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Abstract
As the last-level on-chip caches in chip-multiprocessors in-

crease in size, the physical locality of on-chip data becomes im-
portant for delivering high performance. The non-uniform ac-
cess latency seen by a core to different independent banks of a
large cache spread over the chip necessitates active mechanisms
for improving data locality. The central proposal of this paper
is a fully hardwired coarse-grain data migration mechanism that
dynamically monitors the access patterns of the cores at the gran-
ularity of a page to reduce the book-keeping overhead and de-
cides when and where to migrate an entire page of data to amor-
tize the performance overhead. The page-grain migration mech-
anism is compared against two variants of previously proposed
cache block-grain dynamic migration mechanisms and two OS-
assisted static locality management mechanisms. Our detailed
execution-driven simulation of an eight-core chip-multiprocessor
with a shared 16 MB L2 cache employing a bidirectional ring to
connect the cores and the L2 cache banks shows that hardwired
dynamic page migration, while using only 4.8% of extra stor-
age out of the total L2 cache and book-keeping budget, delivers
the best performance and energy-efficiency across a set of shared
memory parallel applications selected from the SPLASH-2, SPEC
OMP, DARPA DIS, and FFTW suites and multiprogrammed work-
loads prepared out of the SPEC 2000 and BioBench suites. It re-
duces execution time by 18.7% and 12.6% on average (geometric
mean) respectively for the shared memory applications and the
multiprogrammed workloads compared to a baseline architecture
that distributes the pages round-robin across the L2 cache banks.

1. Introduction

In the recent years, chip-multiprocessors (CMPs) have become
the central focus of the chip industry. As the number of processors
or cores on a single chip increases, the amount of on-die cache is
also expected to increase. In one of the popular CMP cache hi-
erarchy designs, the entire last level is dynamically shared among
the cores while each core has its private lowest level of cache hi-
erarchy.1 Figure 1 shows an architecture with eight cores
and two levels of cache hierarchy, the last level being divided into
multiple small banks and shared across all the cores. Each L2

1 There may be intermediate levels of the hierarchy that are shared
among a subset (possibly singleton) of cores.
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Figure 1. An example floorplan of an 8-core CMP with a
shared L2 cache and private per-core L1 caches. Cn is the
n

th core and Bn is the n
th L2 cache bank. The switches in

the bidirectional ring are shown with solid dots. Each switch
connects to either the L1 cache controllers of a core or the
controllers of a pair of adjacent L2 cache banks, except at
the corners where it connects to one L2 cache bank only.
The dimensions are explained in Section 5.

cache bank has its own portion of tag and data arrays. The bank
holding a block B is designated as the home bank of B. While
dynamic sharing of the last-level cache is increasingly becoming
popular due to better utilization of the cache space, it introduces
an important performance problem related to the non-uniform na-
ture of the L2 cache access latency. An L2 cache access from a
core to a nearby bank takes less time compared to an access to a
bank far away. While offering fully private cache hierarchy to each
core solves this problem, private hierarchies become less attractive
due to wastage of cache space resulting from replication of shared
blocks unless active mechanisms are in place to avoid this [9, 29].

In this paper, we squarely focus on the problem of on-
chip data locality in large shared non-uniform cache architec-
ture (NUCA) [19] designs resembling the one shown in Figure 1
and present the first proposal on coarse-grain dynamic migration
as well as operating system (OS)-assisted static mechanisms to
manage locality at a granularity of pages. The primary motiva-
tion to explore page-grain policies stems from the fact that learn-
ing dynamic reference patterns at page granularity requires less
state and storage compared to the already proposed block-grain
policies [5, 6, 12]. Also, page-grain mechanisms can amortize



the start-up overhead by migrating several cache blocks at a time
and can pipeline the physical block transfers. While any coarse-
grain data migration technique transferring more than one block at
a time would possess these two nice properties, page-grain migra-
tion is particularly attractive due to the fact that physical addresses
are assigned at page granularity. As a result, the maximally sized
portion of a contiguous virtual address region that is guaranteed to
appear contiguously in the physical address space is a page. There-
fore, a page of data has a fairly high chance of exhibiting an access
pattern that is homogeneous over the entire page. However, multi-
ple contiguous physical pages may not be homogeneous in nature
because they may correspond to completely unrelated regions in
the virtual address space.
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Figure 2. Page-grain (4 KB) solo access statistics.

To establish the key hypothesis of this work that there is signif-
icant access locality at the granularity of pages, Figure 2 presents
some relevant data for a selected set of explicitly parallel shared
memory applications running on an 8-core CMP with a 16 MB L2
cache similar to the one shown in Figure 1.2 For each application,
the bar on the left shows the fraction of pages having accesses
from exactly one core during a 0.1 million-cycle sample period
averaged across all such non-intersecting samples. The bar on the
right shows the fraction of L2 cache accesses covered by these
“solo pages”. This fraction is further divided into four categories
where each category shows the contribution coming from the solo
pages that have number of accesses falling in that category. The
statistics are very encouraging. For five of the six applications,
more than 75% of pages accessed in a sample period are solo pages
and these pages cover more than 50% of L2 cache accesses. Since
a major proportion of L2 cache accesses is covered by solo pages
with 32 or more accesses, a migration algorithm that migrates an
entire page to a local bank of a core after observing the access pat-
tern to a part of the page will be able to compensate the migration
overhead by enjoying local reuse to the migrated page.

Motivated by these statistics we explore fully hardwired dy-
namic page migration (Section 3) as well as OS-assisted static
page placement mechanisms (Section 4) to improve physical lo-
cality of data in large shared CMP NUCAs. Our simulation re-
sults (Sections 5 and 6) on a small-scale 8-core CMP with a shared
16 MB L2 cache employing a bidirectional ring interconnect show
that fully hardwired dynamic page migration reduces execution
time by up to 26.9% and on average (geometric mean) 18.7% for
a set of shared memory parallel applications. For a set of repre-
sentative multiprogrammed workloads, these numbers are 16.4%

2 The details of the simulation environment and the applications will be
presented in Section 5.

and 12.6%, respectively. This excellent performance of the page
migration scheme comes at the cost of an extra storage overhead
of only 4.8% to learn the reference patterns and maintain the mi-
grated page addresses. Interestingly, we show that the storage
overhead of a performance-optimized block migration scheme,
which delivers performance reasonably close to page migration for
most of the workloads, is as high as 28.5%. We also derive a sim-
ple analytical model (Section 7) to argue about the performance
trends in the presence of data migration.

1.1. Related Work

The impact of wire delay on large caches was presented in [19].
Instead of designing the entire cache in a monolithic way where
the access time is governed by the worst case delay, the authors
outline a non-uniform cache architecture (NUCA) that can take ad-
vantage of proximity of data from the accessing processor. Subse-
quently, the NuRAPID proposal decoupled the tag and data place-
ment in a NUCA by augmenting each tag and data block with a
forward and reverse pointer to the corresponding data block and
tag, respectively [11].

Cache block migration in a CMP NUCA was first explored
in [5]. However, the two-phase multicast tag search required to
locate a block in the NUCA along with the gradual migration pro-
tocol used in that proposal may significantly increase the amount
of dynamic energy expended per migration. CMP-NuRAPID [12]
resolves the tag search issue by leveraging the forward and reverse
pointers of NuRAPID. However, it replaces the single L2 cache tag
array of NuRAPID by per-core private L2 cache tag array. This in-
troduces two new problems, namely, the significant area overhead
due to replication of the entire L2 cache tag array in each core and
the hardware needed to keep the private tag arrays coherent. In
contrast, our page migration proposal does not require per-core L2
cache tag arrays and offers solutions to the locality problem with
a significantly lower area overhead. Also, our proposal, instead of
using gradual migration, swaps the source and destination data of
migration to minimize the number of copy operations. We imple-
ment a suitable block migration scheme to fit our architecture and
show that these schemes impose significantly higher storage over-
head than the proposed page migration scheme. In this paper, we
do not implement data replication (as in [6, 32]) and propose other
solutions to improve the locality of shared data without affecting
the cache coherence protocol.

Various static and dynamic block-to-bank mapping algorithms
to vary the sharing degree of a shared NUCA are explored in [17].
The authors find dynamic block-grain migration useful for im-
proving performance. However, the dynamic schemes require a
distributed partial tag search to locate a block in the cache. The
authors in [13] evaluate a round-robin placement of demand pages
on cache slices or banks and introduce the concept of virtual mul-
ticore where a round-robin page placement can be done by the OS
within a group of cores constituting the virtual multicore. Concur-
rent to our effort, a dynamic page migration mechanism to improve
capacity allocation and physical data locality in last-level caches is
proposed in [3]. This work extends the OS-assisted page coloring
technique proposed in [13] with hardware mechanisms to re-color
pages. Since a migration only changes the color of a page and
does not copy the page from the old location to the new location
within the last-level cache, the first access to a block belonging
to a migrated page suffers from a miss in the entire cache hierar-
chy. However, this proposal shows how to cleverly use the unused
shadow bits in the upper part of the physical address to save a por-
tion of the book-keeping storage, which our proposal needs for
maintaining one of the address map tables.

Our proposal is most influenced by the page migration and
replication studies on traditional distributed shared memory mul-



tiprocessors [8, 31]. These proposals looked at OS-assisted mech-
anisms to carry out dynamic page migration and replication in
large-scale non-uniform memory access (NUMA) machines by us-
ing the cache miss and TLB miss counts to infer the page affinity of
the computing nodes. We also note that the SGI Origin 2000 [21]
integrates a dynamic page migration algorithm with its directory-
based cache coherence protocol, while the Sun Wildfire [24] im-
plements a page migration and replication daemon that takes mi-
gration/replication decisions by monitoring the volume of cache
misses to remote home. All these designs require OS assistance
in remapping the migrated pages, copying the physical data, and
shooting down the TLBs.3 However, the overhead of doing OS-
assisted dynamic migration in a NUCA environment would be
hard to compensate for because in our simulated architecture the
round-trip latency to the farthest L2 cache bank is slightly over
ten nanoseconds higher than the local bank access latency. As a
result, we design our dynamic page migration scheme as a fully
hardwired mechanism. We show that this scheme is superior to
OS-assisted static data placement mechanisms such as first-touch
and application-directed page placement.

2. Baseline L2 Cache Architecture
We assume a baseline architecture similar to the one shown

in Figure 1 with a two-level inclusive cache hierarchy. We will
refer to an L2 cache bank as local to a core if it has the small-
est round-trip wire delay among all the L2 cache banks from that
core. Note that a core may have more than one local L2 cache
banks. The private L1 caches are kept coherent with the help of an
invalidation-based MESI directory protocol. The directory entries
are kept with the tags of the L2 cache blocks. A miss or write-
back request from an L1 cache is first forwarded to the home bank
where the tag and the directory entry of the block are looked up
and appropriate coherence actions are taken. A replacement from
the L2 cache invalidates all the sharers’ L1 cache blocks belong-
ing to the replaced L2 cache block or retrieves the pertinent L1
cache blocks from the owner so that inclusion is maintained. The
miss/refill/writeback requests from/to the L2 cache banks are han-
dled by four on-die memory controllers each handling one quarter
of the physical address space.

Given a physical address, there are various choices for select-
ing the L2 cache bank (i.e., the home bank) holding this physical
address. Managing locality at a page grain requires an entire page
to belong to a bank. Therefore, the bank number can be formed
with bits selected from the cache index that fall outside the page
offset. We use a page-interleaved mapping scheme where consec-
utive physical pages are assigned to consecutive L2 cache banks
i.e., the bank number comes from the bits right next to the page
offset. We find that this mapping scheme delivers performance and
energy-efficiency similar to the popular block-interleaved map-
ping scheme. It is important to note that the home bank number
is a function of the physical address generated by the L1 cache
controller and the home bank of an L2 cache block changes as the
block undergoes migration from one bank to another. At any point
in time, the home bank of an L2 cache block is the bank where the
block resides. The home bank of an L2 cache block derived from
its original OS-assigned physical address will be referred to as the
“original home bank” or the “original home”.

3. Hardware Mechanisms
The dynamic page and block migration schemes presented in

this section execute completely in hardware without any OS inter-
3 The poison states in the Origin directory help reduce the critical path.

vention. They do not move any data in the physical memory and
the per-core L1 caches, and do not change the translations cached
in the TLBs resident in the cores. The entire migration process is
kept hidden from the virtual to physical address mapping layer of
the OS.

3.1. Dynamic Page Migration

The migration algorithm involves three major steps, namely,
deciding when to migrate a page, deciding where to migrate a
page, and the actual migration protocol. Another important con-
cern is how to locate a block in the L2 cache if it belongs to a
migrated page. We discuss these four aspects in the following.
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Figure 3. An L2 cache bank and the associated PACT. P is
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3.1.1. Migration Decision Algorithm
An L1 cache miss request (read, read-exclusive, or upgrade) from
a core R is routed to the L2 cache bank holding the requested
address. While the tag array is looked up, a migration decision is
made based on the access pattern observed by the page holding the
requested cache block, provided the current bank is remote to the
requesting core R. The information needed to carry out this mi-
gration decision is stored in a set-associative page access counter
table (PACT) indexed and tagged respectively with the lower and
the remaining upper bits of the physical page frame number of
the requested address after removing the bank number (each bank
has a separate PACT). The PACT has the same number of ways
as the L2 cache bank. The number of sets in the PACT is equal
to the number of sets in the L2 cache bank divided by the number
of L2 cache blocks per page (see Figure 3). All pages residing in
PageSet n have their access information mapped to set n of PACT.
Conflicts within a PACT set are resolved by traditional LRU re-
placement policy. An invalid way in set n of PACT necessarily
corresponds to empty space equal to a page size in PageSet n of
the L2 cache bank.

Logically each PACT entry contains several fields. Other than
the valid bit, the tag, and the LRU states, the most important ones
are an array of saturating counters for keeping track of the number
of accesses to a page by a pair of adjacent cores (a pair of adjacent
cores will be referred to as a cluster), the running maximum and
second maximum access counts and the corresponding cluster ids,
a sharer bitvector of length equal to the number of cores and the
population count of the vector4, a saturating counter for keeping
track of the number of accesses to a page from the time the last
sharer was added for that page, and an idle counter to decide when

4 This sharer vector is per page and is different from the one main-
tained in the directory entry per cache block. This per-page sharer vector
is not updated on coherence events such as invalidations because coherence
events take place at block grain.



to invalidate an idle PACT entry. It is important to note that in-
validating a PACT entry does not necessitate invalidating all the
blocks belonging to the corresponding page. Also, a replacement
from the L2 cache does not require any change in the PACT con-
tents. Although apparently the PACT does not seem to scale well
as the number of cores increases, it is always possible to maintain
information at a coarser grain. For example, instead of maintain-
ing access count per pair of adjacent cores, it can be maintained
for a cluster of k cores that are close to each other depending on
the underlying interconnect topology. Also, the per page sharer
vector can be made coarse so that each entry of the vector refers to
a cluster of cores.

We use a simple migration decision algorithm. If the cache
block being accessed belongs to a page that is currently shared by
more than one core and the difference between the maximum and
the second maximum access counts is below a pre-defined thresh-
old T1 (signifying the absence of a single frequently accessing
cluster), the “sharer mode” of the decision algorithm is invoked.
In this mode a potential migration is flagged provided the number
of accesses to this page since the addition of the last sharer exceeds
a pre-defined threshold T2 (signifying a stable set of sharers). On
the other hand, the “solo mode” of migration is invoked if the page
is currently accessed by a single core or the difference between the
maximum and the second maximum access counts is more than or
equal to T1, and the requesting core R belongs to the cluster using
the page most. To determine T1 and T2, we first execute a binary
search for T1 while holding T2 fixed at a moderate value (e.g., 16).
Once we arrive at the best value of T1, we do a binary search for
T2 on both sides of the fixed value. We observe that the perfor-
mance usually improves as T2 increases up to a certain point. This
is expected since premature migrations before the sharer set gets
enough time to stabilize lead to an overall larger number of migra-
tions. On the other hand, T1 has little impact on the migration of
solo pages because these pages get migrated on the second access
to the page. However, too small a value for T1 may lead to a wrong
premature solo mode migration for a shared page followed by sub-
sequent sharer mode migrations. Our experiments use T1 = 9 and
T2 = 29.

3.1.2. Destination of Migration
Once a potential migration is flagged, the destination bank and a
region within that bank where the migrated page will be placed
have to be decided. For sharer mode migration, the page is mi-
grated to a bank that minimizes the access time for the sharing
cores on average, assuming uniform access distribution across the
sharing cores. Every bank maintains a Proximity ROM, which
stores, for each sharer combination (or sharing cluster combina-
tion if scalability becomes an issue), the four bank ids that have
the least average access latencies for that sharer combination. The
sharer vector is used to index into this ROM. Among the four
banks read out from the ROM, the one with the least “load” is cho-
sen as the destination. The load on a bank is defined as the number
of pages mapped on that bank. This is updated at the end of a page
migration and at the time of handling a page fault. However, the
migration is canceled if the L2 cache bank currently holding the
page happens to be one of the four banks read out from the ROM.
The destination bank of a solo mode migration is chosen to be the
least-loaded bank among all the local banks of the requesting core
R.

Next, the algorithm proceeds to pick a physical page frame
number mapping to the destination bank. This frame number will
be assigned to the migrated page. The algorithm first tries to locate
an unused index range covering a page in the destination bank by
looking for an invalid entry in the destination bank’s PACT. This
is achieved by maintaining a small bitvector of length equal to the

number of sets in the PACT (16 in our case). A bit position is set
if the corresponding set in the PACT has an invalid way. This is
updated at the time of a new allocation in the PACT. If one such
PACT set exists, the algorithm generates a physical page frame
number mapping to that set in the destination bank outside the in-
stalled physical memory range (to avoid coherence issues). If no
PACT set in the destination bank has an invalid way, the algorithm
first picks a non-MRU random PACT set and then selects the LRU
page in that set as the target frame. The data residing in this frame
is swapped with the data at the source of the migration. Note that
these pages continue to have their original physical frame numbers
outside the L2 cache.

3.1.3. Locating a Block in the L2 Cache
Before presenting the actual migration process, we first discuss
how a block is located in the L2 cache. Since the migration pro-
cess is hidden from the OS, the TLBs, and the L1 caches, the ad-
dresses coming out of the L1 cache controllers are the original OS-
generated physical addresses. Therefore, each core maintains two
tables that map the original physical frame number of an instruc-
tion or data page to the migrated frame number. These tables will
be referred to as the iL1Map and dL1Map, respectively. Every L2
cache transaction generated by the L1 cache looks up the appropri-
ate L1Map before it can get routed to the correct L2 cache bank.
The latency of this lookup is hidden under the delay to enqueue the
request in the port scheduler of the local switch on the ring. The
organization of the L1Maps is exactly same as the TLBs. An entry
in the appropriate L1Map is loaded from the unified second-level
map table (discussed below) when the corresponding page table
entry is loaded in the TLB at the time of a TLB miss. If a map
is not found in the second-level table, an identity map is inserted
in the L1Map. On a migration, the new physical frame number
of a page is sent to the sharing cores (with the help of the sharing
vector in the PACT) so that they can update their L1Maps appro-
priately. We would like to note that in rare situations, a writeback
request (a dirty eviction from the L1 cache) may fail to find a map
in the dL1Map because an L1Map replacement (done at the time
of replacing the mirror entry in the corresponding TLB) does not
flush the blocks belonging to that page from the L1 cache. In such
situations, the block is first sent to its original home bank where
the second-level map table is looked up and subsequently the block
is re-routed to its current bank (if that is different from the original
home). Each L1Map entry holds a tag, a mapped frame number,
and a valid bit.

Each bank of the L2 cache needs two map tables. These are
organized as tagged set-associative tables (details on sizes are pre-
sented in Section 5). The first table (referred to as the inverse
L2Map) is accessed before sending an L2 cache response to the
L1 caches or a request to the memory controllers. This table is
indexed using the lower few bits of the physical page frame num-
ber (after dropping the bank number bits) extracted from the L2
cache address and, on a hit, returns the original OS-assigned phys-
ical frame number. The second table (referred to as the forward
L2Map) is accessed before accepting external requests (including
refills and interventions) from the memory controllers. This table
is indexed using the lower few bits of the OS-assigned physical
page frame number (after dropping the bank number bits) and, on
a hit, returns the migrated page frame number within the L2 cache.
The TLB miss handler looks up this table to fill in the L1Map en-
tries. If the forward L2Map of the home bank of page p contains
the map p → q (meaning all the blocks belonging to the origi-
nal page p can now be found at page address q in the L2 cache),
the inverse L2Map of the home bank of page q will contain the
map q → p. We would like to note that the L2 cache miss path
gets slightly lengthened because an L2 cache miss request needs to



look up the inverse L2Map at the originating bank before it can get
routed to the appropriate memory controller and similarly, a refill
needs to look up the forward L2Map at the original home before
it can get routed to the appropriate L2 cache bank. However, data
migration can easily compensate for this loss by improving the la-
tency of the L2 cache hits. The number of L2 cache hits is much
larger than the misses. The MSHR for an L2 cache miss is always
allocated at the original home bank so that migration of pages with
outstanding misses can be smoothly handled. However, the refill
transaction of such a miss must be held up at the original home
until the migration is completed. The complete address transla-
tion flow is shown in Figure 4. Each L2Map entry holds a tag, a
mapped page frame number, LRU states, and a valid bit.

Miss

Address
Refill/Intervention

DTLB L1 Data
Cache

dL1Map
PACT

Miss
Bank

L2 Cache

Inverse
L2Map

Forward
L2Map

From
Memory
Controller

To
Memory
Controller

VPN

PPN

Page offset

Figure 4. The translation flow showing how the dL1Map of
a core and the forward and inverse L2Maps of an L2 cache
bank interact with various other components. VPN and PPN
stand for virtual and physical page numbers.

Finally, we note that L2Map replacement is a costly operation
requiring movement of the involved page P from its migrated lo-
cation to its original location. The page currently residing in the
original location of P has to be replaced from the L2 cache. There-
fore, it is necessary to size the L2Maps appropriately so that the
volume of L2Map replacements is not too high.

3.1.4. Migration Protocol
The actual migration process involves a few steps. The in-
verse L2Map at the source/destination bank is looked up with the
source/destination page number (call them S and D) to obtain
their actual physical frame numbers (call them s and d). Next,
s and d are used to index into the forward L2Maps of the home
banks of s and d, respectively, and the corresponding two maps
are swapped. Two entries of the inverse L2Maps of S and D
are also swapped. This entire process involves updating one en-
try each in the inverse L2Maps of the two banks participating
in the migration and one entry each in forward L2Maps of two
other banks, and requires only one read port and one write port
in each L2Map. Finally, the two new forward maps (s → D
and d → S) are sent to the relevant cores so that they can up-
date their L1Maps. These cores acknowledge this update. Once
these L1Map update acknowledgments are received at the L2
cache, the cache blocks (data, coherence states, and directory en-
try) belonging to the source/destination page are read out from the
source/destination bank and sent to the destination/source bank.
During the entire migration process the source and the destination
L2 cache banks do not accept any request as the read/write ports
in these two banks remain busy copying the involved pages. This
“interlock” protocol requires careful deadlock analysis. Appar-
ently, the completion of the migration protocol does not depend
on the completion of any other events. However, the migration
phase may evict cache blocks from the L2 cache to make room

for the migrated blocks (a perfect swap may not be possible al-
ways). Since L2 cache evictions must send notifications to the
sharer/owner L1 caches to maintain inclusion, the migration phase
potentially requires space in the L2-L1 invalidation/intervention
virtual queues. However, through a cycle-free design of the vir-
tual queue dependence graph, one can guarantee that the L2-L1
invalidation/intervention virtual queues will drain irrespective of
how the migration phase is making progress. The details of this
design technique are beyond the scope of this paper. In summary,
our protocol is deadlock-free by design.

3.2. Dynamic Cache Block Migration

Past proposals on data migration in CMP NUCA evaluated dy-
namic cache block migration. For comparison with our dynamic
page migration proposal, we also implement a dynamic cache
block migration scheme suitable for our architecture. In the fol-
lowing, we discuss the pertinent algorithms.

The block migration decision algorithm is found to deliver the
best performance for T1 = 4 and T2 = 27. The block access
counter table (BACT) replaces the PACT. However, the BACT is
tightly coupled with the L2 cache tag array and does not require
its own tag, valid bit, and LRU states.

The destination bank of a migration is decided using the same
algorithm as in page migration. However, in this case the load on a
bank is defined as the number of cache blocks allocated in a bank.
We experiment with two algorithms for selecting the destination
block of migration in the destination bank. The first algorithm
picks the first set with an invalid way in the destination bank (can
be done by maintaining a bitvector as discussed for page migra-
tion) and uses the invalid way as the target frame. In a patholog-
ical situation, this algorithm may end up selecting all the ways
of a set as the targets for consecutive migrations leaving no room
for the non-migrated blocks that may map to the same set in near-
future. Applications with large data sets show increased volume of
conflict misses when this algorithm is implemented. Our second
algorithm solves this problem by picking the next round-robin set
with an invalid way in the destination bank, thereby distributing
the migration load evenly in a bank. If no set with an invalid way
is found, both the algorithms pick the LRU way within a randomly
selected set.

For locating a block in the L2 cache, the forward and inverse
L2Maps must have one entry per L2 cache block. The organization
of the forward L2Map in terms of the number of sets, ways, and
banks is exactly same as the main L2 cache. To avoid more than
doubling the total L2 cache access latency of the external inter-
ventions due to serialized access to the forward L2Map followed
by the L2 bank tag array, each entry of the forward L2Map stores
not only the new bank and the new index of the migrated block,
but also the target way at the new index. This ensures that a di-
rect lookup in the new L2 cache bank’s target tag and data way
would be enough. However, this may require some extra circuitry
and a re-organization of parts of the cache tag array, since the con-
ventional tag array organizations of set-associative caches do not
allow direct lookup of a particular way while maintaining the LRU
states of all the ways correctly. Of course, the way information is
not used by the refills. Each entry of the forward L2Map also
needs to store a tag. The inverse L2Map shares the tag array with
the main cache and stores only the original home bank number and
the original index within that bank.

The L1Maps contribute to most of the storage overhead of
block migration. The L1Map in each core must replicate the en-
tire forward L2Map. On completion of an L2 cache refill, the bank
number, the set index, and the way allocated to the refilled block
must be broadcast to all the cores so that this block can be located
efficiently in the L2 cache on subsequent L1 cache misses to this



block. It is important to note that such a broadcast is unnecessary
in the case of page-grain migration. To offer a lower bound for the
storage overhead of block-grain migration, in Section 5, we con-
sider a floorplan-oblivious design where only one replica of the
forward L2Map is placed in such a way that it is somehow physi-
cally close to all the cores. In both the designs, the organization of
the L1Map is same as the forward L2Map.

4. OS-assisted Mechanisms

The OS mechanisms modify the default virtual to physical ad-
dress assignment algorithm to improve locality (default is the bin-
hopping algorithm [18]). In the following, we briefly discuss how
first-touch page placement and application-directed page place-
ment can improve data locality in CMP NUCAs. In all the mech-
anisms (including baseline and hardware mechanisms), the pages
belonging to the stack space of a thread are allocated in the banks
local to the thread.

The first-touch page placement algorithm assigns a physical
page frame number to a virtual page such that the physical page
maps to an L2 cache bank local to the core touching the page for
the first time. The first-touch core id must be passed on to the page
fault handler. The page fault handler picks the next free physical
page frame from the least-loaded L2 cache bank that is local to the
first-touch core. If all the page frames mapping to the local banks
of the first-touch core are exhausted, the page fault handler selects
the next free page frame from the globally least-loaded L2 cache
bank. The load on a bank is measured as the number of pages
mapped on that bank.

In application-directed page placement we allow the applica-
tion to specify the affinity of a range of virtual pages via an Irix-
style system call (see Chapter 2 of [27]). The system call specifies
three arguments, namely, the starting virtual address (as a pointer
to a data structure), the ending virtual address (again a pointer to
a data structure), and a core id. The OS maps the pages in the
specified range on banks local to the specified core. In this paper,
we modify the applications by hand so that all the page placement
system calls are inserted just before the main parallel computation
begins. Notice that it is a static technique where each partition of
a data structure can use a one-time system call to specify its best
possible affinity to a core for the entire parallel execution. While
the private pages can specify their affinity accurately, the pages
belonging to the shared data structures are placed in a round-robin
fashion across the L2 cache banks local to the sharing cores.

At the time this affinity-based mapping takes place, several
pages may already have been assigned physical frames according
to the default policy. For such a page, the OS invalidates the old
translations from all the TLBs, flushes the cache blocks belong-
ing to the page out of the entire cache hierarchy and writes the
dirty ones back to memory, copies the page from old frame to new
frame in physical memory, and inserts the new translation in the
page table. We found that as the cache size increases, this cache
flush severely impacts the performance of some of the applica-
tions. So we explore an alternate design that leverages the L1Map
and L2Map tables of the hardwired page migration mechanisms to
avoid flushing the caches and copying the pages in physical mem-
ory. In this design, the OS, on completing a page placement sys-
tem call, registers the new maps in the L1Map and L2Map tables,
copies the affected blocks from the old location to the new loca-
tion within the L2 cache only, and does not modify the TLBs, L1
caches, or the physical memory. Subsequently, the map tables cor-
rectly translate between the old and new addresses at the L2 cache
boundary.

5. Simulation Environment

We simulate a MIPS ISA-based eight-core chip-multiprocessor
using a detailed in-house execution-driven simulator. A high-level
floorplan was shown in Figure 1. A directory entry is maintained
per L2 cache block and is kept with its tag. The directory maintains
the M, S, and I states (the M and E states are merged into the M
state [21]) and has an eight-bit vector to maintain the sharer list.
The salient features of our simulated system are shown in Table 1.

Table 1. Simulated system
Parameter Value

Number of cores 8, clocked at 3.2 GHz
Process/Vdd/Vt 65 nm/1.1 V/0.18 V
Pipe stages 18
Front-end/Commit width 4/8
BTB 256 sets, 4-way
Branch predictor Tournament (Alpha 21264)
Br. mispred. penalty 14 cycles (minimum)
ROB/RAS/Branch stack 128/32/32 entries
Integer/FP registers 160/160
Integer/FP/LS queue 32/32/64 entries
ALU/FPU 8 (two for addr. calc.)/3
Int. mult./div. latency 6/35 cycles
FP mult. latency 2 cycles
FP div. latency 12 (SP)/19 (DP) cycles
ITLB, DTLB 64/fully assoc./Non-MRU
TLB miss penalty ROB flush+65 cycles+

PTE reload [15]
Page size 4 KB
Private L1 Icache 32 KB/64B/4-way/LRU
Private L1 Dcache 32 KB/32B/4-way/LRU
Store buffer 32
L1 MSHR 16+1 for retiring stores
L1 cache hit latency 3 cycles
Shared L2 cache 16 MB/128B/16-way/LRU
L2 MSHR 16 per bank×16 banks
L2 bank tag latency 7 cycles
L2 bank data latency 3 cycles (one way)
Switch latency of ring 1 cycle, 2 cycles at source
Switch-to-switch wire delay 2 cycles (horizontal segment)

1 cycle (vertical segment)
L2 cache prefetcher Seq., two blocks look-ahead
Memory cntr. freq. 1.6 GHz
System bus width/freq. 64 bits/1.6 GHz
SDRAM bandwidth 6.4 GB/s per controller
SDRAM access time 70 ns (row buffer miss)

30 ns (row buffer hit)

We size the L2 cache such that the die area is close to 435 mm2

with 65 nm process [26]. We conservatively estimate the out-
of-order multiple issue core size to be 4 mm×4 mm [20]. We
design the ring interconnect using the “semi-global” M5 metal
layer [4]. Assuming the M5 layer wiring pitch of 330 nm [26], we
estimate that we can comfortably fit a bidirectional ring of width
1074 bits (1024 bits of data matching the width of the L2 cache
block, 40 bits of address, and 10 bits of control for carrying re-
quest/response opcode and source/destination core or bank id) in



an area of 20 mm×1.5 mm. We design each wire segment (hor-
izontal and vertical) between the switches with optimally placed
repeaters [1] and compute the wire delay assuming the mid-level
metal capacitance and resistance presented in [1]. Assuming ev-
ery <core, L2 cache bank> pair to be equally likely, the average
NUCA routing latency in our simulated architecture is 15 cycles
at 3.2 GHz. Therefore, the round-trip L2 cache hit latency is (L1
cache tag latency + 15 + L2 cache tag and data latency + 15 +
one cycle critical word delivery time in L1 cache) or 44 cycles or
13.75 ns. The maximum and minimum round-trip L2 cache hit
latencies are 64 cycles (20 ns) and 24 cycles (7.5 ns), respectively.

We assume the basic memory cell size of the L2 cache to be
0.624 µm2 [26]. We estimate from CACTI [16] the area de-
voted to the bit cells in a 1 MB 16-way set-associative bank to
be 47% of the total area of the bank when equipped with one read
port and one write port. Therefore, the total area of one bank is
0.624 µm2 × (223 + 36× 213)/0.47 or 11.5 mm2. Note that each
block has 36 bits of tag and state (20 bits of tag, four state bits for
modified, valid, pending, and dirty in L1, eight bits of sharer vec-
tor, and four bits of LRU state). Including the L2 cache controllers
and the four on-die integrated memory controllers, we estimate the
chip size to be at most 20 mm×22 mm.

All the cache latencies are determined with CACTI. We assume
serial tag and data access for L2 cache banks. The L2 cache tag
array is assumed to have one read port, one write port, and one
read/write port for read-modify-write operations to the directory.
We assume that each data way of a bank is organized as a direct-
mapped cache5 and one of the direct-mapped ways is accessed
after the tag hit/miss completes.

Our dynamic power model is significantly influenced by
Wattch [7], but includes the power models of various off-core com-
ponents including the ring interconnect, the port buffers, the vir-
tual queues, and the port schedulers. All simulations in this paper
are done with aggressive clock gating enabled.

Our subthreshold and gate leakage power models are devel-
oped based on the techniques proposed in [10] and [25], respec-
tively. However, we have improved these models wherever pos-
sible by cross-validating the leakage current values with HSPICE
simulations. Our L2 cache data RAM banks implement the drowsy
cells [14], which switch a 128 KB subbank to a low voltage sup-
ply while retaining the data, if the subbank is not accessed for 1000
clock cycles.

Finally, our approximate DRAM energy model is developed
based on Micron technical notes [22, 23]. We assume that each
memory controller connects to a 1 GB DIMM built out of 18
512 Mb x4 DRAM chips, two of which are for ECC. The DRAM
energy model uses published figures for a highly loaded DDR2-
400 512 Mb x4 chip scaled up to 400 MHz. Our modeled peak
power drain per DRAM access (at 400 MHz) turns out to be 4.3 W.

The details of the shared memory parallel applications and the
multiprogrammed workloads used in our evaluation are shown in
Table 2. All the shared memory applications use hand-optimized
array-based queue locks and scalable tree barriers. We run the
shared memory applications from beginning to completion. The
multiprogrammed workloads are prepared from SPEC 2000 and
BioBench [2] suites. The alternate cores are activated in the 8-
core chip for running these 4-way workloads. For each of the
constituent applications, we extract the representative sample of
one billion dynamic instructions using the SimPoint toolset [28].
The SPEC 2000 applications use the ref input sets, while the
BioBench applications use sitchensis.fa, tufa420.seq,
and tufa420.phy as inputs. We allow each constituent appli-
cation to commit one billion instructions. We report the average

5 This is different from the CACTI serial access model, which organizes
the entire data array as a direct-mapped cache.

execution time of the workload, which is the arithmetic mean of
the execution times of the constituent applications.

Table 3 shows the sizes of various storage structures required
by the hardwired migration mechanisms. The number of sets in
the L2Maps is kept half of the number of sets in the L2 cache
bank for page-grain migration. This configuration is found to give
satisfactorily low volume of L2Map replacements. In ideal block
migration (last column), only one copy of the L1Map is shared
across all the cores. Although this design is not feasible in reality,
it does offer a lower bound on the storage needed by block-grain
migration. Overall, page-grain migration requires less than 5% of
total storage budget (total budget includes overhead added to the
L2 cache storage; L2 cache storage is 227 data bits + 36 × 217

tag, directory, and state bits or 16960 KB). Block-grain migration
devotes more than a quarter of the total budget, while the ideal
design brings it down to slightly more than 10%.

Table 2. Simulated workloads
Shared memory applications

Name Input Source
Barnes 16384 bodies SPLASH-2
Matrix6 8192×8192 matrix, DIS [30]

256K non-zeros, 50 iterations
Equake MinneSPEC, SPEC OMP

ARCHduration 0.5
FFTW 1024×16×16 complex doubles FFTW
Ocean 258×258 grid SPLASH-2
Radix 2M keys, radix 32 SPLASH-2

Multiprogrammed workloads
Name Composition

MIX1 ammp, gzip, vortex, wupwise
MIX2 apsi, ammp, equake, mesa
MIX3 apsi, twolf, gzip, mesa
MIX4 apsi, vpr, equake, mesa
MIX5 ammp, tigr, clustalw, phylip-protdist
MIX6 gzip, tigr, clustalw, phylip-protdist
MIX7 twolf, tigr, clustalw, phylip-protdist
MIX8 vpr, tigr, clustalw, phylip-protdist

6. Simulation Results

We present our detailed simulation results in this section.
We compare the hardwired and OS-assisted locality management
schemes in terms of performance as well as energy consumption.
We close this section with an evaluation of how L1 cache prefetch-
ing compares and interacts with our proposal of dynamic page mi-
gration.

6.1. Performance Comparison

Figure 5 presents the execution time (upper panel) and the ag-
gregate load/store stall cycles (lower panel)7 of the shared memory
applications normalized to the baseline CMP with static NUCA.

6 This is a sparse solver using iterative conjugate gradient.
7 These are the cycles where the instruction retirement unit of a core

could not commit any instruction due to an incomplete load or store oper-
ation at the head of the ROB. We enforce sequential consistency (as in the
MIPS R10000).



Table 3. Storage overhead of hardwired migration mechanisms
Component Page-grain Block-grain Block-grain ideal

Forward L2Map 256 sets×16 ways×16 banks 512 sets×16 ways×16 banks 512 sets×16 ways×16 banks
×49 bits = 392 KB ×38 bits = 608 KB ×38 bits = 608 KB

Inverse L2Map 256 sets×16 ways×16 banks 512 sets×16 ways×16 banks 512 sets×16 ways×16 banks
×49 bits = 392 KB ×13 bits = 208 KB ×13 bits = 208 KB

L1Maps 2×8 cores×64 entries 8 cores×217 entries 217 entries× 38 bits
×57 bits = 7.1 KB (i & d) ×38 bits = 4864 KB (unified) = 608 KB (unified)

PACT/BACT 16 sets×16 ways×16 banks 512 sets×16 ways×16 banks 512 sets×16 ways×16 banks
×98 bits = 49 KB ×68 bits = 1088 KB ×68 bits = 1088 KB

Proximity ROM 256 entries×16 banks 256 entries×16 banks 256 entries×16 banks
×16 bits = 8 KB ×16 bits = 8 KB ×16 bits = 8 KB

Total 848.1 KB (4.8%) 6776 KB (28.5%) 2520 KB (12.9%)
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Figure 5. Execution time (top panel) and aggregate
load/store stall cycles (bottom panel) normalized to baseline
static NUCA for shared memory parallel applications.

We do not present the L2 cache miss rate data because different op-
timizations lead to execution of different numbers of instructions
and cause varying numbers of L2 cache accesses rendering the
miss rate data very misleading in some cases. Instead, we present
the load/store stall cycle statistics, since the overall effect of any
cache optimization is best captured by this data. For each appli-
cation, we present the performance of seven algorithms, namely,
page-grain migration (PM or PageMigration), cache block-grain
migration with default destination set selection algorithm which
picks the first set with an invalid way (BMD or BlockMigra-
tionDef), cache block-grain migration with optimized destination
set selection algorithm which considers all sets with an invalid way
before picking the same set twice (BMO or BlockMigrationOpt),
OS-assisted first-touch placement (FT or FirstTouch), application-
directed page placement with OS-assisted cache flush (OSF or OS-
Flush), application-directed page placement without cache flush
and DRAM page copy (OSNF or OSNoFlush), and an ideal place-
ment where each L2 cache access is charged local bank access
latency (P or Perfect). Page migration is able to reduce execution
time by 7.2% (Barnes) to 26.9% (Ocean), averaging (geometric
mean) at 18.7% (see the last group of bars). Although Matrix has
almost 45% of L2 cache accesses to shared pages (see Figure 2),
it is encouraging to note that our page migration scheme achieves
a 24.6% reduction in execution time without resorting to any data
replication. Default and optimized block migration algorithms de-
liver performance equivalent to page migration in all applications
except FFTW and Radix. In these two applications, the default
policy suffers from extra conflict misses in the L2 cache (already

explained in Section 3.2) and the optimized policy fails to convert
a sufficient number of remote bank accesses to local accesses. The
primary reason for this is that compared to page migration, block
migration has to be less aggressive to keep the migration overhead
low, which cannot be amortized across several blocks as in page
migration.

Among the OS-assisted mechanisms, first-touch placement
performs poorly for the applications where a single thread initial-
izes all the data (Equake, FFTW, Ocean). Application-directed
page placement with cache flush does not deliver performance as
good as the best of the hardwired mechanisms. The primary rea-
son for this is cache flush and DRAM copy overhead, and Equake
and FFTW are the most affected ones. In these two applications,
the volume of L2 cache miss increases due to cache flush. The sec-
ond reason is that the pages that exhibit different sharing patterns
in different phases cannot be handled by static placement mech-
anisms. Application-directed placement without cache flush and
DRAM copy helps nullify the first effect (see Equake and FFTW),
but still fails to deliver the best performance due to the presence
of shared pages. In some applications, turning off cache flush in-
creases the execution time slightly due to some extra accidental
conflict misses resulting from the new virtual to physical address
translations.

Finally, the Perfect bar shows that Matrix has the maximum
potential of performance improvement (30.8% reduction in execu-
tion time). On average, Perfect reduces execution time by 22.5%
and dynamic page migration comes surprisingly close achieving a
reduction of 18.7%. Optimized block migration reduces execution
time by 15.9% and application-directed page placement without
cache flush achieves a 12.6% reduction in execution time on aver-
age.

We note that the aggregate load/store stall cycles directly corre-
spond to the trend in execution time discussed above. On average,
dynamic page migration reduces load/store stall cycles by 26.5%,
while optimized block migration comes very close with an average
reduction of 22.1%. The poor performance of first-touch place-
ment can be easily attributed to 10% increased load/store stall cy-
cles. The application-directed page placement techniques reduce
load/store stall cycles by about 18%.

Figure 6 presents the normalized average execution time and
load/store stall cycles for the multiprogrammed workloads. In
these results we do not include application-directed page place-
ment because it would have performance similar to first-touch
placement due to the absence of sharing. Dynamic page migration
reduces execution time by 9.5% (MIX4) to 16.4% (MIX1) with
an average reduction of 12.6%. Default block migration performs
poorly for a large number of workload mixes. Due to much larger
data footprint than the shared memory applications, the multipro-
grammed workloads are very sensitive to the destination set se-
lection algorithm. The optimized block migration algorithm helps
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Figure 6. Execution time (top panel) and aggregate
load/store stall cycles (bottom panel) normalized to baseline
static NUCA for multiprogrammed workloads.

resolve this issue and performs close to dynamic page migration
on average. However, it performs poorly for MIX2 and MIX4.
This will be explained below with the help of Table 4. The first-
touch placement delivers performance worse than page migration,
except for MIX1. However, it delivers much better relative per-
formance on the multiprogrammed workloads than on the shared
memory applications. On average, first-touch placement achieves
8.5% reduction in execution time. Due to large data sets in MIX4,
MIX5, MIX6, and MIX7, the first-touch placement fails to stati-
cally place all the data touched by each thread in local banks and
resorts to frequent spilling to non-local banks. On average, Per-
fect shows a potential of 15.2% reduction in execution time, while
page migration delivers the best performance by achieving a re-
duction of 12.6%, followed closely by optimized block migration.
We note that the multiprogrammed workloads benefit less from
the dynamic migration techniques compared to the shared memory
parallel applications. The primary reason for this is that the multi-
programmed workloads suffer from a bigger volume of L2 cache
misses, thereby diminishing the importance of on-chip physical lo-
cality (Amdahl’s Law effect). This phenomenon brings out an im-
portant trend, namely, increasing (decreasing) the shared L2 cache
capacity will lead to an increase (decrease) in the importance of
on-chip cache locality optimization techniques. Finally, we would
like to point out that the trends in execution time discussed above
are reflected clearly in the load/store stall cycle statistics (lower
panel of Figure 6).

To further understand the performance results, Table 4 presents
the percent local L2 cache accesses in baseline static NUCA, page
migration, optimized block migration, first-touch, and application-
directed page placement without cache flush. For the shared mem-
ory applications, on average (harmonic mean), dynamic page mi-
gration succeeds in making more than 80% of accesses local, while
block migration falls short mostly due to FFTW and Radix (al-
ready explained). Interestingly, for Barnes and Matrix, page mi-
gration is able to achieve similar percentage of local bank ac-
cesses (about 62%), but the reduction in execution time for Barnes
is much less than that in Matrix. This is mostly because Matrix
spends more time in the cache hierarchy than Barnes and as a re-
sult, cache hierarchy optimizations help Matrix more than Barnes.
First-touch placement can only offer slightly over 40% local ac-
cesses. Application-directed page placement cannot handle the
shared pages optimally and can achieve only 54.1% of local ac-
cesses. This relative trend of the hardwired and OS-assisted mech-
anisms is clearly reflected in the execution time. For the multipro-
grammed workloads, page and block migration enjoy about 85%

Table 4. Percent local L2 cache accesses
App. Base Page Block FT App.-dir.

Barnes 21.5 62.3 57.6 41.6 38.1
Matrix 19.9 62.1 60.2 33.9 34.0
Equake 22.0 96.6 94.6 25.0 54.6
FFTW 20.3 93.3 76.9 57.0 76.2
Ocean 21.1 98.8 98.3 87.3 98.7
Radix 21.1 99.0 66.8 59.7 73.6
Hmean 21.0 81.7 72.6 43.1 54.1
MIX1 16.9 82.3 90.5 86.7 –
MIX2 21.1 70.3 61.0 71.8 –
MIX3 25.2 94.0 95.6 95.2 –
MIX4 24.7 86.0 78.6 74.2 –
MIX5 19.1 86.5 88.0 52.1 –
MIX6 22.3 91.2 90.0 67.5 –
MIX7 22.2 89.2 91.2 68.7 –
MIX8 24.6 87.9 89.4 58.9 –
Hmean 21.6 85.3 84.0 69.6 –

local L2 cache accesses, while first-touch delivers 69.6% of local
accesses. First-touch fails to do well in the last four workloads,
which have applications from the BioBench suite. Among these
applications, tigr has a very large data footprint. First-touch could
not allocate all the data of this thread locally and had to resort to
spilling on non-local banks. For MIX2 and MIX4, block migra-
tion fails to convert as many number of remote accesses into local
accesses as page migration does. As a result, these are the only
two workloads where optimized block migration fails to deliver
performance close to page migration.

6.1.1. Isolating the Performance Factors
In the discussion above, we have shown that optimized dynamic
block migration delivers performance close to dynamic page mi-
gration except for a few cases, namely, FFTW and Radix among
the shared memory parallel programs and MIX2 and MIX4 among
the multiprogrammed workloads. While we have already ex-
plained the performance difference of these cases with the help
of local and remote access statistics, in the following we look for
more fundamental reasons, if any. Apparently, there are two bene-
fits of page-grain migration that block-grain migration fails to of-
fer. First, an entire page is migrated after observing the accesses to
a part of the page. So the accesses to the rest of the page should en-
joy a prefetching effect. However, as already hinted at in Figure 2,
we found that after a page or a block is migrated, it is accessed
a significant number of times, thereby making the prefetching ef-
fect of page migration insignificant. In other words, if a block
is accessed locally Np times after the page containing the block
is migrated in the page-grain scheme and the same block is ac-
cessed locally Nb times after the block is migrated in the block-
grain scheme, we find that |1 −

Np

Nb
| is insignificantly small.

The second apparent benefit of page migration is that it can
transfer a number of blocks in a bundle thereby opening up the
opportunity of pipelining the transfers. In the block-grain scheme
such a pipeline cannot be set up because only one block is trans-
ferred at a time. Also, the number of page migration attempts is
expected to be less than that of block migration, provided the page-
grain access pattern is stable enough. However, one should keep in
mind that page migration communicates 32 times more data com-
pared to block migration per transfer and hence, demands higher
peak bandwidth. But it enjoys a latency advantage per transfer
due to pipelining. To confirm this phenomenon, we nullified all



migration overhead, re-tuned T1 and T2 so that block-grain mi-
gration can now be more aggressive, and executed the applica-
tions/workloads with both page and optimized block migration.
As expected, we found that the two techniques now delivered sim-
ilar performance under this setting. Therefore, we conclude that
the performance gap between page and block migration stems pri-
marily from the inability of block-grain migration techniques to
pipeline the transfers, thereby failing to amortize the performance
overhead across multiple blocks.
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Figure 7. Execution time normalized to page migration on
a 1024-bit data ring for shared memory parallel applica-
tions (top panel) and multiprogrammed workloads (bottom
panel). PM-n represents page-grain migration on an n-bit
data ring and BMO-n represents optimized block migration
on an n-bit data ring.

Finally, as hinted at in the above discussion, there is an impor-
tant trade-off that must be understood when taking the decision of
implementing fine-grain or coarse-grain migration. The trade-off
is among latency, bandwidth, and storage. Coarse-grain migration
requires less storage, takes less time to migrate the same amount
of data (an effect of pipelined transfer), but makes the intercon-
nect traffic bursty and demands higher peak bandwidth, since at
the time of migration a large amount of data should be moved
in a pipeline within a small amount of time. To understand this
bandwidth demand, we evaluate the page-grain and the optimized
block-grain migration schemes in a constrained bandwidth envi-
ronment. The results presented till now assume a bidirectional
data ring of width 1024 bits in each direction. Figure 7 shows
the results for 512-bit and 256-bit bidirectional data rings normal-
ized to page-grain migration running on a 1024-bit data ring. As
expected, constraining the bandwidth of the interconnect affects
page-grain migration more than block-grain migration. Also, the
impact on the shared memory applications is more pronounced
than the multiprogrammed workloads because the former type of
applications must execute a larger number of migrations to handle
dynamic sharing of pages. Overall, with a 256-bit data ring, the
page-grain scheme suffers from a nominal 3.6% average increase
in execution time for the shared memory applications compared
to a 1024-bit data ring. For the multiprogrammed workloads, the
corresponding increase is only 1.3%. The block-grain scheme is
relatively more tolerant to bandwidth variation.

6.2. Energy Overhead

Figures 8 and 9 present the total energy consumption (includes
the on-chip components and off-chip DRAM) of different mech-
anisms (excluding Perfect) normalized to baseline. We show the

Barnes Matrix Equake FFTW Ocean Radix gmean
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

No
rm

ali
ze

d e
ne

rg
y

Leakage
Dynamic

1.4
6 

1.5
1 

Ba
se

lin
e 

Pa
ge

Mi
gr

at
io

n 
Bl

oc
kM

ig
ra

tio
nO

pt
 

Bl
oc

kM
ig

ra
tio

nI
de

al 
Fi

rs
tT

ou
ch

 
OS

Fl
us

h 
OS

No
Fl

us
h 

Figure 8. Energy consumption normalized to baseline static
NUCA for shared memory applications.
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Figure 9. Energy consumption normalized to baseline static
NUCA for multiprogrammed workloads.

division of total energy into dynamic and leakage energy. The last
group of bars presents the normalized average of total energy. For
block migration, we present the results for the optimized design
and the ideal design that was introduced in Table 3. The latter is
expected to save some leakage energy.8

Since the locality management policies reduce the execution
time, we should expect to save total energy provided the extra dy-
namic and leakage energy overhead is low. On average, dynamic
page migration turns out to be the most energy-efficient design.
It saves 13.9% and 10.8% energy compared to the baseline static
NUCA design for the shared memory applications and the multi-
programmed workloads, respectively. Optimized block migration
suffers due to extra leakage energy consumption resulting from
its high storage requirement. It saves only 3.5% and 1.9% en-
ergy for the shared memory and multiprogrammed workloads, re-
spectively. The ideal block migration design does help save more
energy, but fails to come close to page migration. As expected,
the first-touch placement policy increases energy consumption by
5.7% in the shared memory applications due to increased volume
of L2 cache misses and DRAM accesses, but it comes close to dy-

8 The multiprogrammed workloads have higher proportions of leak-
age energy consumption compared to the shared memory applications be-
cause the irregular access patterns in the former reduce the efficiency of
the subbank-grain drowsy technique.



namic page migration for the multiprogrammed workloads. It is
encouraging to note that the energy-efficiency of the application-
directed page placement policy (OSFlush and OSNoFlush) is sim-
ilar to the ideal block migration design for the shared memory ap-
plications.

6.3. Impact of L1 Cache Prefetching

L1 cache prefetching also attacks the same problem that the lo-
cality management policies aim at solving. We integrate a multi-
stream stride prefetcher into the L1 cache controller of each core.
The prefetcher keeps track of sixteen read and sixteen write (i.e.
read-exclusive and upgrade) streams per core. The stream size is
fixed at 4 KB matching the page size. The prefetcher, after see-
ing the same stride twice in a row, prefetches six blocks ahead
into the stream. Some of these six blocks may cross the desig-
nated physical page boundary of the stream, but the first among
these six blocks must belong to the designated page. However,
a prefetch request to an unmapped address is dropped. Table 5
compares the effectiveness of L1 cache prefetching against our
proposed dynamic page migration scheme for the shared memory
applications (ShMem) and the multiprogrammed workloads (Mul-
tiProg).

Table 5. Average (gmean) reduction in execution time com-
pared to baseline static NUCA

Workload L1 Pref. Dyn. Page Mig. Both
ShMem 14.5% 18.7% 25.1%
MultiProg 4.8% 12.6% 13.0%

For the shared memory applications, L1 cache prefetching
turns out to be quite effective and reduces execution time by 14.5%
on average compared to the baseline. However, dynamic page mi-
gration is more effective than L1 cache prefetching and reduces
execution time by 18.7%. When both L1 cache prefetching and
dynamic page migration are enabled, a 25.1% reduction in exe-
cution time is achieved. The multiprogrammed workloads do not
appear to be easy to prefetch with a multi-stream stride prefetcher.
For these workloads, L1 cache prefetching fails to improve perfor-
mance much. Prefetching and page migration together reduce the
execution time by 13% on average for these workloads.

7. An Analytical Model

Before we conclude the paper, in the following, we present a
simple, yet useful, analytical model to estimate the performance
benefits of data migration (the grain of migration is not captured
in this model). For a certain workload, let the number of L2 cache
hits be h and the number of misses be m. We will refer to the L2
cache miss rate as r = m

m+h
(this is really the local miss rate as

opposed to the global miss rate). Let mx be the number of cycles
on the critical path to serve the m L2 cache misses i.e., for these
many cycles, the retirement of the requesting thread on the critical
path of the parallel application is stalled with an L2 cache miss at
the head of the ROB. Similarly, let hy be the number of cycles on
the critical path to serve the h L2 cache hits. Let us further assume
that due to data migration, the number of cycles on the critical path
to serve the L2 cache hits improves to hys with 0 < s < 1. Let the
number of busy cycles on the critical path of the parallel execution
be C. Therefore, the execution time with migration normalized to
that without migration is given by N = mx+hys+C

mx+hy+C
. We assume

that the volume of L2 cache hits and misses remains unchanged

after introducing data migration and we ignore the overhead of
doing data migration. Substituting x

y
= A, C

mx+hy+C
= t i.e.

C = t(mx+hy)
1−t

, and m
h

= r
1−r

, we get N = rA+(1−r)[s+t(1−s)]
rA+1−r

.
We make a few simple observations from this expression. First, if
r is one or s is one, data migration does not offer any advantage,
as expected. Second, as A grows larger signifying off-chip latency
getting bigger compared to on-chip L2 cache hit latency, data mi-
gration loses importance. This trend nicely captures the effect of
data migration on applications with large working sets. These ap-
plications will not benefit much from data migration. Finally, for
an application, if t is large (compute intensive), data migration will
fail to offer much benefit.

To predict the benefit of data migration in typical situations,
we need to fix the values of the parameters. We set y to the aver-
age round-trip L2 cache hit latency i.e. 13.75 ns (as discussed in
Section 5). We set x to 100 ns (mean of uncontended row buffer
hit and row buffer miss latency + 20 ns for DRAM bus transfer
+ 10 ns for system bus transfer + 13.75 ns round-trip between L2
cache and L1 cache + 6.25 ns miscellaneous). Therefore, we get
A = 7.2728. The average value of s can be computed as the
fastest round-trip L2 cache hit latency over the harmonic mean of
round-trip L2 cache hit latency provided the baseline bank access
distribution is uniform. When the switch and wire latencies pre-
sented in Table 1 are taken into consideration, the floorplan shown
in Figure 1 has the average value of s equal to 0.6195. The ranges
r ∈ [0.04, 0.06] and t ∈ [0.4, 0.5] capture the most commonly
encountered values of r and t in our workloads when running on
the baseline static NUCA. We find that for these values of r and
t with s = 0.6195, the reduction in execution time predicted by
the model varies from 18% to 13%. It is very encouraging to note
that these predicted values closely resemble the average reduction
in execution time of the shared memory applications and the mul-
tiprogrammed workloads, as discussed in Section 6.1.

8. Summary

We have explored hardwired and OS-assisted locality manage-
ment policies for large CMP NUCAs. Dynamic page migration
emerges as the best policy in terms of execution time, energy con-
sumption, and storage overhead for a set of shared memory paral-
lel applications and multiprogrammed workloads running on an 8-
core CMP with a shared 16 MB L2 cache. Compared to a baseline
static NUCA, it reduces execution time by 18.7% (shared mem-
ory) and 12.6% (multiprogrammed), and energy by 13.9% (shared
memory) and 10.8% (multiprogramed). This excellent perfor-
mance comes at the cost of only 4.8% extra storage out of the total
L2 cache and book-keeping budget. Although L1 cache prefetch-
ing succeeds in hiding a significant fraction of the on-chip latency
in the shared memory applications, it fails to do so for the multi-
programmed workloads. L1 cache prefetching and dynamic page
migration together save more than a quarter of the execution time
for the shared memory applications.

In summary, the results of this paper clearly point to more de-
tailed study into coarse-grain data migration in NUCAs. While
a page appears to be a natural migration grain, a fixed grain may
not be suitable for different working sets. An adaptive-grain mi-
gration policy that can switch between page-grain and block-grain
over different execution phases may bring more benefit. In this
paper, we have shown how to avoid cache flushes for application-
directed page placement. This can be exploited in a light-weight
application-directed dynamic page placement technique that mi-
grates pages at barrier exit points or flag set points (i.e., a subset
of release boundaries) where sharing patterns are likely to change
in shared memory parallel applications.
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