9] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E.
Hallnor, J. Hong, M. Dixon, M. Derr, M. Hunsaker, R. Kumar,
R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell,
S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza,
and T. Burton. Haswell: The Fourth Generation Intel Core
Processor. In IEEE Micro, 34(2):6–20, March/April 2014.

[10] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer. High
Performance Cache Replacement using Re-reference Interval
Prediction (RRIP). In Proceedings of the 37th International
Symposium on Computer Architecture, pages 60–71, June
2010.

[11] M. K. Jeong, M. Erez, C. Sudanthi, and N. C. Paver. A QoS-
aware memory controller for dynamically balancing GPU and
CPU bandwidth use in an MPSoC. In Proceedings of the 49th
Annual Design Automation Conference, pages 850–855, June
2012.

[12] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O.
Mutlu, R. Iyer, and C. R. Das. Orchestrated Scheduling
and Prefetching for GPGPUs. In Proceedings of the 40th
International Symposium on Computer Architecture, pages
332–343, June 2013.

28

[13] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M.
T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das. OWL:
Cooperative Thread Array Aware Scheduling Techniques for
Improving GPGPU Performance. In Proceedings of the 18th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 395–
406, March 2013.

[14] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu,
R. Iyer, and C. R. Das. Exploiting Core Criticality for En-
hanced GPU Performance. In Proceedings of the International
Conference on Measurement and Modeling of Computer
Science (SIGMETRICS), pages 351–363, June 2016.

[15] D. Kanter. Intel’s Ivy Bridge Graphics Architecture. April
2012. Available at http://www.realworldtech.com/ivy-bridge-
gpu/.

[16] D. Kanter. Intel’s Sandy Bridge Graphics Architecture. Au-
gust 2011. Available at http://www.realworldtech.com/sandy-
bridge-gpu/.

[17] D. Kanter. AMD Fusion Architecture and Llano. June 2011.
Available at http://www.realworldtech.com/fusion-llano/.

[18] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun,
M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R. Das.
Managing GPU Concurrency in Heterogeneous Architectures.
In Proceedings of the 47th International Symposium on
Microarchitecture, pages 114–126, December 2014.

[19] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither
More nor Less: Optimizing Thread-level Parallelism for GPG-
PUs. In Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques, pages
157–166, September 2013.

[20] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. DRAM
Scheduling Policy for GPGPU Architectures Based on a
Potential Function. In IEEE Computer Architecture Letters,
11(2): 33–36, July 2012.

[21] S-Y. Lee, A. Arunkumar, and C-J. Wu. CAWA: Coordinated
Warp Scheduling and Cache Prioritization for Critical Warp
Acceleration of GPGPU Workloads. In Proceedings of the
42nd International Symposium on Computer Architecture,
pages 515–527, June 2015.

[22] S-Y. Lee and C-J. Wu. CAWS: Criticality-aware Warp
Scheduling for GPGPU Workloads. In Proceedings of the
International Conference on Parallel Architectures and Com-
pilation Techniques, pages 175–186, August 2014.

[23] J. Lee and H. Kim. TAP: A TLP-aware Cache Manage-
ment Policy for a CPU-GPU Heterogeneous Architecture. In
Proceedings of the 18th International Symposium on High
Performance Computer Architecture, pages 91–102, February
2012.

[24] V. Mekkat, A. Holey, P-C. Yew, and A. Zhai. Managing
Shared Last-level Cache in a Heterogeneous Multicore Pro-
cessor. In Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques, pages
225–234, September 2013.

[25] P. Messmer. Interactive Supercomputing with In-
Situ Visualization on Tesla GPUs. Available at
https://devblogs.nvidia.com/parallelforall/interactive-
supercomputing-in-situ-visualization-tesla-gpus/.

[26] V. Moya, C. Gonzalez, J. Roca, A. Fernandez,
and R. Espasa. ATTILA: A Cycle-Level Execution-
Driven Simulator for Modern GPU Architectures. In
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, pages
231–241, March 2006. Source and traces available at
http://attila.ac.upc.edu/wiki/index.php/Main Page.

[27] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. T. Kan-
demir, and T. Moscibroda. Reducing Memory Interference in
Multicore Systems via Application-aware Memory Channel
Partitioning. In Proceedings of the 44th International Sympo-
sium on Microarchitecture, pages 374–385, December 2011.

[28] N. C. Nachiappan, P. Yedlapalli, N. Soundararajan, M. T.
Kandemir, A. Sivasubramaniam, and C. R. Das. GemDroid: A
Framework to Evaluate Mobile Platforms. In Proceedings of
the International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), pages 355–366, June
2014.

[29] T. Olson. Mali 400 MP: A Scalable GPU for Mobile and
Embedded Devices. In Symposium on High-Performance
Graphics, June 2010.

[30] T. Piazza. Intel Processor Graphics. In Symposium on High-
Performance Graphics, August 2012.

[31] S. Rai and M. Chaudhuri. Exploiting Dynamic Reuse Prob-
ability to Manage Shared Last-level Caches in CPU-GPU
Heterogeneous Processors. In Proceedings of the 30th Inter-
national Conference on Supercomputing, June 2016.

[32] M. Ribble. Next-gen Tile-based GPUs. In Game Developers’
Conference, 2008.

[33] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A
Cycle Accurate Memory System Simulator. In IEEE Com-
puter Architecture Letters, 10(1): 16–19, January-June 2011.

[34] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program Behavior.
In Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 45–57, October 2002.

[35] A. L. Shimpi. Intel Iris Pro 5200 Graphics Review:
Core i7-4950HQ Tested. June 2013. Available at
http://www.anandtech.com/show/6993/intel-iris-pro-5200-
graphics-review-core-i74950hq-tested.

[36] D. Shingari, A. Arunkumar, and C-J. Wu. Characterization
and Throttling-Based Mitigation of Memory Interference for
Heterogeneous Smartphones. In Proceedings of the Interna-
tional Symposium on Workload Characterization, pages 22–
33, October 2015.

[37] A. Stevens. QoS for High-performance and Power-efficient
HD Multimedia. ARM White Paper, 2010.

[38] J. Stone. HPC Visualization on Nvidia Tesla GPUs.
Available at https://devblogs.nvidia.com/parallelforall/hpc-
visualization-nvidia-tesla-gpus/.

[39] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli.
Multi2Sim: A Simulation Framework for CPU-GPU Com-
puting. In Proceedings of the 21st International Conference
on Parallel Architecture and Compilation Techniques, pages
335–344, September 2012.

[40] H. Usui, L. Subramanian, K. K-W. Chang, and O. Mutlu.
DASH: Deadline-Aware High-Performance Memory Sched-
uler for Heterogeneous Systems with Hardware Accelerators.
In ACM Transactions on Architecture and Code Optimization,
12(4), January 2016.

[41] J. Walton. The AMD Trinity Review (A10-
4600M): A New Hope. May 2012. Available at
http://www.anandtech.com/show/5831/amd-trinity-review-
a10-4600m-a-new-hope/.

[42] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A
Fully Integrated Multi-CPU, GPU, and Memory Controller
32 nm Processor. In Proceedings of the International Solid-
State Circuits Conference, pages 264–266, February 2011.

[43] 2015 International Technology Roadmap for Semiconductors
(ITRS). http://www.semiconductors.org.

[44] 3D Mark Benchmark. http://www.3dmark.com/.

29

