
SMTp: An Architecture for Next-generation Scalable Multi-threading

Mainak Chaudhuri
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853

mainak@csl.cornell.edu

Mark Heinrich
School of Computer Science
University of Central Florida

Orlando, FL 32816
heinrich@cs.ucf.edu

Abstract

We introduce the SMTp architecture—an SMT proces-
sor augmented with a coherence protocol thread context,
that together with a standard integrated memory controller
can enable the design of (among other possibilities) scal-
able cache-coherent hardware distributed shared memory
(DSM) machines from commodity nodes. We describe the
minor changes needed to a conventional out-of-order multi-
threaded core to realize SMTp, discussing issues related to
both deadlock avoidance and performance. We then com-
pare SMTp performance to that of various conventional
DSM machines with normal SMT processors both with and
without integrated memory controllers. On configurations
from 1 to 32 nodes, with 1 to 4 application threads per
node, we find that SMTp delivers performance comparable
to, and sometimes better than, machines with more com-
plex integrated DSM-specific memory controllers. Our re-
sults also show that the protocol thread has extremely low
pipeline overhead. Given the simplicity and the flexibility of
the SMTp mechanism, we argue that next-generation multi-
threaded processors with integrated memory controllers
should adopt this mechanism as a way of building less com-
plex high-performance DSM multiprocessors.

1. Introduction

Hardware multi-threading and integrated mem-
ory controllers are two recent trends in commod-
ity high-performance computing. The former, in the
form of hyper-threading (HT) or simultaneous multi-
threading (SMT) [41], appears in the Intel Xeon and Pen-
tium 4 [21, 27], and the IBM POWER5 [17]. The latter ap-
pears in Compaq’s 21364 [7], the IBM POWER5 [11],
the AMD Opteron [18], and the Sun UltraSPARC III
and IV [39, 40]. Multi-threaded architectures help ad-
dress the growing need for memory-level parallelism, while
integrated memory controllers reduce both memory la-
tency and system cost.

Multiprocessor systems built from microprocessors
with integrated memory controllers are naturally dis-
tributed memory machines (each processor has its own
local memory). For example, the AMD Opteron con-
nects up to 8 processors via their coherent HyperTrans-
port interconnect to form a snoop-based distributed shared
memory (DSM) non-uniform memory access (NUMA) ma-

chine [18]. Scaling such machines to higher processor
counts requires only the introduction of a switch-based net-
work fabric capable of routing the low-level messages that
comprise the cache coherence protocol between the in-
tegrated memory controllers. Examples of low-latency,
high-bandwidth switched fabrics include the Craylink fab-
ric used in the SGI Origin machines [9], “raw” mode in
InfiniBand [16], and PCI Express AS [33]. However, con-
tinuing to snoop in large-scale DSM machines is prob-
lematic both in terms of bandwidth and complexity, and
machines typically instead employ directory-based co-
herence protocols that track sharing information in the
system and send point-to-point messages to enforce coher-
ence [1, 2, 22, 23, 24, 25, 26, 30].

In fact, even implementing the snoop-based coherence
protocol at small-scale in this natural DSM configuration
is awkward. Unfortunately, directory-based coherence pro-
tocols have traditionally required more sophisticated mem-
ory controllers with complex state machines that inspect di-
rectory entries and initiate the proper responses to proces-
sor, network, and I/O requests. Often the protocols can be
so complex that the memory controller implementation it-
self is programmable and has an embedded processor (or
processors) that implements the protocol control [3, 22,
26, 30]. These DSM architectures are scalable and high-
performance, but their reliance on complex memory con-
trollers that contain functionality unneeded in uniprocessor
or small-scale shared-memory systems has relegated these
machines to low-volume (and therefore high-cost) produc-
tion.

With the trend toward integrated memory controllers,
one can ask how do you design the next-generation scalable
DSM machine? Now modifying the memory controller not
only has the old DSM disadvantages in complexity and cost,
but it also means modifying the processor! Furthermore, a
programmable DSM memory controller would now find it-
self in the strange position of having an embedded proces-
sor on the processor.

In this paper we combine the advantages of the trends
of SMT and integrated memory controllers to show how
a modern SMT processor with a normal integrated mem-
ory controller can implement a high-performance scalable
cache-coherent DSM. We introduce SMTp—an SMT pro-
cessor with a protocol thread that is invoked on the main
processor on an L2 (or whatever the last level of cache is
before main memory) cache miss in parallel with fetching
the cache line data from the memory system. The protocol
thread can then be used to implement the directory-based

cache coherence protocol necessary to build large-scale
hardware DSM machines from suitably-connected com-
modity machines. We describe the small number of micro-
architectural extensions necessary to implement SMTp in
Section 2 and the reasons those changes are necessary.

Two of the most exciting features of an SMTp architec-
ture are that the protocol thread need not be restricted to im-
plementing basic coherence protocols, and that its benefits
are not restricted only to multiprocessors. Schemes such as
active memory address re-mapping [20] or fault tolerance
schemes like ReVive [34] that are extensions of the coher-
ence protocol can now be implemented as protocol threads.
In addition, the SMTp mechanism effectively provides soft-
ware control of the cache re-fill mechanism allowing the
protocol designer the potential to transparently manipulate
data. This could give rise to coherent encryption or com-
pression schemes that are transparent to the programmer,
among other possibilities.

In this paper though, we focus squarely on the archi-
tectural extensions necessary to implement SMTp and we
study the performance impact of running a cache coher-
ence protocol thread on the SMT processor across a vari-
ety of shared-memory parallel applications for several ma-
chine configurations. Specifically, we examine the impact
of running a protocol thread (as needed) on an SMT pro-
cessor that has 1, 2, or 4 application threads per node, and
we simulate up to 32-node configurations (64 threads to-
tal). We compare the performance of SMTp to directory-
based DSM machines with normal SMT processors and:
(1) a non-integrated memory controller (e.g. SGI Origin);
(2) a “perfect” integrated memory controller (to show an
upper bound on performance); and (3) two more realistic
integrated memory controller configurations. We find that
SMTp always performs better than DSMs constructed from
non-integrated memory controllers and performs at least as
well (and sometimes better than) realistic implementations
with integrated controllers. Further, we show that as the pro-
cessor clock rate continues to outpace those of the rest of the
system, SMTp maintains its excellent performance.

The goal of the evaluation in this study is not to show that
SMTp beats an “all hardware” approach to designing pro-
cessors with integrated DSM memory controllers that sup-
port directory-based cache-coherence (though it sometimes
does!). Our key point is that if SMTp machines perform at
least as well (or even almost as well) as these machines, then
why design them? Instead, use the normal integrated mem-
ory controller that is already present on commodity pro-
cessors, use the high-speed interconnect that is either al-
ready connected to the memory controller or coming soon,
and make the few micro-architectural changes necessary for
SMTp. Let the business of complex coherence protocols be
handled in software by the protocol thread and gain the abil-
ity to construct hardware DSM machines from commod-
ity nodes [15] and the ability to expand the protocol thread
mechanism to support additional techniques beyond basic
cache coherence.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the basic SMT extensions needed to sup-
port SMTp. We also discuss changes necessary for dead-
lock avoidance and protocol thread performance. Section 3
describes the simulation environment we use in our evalua-
tion. Section 4 shows the performance of SMTp relative to
a wide range of machine configurations and sizes. In Sec-

tion 5 we discuss related work and we conclude in Sec-
tion 6.

2. SMTp Architecture and Mechanisms

This section discusses the small number of architec-
tural modifications needed to enable a coherence protocol
thread in a conventional out-of-order SMT architecture. Our
baseline SMT design closely follows the design presented
in [42]. We model nine pipeline stages: fetch, decode, re-
name, issue, two operand read stages, ALU/FPU, cache ac-
cess, and commit. The fetch policy is ICOUNT with 8 in-
structions each from two threads being fetched every cy-
cle, necessitating a dual-ported or double-pumped single-
ported instruction cache. Instructions from the first thread
are fed to decode until a predicted branch target (from the
branch target buffer or return address stack) falls outside the
8 fetched instructions. At this point, instructions are taken
from the second thread. All resources other than the return
address stack (RAS), register map table, and parts of the
branch predictor are dynamically shared. Every cycle the
decode and rename stages process at most 8 instructions in
fetch order.

During commit, the processor examines the top of the
active lists (or reorder buffers) of all threads in a round
robin fashion and continues retiring ready-to-retire instruc-
tions until the commit bandwidth is exceeded or there are
no more retireable instructions from any thread. On the next
cycle it starts from the thread with the highest round robin
priority—thus the commit policy is round robin both within
and across cycles. More details on the processor configura-
tion can be found in Section 3.

2.1. Basic SMT Extensions

Figure 1 shows a complete node diagram of the pro-
posed SMTp architecture. All parts other than the SDRAM
and the network router are on the die. Figure 1 clearly des-
ignates the two halves of the design—the processor core
and the memory controller. The shaded components are
the necessary logic and storage additions for SMTp. Some
changes are needed to avoid deadlock situations (described
in Section 2.2) while others are needed for performance rea-
sons (described in Section 2.3). First, we will discuss the ba-
sic extensions needed focusing on a single protocol thread.
We leave out the design issues related to enabling multiple
protocol threads for future research.

In the current design we statically bind the protocol
thread to a hardware context that does not participate in con-
text switching carried out by the kernel because we do not
make this thread visible to the kernel. Alternative designs
with dynamic protocol thread binding are possible, but re-
quire more complex deadlock analysis than the design we
present here. Further, as in conventional DSM multipro-
cessors, in the proposed architecture the coherence proto-
col code is provided by the system not by the user, despite
the fact that the protocol thread runs on the main proces-
sor.

An application L2 cache miss is queued in the Local
Miss Interface of the memory controller. Similarly, an in-
coming network transaction queues a message in the Net-
work Interface at the destination (note, this is also the I/O
connection and hence is present in standard processors with

DATA REPLY

M E M O R Y S Y S T E M

DATA REPLY

C
O
U
N
T

F
E

I
ITLB/

ICACHE

IBYPASS
BUFFER

E
D

N

E

R
L
S
Q

F
Q

I

Q

2 cycles

REG

FILE

pipelined

ALU

AGU

FPU

ADDR.

DCACHE

MSHR

STORE
BUFFERDTLB

DBYPASS
BUFFER

A
C

T

V

E

I

S
T

L

I

STORE

LOAD HIT

STORE

MISS

CACHE
L2L2 HIT

L2 BYPASS

BUFFER

PROTOCOL

APPLICATION

LDCTXT_ID

PROTOCOL
PC VALID

LOOK
AHEAD

BRPRED

BRPRED

FETCH DECODE RENAME ISSUE R E A D ALU/
FPU

CACHE COMMIT

L1

HANDLER
DISPATCH

INTERFACE
NETWORK

ADDR. HEADER

UNCACHED LD./ST.
TO/FROM ADDR. AND
HEADER REGISTERS

DATA SDRAM

L2 PROTOCOL MISS

DATA

INTERFACE

LOCAL MISS

REFILL

APP. MISS/REFILL
L2

LOCAL MISS HANDLER

HANDLER
NI

MISS

REFILL

INITIATE MEMORY ACCESS

TO/FROM ROUTER

P R O C E S S O R C O R E

Figure 1: Node architecture of SMTp. All the components other than the SDRAM and the router are on the
die. The shaded parts represent the logic and storage added on top of a conventional SMT.

integrated memory controllers). The handler dispatch unit
selects a message from one of these two queues and extracts
the address and the header of the message. It also initiates
a memory access to the requested address if the message
expects a cache line data reply—thus, the protocol thread
(control) operates in parallel with the cache fill (data trans-
fer). Next, the dispatch unit looks up a table to obtain the
PC of the protocol thread handler for this transaction. To
control fetching from the protocol thread, we introduce a
one bit state named “Protocol PC Valid” or PPCV. The han-
dler dispatch unit sets this bit along with the protocol thread
PC when there is a request waiting to be serviced. If PPCV
is set, the protocol thread participates in the ICOUNT de-
cision policy and thus the processor will fetch protocol in-
structions. Note that the protocol thread shares the instruc-
tion cache with the application threads. However, since the
protocol code and data are placed in an unmapped portion of
the physical memory, the protocol thread never accesses (or
pollutes) the ITLB or the DTLB. After the last handler in-
struction is fetched, the fetcher clears the PPCV bit and it
becomes the responsibility of the handler dispatch unit or
the mis-speculation recovery hardware to set this bit again
as appropriate. The last two instructions in every handler are
two special uncached load instructions. The first one (called
switch) loads the header of the next request while the sec-
ond one (called ldctxt) loads the address of the next re-
quest. To detect when the last instruction is being fetched
we have quick compare logic that looks for ldctxt in the
fetch bundle. If there is no request waiting to be serviced,
switch stalls the head of the load/store queue section of
the protocol thread (although the load/store queue buffers
are dynamically shared across the threads, each thread gets
separate logical head and tail pointers thereby forming sepa-
rate logical load/store queues). In this case the memory con-
troller unblocks the switch when the next request arrives.
After the ldctxt executes it raises a handlerComple-

tion signal which in turn triggers the handler dispatch unit
to set the PC of the next handler and the PPCV bit.

All the protocol load/store instructions go through the
shared L1 data cache and, in case of a miss, to the L2
cache. However, a protocol instruction or data miss in the
L2 cache behaves differently than an application miss. Pro-
tocol misses are not serviced recursively by another proto-
col thread; instead they bypass the Local Miss Interface and
simply request the cache line from the local SDRAM. In
the current design we provide a separate 64-bit bus to han-
dle protocol misses. This decision is taken so that applica-
tion and protocol data/instruction transfers can proceed in
parallel. Alternatively, the same bus could be shared and
the Local Miss Interface could be slightly modified to en-
sure that the protocol requests and refills bypass application
misses.

Other than switch and ldctxt, there are a few more
flavors of uncached load/store instructions that the proto-
col thread must support. One such example is a send in-
struction, which instructs the memory controller to initiate
data transfer or control messages. These messages may send
cache line-sized data or interventions either to the local L2
cache controller through the Local Miss Interface or to re-
mote nodes via the Network Interface. The send instruc-
tion carries out two uncached stores that write to the header
and the address registers in the memory controller (see Fig-
ure 1), and initiate the send. Therefore, minor modifica-
tions are needed in the load/store unit to properly identify
these instructions. All these instructions must execute non-
speculatively because undoing their effects is very hard or
impossible (e.g. it is impossible to undo a send). As a re-
sult, the load/store unit needs to co-ordinate with the grad-
uation unit before executing these instructions.

Finally, in this design we assume the existence of some
special ALU instructions that can carry out bit manipula-
tions common in protocol thread code sequences [14]. The

Alpha ISA already contains some of these instructions such
as the “population count” and the “count trailing zeros”
instructions. However, even without these instructions, we
found that the SMTp execution time on 16 nodes increases
by less than 0.3% on average and at most by 0.8% of what
we report in Section 4.

2.2. Deadlock Avoidance

In a conventional SMT processor, if fairness is guaran-
teed, there are no cyclic dependences among the threads.
However, in an SMTp architecture the graduation of an ap-
plication load/store instruction that misses in the L2 cache
depends on the forward progress of the protocol thread.
Since the forward progress of the protocol thread depends
on the availability of pipeline resources, this creates a cyclic
dependence between the application threads and the proto-
col thread. The pipeline resources involved in this depen-
dence are front-end queue buffers i.e. decode and rename
queue buffers, branch stack space (used to checkpoint reg-
ister maps for in-flight branches), integer registers, integer
queue entries, load/store queue buffers, speculative store
buffers and miss status holding registers (MSHRs). Since
in this design we consider per-thread active lists (or re-
order buffers), they are not involved in this kind of resource
deadlock. We avoid any deadlock involving these resources
by maintaining one reserved instance of each of these re-
sources that is usable by the protocol thread only. Thus if
the processor has eight decode queue buffers, only seven
can be used by the application threads while all eight buffers
are open to the protocol thread. Alternatively, following the
hyper-threaded Pentium 4 design we could statically par-
tition some of these resources to simplify deadlock avoid-
ance.

Our solution requires some changes in the decode and
rename queue scheduling algorithm because now one slot
may remain empty and hence these queues are no longer
purely circular FIFO. Although the queue slots remain dy-
namically shared among the threads, we maintain two sep-
arate head and tail pointers for application instructions and
protocol instructions. Thus two separate logical queues are
formed—one for application instructions and the other for
protocol instructions. The decoder or the renamer visits
each section of the respective queue every cycle, but the pri-
ority changes cyclically i.e. if in this cycle it visits the ap-
plication section first and then the protocol section, the next
cycle it visits the protocol section first and then the applica-
tion section. Within each section of the queues the instruc-
tions are still processed in fetch order.

The reservation policy for integer registers requires some
explanation because, in general, a single reserved integer
register is not sufficient to guarantee forward progress of
the protocol thread. The protocol boot sequence, which is a
part of the machine boot code, initializes all 32 logical pro-
tocol registers. This guarantees that all the protocol regis-
ters remain mapped all the time. Therefore, one single re-
served integer register is sufficient to avoid deadlock be-
cause the protocol instruction taking the reserved register
is guaranteed to free the previous mapping when the in-
struction graduates. An alternative solution of keeping 33
reserved integer registers and not initializing unused regis-
ters actually hurts performance in some cases because most
of the logical protocol registers get defined during the exe-

cution of an application. We will further comment on some
optimizations related to integer registers in Section 2.3.

A different kind of deadlock situation can arise due to
conflicts in the L1 and L2 caches. For example, a proto-
col load/store miss may conflict (i.e. map to the same cache
line index) with an in-flight application load/store miss in
the cache and the conflicting protocol load/store may belong
to the handler that is servicing the application load/store
miss. Clearly, we cannot delay the protocol load/store un-
til the application load/store finishes because that will lead
to a deadlock. So we provide small fully associative “by-
pass buffers” with the L1 instruction and data caches and
the L2 cache (see Figure 1) to be used by the protocol thread
only. Whenever a protocol thread load/store miss conflicts
with an in-flight application load/store, the protocol thread,
instead of allocating a cache line, allocates a cache line-
sized bypass buffer line. While fetching from the proto-
col thread or executing protocol load/store instructions the
cache and the corresponding bypass buffer are looked up
in parallel. The L1 and L2 cache controllers are augmented
with the necessary hardware to maintain inclusion after the
bypass buffers are added. The bypass buffers are sized to
capture the most pathological situation where all the proto-
col load/store misses are conflicting with in-flight applica-
tion load/stores, and therefore this size is determined by the
number of MSHRs.

2.3. Performance Issues

While evaluating the SMTp architecture we uncov-
ered three performance bottlenecks. First, the short proto-
col thread handlers suffer greatly due to pipeline latency.
We simulate nine pipe stages and there are critical han-
dlers that are only six instructions long. Recall from the
previous discussion that the starting PC of the next han-
dler is handed out only after the last instruction from the
previous handler graduates. We could hide the pipeline la-
tency of the short handlers if we could hand out its starting
PC to the fetcher as soon as possible. We call this opti-
mization “Look Ahead Scheduling” (LAS) where we aug-
ment the dispatch hardware to hand out the PC of the
next handler as soon as the PC is ready and the fetch-
ing of the previous handler is finished. We call this han-
dler a look ahead handler. Currently, our design supports
only one look ahead handler.

However, this requires special consideration of protocol
branch misprediction recovery because if the look ahead
handler gets completely squashed due to a mispredicted
branch in the normal handler, machine state must reflect that
correctly. Hence, when starting a look ahead handler we set
a one bit state named Look Ahead and also store the ac-
tive list sequence number of the last instruction (which is al-
ways ldctxt) from the last handler in ldctxt id (see
Figure 1). The Look Ahead state is cleared when this
ldctxt graduates. While recovering from a mispredicted
protocol branch, if the sequence number stored in ldc-
txt id falls within the squash range and if Look Ahead
is set, we know that the offending branch belongs to the nor-
mal handler and that we have squashed the look ahead han-
dler completely. So at this point the Look Ahead state
is cleared and as usual a re-fetch is initiated from the cor-
rect branch target in the normal handler. When the fetcher
completes fetching the current handler it will check the

Look Ahead state and start fetching the look ahead han-
dler again. LAS improves the performance by up to 3.9%
for various applications and as a result we decided to in-
clude it in our design.

We found the number of integer registers to be a sec-
ond bottleneck, but only for one application (FFTW; see
Section 3). We looked at one optimization in this regard.
Every protocol handler uses some scratch registers to carry
out certain computations on the directory entry, the header,
or the address. The values in these scratch registers are not
needed after the handler completes. Therefore, we chose to
free these scratch registers at the time the last instruction
in a handler graduates. We implemented this optimization
with a single extra read port to the protocol thread’s regis-
ter map table and one extra write port to the integer free list
to be used by the graduation unit only (more than one port
did not improve performance). This optimization improved
performance of FFTW by at most 3.2%. However, when we
implemented this in conjunction with LAS described above,
we observed very little performance gain because with LAS
two handlers may be executing in the pipe and though we
can free the scratch registers used by the current handler,
we cannot free those used by the look ahead handler. In ad-
dition, we need to keep track of the scratch registers of the
look ahead handler since these cannot be freed. As a re-
sult, we decided not to include this optimization in our de-
sign.

Finally, since the L1 data cache and the L2 cache are
shared between the application threads and the protocol
thread, the number of conflict misses (mostly in the L1
data cache) increases in the SMTp architecture for the same
cache sizes. However, the protocol thread provides the flex-
ibility to explore smart directory address mappings to solve
this problem, and this remains one area of ongoing re-
search in the SMTp design. Mapping functions that avoid
application cache lines from colliding with their own di-
rectory entries did not improve performance indicating that
“self-collision” is not a problem. We are also exploring
micro-architectural techniques such as dynamic detection
and avoidance (by leveraging the bypass buffers) of con-
flicts between “hot” application lines and directory lines,
and directory value prediction to cover the directory misses
in the L1 data cache. To get an idea about how much per-
formance is lost due to conflict misses, we simulated sep-
arate and perfect protocol instruction and data caches. In
some cases the performance improved by 0.9-3.2% and in
one case by 5.1%. We also found that sharing the instruc-
tion cache does not lead to any performance degradation for
the applications we consider.

3. Applications and Simulation Methodology

This section discusses the applications and the simula-
tion environment we use to evaluate our proposed architec-
ture.

Table 1 lists the six explicitly parallel shared mem-
ory programs that we use in this paper. FFTW is a 3D
Fast Fourier Transform kernel operating on complex double
points [8]. The other five applications are chosen from the
SPLASH-2 suite [44]. The programs represent a variety of
important scientific computations with different communi-
cation patterns and synchronization requirements. As a sim-
ple optimization, in Ocean the global error lock in the multi-

Applications Problem Sizes
FFT 1M points, blocked for DTLB
FFTW 8192 � 16 � 16 points, 32 � 32 block
LU 512 � 512 matrix, 16 � 16 block
Radix-Sort 2M keys, radix=32
Ocean 514 � 514 grid, tolerance 1e-5
Water 1024 molecules, 3 time steps

Table 1: Applications and Problem Sizes

grid phase has been changed from a lock–test–set–unlock
sequence to a more efficient test–lock–test–set–unlock se-
quence [13]. The input sizes are chosen to capture realistic
machine behavior for these highly scalable shared memory
programs. All the applications use proper page placement
to minimize remote memory accesses, and where possible
all applications other than Water use hand-inserted prefetch
and prefetch exclusive instructions to hide cache miss la-
tency. The applications use software tree barriers to imple-
ment scalable synchronization. Finally, the transpose phases
in FFT and FFTW are carefully optimized using padding
and tiling. The relative performance trends for less-tuned
applications that do not use prefetching and page placement
are qualitatively identical to the results presented in this pa-
per for optimized applications.

In this paper we present simulation results for DSM
multiprocessors up to 32 nodes where each node contains
an out-of-order SMT processor with 1, 2 or 4 application
thread contexts along with an additional protocol thread
context that we enable only in our SMTp results. Therefore,
results on 16 nodes with 4-way SMT nodes present the per-
formance of 64-threaded execution of the above programs.
For 32 nodes we only consider SMT nodes that have 1 or
2 application thread contexts thereby limiting this study to
at most 64-threaded parallel applications. Table 2 shows the
MIPS ISA based simulated processor configuration along
with SMTp-specific reserved or extra resources.

We present detailed results for 2 GHz processor fre-
quency and explore the impact of scaling the frequency to
4 GHz. We simulate a branch predictor similar to the Al-
pha 21264 Tournament predictor [19]. However, we pro-
vide a separate local branch history table, global path his-
tory, and choice predictor for each thread. The local pre-
diction and global prediction saturating counters (pattern
history tables) are shared. This leads to a predictor size of
roughly 86 Kbits for a 4-way SMT machine. We do not up-
date the global path history speculatively. The RAS hard-
ware is augmented with a mechanism to restore both the
top of stack pointer and its contents on mis-speculation re-
covery as proposed in [37]. As in the MIPS R10000 [45] the
branch stack is used to checkpoint the register maps when
a branch passes through the rename stage. The size of the
branch stack determines the maximum number of in-flight
branches. The number of physical registers is decided as fol-
lows. For an � -way SMT machine with an additional pro-
tocol thread we provide

����� ���
	��
����� physical registers.
Therefore, 96 extra registers are provided for renaming pur-
poses. Note that we provide an extra 32 registers to the base-
line models (discussed below) where the protocol thread is
not active i.e. the baseline models have the same number of
registers as the SMTp configuration, but have one less ac-
tive thread context. The integer and floating-point multiply

Parameter Value
Frequency 2 GHz/4 GHz
Thread contexts 1/2/4+protocol thread
Pipe stages 9
Fetch policy ICOUNT (2 threads)
Front-end width 8
Decode queue slots 8
Rename queue slots 8
BTB 256 sets, 4-way
Branch predictor Tournament (21264)
RAS 32 entries (per thread)
Active list 128 entries (per thread)
Branch stack 32 entries
Integer Register 160/192/256
FP Register 160/192/256
Integer queue 32 entries
FP queue 32 entries
Unified load/store queue 64 entries
ALU 7 (one for addr. calc.)
Integer mult./div. latency 6/35 cycles
FPU 3
FP mult. latency fully pipelined, 1 cycle
FP div. latency 12 (SP)/19 (DP) cycles
Commit width 8
ITLB 128/fully assoc./LRU
DTLB 128/fully assoc./LRU
Page size 4 KB
L1 Icache 32 KB/64B/2-way/LRU
L1 Dcache 32 KB/32B/2-way/LRU
Unified L2 cache 2 MB/128B/8-way/LRU
MSHR 16+1 for retiring stores
Store buffer 32
L1 cache hit 1 cycle
L2 cache hit 9 cycles (round trip)

SMTp specific
Res. decode queue slots 1
Res. rename queue slots 1
Res. branch stack slots 1
Res. integer registers 1
Res. integer queue slots 1
Res. LSQ slots 1
Res. MSHR 1
Res. store buffer 1
IBypass buffer 16 lines/fully assoc./LRU
DBypass buffer 16 lines/fully assoc./LRU
L2 Bypass buffer 16 lines/fully assoc./LRU

Table 2: Simulated Processor Configuration

and divide latencies are taken from the R10000 processor.
As in the R10000, the load/store issue logic preserves pro-
gram order among memory operations, and on a memory
order violation eight instructions are unmapped every cycle
from the tail of the active list and a re-fetch is initiated start-
ing from the offending load. The simulated processor pro-
vides a strict sequentially consistent memory model.

Each node also contains a memory controller capable
of handling local cache misses from the processor and re-
mote cache misses from the network interface (NI). The
memory controller is also responsible for executing the un-

derlying directory-based cache coherence protocol. How-
ever, in SMTp this happens in one of the thread contexts on
the main processor. In our baseline non-SMTp models (dis-
cussed below) the memory controller is equipped with a
programmable dual-issue protocol engine as in the FLASH
multiprocessor [22]. However, the protocol engine is closer
in design to the hub of the SGI Origin 2000 [23] with the
exception that it is programmable. Our protocol code com-
pilation tools generate an optimized schedule for the dual-
issue engine. To keep the comparison fair, while evaluat-
ing SMTp we modify this code only slightly to eliminate
some unnecessary NOPs. In the non-SMTp models the in-
struction and data cache behavior, and the contention ef-
fects of the protocol processor are modeled precisely via
a cycle-accurate simulator similar to that for the protocol
processor in [10]. The invalidation-based coherence proto-
col running under a slightly relaxed model (employs eager-
exclusive replies [6]) is derived from the bitvector protocol
of the SGI Origin 2000. The simulated directory entry (per
128 bytes of application data) is 32 bits up to 16 nodes and
64 bits for 32 nodes, 16 or 32 bits of which are dedicated to
the sharer vector, respectively. The other details of the mem-
ory system are listed in Table 3.

Parameter Value
System bus width 64 bits
System bus speed Same as mem. controller
SDRAM access time 80 ns
SDRAM bandwidth 3.2 GB/s
SDRAM queue 16 entries
Local miss queue 16 entries
NI input queues 2 entries each, 4 queues
NI output queues 16 entries each, 4 queues
Virtual networks 4 (protocol uses 3)
Router ports 6 (SGI Spider [9])
Network topology 2-way bristled hypercube
Hop time 25 ns
Link bandwidth 1 GB/s

Table 3: Memory System Configuration

In this paper the router is always assumed to be a sepa-
rate module that is not integrated on the die. Depending on
the position and design of the memory controller (MC) we
explore five different machine models as shown in Table 4.
Each entry in Table 4 shows the position of the memory con-
troller, the frequency of the memory controller, and the size
of the directory data cache. Each model presents a possi-
ble point in the design space. Each of the non-SMTp mod-
els (i.e. Base, IntPerfect, Int512KB, Int64KB) has
a programmable dual-issue protocol processor (PP) embed-
ded in the memory controller. The performance of Base is
expected to be very close to a conventional hardware DSM
machine without an integrated memory controller, such as
the SGI Origin 2000. At 400 MHz frequency almost all pro-
tocol processing overhead is hidden under the SDRAM ac-
cess. Also, a 512 KB directory data cache shows close to
100% hit rate.
IntPerfect represents the most aggressive hardware

DSM machine with an integrated memory controller run-
ning at the same speed as the processor. Despite running at

Model name Description
Base Non-integrated PP/MC, 400 MHz, 512 KB direct mapped (DM) directory data cache
IntPerfect Integrated PP/MC, processor frequency, perfect directory data cache
Int512KB Integrated PP/MC, half processor frequency, 512 KB DM directory data cache
Int64KB Integrated PP/MC, half processor frequency, 64 KB DM directory data cache
SMTp Integrated standard MC (no PP), half processor frequency, protocol thread

Table 4: Machine Models (PP=Protocol Processor, MC=Memory Controller)

half the processor speed, Int512KB performs closely to
IntPerfect given the high directory cache hit rate, but
512KB may be considered large for an on-chip directory
cache in the integrated memory controller. Int64KB repre-
sents a more realistic design if one chooses to have a direc-
tory data cache with single-cycle access, as opposed to ac-
cessing a separate directory DRAM in parallel with the data
DRAM as in the SGI Origin 2000. The latter would give
an illusion of 100% directory hit rate at the cost of a com-
plicated memory system design and larger directory lookup
times. For all these four cases the protocol instruction cache
is kept fixed at 32 KB direct mapped.

Finally, SMTp is the design we propose here. In this case
the protocol code executes on a protocol thread context in
the processor and hence at the processor speed. However,
the standard integrated memory controller, which does not
have any directory processing capability, still operates at
half the processor speed. The protocol thread shares the L1
instruction and data caches, and the L2 cache with the appli-
cation thread(s), and does not have separate protocol caches.

4. Simulation Results

In this section we present representative simulation re-
sults and a detailed performance analysis of SMTp. We first
present results on single-node, 16-node, and 32-node DSM
multiprocessors with 2 GHz SMT processors. In Section 4.1
we analyze the performance, overhead, and resource usage
of the protocol thread. Section 4.2 presents selected results
as the processor clock frequency scales to 4 GHz.

We begin our discussion with some general scalability
results. Tables 5 and 6 present the speedup of all six appli-
cations on 16-node systems for Base and SMTp, respec-
tively. In all the following results an � -way configuration
corresponds to SMT nodes running � application threads—
thus, the 4-way speedup corresponds to a 64-threaded ex-
ecution. For SMTp there is an additional protocol thread.
Speedups are calculated with respect to the single-node 1-
way execution for each of Base and SMTp. These self-
relative speedup numbers should not be used to compare
the effectiveness of SMTp versus Base. We present these
numbers to assert that at least for 1-way configurations ap-
plications are getting reasonable speedup. 2-way configura-
tions improve performance further, while 4-way configura-
tions hurt performance in most cases, due to cache conflicts
and resource contention among the threads. We now exam-
ine relative performance across our machine models.

Figures 2, 3 and 4 present the relative performance of
the five machine models on a single-node system with
2 GHz processors. The execution times are normalized to
Base (the leftmost bar). The next four bars correspond to
the integrated memory controller configurations. The last
bar presents the results for SMTp, where the coherence pro-

Application 1-way 2-way 4-way
FFT 13.87 19.32 19.35
FFTW 8.04 9.23 7.22
LU 14.61 14.98 13.15
Ocean 21.41 27.95 26.53
Radix-Sort 9.90 12.56 12.07
Water 12.58 18.60 21.25

Table 5: 16-node Speedup in Base

Application 1-way 2-way 4-way
FFT 14.04 19.11 19.54
FFTW 7.76 8.91 7.28
LU 14.15 14.45 12.72
Ocean 21.31 27.65 29.37
Radix-Sort 10.81 13.25 13.20
Water 13.25 19.96 22.37

Table 6: 16-node Speedup in SMTp

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct

In
t.

51
2K

B

In
t.

64
K

B

S
M

Tp

Figure 2: Performance on 1-way single-node con-
figuration

tocol executes on a protocol thread context. Memory stall
cycles are defined as the number of cycles, averaged over
all the application threads, for which the graduation unit is
stalled with a memory operation at the top of the active list.
The remaining cycles contain the useful CPU cycles, squash
cycles, synchronization cycles, and other stall cycles (from
graduation viewpoint). So the non-memory stall cycles may
vary across the machine models for the same application.

First, we observe that, as expected, memory controller

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct

In
t.

51
2K

B

In
t.

64
K

B

S
M

Tp

Figure 3: Performance on 2-way single-node con-
figuration

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct
In

t.
51

2K
B

In

t.
64

K
B

S
M

Tp

Figure 4: Performance on 4-way single-node con-
figuration

integration improves performance. Ocean and FFTW see
the maximum benefit, although LU and Water, the two
computationally-intensive applications, remain largely in-
sensitive to controller integration. Second, SMTp is always
faster than Base, and in most cases performs on par with
Int512KB. Only in a few cases does Int512KB out-
perform SMTp, and by at most 1.6%. Int64KB is the
worst-performing integrated configuration, highlighting the
importance of directory cache behavior for small machine
sizes. Radix-Sort and FFTW are particularly sensitive to
this issue. In fact, for a 4-way SMT machine Base is 20%
faster than Int64KB for Radix-Sort. However, despite hav-
ing a small shared 32 KB L1 data cache, SMTp is able to
absorb the L1 directory misses in the 2 MB L2 cache. There
are even a few cases where SMTp is faster than IntPer-
fect! The main reason for this is improved cache behavior
due to changed timing of cache accesses leading to differ-
ent LRU behavior.

Figures 5, 6 and 7 present results for 16-node systems.
As the directory cache pressure decreases with machine
size, the four machine models with integrated memory con-
trollers tend to converge in terms of performance. How-
ever, IntPerfect still gets an edge over the other three
due to the fact that its memory controller logic runs at

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct

In
t.

51
2K

B

In
t.

64
K

B

S
M

Tp

Figure 5: Performance on 1-way 16-node configu-
ration

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct

In
t.

51
2K

B

In
t.

64
K

B

S
M

Tp

Figure 6: Performance on 2-way 16-node configu-
ration

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct

In
t.

51
2K

B

In
t.

64
K

B

S
M

Tp

Figure 7: Performance on 4-way 16-node configu-
ration

twice the speed of the others (see Table 4). SMTp contin-
ues to maintain its excellent performance, tracking that of
Int512KB closely. Along with FFTW and Ocean, Radix-
Sort also starts benefiting from memory controller integra-

tion. The main reason for the variation in the non-memory
cycles of Water is the change in synchronization time across
the machine models. Also, on 16 nodes, Int64KB deliv-
ers much better relative performance than on a single node.
This is expected since on a 16-node system each node holds
only a fraction of the whole directory space, and hence the
smaller directory cache is less of a performance problem.
As we have already mentioned in Section 2.3, we experi-
mented with separate and perfect protocol instruction and
data caches for the cases where Int512KB is more than
1% faster than SMTp. With perfect protocol caches, SMTp
performed equally well or even better than Int512KB for
most of those cases. In the remaining cases Int512KB
outperformed SMTp by at most 1.1%. This shows that the
main reason for any performance gap between SMTp and
Int512KB is data cache pollution, particularly in the L1
data cache. We will further comment on the pipeline over-
head of the protocol thread in Section 4.1.

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct

In
t.

51
2K

B

In
t.

64
K

B

S
M

Tp

Figure 8: Performance on 1-way 32-node configu-
ration

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
P

er
fe

ct

In
t.

51
2K

B

In
t.

64
K

B

S
M

Tp

Figure 9: Performance on 2-way 32-node configu-
ration

Figures 8 and 9 present results for 32-node sys-
tems. SMTp continues to deliver performance similar to
Int512KB even for this medium-scale DSM.

4.1. Protocol Thread Characterization

This section discusses the pipeline resource overhead of
the protocol thread and characterizes its performance. One
of the benefits of clocking the memory controller faster is
reduced execution time of the coherence protocol. This may
not directly affect the observed latency of serving a message
since the SDRAM access latency may dominate. However,
this directly affects the queuing delay of a transaction and
hence the overall pipeline occupancy of the protocol thread.
Table 7 shows the peak protocol occupancy (among all the
nodes) as a percentage of parallel execution time for Base
and three integrated models on 16-node systems with 1-way
SMT nodes. For non-SMTp models this is calculated as the
percentage of parallel execution time the embedded proto-
col processor is active while for SMTp this is the percentage
of time the protocol thread is active. As expected, the pro-

App. Base IntPerf. Int512KB SMTp
FFT 10.2% 3.6% 5.3% 5.8%
FFTW 14.6% 6.5% 8.4% 12.2%
LU 2.0% 0.4% 0.8% 1.2%
Ocean 25.0% 7.7% 12.3% 12.9%
Radix 12.1% 3.1% 5.6% 6.2%
Water 1.5% 0.3% 0.6% 0.7%

Table 7: 16-node Protocol Occupancy (1-way
Nodes)

tocol occupancy of the integrated models is much smaller
than the non-integrated model. IntPerfect enjoys the
lowest protocol occupancy due to its faster memory con-
troller logic. SMTp occupancy is similar to Int512KB,
but suffers slightly from a larger cache miss rate for di-
rectory accesses. However, this small occupancy increase
is rarely the cause of significant performance difference be-
tween SMTp and Int512KB. These results show that the
protocol thread is active for a very small amount of time
during the application execution, and hence is expected to
have extremely small pipeline overhead. Interestingly, the
occupancy percentages divide the six applications into two
categories, namely, memory-intensive (FFT, FFTW, Ocean,
Radix-Sort) and compute-intensive (LU, Water). In the pre-
vious results we have seen that SMTp delivers excellent per-
formance for both these categories.

We have already mentioned that the protocol thread
sometimes suffers from a slightly larger cache miss rate for
directory accesses due to sharing of caches with the applica-
tion threads. This also slightly increases the cache miss rate
of application threads in some cases. Some other aspects
of the protocol thread execution are presented in Tables 8
and 9. The protocol thread branch misprediction rate, the
percentage of cycles the graduation unit frees at least one
squashed protocol instruction, and the retired protocol in-
struction count as a percentage of all retired instructions are
shown in Table 8. The results are again for 16-node systems
with 1-way SMT nodes. Other than Water, all applications
have at least 95% protocol branch prediction accuracy, indi-
cating that speculative execution in general and Look Ahead
Scheduling in particular can provide good protocol perfor-
mance. Also, the low squash cycle percentage of the proto-
col thread supports this (Squash % column). Lack of train-

App. Br.Mis. Rate Squash % Retired Ins.
FFT 2.11% 0.02% 4.18% of all
FFTW 1.57% 0.04% 5.46% of all
LU 4.03% 0.01% 0.34% of all
Ocean 2.38% 0.06% 8.36% of all
Radix-Sort 4.23% 0.06% 6.81% of all
Water 10.91% 0.01% 0.19% of all

Table 8: Protocol Thread Characteristics for 16
Nodes (1-way)

ing is the main reason for poor branch prediction in Wa-
ter. This is also supported by the extremely low retired pro-
tocol instruction count (absolute count is not shown here).
All the applications also show a small fraction of graduated
protocol instructions (last column) as compared to the grad-
uated application instructions, highlighting the extremely
low overhead of the protocol thread mechanism.

Finally, Table 9 lists peak protocol thread occu-
pancy (when it is active) for some of the key pipeline re-
sources (branch stack, integer registers, integer queue and
load/store queue) for 16-node systems with 1-way SMT
nodes. We show the peak occupancy numbers (left) and
the average of the peak numbers (right) across all the
nodes. Referring back to Table 2 we see that peak oc-

App. Br. Stack Int. Regs IQ LSQ
FFT 26, 18 109, 100 32, 32 24, 19
FFTW 22, 12 100, 91 32, 32 21, 17
LU 26, 23 99, 88 32, 32 26, 22
Ocean 28, 21 113, 100 32, 32 31, 24
Radix-Sort 16, 13 111, 97 32, 32 20, 18
Water 22, 20 98, 95 32, 32 35, 27

Table 9: Active Protocol Thread Occupancy for 16
Nodes (1-way)

cupancy of the protocol thread can be surprisingly
high—50%-87% for the branch stack, 61%-71% for the in-
teger registers, 100% for the integer queue, and 33%-55%
for the load/store queue. However, we must note that this is
the peak occupancy across the whole system over the du-
ration of complete application execution. With the ex-
ception of the IQ occupancy, the average numbers also
show that there are nodes with lower peak resource us-
age. Further, the protocol thread is active for a very
small amount of time and when it is not active all the re-
sources other than the mapped 32 registers and two
load/store queue slots (for switch and ldctxt) are
freed. As expected, we found that, resource occupancy de-
creases slightly if Look Ahead Scheduling is turned off be-
cause only one protocol handler can be active at a time in
that case.

4.2. Clock Rate Scaling Study

This section explores the performance trends as the pro-
cessor clock frequency scales to 4 GHz. In Base the mem-
ory controller still runs at 400 MHz, while the memory con-
troller speeds of the integrated models are doubled accord-

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
Pe

rf
ec

t
In

t.
51

2K
B

In

t.
64

K
B

SM

Tp

Figure 10: Performance on 1-way 8-node configu-
ration with 4 GHz processor

FFT FFTW LU Ocean Radix Water
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Memory stall
Non−memory cycles

B
as

e
In

t.
Pe

rf
ec

t
In

t.
51

2K
B

In

t.
64

K
B

SM

Tp

Figure 11: Performance on 1-way 8-node configu-
ration with 2 GHz processor

ingly. Figure 10 presents 8-node 1-way results. For com-
parison in Figure 11 we also present the corresponding re-
sults with a 2 GHz processor clock. It is clear that the per-
formance trends remain completely unchanged as the pro-
cessor clock frequency scales. The main difference is that
the relative performance gain of the integrated models in-
crease as the processor-memory gap widens. We saw simi-
lar results for other machine sizes. We conclude that SMTp
will continue to deliver excellent performance as the pro-
cessor clock frequency scales in the future.

5. Related Work

Several researchers have proposed using SMT to as-
sist single-thread execution [4, 5, 36, 38, 46]. These pro-
posals use otherwise unused thread contexts to either pre-
execute delinquent loads, resolve hard-to-predict branches
ahead of time, or use the values pre-computed by a lead-
ing thread. SMT architectures have also been used in the
domain of redundant multi-threading as a form of fault tol-
erance [29, 38, 43]. These studies are largely orthogonal to
the SMTp architecture that uses SMT threads to handle co-
herence decisions on processor cache misses.

Programmable coherence protocol engines have been
studied and designed by several research groups. Some

of these are customized protocol processors e.g. the Pi-
ranha chip multiprocessor [3], Stanford FLASH multipro-
cessor [22], Sequent STiNG [26], and Sun S3.mp [30],
while others use commodity off-the-shelf processors e.g.
[28] and Typhoon [35]. However, we focus on combin-
ing the recent trends of integrated memory controllers and
multi-threaded processors by using a system thread context
in an SMT processor to provide the protocol programmabil-
ity and by using a standard integrated memory controller.
We propose micro-architectural extensions to enable our
protocol thread mechanism and explain deadlock avoidance
strategies particular to our design.

Grahn and Stenström implemented a cache coherence
protocol entirely in software [12]. However the processors
are not multi-threaded and running the coherence protocol
requires interrupting application execution. The work ex-
amines strategies to reduce protocol overhead and assumes
the availability of a fast low-level interrupt mechanism. In
contrast, in SMTp the protocol thread does not interrupt the
application threads and does not require a context switch.
In fact, the resource overhead of the protocol thread is ex-
tremely low.

Parker et al. [31, 32] have proposed using SMT for user-
level message passing. Since their work uses SMT threads
to help support cluster computing, it is closest to the work
proposed here. However, our focus is on the architectural
changes needed to efficiently support the SMTp protocol
thread mechanism, and on combining that with a standard
integrated memory controller to create hardware cache-
coherent DSM machines.

6. Conclusions

This paper presents the first design that exploits simulta-
neous multi-threading in conjunction with a standard inte-
grated memory controller to enable a low-overhead coher-
ence protocol thread running on the main processor that can
create (among other possibilities) a DSM multiprocessor.
We present a practical implementation of this SMTp archi-
tecture (SMT with a protocol thread) and explain in detail
the minor microarchitectural changes necessary in a con-
ventional out-of-order SMT pipeline to realize this design.
The architectural modifications come in the form of a small
number of reserved pipeline resources to break deadlock cy-
cles inherent between the protocol thread and the applica-
tion threads executing in the same pipe. We also add a small
amount of state to implement a performance-enhancing op-
timization, namely, look ahead scheduling of protocol han-
dlers.

A thorough evaluation up to 32 nodes and 64 threads
compares the performance of SMTp against a baseline
DSM design with a non-integrated memory controller as
well as an array of DSM designs with integrated memory
controllers. The results show that up to 32 nodes our de-
sign is always better than the baseline non-integrated de-
sign and is always within 6% and mostly within 3% of
(and sometimes outperforms) an aggressive integrated de-
sign with a stand-alone 512 KB directory cache. Further,
we find that on average (arithmetic mean) SMTp delivers
performance equivalent to Int512KB. We also present re-
sults for the most aggressive integrated design to estimate
an upper bound on achievable performance. We further ex-
amine the overhead and resource usage characteristics of

protocol threads, and our study on clock frequency scaling
shows that SMTp maintains its outstanding performance as
the processor-memory gap widens.

The extensive evaluation also brings out one remain-
ing bottleneck in our design, namely, the data cache pol-
lution resulting from the protocol thread sharing the cache
with application threads. However, the performance degra-
dation is small compared to the added complexity of hav-
ing a separate cache hierarchy for the protocol thread. In
summary, the SMTp architecture not only simplifies the de-
sign of the memory controller needed to support scalable
directory-based cache coherence, but also delivers perfor-
mance comparable to conventional DSM multiprocessors
with integrated coherence controllers.

Finally, we note that the SMTp mechanism need not be
restricted to enabling coherent DSM multiprocessors with
standard computing nodes, though that is our focus here. We
are currently examining other potential SMTp applications
including on-the-fly compression/encryption, active mem-
ory address re-mapping, fault tolerance techniques, and se-
lective and accurate value prediction that can benefit from
SMTp’s ability to dispatch a particular protocol sequence on
an L2 cache miss. As a design alternative we are also look-
ing at using unused core(s) in a chip multiprocessor (CMP)
for enabling coherence protocol thread(s) in a similar fash-
ion as SMTp.

Acknowledgments

This research was supported by NSF CAREER Award
CCR-0340600.

References

[1] G. Abandah and E. Davidson. Effects of Architectural
and Technological Advances on the HP/Convex Exemplar’s
Memory and Communication Performance. In Proceedings
of the 25th International Symposium on Computer Architec-
ture, pages 318–329, June 1998.

[2] A. Agarwal et al. The MIT Alewife Machine: Architec-
ture and Performance. In Proceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pages 2–13,
June 1995.

[3] L. Barroso et al. Piranha: A Scalable Architecture Based
on Single-chip Multiprocessing. In Proceedings of the 27th
International Symposium on Computer Architecture, pages
282–293, June 2000.

[4] R. S. Chappell et al. Difficult-Path Branch Prediction Using
Subordinate Microthreads. In Proceedings of the 29th Inter-
national Symposium on Computer Architecture, pages 307–
317, May 2002.

[5] J. D. Collins et al. Dynamic Speculative Precomputation. In
Proceedings of the 34th ACM/IEEE International Sympo-
sium on Microarchitecture, pages 306–317, December 2001.

[6] D. E. Culler, J. P. Singh with A. Gupta. Parallel Com-
puter Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers, Inc., 1999.

[7] Z. Cvetanovic. Performance Analysis of the Alpha 21364-
Based HP GS1280 Multiprocessor. In Proceedings of the
30th International Symposium on Computer Architecture,
pages 218–228, June 2003.

[8] M. Frigo and S. G. Johnson. FFTW: An Adaptive Software
Architecture for the FFT. In Proceedings of the 23rd Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 1381–1384, May 1998.

[9] M. Galles. Spider: A High-Speed Network Interconnect. In
IEEE Micro, 17(1):34–39, January-February 1997.

[10] J. Gibson et al. FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop. In Proceedings of the Ninth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 49–58, November
2000.

[11] P. Glaskowsky. IBM Raises Curtain on Power5. In Micropro-
cessor Watch, Issue#113, October 27, 2003.

[12] H. Grahn and P. Stenström. Efficient Strategies for Software-
Only Directory Protocols in Shared-Memory Multiproces-
sors. In Proceedings of the 22nd International Symposium
on Computer Architecture, pages 38–47, June 1995.

[13] M. Heinrich and M. Chaudhuri. Ocean Warning: Avoid
Drowning. In ACM SIGARCH Computer Architecture News,
31(3):30–32, June 2003.

[14] M. Heinrich et al. The Performance Impact of Flexibility
in the Stanford FLASH Multiprocessor. In Proceedings of
the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
274–285, October 1994.

[15] M. Heinrich, E. Speight, and M. Chaudhuri. Active Mem-
ory Clusters: Efficient Multiprocessing on Commodity Clus-
ters. In Proceedings of the Fourth International Symposium
on High-Performance Computing, Lecture Notes in Com-
puter Science, Vol. 2327, pages 78–92, Springer-Verlag, May
2002.

[16] InfiniBand Architecture Specification, Volume 1.0, Release
1.0. InfiniBand Trade Association, October 24, 2000.

[17] R. Kalla, B. Sinharoy, and J. Tendler. Simultaneous Multi-
threading Implementation in POWER5–IBM’s Next Genera-
tion POWER Microprocessor. In Hot Chips 15, August 2003.

[18] C. N. Keltcher et al. The AMD Opteron Processor for Multi-
processor Servers. In IEEE Micro 23(2):66–76, March-April
2003.

[19] R. E. Kessler. The Alpha 21264 Microprocessor. In IEEE Mi-
cro, 19(2):24–36, March-April 1999.

[20] D. Kim et al. Architectural Support for Uniprocessor and
Multiprocessor Active Memory Systems. In IEEE Transac-
tions on Computers, 53(2):288–307, February 2004.

[21] D. Koufaty and D. T. Marr. Hyperthreading Technology in
the Netburst Microarchitecture. In IEEE Micro, 23(2):56–65,
March-April 2003.

[22] J. Kuskin et al. The Stanford FLASH Multiprocessor. In Pro-
ceedings of the 21st International Symposium on Computer
Architecture, pages 302–313, April 1994.

[23] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proceedings of the 24th Inter-
national Symposium on Computer Architecture, pages 241–
251, June 1997.

[24] D. Lenoski et al. The Stanford DASH Multiprocessor. In
IEEE Computer, 25(3):63–79, March 1992.

[25] T. D. Lovett, R. M. Clapp, and R. J. Safranek. NUMA-Q:
An SCI-based Enterprise Server. Sequent Computer Systems
Inc., 1996.

[26] T. D. Lovett and R. M. Clapp. STiNG: A CC-NUMA Com-
puter System for the Commercial Marketplace. In Proceed-
ings of the 23rd International Symposium on Computer Ar-
chitecture, pages 308–317, May 1996.

[27] D. T. Marr et al. Hyper-Threading Technology Architecture
and Microarchitecture. In Intel Technology Journal, Vol. 6,
Issue 1, pages 4–15, February 2002.

[28] M. Michael at al. Coherence Controller Architectures for
SMP-Based CC-NUMA Multiprocessors. In Proceedings of
the 24th International Symposium on Computer Architec-
ture, pages 219–228, June 1997.

[29] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
Design and Evaluation of Redundant Multithreading Alter-
natives. In Proceedings of the 29th International Symposium
on Computer Architecture, pages 99–110, May 2002.

[30] A. Nowatzyk et al. The S3.mp Scalable Shared Memory
Multiprocessor. In Proceedings of the 24th International
Conference on Parallel Processing, Vol. 1, pages 1–10, Au-
gust 1995.

[31] M. Parker, A. Davis, and W. Hsieh. Message-Passing for the
21st Century: Integrating User-Level Networks with SMT.
In Proceedings of the 5th Workshop on Multithreaded Exe-
cution, Architecture and Compilation, December 2001.

[32] M. Parker. A Case for User-Level Interrupts. In HPCA Work-
In-Progress, February 2002.

[33] PCI Express Advanced Switching. Intel Press Re-
lease. Available at http://www.intel.com/pressroom/
archive/releases/20030626net.htm.

[34] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors. In Proceedings of the 29th
International Symposium on Computer Architecture, pages
111–122, May 2002.

[35] S. K. Reinhardt, R. W. Pfile, and D. A. Wood. Decoupled
Hardware Support for Distributed Shared Memory. In Pro-
ceedings of the 23rd International Symposium on Computer
Architecture, pages 34–43, May 1996.

[36] A. Roth and G. S. Sohi. Speculative Data-Driven Multi-
threading. In Proceedings of the 7th International Confer-
ence on High Performance Computer Architecture, pages
191–202, January 2001.

[37] K. Skadron et al. Improving Prediction for Procedure Re-
turns with Return-Address-Stack Repair Mechanisms. In
Proceedings of the 31st ACM/IEEE International Symposium
on Microarchitecture, pages 259–271, December 1998.

[38] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
Processors: Improving both Performance and Fault Toler-
ance. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, pages 257–268, November 2000.

[39] Sun Microsystems. An Overview of UltraSPARC III
Cu. White Paper, September 2003. Available at http://
www.sun.com/processors/whitepapers/USIIICuoverview.pdf.

[40] Sun Microsystems. UltraSPARC IV Processor Archi-
tecture Overview. White Paper, February 2004. Avail-
able at http://www.sun.com/processors/whitepapers/
us4 whitepaper.pdf.

[41] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In Pro-
ceedings of the 22nd International Symposium on Computer
Architecture, pages 392–403, June 1995.

[42] D. M. Tullsen et al. Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous Multithreading
Processor. In Proceedings of the 23rd International Sympo-
sium on Computer Architecture, pages 191–202, May 1996.

[43] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-
Fault Recovery Using Simultaneous Multithreading. In Pro-
ceedings of the 29th International Symposium on Computer
Architecture, pages 87–98, May 2002.

[44] S. C. Woo et al. The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations. In Proceedings of
the 22nd International Symposium on Computer Architec-
ture, pages 24–36, June 1995.

[45] K. C. Yeager. The MIPS R10000 Superscalar Microproces-
sor. In IEEE Micro, 16(2):28–40, April 1996.

[46] C. B. Zilles and G. S. Sohi. Execution-based Prediction Us-
ing Speculative Slices. In Proceedings of the 28th Interna-
tional Symposium on Computer Architecture, pages 2–13,
July 2001.

