
Leveraging Cache Coherence to Detect and Repair False Sharing On-the-fly

57th IEEE/ACM International Symposium on Microarchitecture 2024

Vipin Patel, Swarnendu Biswas, Mainak Chaudhuri (Indian Institute of Technology Kanpur)

1. Emery D. Berger et al. “Hoard: A Scalable Memory Allocator for
Multithreaded Applications.” ASPLOS’00.
2. Mihir Nanavati et al. “Whose Cache Line Is It Anyway? Operating System
Support for Live Detection and Repair of False Sharing.” EuroSys'13.
3. Liang Luo et al. “LASER: Light, Accurate Sharing dEtection and Repair”
HPCA’16.

struct {
 pthread_t tid; POINT_T*
points;
 int num_elems; long long SX;
 long long SY; long long SXX;
 long long SXY; long long SYY;
} lreg_args;2

Performance Improvement with FSLite

Overview of Architectural Modification

Necessary conditions to trigger Privatization

False Sharing in Real World Applications

Core C0 Core C1

Directory Controller

0 1 2 30 1 2 3

2. DATA

8. INV

5B. DATA

7. UPG
5A. WB

6. ACK

9. INV_ACK

4. FWD_GETS

1. GETX

ST LD

3. GETS

Cache Contention due to False Sharing

Dates:
Created: 2017-05-16
Updated: 2024-09-16
Resolved: 2024-04-16

LLC
Main

Memory

Core 0
L1I L1D

L1 Ctrl

LLC CtrlDirectory
Ctrl

PAM

SAM

FC
(7bits)

IC
(7 bits)

PMMC
(log

2
N bits)

HC
(2 bits)

Counters

❖ Shared Access Metadata (SAM) to track the access history

Last Writer
(log

2
 N bit)

Sharers
(N bits)

N Cores
Writer BitVector 1 64...2

Reader BitVector 1 64...2

● Degrades performance
● Inflates interconnect traffic
● Increases energy consumption

Avg Speedup 1.34x and Max speedup of 3.06x

Speedup by Manually Fixing False Sharing

Savings: 84% interconnect traffic and 25% in energy consumption

❖ Application Language

❖ Heap Organization1

❖ Compiler Optimization2

❖ Cache Organization

❖ Runtime Environment

Challenges in False Sharing Elimination

Shortcomings of the Existing Approaches

● Identifies impactful instance of false

sharing

● Tracks the sharing patterns of block

FSDetect

● Allows multiple writers for the

disjoint bytes

FSLite

● Eliminates false sharing by privatizing

the blocks

Key Insight of Our Protocol Extensions

❖ Private Access Metadata (PAM) to track the local access

❖ Pending Metadata Message (PMMC) to track the inflight
metadata

❖ Fetch (FC) and Invalidation (IC) counters to filter the impactful
instance

C0

Core C0

Directory Controller C0
Byte 0
Byte 1

Byte 3

SAM table entry for a Block B0

1Byte 2

0 1 2 3

1. GETX

2. DATA

ST
5B. DATA

5A. WB

6. ACK

Core C1

0 1 2 3

3. GETS

LD

5C. MD

7. UPG

8. INV

FC IC
0

PMMC
1718

9A. INV_ACK

9B. MD

Block B0 (M)

FSDetect: Detection of False Sharing

C1

Termination of Privatization

27% energy savings and 89% less interconnect messages

FSLite achieves on avg 1.39x speedup and a max speedup
3.91x

Impactful instance of false sharing

Padding inflates the memory footprint

Padding introduces additional instructions

Comparison with Manual Fix

No slowdown for applications without false sharing

Impact of FSLite on Applications w/o False Sharing

❖ FSLite achieves an average speedup of 1.63x for O-o-O cores

❖ FSLite achieves an average speedup of 1.21x over a baseline
with 128KB L1D cache across all applications

Additional Results

References

4. FWD_GETS

Core C2

Directory Controller

SAM table entry for a Block B0

0 1 2 3

Core C3

0 1 2 3

1. GETX
2. & 4. DATA_PRV

ST

3. GETS

LD

C2
C0

Byte 0
Byte 1

Byte 3
1Byte 2

1
C0 C1 C2 C3

FC IC
0

PMMC
1718Block B0 (PRV)

Handling Request during Privatization

FSLite: Privatization of falsely shared blocks

PAM entry at Core1
1

PAM entry at Core0

1
Reader

BitVector
Writer

BitVector

LW Sharers

PAM entry at Core3
1

PAM entry at Core2

1
Reader

BitVector
Writer

BitVector

LW Sharers

❖ Access to application source code

❖ Extending support to every language

❖ Inflation of memory footprint

❖ Introduction of additional instructions

FSDetect and
FSLite❖ Cache organization modification

❖ OS and Kernel modification3

EFFECTIVE

PORTABLE

ACCURATE

EFFICIENT

N # of cores

C0

Core C0

Directory Controller C0
Byte 0
Byte 1

Byte 3

SAM table entry for a Block B0

1Byte 2

0 1 2 3

ST

Core C1

0 1 2 3

1. GETS

2. TR_PRV

3. MD
4. DATA_PRV

C1

LD

FC IC
0

PMMC
1718

Block B0 (PRV)

LW Sharers

PAM entry at Core1
1

PAM entry at Core0

1
Reader

BitVector
Writer

BitVector

5. GETX_CHK

6. NC

❖ Hysteresis Counter(HC) to prevent frequent trigger and
termination of privatization

Core C2

Directory Controller

SAM table entry for a Block B0

0 1 2 3

Core C3

ST

C2
C0

Byte 0
Byte 1

Byte 3
1Byte 2

1

C0 C1 C2 C3

FC IC
4

PMMC
00

Block B0 (PRV)

LW Sharers

0 1 2 3 0 1 2 3 0 1 2 3

Core C0 Core C1

1. GETX_CHK

2. TER_PRV
3. WB_PRV

ST LD ST LD

FC IC
0

PMMC
00

After 1

❖ Core C1 access (store) Byte 1 of the block B0

❖ C1 sends an access conflict detection request (GETX_CHK) to
the directory

❖ Directory updates the LLC copy of the
block by merging the bytes modified
by each core using Write-Mask

❖ Each core responds with write back message(WB_PRV) to the
directory

❖ Directory identifies the conflict with C2 and sends termination
requests (TER_PRV) to all the sharers

❖ Fetch Counter >

❖ Invalidation Counter >

❖ Pending Metadata Messages == 0

❖ Directory performs a conflict detection check

❖ Access history in SAM has no overlapping accesses

𝛕
p

𝛕
p

𝛕
p
: Privatization Threshold

Scan for artifacts

Poster Flow: Top to Bottom, Left to Right

