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struct {
  pthread_t tid;  POINT_T* 
points;
  int num_elems;  long long SX;
  long long SY;  long long SXX;
  long long SXY;  long long SYY;
} lreg_args;2

Performance Improvement with FSLite

Overview of Architectural Modification

Necessary conditions to trigger Privatization 

False Sharing in Real World Applications
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● Degrades performance
● Inflates interconnect traffic
● Increases energy consumption 

Avg Speedup 1.34x  and Max speedup of 3.06x

Speedup by Manually Fixing False Sharing

Savings: 84% interconnect traffic and 25% in energy consumption

❖ Application Language

❖ Heap Organization1

❖ Compiler Optimization2

❖ Cache Organization

❖ Runtime Environment

Challenges in False Sharing Elimination

Shortcomings of the Existing Approaches

● Identifies impactful instance of false 

sharing

● Tracks the sharing patterns of block

FSDetect

● Allows multiple writers for the 

disjoint bytes

FSLite

● Eliminates false sharing by privatizing 

the blocks

Key Insight of Our Protocol Extensions

❖ Private Access Metadata (PAM) to track the local access

❖ Pending Metadata Message (PMMC) to track the inflight 
metadata

❖ Fetch (FC) and  Invalidation (IC) counters to filter the impactful 
instance
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FSDetect: Detection of False Sharing

C1

Termination of Privatization

27% energy savings and 89% less interconnect messages

FSLite achieves on avg 1.39x speedup and a max speedup 
3.91x 

Impactful instance of false sharing

Padding inflates the memory footprint

Padding introduces additional instructions

Comparison with Manual Fix 

No slowdown for applications without false sharing

Impact of FSLite on Applications w/o False Sharing 

❖ FSLite achieves an average speedup of 1.63x for O-o-O cores

❖ FSLite achieves an average speedup of 1.21x over a baseline 
with 128KB L1D cache across all applications

Additional Results 
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Handling Request during Privatization 

FSLite: Privatization of falsely shared blocks 
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❖ Access to application source code

❖ Extending support to every language

❖ Inflation of memory footprint

❖ Introduction of additional instructions

FSDetect and 
FSLite❖ Cache organization modification

❖ OS and Kernel modification3
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5. GETX_CHK

6. NC

❖ Hysteresis Counter(HC) to prevent frequent trigger and 
termination of privatization
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❖ Core C1 access (store) Byte 1 of the block B0

❖ C1 sends an access conflict detection request (GETX_CHK) to 
the directory

❖ Directory updates the LLC copy of the 
block by merging the bytes modified 
by each core using Write-Mask     

❖ Each core responds with write back message(WB_PRV) to the 
directory 

❖ Directory identifies the conflict with C2 and sends termination 
requests (TER_PRV) to all the sharers

❖ Fetch Counter > 

❖ Invalidation Counter > 

❖ Pending Metadata Messages == 0

❖ Directory performs a conflict detection check

❖ Access history in SAM has no overlapping accesses
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