288

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

Architectural Support for Uniprocessor and
Multiprocessor Active Memory Systems

Daehyun Kim, Mainak Chaudhuri, Student Member, IEEE,
Mark Heinrich, Member, IEEE, and Evan Speight, Member, IEEE

Abstract—We introduce an architectural approach to improve memory system performance in both uniprocessor and multiprocessor
systems. The architectural innovation is a flexible active memory controller backed by specialized cache coherence protocols that

permit the transparent use of address remapping techniques. The resulting system shows significant perfformance improvement across
a spectrum of machine configurations, from uniprocessors through single-node multiprocessors (SMPs) to distributed shared memory
clusters (DSMs). Address remapping techniques exploit the data access patterns of applications to enhance their cache performance.
However, they create coherence problems since the processor is allowed to refer to the same data via more than one address. While
most active memory implementations require cache flushes, we present a new approach to solve the coherence problem. We leverage
and extend the cache coherence protocol so that our techniques work transparently to efficiently support uniprocessor, SMP and DSM
active memory systems. We detail the coherence protocol extensions to support our active memory techniques and present simulation
results that show uniprocessor speedup from 1.3 to 7.6 on a range of applications and microbenchmarks. We also show remarkable
performance improvement on small to medium-scale SMP and DSM multiprocessors, allowing some parallel applications to continue

to scale long after their performance levels off on normal systems.

Index Terms—Active memory systems, address remapping, cache coherence protocol, distributed shared memory, flexible memory

controller architecture.

1 INTRODUCTION

ACTIVE memory systems provide a promising approach
to overcoming the memory wall [32] for applications
with irregular access patterns not amenable to techniques
like prefetching or improvements in the cache hierarchy.
The central idea in this approach is to perform data-parallel
computations or address remapping operations in the
memory system to either offload computation directly or
to reduce the number of processor cache misses. However,
both approaches introduce data coherence problems either
by allowing more than one processor in memory to access
the same data or by accessing the same data via more than
one address.

Most active memory system approaches [5], [13], [33]
require the programmer to insert cache flushes before
invoking active memory operations to avoid correctness
problems. Cache flush overhead on modern processors can
be large—typically requiring a trap to the operating system
to execute a privileged instruction or set of instructions, and
grows more costly as the number of cache levels increases.
Though user-level cache flushes may reduce this overhead,
either compilers must conservatively insert flushes to
maintain correctness or inserting flushes requires human

o D. Kim, M. Chaudhuri, and E. Speight are with the Computer Systems
Laboratory, Cornell University, Ithaca, NY 14853.
E-mail: {daehyun, mainak, espeight}@csl.cornell.edu.

e M. Heinrich is with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816.
E-mail: heinrich@cs.ucf.edu.

Manuscript received 20 Nov. 2002; revised 24 Apr. 2003; accepted 28 May
2003.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 117800.

0018-9340/04/$20.00 © 2004 IEEE

<+

intervention. Further, this software cache-coherent pro-
gramming model via flushes does not scale well to
multiprocessor systems since it must flush all the caches
in the system to guarantee correctness.

We propose an active memory system that leverages and
extends the hardware cache coherence protocol. The key to
the approach is that the memory controller not only
performs the active memory operations required, but also
runs the cache coherence protocol and, hence, solves the
resulting data coherence problems. Our system does not
require cache flushes, providing transparent active memory
support without changing the programming model.
Further, our unique approach naturally extends to multi-
processor active memory systems. We present a flexible
active memory controller architecture that merges address
remapping techniques and the directory-based cache
coherence protocol. Although our focus is to support
address remapping techniques, our approach does not
preclude the future use of active memory elements as well.
While many machines employ snoopy-based coherence
mechanisms, recent architectures [8], [18] have abandoned
bus-based snooping in favor of directories because of the
decrease in local memory access time and the electrical
advantages of point-to-point links between the processor
and the memory controller. Finally, our techniques work
with commodity microprocessors and memory technologies
because we modify only the memory controller.

With the aid of our programmable active memory
controller, augmented with specialized cache line assembly
and disassembly hardware, we extend a conventional
hardware cache coherence protocol to transparently sup-
port a number of address remapping techniques. We

Published by the IEEE Computer Society

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 289

achieve significant performance improvement on a spec-
trum of machine configurations, from uniprocessors
through SMP multiprocessors to DSM multinode systems.
Detailed simulations of our active memory system show
uniprocessor speedup from 1.3 to 7.6 for three address
remapping techniques. In addition to uniprocessor speed-
up, our system also improves the performance of parallel
applications on both single-node SMP and multinode DSM
systems. Our system is from 1.2 to 1.8 times faster than a
normal system on a 4-processor SMP and from 1.2 to
2.8 times faster on a 32-processor DSM configuration.

The rest of this paper is organized as follows: We
discuss related work in Section 2. In Section 3, we present
four address remapping techniques that our system
supports and explain the coherence problem that arises
with each. The flexibility of our active memory controller
enables us to extend this set of techniques at any time
without additional hardware cost. Section 4 describes the
implementation of our active memory controller as well
as the details of the coherence protocol extensions
required. We present our simulation environment in
Section 5 and analyze simulation results for a large class
of important applications on uniprocessors, single-node
multiprocessors, and multinode clusters in Section 6.
Finally, we draw conclusions in Section 7.

2 RELATED WORK

Previous work in active memory systems can be divided
into projects with active memory elements and those with
active memory controllers. While our active memory
systems approach can support active memory elements,
the focus of this paper is solely on our active memory
controller.

The DIVA [5], Active Pages [26], and FlexRAM [13]
projects all involve active memory elements—adding
processing capability to memory chips, creating so-called
PIMs. Both DIVA and FlexRAM have programming models
that require cache flushes when communicating between
the main processor and the active memory elements. Active
Pages initially required cache flushes as well, but realized
the critical role of coherence in active memory systems [14]
at the same time we did [20], noting that coherence was a
better mechanism than flushing for Active Pages. However,
the Active Pages project examined coherence only as a
mechanism for ensuring the active pages acted on the latest
copy of the data and not in support of the address
remapping techniques discussed here.

More closely related to this work is the Impulse memory
controller [33], which is a hard-wired memory controller
that supports a set of address remapping techniques to
improve processor cache behavior. Impulse proposed two
uniprocessor techniques, namely, matrix transpose and
sparse matrix, and designed specialized hardware to
accelerate cache line assembly and disassembly. However,
unlike our active memory approach that leverages cache
coherence, the Impulse programming model requires cache
flushes. The necessity of using cache flushes also compli-
cates the use of these techniques on multiprocessors.
Though we use two of the same address remapping
techniques in this work, we extend those techniques to

SMP and DSM multiprocessors as well as uniprocessors.
Further, we present a linked-list linearization technique and
aparallel reduction technique that cannot be implemented on
Impulse because they require coherence support and multi-
processor support, respectively. Our active memory con-
troller shares similar cache line assembly/disassembly
functionality with the Impulse memory controller, but our
memory controller implements not only the address remap-
ping techniques, but also the cache coherence mechanism,
which imposes different requirements on our memory
controller design. In addition, our memory controller takes
advantage of its programmability, allowing us to support
multiple active memory techniques and various machine
configurations without hardware modification.

Our linked-list linearization technique performs re-
peated linked-list traversals that are similar to those used
in memory forwarding [19], complete with the “safety net.”
However, while memory forwarding requires both main
processor and memory controller modifications, our active
memory controller can extend the cache coherence protocol
and perform the linked-list linearization as well as imple-
ment the safety-net without modifying the main processor.

Our parallel reduction technique, initially proposed in a
nonactive memory context in [7], triggers reduction opera-
tions on writebacks. The initial proposal used software
flushes to guarantee data coherence between mapped
address spaces. The parallel reduction technique also has
similarity to techniques used in the ReVive [27] and
Memory Sharing Predictor [17] proposals in the sense that
these two also trigger checkpointing/logging-related opera-
tions and sharing predictions, respectively, when the home
node receives certain types of coherence messages.

The main contribution of our active memory approach is
that we leverage, integrate with, and extend the existing
hardware cache coherence protocol. With this approach,
our active memory controller supports address remapping
techniques on uniprocessor as well as multiprocessor
systems transparently and efficiently.

3 AcTIVE MEMORY TECHNIQUES

In this section, we explain four classes of active memory
techniques discussed in this paper: Matrix Transpose, Sparse
Matrix, Linked-list Linearization, and Parallel Reduction. We
show how active memory techniques can improve perfor-
mance by reducing cache misses, TLB misses, and, in some
cases, processor busy time. We also discuss why a data
coherence problem arises with each technique and explain
how we solve the problem.

3.1 Matrix Transpose

Consider a matrix A stored in memory in row-major order
(see Fig. 1). An application accesses the matrix A first in
row-wise fashion and then in column-wise fashion. The size
of the matrix A is N x NN and the application is parallelized
on P processors.

If a processor Pj; wants to access the matrix A column-
wise, it results in poor cache behavior because the matrix A
is stored in row-major order. To improve cache perfor-
mance, programmers typically use a Tiled Transpose
technique, which the above example uses to implement

290

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

/* Row-wise access phase */

for i = id*(N/P) to (id+1)*(N/P)-1

for j = 0 to N-1

/* Active Memory initialization phase */
A’ = AMInitTranspose(A, N, N, sizeof(Complex));
/* Row-wise access phase */
for i = id*(N/P) to (id+1)*(N/P)-1
for j = 0 to N-1

sum += A[i][j];
BARRIER
Transpose(4, A’);
BARRIER
/* Column-wise access phase */
for i = id*(N/P) to (id+1)=(N/P)-1
for j = 0 to N-1
sum += A’ [i]1[j];
BARRIER
Transpose(A’, A);
BARRIER

sum += A[i][j];

BARRIER

/* Column-wise access phase */
for i = id*(N/P) to (id+1)*(N/P)-1
for j = 0 to N-1

sum += A’[i]1[j];

BARRIER

Original Code
Fig. 1. Example code: matrix transpose.

the Transpose routine. Before accessing the matrix A
column-wise, we transpose the matrix A into a matrix A’.
Then, instead of accessing the matrix A, we can access the
matrix A’ row-wise. Though tiling the transpose phase
reduces the number of cache misses, this software transpose
technique still has some overhead. Whenever we change the
access pattern from row-wise to column-wise or vice versa,
we need to perform the transpose phase, which costs
processor busy time, memory access time, and synchroniza-
tion time. The remote and local memory accesses during the
transpose phase especially become a bottleneck. Our active
memory technique eliminates the transpose phase and,
hence, reduces this overhead.

Instead, our active memory controller provides a remap-
ping transpose operation, In-memory Transpose. An address
remapping technique [33] is used to map AT to an
additional physical address space A’, called the Shadow
Space. The shadow matrix A’ is not backed by any real
physical memory. Instead, it is composed by the memory
controller on the fly, based on information such as the
starting address and the dimension and element size of the
matrix A provided via the one-time AMInitTranspose
library call. In other words, the matrix transpose is carried
out by the memory controller, not by the main processor,
removing the software transpose overhead. Note that the
initialization phase does not perform matrix transpose—it
only communicates the information used to compose the
shadow matrix A’ to the memory controller via a short
sequence of uncached writes.

This matrix transpose technique gives rise to a coherence
problem between the normal matrix A and the shadow
matrix A’. Any two corresponding elements of the matrix A
and the matrix A’ should be identical, yet the processor may
be caching them at two separate locations. One way to
ensure coherence is to guarantee that only one of the two
spaces is cached at any time. We extend the coherence

Active Memory Optimized Code

protocol and treat the access to the two spaces by the same
processor in precisely the same way a coherence protocol
treats accesses to the same cache line by different processors
in a multiprocessor. When returning shadow space cache
lines, we invalidate the corresponding normal space cache
lines from the processor caches. When a processor next
references these lines in the normal space, we have
guaranteed that this access will cause a cache miss and
our active memory controller can undo the previous
remapping operation, returning the latest copy of the data
to the processor and invalidating the corresponding
shadow space cache lines cached by the processors. The
details of the protocol are discussed in Section 4.2.

3.2 Sparse Matrix

In this technique, the central idea is to gather scattered data
that the main processor wishes to access closely spaced in
time and assemble them into cache lines. As an example, in
Fig. 2, we show the basic loop of Sparse Matrix Vector
Multiply, using the Compressed Row Storage representa-
tion for a sparse matrix A.

The scattered accesses to the dense vector v will
experience cache misses if the vector v is large. To improve
cache behavior, we remap the vector v to a shadow vector v/
and, in the loop, replace v[Acol[j]] with v'[j]. When the active
memory controller sees accesses to the vector v/, it calculates
the index j, accesses the cache line containing Acol[j],
assembles the corresponding elements of v[Acol[j]] into a
cache line, and returns the cache line to the main processor.
As a result, the main processor sees contiguous accesses to
the vector v' and improved cache behavior. This technique
also makes it possible to prefetch accesses to the vector v/,
which now exhibit good spatial locality.

The library call AMInitSparse communicates to the
memory controller the necessary information to construct
the vector v’ such as the starting addresses of v and Acol, the

/*

V)

/* Main phase */ /%

for i = id*(N/P) to (id+1)*(N/P)-1

for j = Arow[i] to Arow[i+1]-1
wli]l += A[j] * v[Acol[jl];

Active Memory initialization phase */
= AMInitSparse(v, Acol, NZ, sizeof(double));

Main phase */

for i = id*(N/P) to (id+1)*(N/P)-1

for j = Arow[i] to Arow[i+1]-1
wlil += A[3] * v’ [j];

Original Code

Fig. 2. Example code: sparse matrix.

Active Memory Optimized Code

KIM ET AL.:

ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS

291

ptr = A;
/* Linked-list traversal phase */
while ptr != NULL

sum += ptr->data;

ptr = ptr—->next;

/* Active Memory initialization phase */
AMInitLinearize (NP, LS, sizeof(Node));

/* Linked-list linearization phase */
ptr = AMLinearize(A);

/* Linked-list traversal phase */
while ptr != NULL;

sum += ptr->data;

ptr = ptr->next;

Original Code

Fig. 3. Example code: linked list linearization.

total number of nonzero elements (N Z) in the sparse matrix
A and the element size of the vector v. A careful comparison
of the active memory optimized code with the original code
will reveal that this technique saves not only the cache
misses of accessing the vector v, but also processor busy
cycles by removing the address calculation for Acol[j].

The coherence problem arises between the normal vector
v and the shadow vector v'. The solution is similar to that for
matrix transpose, though this particular technique prohibits
writes to the shadow vector v’ because a single cache line of
the vector v/ may contain the same element as the vector v
more than once. Therefore, if the processor writes to one
element, the other element (at a different position in the
same cache line) would have a stale value. This restriction
applies to any active memory implementation of this
operation, whether using cache flushes or leveraging the
coherence protocol. However, none of the sparse matrix
applications that we have seen need writes to the shadow
vector v'. Again, the details of the protocol are discussed in
Section 4.2.

3.3 Linked-List Linearization

Searching, inserting, or deleting items in a linked-list may
require walking through the list and these linked-list
traversals can exhibit poor cache behavior. Consider the
following example in Fig. 3 where an application traverses a
linked-list A: If the nodes of the list A are scattered in
memory, the traversal of the list can result in a large
number of cache misses. Our active memory technique
solves this problem by packing consecutive nodes of a
linked-list into a contiguously allocated memory region in a
dynamic fashion.

The AMInitLinearize library call sends the memory
controller the information needed to linearize the linked-list
A such as the byte offset of the next pointer within a node
(N P), the number of nodes to linearize (L.S), and the size of
each node in the list A. The AMLinearize call to the active
memory controller packs a certain number (LS in this
example) of nodes in the list into a contiguous region,
updating the “next” pointers (based on NP) in the list as it
goes. The next time the processor traverses the list, it sees
contiguous memory accesses and, hence, improved cache
behavior. Note that, after linearizing the list, it is possible to
easily prefetch consecutive nodes of the list, which is difficult
in the random linked-list structure of the original list.

Linearizing linked-lists can be done in software without
the use of active memory systems. However, a correctness
problem arises if, after linearization, the processor derefer-
ences a dangling pointer that points into the “old” linked-
list. Such a reference may now return stale data. Our

Active Memory Optimized Code

solution to this problem is much like that of memory
forwarding [19], except we can perform this optimization
without processor modifications. Here, the coherence
protocol implements a safety net by invalidating the original
cache lines during the copying phase. If the processor
accesses a dangling pointer, it is guaranteed to be a cache
miss and can therefore be handled correctly by the active
memory controller. There are some limitations of this
technique such as safety net overhead and potential pointer
comparison problems [19], but it is still a powerful
technique that shows large benefits in many applications.
The detailed discussion of the protocol is in Section 4.2.

3.4 Parallel Reduction

Parallel Reduction maps a set of elements to a single
element with some underlying operation. Consider the
example in Fig. 4 of reducing every column of a matrix A to
a single element, thereby obtaining a single vector z at the
end of the computation. The size of the matrix A is N x N
and there are P processors. Processor P, initializes the
vector = (not shown). The value e is the identity element
under the operation ® (e.g., 0 is the identity for addition
and 1 is the identity for multiplication).

The matrix A is distributed row-wise as suggested by the
computational decomposition in the code (i.e., the first N/P
rows are placed on P, the next N/P rows on P, etc.) and
private_z of each processor is placed in the local memory of
that processor. Thus, the reduction phase does not have any
remote memory accesses. However, the merge phase
assigns mutually exclusive index sets of the result vector
to each processor and, hence, every processor suffers from
(1—4) portion of remote misses while accessing the
private_z of other processors. This communication pattern
is inherently all-to-all and does not scale well. Prefetching
may improve performance to some extent, but the remote
read misses remain in the critical path, influencing overall
performance. Our active memory technique eliminates
these remote read misses by completely removing the
merge phase.

Our active memory controller maps the result vector x to
a shadow vector 2/ in the initialization phase. The
processors perform the reduction phase only to the
vector z/ and the merge phase is removed from the main
code. In our system, the merge operations are performed by
the memory controller, not by the main processors. When
each cache line of the vector 2’ is written back to memory,
the memory controller performs the merge operation [7].
Therefore, the active memory technique can save processor
busy time by eliminating the merge phase and remote

292

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

/* Privatized reduction phase */
for j = 0 to N-1
private_x[id][j] = e;
for i = id*(N/P) to (id+1)*(N/P)-1
private x[id] [j]1 =
private_x[id][j] ® A[il[jl;
BARRIER

/* Merge phase */
for j = 1d*(N/P) to (id+1)*(N/P)-1
for 1 = 0 to P-1
x[j] = x[j] ® private_x[il[j];
BARRIER
Subsequent uses of x

/* Active Memory initialization phase */
x’ = AMInitReduction(x, N, sizeof(long long));

/* Reduction phase */
for j = 0 to N-1
for i = id*(N/P) to (id+1)*(N/P)-1
x’[31 = x’[31 ® A[Li1[j];

BARRIER

Subsequent uses of x

Original Code
Fig. 4. Example code: parallel reduction.

memory access time since the writebacks are not in the
critical path of execution.

This technique requires coherence support since the
application may use the result vector x before all the cache
lines of the shadow vector z’ are written back, leading to an
incomplete merge operation. We solve the problem by
extending the cache coherence protocol to keep the normal
vector = and the shadow vector 2’ coherent. The protocol is
discussed separately in Section 4.2.

3.5 Programming Model

Our active memory system provides a simple programming
model. Before using an active memory technique, user
applications only need to call the corresponding AMInit
library provided, which communicates necessary informa-
tion to the active memory controller and initializes its
address remapping table. After this library call, user
applications can use any of the normal or shadow data
structures (described in the previous sections) without
concern for coherence. At the end, user applications call the
AMUninstall library to free the remapping table entry
(not shown in the example codes for brevity).

Currently, our active memory system supports four
different address remapping techniques, thus providing
four types of AMInit and AMUninstall library functions.
These techniques optimize popular computation kernels
used in important applications. In addition, the program-
mability of our memory controller allows us to expand the
set of techniques without any additional hardware cost. We
only need to supply the new coherence extensions
necessary as well as the associated AMInit and
AMUninstall functions. The details of the active memory
protocols are discussed in Section 4.2.

4 IMPLEMENTATION

This section details the implementation of various compo-
nents of our active memory system. We discuss the memory
controller architecture that is the heart of the whole system
and our extended cache coherence protocols tailored to
execute the active memory techniques.

4.1 Active Memory Controller

The design goal of our active memory controller is to
provide flexibility in the types of active memory operations

Active Memory Optimized Code

without sacrificing performance or changing the program-
ming model. We achieve these goals by augmenting a
programmable core, called the Active Memory Processor Unit
(AMPU) with specialized hardware, called the Active
Memory Data Unit (AMDU). The AMPU runs software
protocol handlers to implement cache coherence and
control the correctness of active memory operations. The
AMDU accelerates cache line assembly and disassembly,
which form the datapath core of active memory techniques.
By dividing our protocol execution into control and data
paths (similar to the approach in [16]) and by executing
them concurrently, we simultaneously achieve flexibility
and performance.

4.1.1 Microarchitecture

Fig. 5 shows the microarchitecture of our active memory
controller. The control flow of a memory request is divided
into three stages (Dispatch, AMPU/AMDU, and Send) that
operate concurrently on different requests, thereby forming a
macro-pipeline. Requests arriving from the processor or the
network are scheduled by the Dispatch Unit. Here, the
requests get divided into header and data components, which
the AMPU and the AMDU process concurrently. For active
memory operations, the AMDU assembles or disassembles
the cache line under the control of the AMPU that triggers
necessary coherence actions. Finally, the Send Unit returns

Active Memory Controller

Dispatch Unit

i—l—i

Ij

Memory
Interface

Data
Buffer

-

Instraction
Cache

L1 | Memory
Ccell

Active |

Active ¥
Data Unit

Y
Processor Unit

(AMPU)

\—'—1

‘ Send Unit

(AMDU)

Data
Cache

Fig. 5. Active memory controller microarchitecture.

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 293

Active Memory Data Unit

Base Address Buffer

Address

Calculation

£ Virtual Address Buffer

AMPU TLB
amre . Memory/Buffer
Predictor Interface

Physical Address Buffer

o

D
\'/‘:"> Bu‘}fu;r

Directory
Address
Calculation
| |
| Directory Address Buffer | Data Buffer

Memory
Access

Fig. 6. Active memory data unit.

the cache line to the requester if necessary. In the remainder of
this section, we describe each unit in detail.

Dispatch Unit. The Dispatch Unit schedules requests
from the processor interface (PI) or network interface (NI)
and initializes the AMPU and AMDU based on the address
space (e.g., remapped or normal) and the type of the
request.

Active Memory Processor Unit (AMPU). The AMPU is a
statically scheduled, pipelined, dual-issue programmable
MIPS core that executes the coherence protocol—the control
portion of an active memory operation or a conventional
cache miss. It does not support virtual memory, exceptions,
floating-point arithmetic, or integer multiplication and
division. However, it includes specialized instructions to
enhance common cache coherence protocol and active
memory operations. The AMPU gets its code and data
from on-chip instruction and data caches, respectively. Both
caches are backed by main memory.

For each memory request (normal or active), the AMPU
executes the corresponding protocol handler. It checks and
updates directory entries to preserve cache coherence and
sends appropriate control messages to the AMDU to
perform active memory operations on data. The latency of
the handler is critical to overall performance. For high
performance, the handler latency should be less than that of
the AMDU so that it can be completely hidden by the data
transfer time. In practice, we find that this is the case.

Active Memory Data Unit (AMDU). The AMDU (see
Fig. 6) is a specialized hardware datapath that performs
pipelined address remapping and accelerates cache line
assembly /disassembly. For each cache line, it loads/stores
16 different double words (a cache line) from/to the main
memory according to the addresses it generates each cycle.
We follow a similar design to [33]; however, because our
cache coherence mechanism demands special operations
from the AMDU, it exhibits quite different behavior, as
discussed in Section 4.2.

The AMDU is composed of five cache line-sized buffers:
the Base Address Buffer, Virtual Address Buffer, Physical
Address Buffer, Directory Address Buffer, and Data Buffer,
and three pipeline stages: Address Calculation, AMTLB
Lookup, and Directory Address Calculation/Memory Access.
Each pipeline stage processes one double word at a time

from the previous buffer and writes its result to the next
buffer. Operations are fully pipelined, so one double word
is processed per cycle in the absence of any pipeline stalls.
Therefore, the best-case latency for the AMDU to process a
cache line (16 double words) is the pipeline latency +
15 cycles, where the pipeline latency is the time it takes one
double word to pass through all three stages without stalls.

The Base Address Buffer contains technique-specific
values that are intended to be used for virtual address
calculation. For example, the sparse matrix technique uses
this buffer to store Acol[j] values corresponding to the
requested shadow cache line. The Address Calculation
stage calculates virtual addresses from the Base Address
Buffer by shift and add operations and writes to the Virtual
Address Buffer. Each entry of the Virtual Address Buffer
holds the virtual address of the corresponding double
word. The AMTLB translates the virtual addresses to
physical addresses and then the Memory Access stage
performs double word load/store operations to/from the
corresponding entries of the Data Buffer. The Directory
Address Calculation unit helps the AMPU calculate
directory entry addresses. The coherence protocol requires
the AMPU to check the directory entries of the cache lines
containing the double words, so the address calculation is
performance-critical. By moving the address calculation to
the AMDU, the latency of the AMPU is significantly
reduced and, because it operates concurrently with the
Memory Access stage, it does not slow down the AMDU.

Active memory techniques directly manipulate applica-
tion data that cannot be accessed through physical
addresses. For example, linked-list linearization traverses
a list by chasing virtual addresses. The memory system is
addressed with physical addresses, so the AMDU has a TLB
that we call the AMTLB. Because an AMTLB miss stalls the
AMDU pipeline and has a large miss penalty, the hit rate of
the AMTLB is a critical determinant of performance.
Therefore, our AMDU also has an AMTLB predictor to
improve its performance. The AMTLB predictor prefetches
the accesses to the AMTLB. It is a Differential Finite Context
Method predictor [10] that consists of a 3 KB table and
control logic. Detailed analysis can be found in [15]. It
improves performance by more than 15 percent. Finally, if
the AMTLB suffers a page fault, a trap is made to the kernel
and the page fault handler is initiated.

Send Unit. The Send Unit is responsible for the
mechanics of sending interventions or reply messages
generated by the coherence protocol. The Send Unit
assembles the header and the data components into a
message and inserts it into the corresponding output queue
(PI or NI), offloading this task from the AMPU.

Memory Interface. The Memory Interface connects the
SDRAM to the other parts of the controller. It picks a
request from a 16-deep request queue and performs loads
or stores. It is fully pipelined and the AMDU does not stall
unless the memory request queue fills.

4.1.2 Network Integration

Commodity architectures are witnessing evolutionary
changes in network integration as the network connection
moves from a plug-in card on the distant I/O bus to a
routing chip directly connected to or integrated with the

294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, MARCH 2004
CPU CPU CPU| (CPU I
Switch
Host Interconnect r Host Interconnect
B | Node B |
. Active = Active .
MMaln . Memory : Memory MMaln
emory Controller B Controller —viemory
~
Network R g InfiniBand Network I
Interface 1B Link Switch 1B Link Interface

Fig. 7. Active memory cluster configuration.

memory controller (Fig. 7). Our active memory controller
design uses a system area network (SAN), such as
InfiniBand [12] (shown in Fig. 7) or PCI Express [30]
(formerly 3GIO), as its network interface. However, the
active memory controller does not use the high-level (and
higher overhead) user-level protocols that run over the SAN
network link when sending and receiving the messages that
comprise the coherence protocol. Instead, our controller
uses the fast underlying link-level performance to synthe-
size and handle messages to support DSM. Coherence
messages travel between memory controllers only and are
not forwarded up to the processor for handling via
interrupts. Instead, our system handles the messages
entirely in the memory controller, similar to a hardware
DSM machine. The “normal” (not using active memory
support) parallel performance of this Active Memory Cluster
(AMC) configuration is detailed in [11].

4.2 Cache Coherence Protocol Support

Starting from a base protocol capable of running normal
(nonactive) applications, we add support for each of the
active memory techniques. In this section, we discuss the
salient features of the base protocol and the extended active
memory protocols. The discussion on matrix transpose and
parallel reduction focuses on multinode clusters, while the
explanation of sparse matrix and linked-list linearization is
centered around single-node systems.

4.2.1 Base Protocol

The base coherence protocol can correctly execute any
normal shared memory application. We implement two
versions of our base protocol, one particularly optimized for
single-node SMP systems and a similar but more scalable
protocol for multinode clusters.

For single-node systems—uniprocessor and SMP multi-
processors—our base protocol is a conventional invalida-
tion-based MSI bitvector directory protocol running under
release consistency. For all normal memory requests, our
memory controller follows this base protocol. Each direc-
tory entry (per 128B cache line) is 8 bits wide. The sharer
vector occupies 4 bits, so we can support up to 4-way SMP
nodes. These four bits store a sharer vector if the cache line
is in the shared state or an owner identifier for the dirty-
exclusive state. Two bits are devoted to maintain cache line
state information (AM and dirty-exclusive) and two
remaining bits are left unused.

For multinode DSM clusters, the base protocol is an MSI
write-invalidate bitvector protocol similar to that in the SGI
Origin 1400 [18]. The directory entry is 64-bits wide with
five state bits (AM, pending shared, pending dirty-
exclusive, dirty, and local). The AM bit is used only by
our active memory protocol extensions. The pending states
are used to mark the directory entry busy when requests are
forwarded by the home node to the current exclusive
owner. The dirty bit is set when a memory line is cached by
one processor in the exclusive state. The local bit indicates
whether the local processor caches the line and is used to
quickly decide whether an invalidation or intervention
needs to go over the network interface. The sharer vector is
32 bits wide. The remaining bits are left unused for future
extensions of the protocol. As in the Origin protocol, our
protocol collects invalidation acknowledgments at the
requester. However, we support eager-exclusive replies
where a write reply is immediately sent to the processor
before all invalidation acknowledgments are collected. Our
relaxed consistency model guarantees “global completion”
of all writes on release boundaries, thereby preserving the
semantics of flags, locks, and barriers.

4.2.2 Matrix Transpose Protocol Extensions

In this section, we describe the implementation of the
matrix transpose protocol extensions. Consider the example
in Section 3.1. A is an N x N original matrix and A’ is a
shadow matrix address remapped to the matrix A.
Processor P,; accesses the matrix A if it wants to access
data row-wise or the matrix A’ if the access pattern is
column-wise.

Every memory request is forwarded to the home node
and processed by the home node memory controller. The
memory controller first consults the directory entry. A
cache line can be in one of eight possible states—unowned,
shared, dirty, pending shared, pending dirty-exclusive,
AM, AM pending shared, or AM pending dirty-exclusive.
These states are divided into two groups, normal states
(unowned, shared, dirty, pending shared, pending dirty-
exclusive) and AM states (AM, AM pending shared, AM
pending dirty-exclusive). If a cache line is in a normal state,
the meaning of the state is the same as that in the base
protocol. If a cache line is in an AM state, it means that the
remapped address space is being used. (e.g., if the
requested cache line is in the original matrix A and it is in
an AM state, the corresponding remapped cache lines in the
shadow matrix A’ are being cached.)

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 295

If the requested cache line from A is in any of the normal
states, our memory controller executes the base protocol.
Note that, for normal memory operations, our active
memory protocol has only the additional overhead of
checking whether the AM bit is set or not. This does not
slow down conventional applications since this check is not
on the critical path [11], [15].

If the requested cache line is in the AM state, there is a
potential data coherence problem. Because remapped cache
lines in the shadow address space are already being cached,
if we simply reply with the requested cache line, it may
result in data inconsistency. To solve this problem, our
protocol enforces mutual exclusion between the normal and
shadow address spaces. First, we set the requested cache
line in the pending state so that subsequent requests to the
line will be refused until the current request completes.
Based on information like matrix dimension and element
size provided by the one-time AMInitTranspose call, we
calculate each remapped address and consult its directory
entry. If it is in the dirty-exclusive state, we send an
intervention to its owner and retrieve the most recent copy
of the data. If it is in the shared state, we send invalidation
requests to all the sharers and gather the acknowledgments.
After we invalidate all the remapped cache lines, we can
safely reply with the requested cache line. Finally, we
update the directory entries of the requested cache line and
the remapped cache lines. The requested cache line is set in
the shared or dirty state based on the original request type
and the remapped cache lines are placed in the AM state to
guarantee future data coherence. During the entire proce-
dure, if we encounter any cache line in the pending state,
we send a negative acknowledgment to the requester. Our
protocol ensures that the retry will eventually succeed.

The in-memory matrix transpose operation takes place in
two cases: when a processor requests a shadow cache line or
when ashadow cache line is written back to memory. First, for
a shadow cache line request to A’, our active memory
controller gathers data elements from the original normal
space A to assemble the requested shadow cache line. The
address calculations are accelerated by specialized hardware
(the AMDU in Fig. 6) and the gather operation eliminates the
software transpose overhead from the main processor.
Second, when a shadow cache line is written back to memory,
the memory controller disassembles the shadow cache line
and writes the data elements back to the original space. This
operation has significant performance benefit in multinode
systems. By writing back data elements from the shadow
space to the normal space, it saves remote memory accesses.
The next time a processor accesses the data elements in the
normal space, it does not need to retrieve the possibly dirty
and remotely cached shadow elements. However, the benefit
depends on the percentage of shadow cache lines that are
timely written back.

We have also designed an alternative protocol, called
Speculative Matrix Transpose, that improves performance
even further. Instead of carrying out the transpose opera-
tion when a shadow cache line is requested, we can perform
the transpose when a normal cache line is written back and
speculatively “push” the transposed cache line to the local
memory of the next predicted consumer. If the speculation

is correct, our technique will enjoy a reduction in remote
memory accesses for the same reasons as the writeback
transpose case above. Note that a read operation is in the
critical path of execution, while a writeback operation is not.

4.2.3 Sparse Matrix Protocol Extensions

From the discussion of the matrix transpose protocol, it is
clear that the matrix transpose technique is a kind of
scatter/gather operation where the scatter/gather pattern is
extremely regular. The sparse matrix technique can be seen
as a generalized scatter/gather operation where the map-
ping function is arbitrary. For instance, in the example in
Section 3.2, the mapping function is stored in the vector
Acol. The sparse matrix protocol is similar to the matrix
transpose protocol and we identify only distinguishing
features of this protocol below.

This technique needs to maintain the mapping between
v[Acol[j]] and v'[] as the matrix transpose technique keeps the
mapping between A[i][j] and A’[j][¢]. For a shadow cache line
request to v'[j], the memory controller first computes the
index j using the starting address of v’ and the size of data
element passed by the AMInitSparse library call. This can
be done since the shadow space is contiguous. The controller
thenloads the corresponding 16 consecutive values from Acol
into the Base Address buffer. These values are used to
assemble the requested shadow cache line containing the
16 values of v[Acol[j]]. The memory controller consults the
directory entry for the corresponding portion of Acol. If the
most recent data of Acol are in a processor cache, an
intervention mustbe sent to get the correct values. Otherwise,
the data may be simply copied from memory to the Base
Address buffer. Finally, the virtual addresses of the requested
elements of v[Acol[j]] can be calculated using add and shift
operations with the starting virtual address of vand the size of
each data element. The corresponding physical addresses are
produced by the AMTLB. After calculating the mapping, the
execution of the protocol is identical to the matrix transpose
protocol.

To enforce mutual exclusion between v'[j] and v[Acol[j]],
when the memory controller gets a request to ¢/, it
invalidates the remapped cache lines of v before it replies
to the request. The memory controller checks the directory
entries of remapped cache lines, then sends interventions
for dirty lines and invalidates shared lines. When it returns
the requested cache line of v/, no remapped cache lines of v
reside in the processor caches.

We found that if the protocol enforces mutual exclusion
between the corresponding lines in v and ¢/, some
applications may suffer from cache thrashing. In those
applications, the access pattern is not migratory from the
normal space to the shadow space or vice versa. Instead,
processors access both spaces (i.e.,, v and ') at the same
time, so the mutual exclusion results in false sharing. In a
variation on our AM protocol, we relax the mutual
exclusion. We allow the normal and the shadow spaces to
be cached at the same time if neither is in the dirty state. If a
processor tries to write one space, an upgrade request is
sent to the memory controller, which then invalidates the
other space. Note that, in this new protocol, the mutual
exclusion is imposed only on write requests, not on read
requests. This illustrates another advantage of our flexible

296

memory controller in that it can adapt the coherence
protocol to the needs of applications.

As mentioned in Section 3.2, this protocol has one
limitation: It does not allow writes to the shadow vector v'.
If two elements in a shadow cache line (at different positions,
but in the same line) are mapped to a single element in a
normal cache line and a processor writes to one of the
elements, the other element will become stale. This restriction
applies to any active memory system that does not modify the
processor cache architecture. However, writes to v may be
introduced only if the application writes to v in a sparse
manner and, in our experienc,e sparse matrix applications do
not need sparse writes to the vector v.

4.2.4 Linked-List Linearization Protocol Extensions

The linked-list linearization protocol is composed of two
operations—Linearization and Safety-Net. Linearization
copies a linked-list into a contiguous memory space and
safety-net guarantees correctness. Consider the example
given in Section 3.3, where we traverse a linked-list A.
This technique provides a library call AMLinearize to
user applications. On a linearize call to the linked-list A, the
memory controller linearizes the list—it copies a certain
number of nodes of the list into a contiguous physical
address space. First, the linearize call communicates to the
memory controller the starting virtual address of the list A4,
which the AMTLB translates into a physical address. Then,
the memory controller checks the directory entry of the
corresponding cache line. It retrieves a dirty cache line from
the processor cache and invalidates any sharers, then copies
data into a contiguous memory space provided by the
operating system. It also updates the “next” pointer of the
node to point to the new space. Now that the first node of
the list is copied, the memory controller chases the next
pointer to get the virtual address of the next element and
repeats the same procedure above. The memory controller
finishes when it reaches the end of the list or it has
linearized a predefined number of nodes. It returns the
starting address of the newly linearized list and the
application traverses the new list instead of the list A. This
linearize call can be implemented in software without any
active memory support. However, our technique can
achieve higher performance since our memory controller
is closer to main memory and can manipulate data with
word granularity. The main processor pays longer latency
to access memory and must transfer entire cache lines.
More seriously, without active memory support, a
correctness problem arises if a processor accesses a
dangling pointer that points into the “old” linked-list. Such
a reference may return stale data. Our solution is the safety-
net operation that keeps data coherent between the original
list and the linearized lists. We establish a mapping
between the original and linearized lists and enforce mutual
exclusion so that only one of the remapped elements can be
cached at a time. First, we make a mapping by the “memory
forwarding” chain. When the memory controller performs a
linearize call, it stores pointers to the newly linearized list in
the memory space of the old list. So, each node of the old list
now contains a pointer to the corresponding node of the
new list, instead of a data value. It also sets the AM bits of
the cache lines that contain any nodes of the old list. Second,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

if a processor accesses a dangling pointer, the AM bit in the
directory entry of the requested cache line must be set,
indicating that some of the nodes in the cache line are
linearized and therefore invalid. The memory controller
finds these old nodes, reads the pointers to the new nodes,
and follows the memory forwarding chain to the end. Note
that multiple linearize calls may be performed on a single
linked-list and we keep the valid data nodes (not the
pointer nodes) at the end of the chain. For those valid
nodes, the memory controller retrieves the most recent data
through the same procedures as before—it consults the
directory entries and sends interventions for dirty cache
lines and invalidations for shared lines. Finally, the memory
controller gathers all the valid data and returns the
requested cache line. The memory controller also needs to
update the memory forwarding chain and the directory
entries to guarantee future correctness. It puts the requested
cache line at the end of the forwarding chain and clears the
AM bit. The AM bits of other cache lines in the same
forward chain are also updated accordingly.

4.2.5 Parallel Reduction Protocol Extensions

As in the parallel reduction example in Section 3.4, in the
first phase of execution, every processor reads and writes
the shadow cache lines of z’. When a processor reads a
shadow cache line in the shared state, the local memory
controller immediately replies with a cache line filled with
identity values e. It does not notify the home node because
the algorithm guarantees that every shadow cache line will
be written eventually. If the processor wishes to write a
shadow cache line, the local memory controller still replies
immediately with a cache line filled with values e. The main
processor receives the cache line, but the write does not
complete globally until all address remapped memory lines
are invalidated from other caches and all the necessary
acknowledgments are gathered. To do this, the local
memory controller also forwards the write request to the
home node. The home node memory controller consults the
directory entries of the requested 2’ cache line as well as the
corresponding x cache line. The protocol execution observes
one of the following four cases.

The first case occurs when the corresponding « cache line
is in the dirty state. The home node notifies the requester
that the number of acknowledgments is one, sends an
intervention to the owner, and sets the shadow directory
entry in the pending exclusive state to indicate that the first
shadow request for this cache line has been received and
the intervention has been sent. Later, after the dirty line is
retrieved and written back to memory, the home node
sends an acknowledgment to every requester marked in the
shadow directory entry and clears the pending bit. Only
after the requesters receive the acknowledgments does the
corresponding write complete.

The second possibility is that the = cache line is in the
shared state. The home node replies with the number of
sharers to the requester and sends out invalidation requests.
The sharers send their acknowledgments directly with the
requester.

The third case arises when the requested z’ cache line is
in the pending exclusive state—the first case above
describes why and when the directory entry transitions to

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 297

this state. In this case, the home node notifies the requester
that the number of acknowledgments is one.

In the last case, the directory entries of both the = and
2’ cache lines are clean. The home node notifies the
requester that the expected number of acknowledgments
is zero. In all the cases, the home node marks the
requester in the shadow directory entry and sets the
AM bit in the normal directory entry.

The merge phase takes place at the home node when it
receives a writeback for a shadow cache line. The home
node clears the source node of the writeback from the
shadow directory entry, performs the reduction operation,
and writes the result back to memory. The last writeback
clears the AM bit in the normal directory entry. At this
point, the corresponding = cache line in memory holds the
most recent value.

Finally, we discuss the case when a memory request
arrives for a normal cache line of z. If the AM bit in the
corresponding directory entry is clear, the behavior of our
active memory controller is identical to the base protocol.
However, if the AM bit is set, it means that the correspond-
ing shadow cache line is cached in the dirty-exclusive state
by one or more processors. Note that, in this protocol, there
are only two stable states for a shadow cache line, namely,
invalid and dirty-exclusive. Note also that, from the
protocol execution discussed above, it is clear that the same
shadow cache line can have simultaneous multiple writers.
To satisfy the request for the x cache line, the home node
sends out interventions by reading the owners from the
shadow directory entry and keeping the normal directory
entry in the appropriate pending state (e.g., shared or dirty-
exclusive) until the last intervention reply arrives. Every
intervention reply arrives at the home node and clears the
source node from the shadow directory. At this time, the
home node also carries out the reduction between the
intervention reply and the resident memory line. The final
intervention reply triggers the data reply carrying the
requested x cache line to the requester.

4.2.6 Protocol Design Issues

In the following, we summarize a few implementation-
specific issues in active memory protocol design. Our
discussion touches on four topics, handler latency, shadow
page placement, cache line invalidation, and deadlock
avoidance. The latter three issues are particular to multi-
node active memory systems.

The most important performance issue in our protocol
design is the path length of the protocol handlers. Handler
latency (the execution time of the software protocol
handler) directly affects memory system performance. In
our active memory controller, the AMPU and the AMDU
work concurrently. The AMPU executes the protocol
handlers, while the AMDU accesses main memory. In the
ideal case, the handler latency is completely hidden by the
memory access time, which is the case for all normal
(nonactive) memory accesses. However, the active memory
protocol handlers are longer since they do more work (note
that this is justified because we are saving future cache
misses). To optimize our active memory handlers, we
implement some common functionality in hardware. For
example, the AMDU calculates the directory entry

PO P1 P2 P3
PO
P1
- SCi

1 3¢
P2 NC & : :

F—I——SsC
B2 —le

Normal Space A Shadow Space A’

Fig. 8. Page placement for matrix transpose.

addresses for the AMPU, which it uses in every active
memory protocol. We also adopt software optimization
techniques like loop unrolling in our protocol handlers,
which results in better code scheduling and fewer branches
in the dual-issue AMPU.

Shadow page placement is a problem unique to multi-
node active memory systems. Consider a memory snapshot
from the matrix transpose protocol execution in Fig. 8.
While servicing a request for a normal cache line NC, the
home node of NC' needs to consult the directory entries of
the corresponding shadow cache lines, SCy,...,5C;. A
naive shadow page placement would necessitate network
transactions to look up the shadow directory entries and
this overhead can be a serious bottleneck. We solve this
problem by placing the normal space and the correspond-
ing shadow space on the same node. Fig. 8 shows an
example of a four node system. The normal space is
partitioned row-wise and the shadow space is partitioned
column-wise. This page placement guarantees that, for any
normal cache line request, the home node memory
controller can locate all the directory entries of the
corresponding shadow cache lines on the same node. In
addition, the same is true for shadow cache line requests.
Note how the underlying active memory operation (e.g.,
transpose) dictates a column-wise partitioning of the
shadow space. We adopt the same method for the parallel
reduction technique, although there the address remapping
is one-to-one and both the spaces are partitioned row-wise.

The next design issue we discuss is related to invalida-
tion messages. Since our system collects invalidation
acknowledgments at the requester, the acknowledgment
message typically carries the address of the requested cache
line (i.e., the cache line that is being written). However in
our active memory protocols, the remapped shadow cache
lines have different addresses from the corresponding
normal cache line addresses. So, the invalidation addresses
can be different from the requested addresses. If a normal
cache line request invalidates one or more shadow cache
lines, a problem will arise at the requester while gathering
the invalidation acknowledgments. The same problem will
also happen for shadow cache line requests. Note that the
invalidation acknowledgments are directly sent by the
invalidating node to the requester and they carry the
address of the invalidated line, not the address of the
originally requested line. In normal systems, these two
addresses are the same because one cache line corresponds
to a system-wide unique physical address. We propose two
solutions to this problem. The first solution is to pack two
addresses (the invalidation address and the requested

298

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

TABLE 1
Applications and Problem Sizes

Applications Problem Sizes

SPLASH-2 FFT 1M points

FFTW 8K x16x16 matrix

Transpose 1K x 1K matrix

Conjugate Gradient | 8K x8K matrix, 256K non-zeros

VecMult 8K x 8K matrix, 256K non-zeros, 10 iterations
DDOTI 256K-element vector, 8K non-zeros, 10 iterations
SMVM 64K x 64K matrix, 2M non-zeros, 50 iterations
Health 6 level tree, 4 children per node

MST 2K-node graph

Traverse 256 lists, 1K elements per list

DenseMMM 256256 matrix

Spark98Kernel 64K x 64K matrix, 1M non-zcros

SparscFlow 512K nodes and 1M edges

MSA 64 x 128K matrix

address) in the header of the invalidation request message
from the home node to the invalidating node so that the
invalidating node can set the requested address in the
acknowledgment header. The second solution is to carry
out an address remapping operation again at the invalidat-
ing node to compute the corresponding requested address.
The flexibility of our design allows us to employ the second
solution and therefore does not require changes to the
network message header structure.

Finally, the possibility of generating multiple interven-
tions from a single request in active memory protocols has
ramifications on the deadlock avoidance strategy. Also,
unlike the baseline protocol, many of the active memory
protocol handlers require more than one data buffer for
transferring cache-line-sized data to and from the memory
system, requiring careful data buffer management. How-
ever, we solve both problems similarly to conventional
DSM systems—a handler running out of any necessary
resource suspends execution and reschedules itself at a later
point in time instead of waiting for that resource. We
enqueue the incomplete request to a reserved portion of
main memory at the home node and dispatch it when
appropriate resources are available. This ensures forward
progress by allowing the memory controller to handle other
outstanding requests and break deadlock cycles. Note that
our protocols use three or four virtual lanes, obviating the
need for complicated back-off mechanisms like those
implemented in the SGI Origin 1400 protocol.

5 SIMULATION METHODOLOGY

In this section, we discuss the applications we use to
evaluate the performance of our active memory system and
the simulation environment we use to collect the results.

5.1 Applications

To evaluate our active memory system we use a range of
applications—some are well-known benchmarks while

others are microbenchmarks written to exhibit the potential
of a particular active memory technique. In Table 1, we
summarize the applications and the problem sizes we use in
simulation.

We use FFT from SPLASH-2 [31], FFTW [6], and a
microbenchmark called Transpose to evaluate the perfor-
mance of the matrix transpose technique. The
microbenchmark reads and writes to a matrix and its
transpose, making it highly memory-bound. The paralle-
lized versions of all these applications are optimized with
tiling and padding for nonactive memory executions.
Tiling is used to reduce cache misses, especially remote
cache misses, during the transpose phase. Padding is used
to reduce conflict misses in the cache. Without these
optimizations, active memory techniques result in an even
larger speedup than that presented in Section 6.

As sparse matrix applications, we use Conjugate Gradient
from the DIS (Data-Intensive Systems) benchmark suite [3],
VecMult from level-2 Sparse BLAS [23], DDOTI from Sparse
BLAS [22], and a microbenchmark called SMVM. Conjugate
Gradient uses the sparse matrix vector product in the main
iteration loop. VecMult executes the level-2 Sparse BLAS
routine CSR_VecMult_CaABbC_double. DDOTI carries
out the inner product between a dense vector and a sparse
vector stored in standard indexed format. Finally, the
SMVM microbenchmark carries out the sparse matrix
vector multiplication kernel. Conjugate Gradient, VecMult,
and SMVM use the standard Compressed Row Storage to
represent the sparse matrices.

Linked-list linearization is evaluated by running Health
and MST from the Olden benchmarks [1] and a microbe-
nchmark called Traverse. Health has a tree structure where
each node contains five linked-lists. We linearize the longest
two of them, but the other three can also be optimized for
improved performance. MST manages a hash table, each
entry of which is implemented as a linked-list that is
optimized by our linked-list linearization technique. The

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 299

Traverse microbenchmark walks through an array of lists as
new elements are inserted. The length of each list increases
to a maximum of 1,024 nodes. We linearize the lists
periodically as every 32 nodes are inserted.

To evaluate parallel reduction we use the dense matrix
multiplication (Dense MMM) kernel, a modified Spark98
kernel [24], [25], a microbenchmark called SparseFlow, and
a microbenchmark called Mean Square Average (MSA).
Dense MMM carries out the computation C = ATB on
square matrices A and B, which is a special case of the
level-3 BLAS [4] matrix-matrix multiplication subroutine.
The modified Spark98 kernel parallelizes one call to
LocalSMVP. SparseFlow computes a function on the in-
flow of every edge incident on a node and sums up the
function outputs as the net in-flux at each node in a sparse
multisource flow graph. MSA calculates the arithmetic
mean of squares of the elements in every column of a
matrix. All four applications use addition as the underlying
reduction operation.

5.2 Simulation Environment

The main processor runs at 2 GHz and is equipped with
separate 32 KB primary instruction and data caches that are
two-way set associative and have a line size of 64 bytes. The
secondary cache is unified, 512 KB, two-way set associative,
and has a line size of 128 bytes. For sparse matrix
applications, we scale down the cache size so that we can
simulate the effect of running problems with large sparse
matrices by running smaller problem sizes that we can
simulate within a reasonable amount of time. This is
justified since these applications have a working set size
proportional to the problem size. For this class of applica-
tions, we use a 16 KB primary data cache and a 64 KB
secondary cache, keeping the same line sizes and associa-
tivities. We also assume that the processor ISA includes
prefetch and prefetch-exclusive instructions. In our proces-
sor model, a load miss stalls the processor until the first
double-word of data is returned, while store misses will not
stall the processor unless there are already references
outstanding to four different cache lines. The processor
model also contains fully-associative 64-entry instruction
and data TLBs. For a TLB miss, we charge 65 processor
cycles (miss handler latency) plus any associated cache and
memory access time. The simulated page size is 4 KB.

The embedded active memory processor is a dual-issue
core running at the 400 MHz system clock frequency. The
instruction and data cache behavior of the active memory
processor is modeled precisely via a cycle-accurate simu-
lator similar to that for the protocol processor in [9]. Our
execution-driven simulator models contention in detail
within the active memory controller, between the controller
and its external interfaces, at main memory, and for the
system bus. The system bus is 64-bits wide, and its
bandwidth is 3.2 GB/s, which matches the DRAM
bandwidth. The memory request queue is 16 entries deep.
The access time to the first 8 bytes in DRAM cells is fixed at
125 ns (50 system cycles), similar to that in recent
commercial high-end servers [28], [29]. The following 8-byte
requests can be pipelined, in a way similar to [21]. The input
and output queue sizes in the memory controller interface
are set at 16 and 2 entries, respectively. The corresponding

queues in the network interface are 2 and 16 entries deep.
The network interface is equipped with four virtual lanes to
aid deadlock-free routing. We assume processor interface
delays of one system cycle inbound and four system cycles
outbound and network interface delays of 16 system cycles
inbound and eight system cycles outbound. We simulate
16-port crossbar switches organized as a fat tree and present
results for a slow (150 ns hop time) as well as a fast (50 ns
hop time) SAN router. The node-to-network link band-
width is 1 GB/s, typical of current system area networks.

When comparing against flush schemes, we simulate
user-level complete cache flushes to minimize the flush
overhead. This does not involve any kernel trap overhead,
but it does model the latency incurred in the cache
hierarchy to flush the whole cache. Note that systems that
only support selective page flushes will see a larger flush
overhead because realistic problem sizes are far bigger than
the cache size and the entire data structure is flushed one
page at a time.

6 SIMULATION RESULTS

Our simulation results are divided into three areas:
uniprocessor active memory systems, single-node multi-
processor active memory systems, and multinode active
memory clusters.

6.1 Uniprocessor Active Memory Systems

We report uniprocessor results for three active memory
techniques: matrix transpose, sparse matrix, and linked-list
linearization. We present speedup of the active memory
version over the normal application. We also show the
speedup of active memory applications with software
prefetches only for the shadow space accesses. Prefetching
the same accesses in the normal case is extremely difficult
or highly inefficient, while our active memory techniques
result in easily prefetched sequential data from the shadow
space. For the first two techniques, we also give the
speedup of active memory applications using user-level
cache flushes (to emulate the Impulse memory controller
[33]) rather than our hardware coherence, while, for
applications involving linked-list linearization, cache
flushes have no relevance since this technique requires
leveraging the coherence mechanism.

6.1.1 Matrix Transpose

Fig. 9 shows the uniprocessor speedup of three matrix
transpose benchmark applications with active memory
optimization (AM), with active memory and software
prefetching of the shadow address space only (AM+Pre-
fetch), and with active memory using cache flushes rather
than cache coherence (Flush), measured relative to the
execution time of the normal application. Table 2 sum-
marizes the speedup of the nonprefetched AM case versus
normal execution, as well as how much our active memory
system reduces CPU busy time, L2 cache read miss count,
L2 cache write miss count, and data TLB stall time.

All the applications show the clear success of the matrix
transpose technique. Our active memory system achieves
speedup from 1.28 to 2.30 over a normal memory system.
The matrix transpose technique improves performance by

300

Uniprocessor: Matrix Transpose

2.4+ Il Normal
B AM =i

2.2 I AM+Prefetch
[Flush

Speedup

0.8

0.6

0.4

0.2

SPIEH—Z FF ETW Transpose

Fig. 9. Speedup of uniprocessor: matrix transpose.

eliminating the transpose overhead—read stall time, write
stall time, and processor busy time. First, our technique
reduces cache misses significantly. We found that the
number of L2~cache read misses is reduced by 51 percent
to 75 percent and write misses by 61 percent to 79 percent in
our benchmark applications. We also enhance TLB perfor-
mance. Long-strided column-wise memory accesses in the
normal matrix hurt TLB performance, while sequential row-
wise accesses in the shadow matrix yield better perfor-
mance. The simulation results show that the matrix
transpose technique removes almost all the TLB misses.
However, caching TLB entries in the primary and second-
ary data caches alleviates TLB miss penalties for the normal
applications; therefore, saving TLB misses is a smaller
performance effect than reducing cache misses. Finally, we
save processor busy time because the main processor does
not need to execute the transpose phase, though this is a
minor factor compared to the memory stall time savings.
With software prefetching of shadow space accesses, our
technique can improve performance even further. Each
prefetched application shows speedup of 1.36, 1.79, and
2.31, respectively. While both the normal and active memory
executions could benefit equally from prefetching row-wise
accesses in the normal matrix, here we emphasize that
prefetching sequential accesses in the shadow matrix is a

TABLE 2
Reduction Factors of Uniprocessor: Matrix Transpose

FFT FFTW Transpose
Speedup 1.28 1.74 2.30
CPU
12.4 0.5 4.7
Busy Time % % %
L2 Read
51.0 74.89 74.0
Miss Count % % %
b2 Write o0 69 78.5% 77.8%
Miss Count e o7 o
TLB Stall 99.4% 98.1% 98.6%

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

Uniprocessor: Sparse Matrix

T
Il Normal
5.5 I AM |
Bl AM+Prefetch
51] Flush
4.5 [
4| 4
3.5

3+ — 4

2.5 il
Al ‘*]
1.5+ l
1 |
o || O O O

Conjugate Gradient VecMult DDOTI SMVM

Speedup

Fig. 10. Speedup of uniprocessor: sparse matrix.

bonus of the active memory technique. Note that the
Transpose microbenchmark shows little benefit from pre-
fetching since it is a highly memory-bound application that
does not include enough computation to hide the memory
latency.

Here, our optimistic software cache flush scheme has
marginally better performance than our hardware coher-
ence-based system. However, given the advantages that our
solution brings to the programming model along with its
multiprocessor potential, we note that our results show that
a hardware coherence-based approach can achieve these
advantages at a performance level commensurate with the
cache flush technique.

6.1.2 Sparse Matrix
Fig. 10 shows the uniprocessor speedup for the sparse
matrix technique and Table 3 summarizes the reduction
factors. We do not show the write miss count for DDOTI
because the total number of writes in this benchmark is less
than 14 (since it updates a single variable while calculating
the inner product), so the reduction factor is meaningless.
Our active memory system achieves uniprocessor speed-
up from 1.28 to 4.55 across the four benchmarks. Although
there is a reduction in processor busy time (from the

TABLE 3
Reduction Factors of Uniprocessor: Sparse Matrix

| CG [VecMult| DDOTI| SMVM |

Speedup 2.17 1.28 3.07 4.55
CPU
. 16.5% | 25.3% | 22.8% | 18.0%
Busy Time
L2 Read
. 73.2% | 48.3% | 85.7% | 87.2%
Miss Count
L2 Write
17.9 20.79 - 21.6Y
Miss Count % g %
TLB Stall | 48.4% | 51.3% | 98.2% | 98.8%

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 301

Uniprocessor: Linked-list Linearization

8
Il Normal
75/ mm AM
7 Il AM+Prefetch |

6.5
6
5.5
5

Speedup

" w
N W o A

15
iL !
Ol57 l l I |
0 MST Tray

Health Traverse

Fig. 11. Speedup of uniprocessor: linked-list linearization.

elimination of the address calculation for Acol[j]) and data
TLB stall time (from sequential memory accesses in the
shadow vector ¢'[j]), the major source of performance
improvement is the significant reduction in cache misses
since memory stall time occupies the major portion of the
total execution time. The sparse matrix technique saves
more than 50 percent of the L2 cache read misses and
14 percent of the write misses, thus reducing memory stall
time by 21 percent to 81 percent. Here, the variation in
memory stall time reduction across the applications is
mainly due to the differing sparsity of the input matrices.

Software prefetching further improves performance
since the sparse matrix technique enables prefetching of
the shadow vector v'[j] while it is difficult to prefetch the
normal vector v[Acol[j]] because of its sparse access pattern.
For all four applications, our hardware coherence-based
approach performs as well as or better than software
coherence via flushes.

6.1.3 Linked-List Linearization

Fig. 11 shows the uniprocessor speedup for three linked-list
linearization benchmarks and Table 4 summarizes the
reduction factors. Please note that there are no results for
the software flush mechanism because cache flushes alone
cannot efficiently implement this technique.

The linked-list linearization technique does not reduce
processor busy time. The busy time actually increases
depending on how frequently it performs linearization
since, whenever an application linearizes a linked-list, it
calls the AMLinearize routine, which consumes proces-
sing time. However, as a result of the linearization, we can
save a large number of cache misses and the reduction in
memory stall time more than compensates for the increased
processor busy time. In the Traverse microbenchmark, we
achieve speedup of 6.72 from an 85 percent reduction in
L2 cache read and write misses. In MST, the reduction of
L2 cache read misses dominates and we achieve a speedup
of 2.28. In Health, we optimize only two linked-lists out of
the possible five lists per tree node, but still achieve a
uniprocessor speedup of 1.4 over the normal execution.

TABLE 4
Reduction Factors of Uniprocessor: Linked-List Linearization

Health MST Traverse
Speedup 1.31 2.28 6.72
CPU
-2.6 -91.0 -57.0
Busy Time % % %
L2Read |) 3 75.6% 84.8%
Miss Count o o o
L2 Write
42.6 -30.7% 85.2
Miss Count % ° 52%
TLB Stall 33.9% 14.7% 98.8%

Although only a minor contribution, our technique also
saves TLB stall time since the sequential access pattern of
linearized linked-list traversals improves TLB performance.
In addition, software prefetches from the linearized linked-
lists give additional performance boost, as seen in Fig. 11,
due to the contiguous access pattern exhibited by the
linearized linked-lists. Note that it is not efficient to prefetch
the original linked-lists due to their random access pattern.

6.2 Single-Node SMP Active Memory Systems

In this section, we present single-node multiprocessor
results for matrix transpose and sparse matrix techniques.
We give the results for one, two, and four processor SMP
systems. We show the speedup of our active memory
techniques and analyze execution time in detail for the
4-processor executions. Note that we do not include
multiprocessor results for the cache flush approach as
cache flushes become unwieldy and their overhead in-
creases as the system scales.

6.2.1 Matrix Transpose

Fig. 12 shows the speedup of three benchmark applications
for 1, 2, and 4-processor SMP systems and Fig. 13 presents
the execution time breakdown of both normal and active
memory applications on a 4-processor SMP. Our coherence-
based matrix transpose technique continues to improve
performance on SMP multiprocessors. In all the applica-
tions and the system configurations, our active memory
system outperforms the normal memory system. The
performance benefit of the active memory system comes
from three factors—read stall time savings, write stall time
savings, and busy time savings, as explained in Section 6.1.1.

An important issue in our active memory architecture is
memory controller occupancy. In SMP systems, one
memory controller serves multiple processors. As the
number of processors increases, the workload for the
memory controller also increases. This problem is mitigated
somewhat in normal memory systems because the latency
of each protocol handler is small. However, as mentioned in
Section 4.2.6, in our system, active memory handler
latencies are larger, so the occupancy of the memory
controller may become a bottleneck in an SMP. For
example, in SPLASH-2 FFT, the average AMPU occupancy
for one, two, and four processors in normal execution is
7.5 percent, 21.3 percent, and 43.2 percent of the total

302

SMP: Matrix Transpose

I Normal ‘
A

1P 2P 4P 1P 2P 4P 1P 2P 4P
SPLASH-2 FFT FFTW Transpose

Fig. 12. Speedup of SMP: matrix transpose.

execution time, respectively, while the corresponding
occupancy for the active memory executions is 15.5 percent,
29.4 percent, and 47.8 percent, though one must remember
that the active memory execution time is smaller. This
problem is even worse in FFTW and Transpose, where the
occupancy approaches 90 percent on a 4-processor system,
eliminating the possibility of a reduction in read stall time
in the 4-processor FFTW, in spite of the 71 percent reduction
in L2 cache read misses. However, the above simulation
results show that our active memory architecture scales to a
practical number of processors in single-node systems and
still outperforms all normal executions. In addition, as logic
speeds continue to outpace memory access time, occupancy
concerns diminish. We also note that this concern arises
only in SMP systems, not in the single-processor systems
explained in Section 6.1 or the multinode systems described
in Section 6.3.

SMP: Matrix Transpose

] Synch
Il Write
[Read |
Il Busy

)

Normal Normal

Normal

Normalized Parallel Execution Time on 4-way SMP

SPLASH-2 FFT

FFTW

Transpose

Fig. 13. Execution time on four processors for SMP: matrix transpose.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

SMP: Sparse Matrix

Il Normal ‘
6.5 AM

1P 2P 4P 1P 2P 4P 1P 2P 4P
Conjugate Gradient DDOTI SMVM

Fig. 14. Speedup of SMP: sparse matrix.

6.2.2 Sparse Matrix

Fig. 14 shows the speedup of three sparse matrix bench-
mark applications and Fig. 15 presents the execution time
breakdown on a 4-processor SMP. As can be seen in the
figures, our sparse matrix technique outperforms the
normal memory system on SMPs. Every active memory
application is faster than normal execution for the same
number of processors. Conjugate Gradient optimized by
our technique is 2.17 (1P), 1.74 (2P), and 1.30 (4P) times
faster than the corresponding normal execution. In DDOTI
and SMVM, the active memory system has relative speedup
of 3.07 (1P), 2.67 (2P), 1.38 (4P) and 4.55 (1P), 2.80 (2P), 1.82
(4P), respectively. The performance improvement of the
sparse matrix technique mainly stems from the reduction in
cache misses. We also reduce synchronization time in
Conjugate Gradient by improving load balance.

As in the matrix transpose technique, the occupancy of
the memory controller becomes a bottleneck in SMP
systems. The occupancy in the active memory executions
is 82.1 percent of the total execution time in Conjugate

SMP: Sparse Matrix

] Synch
Bl Write
I Read
Il Busy ‘

N

Normal

Normal Normal

4
©

o
o

Normalized Parallel Execution Time on 4-way SMP
o
IS

o
)

Conjugate Gradient DDbTI

SMVM

Fig. 15. Execution time on four processors of SMP: sparse matrix.

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 303

DSM: Matrix Transpose

1 Synch
» N1: Normal execution with 150ns hop time Il Write
S 12 A1: AM-optimized execution with 150ns hop tim [Read
B 1 N2: Normal execution with 50ns hop time Il Busy
8 A2: AM-Optimized execution with 50ns hop time
<]
o N1 N1 N1
[V || S _— 1
©
s —_— |
> ||
£ [
r; 0.8 Ne N2
§ N2 .
5 Al |
2 Al
%
506 A2 —
o
5 A2 At
©
Q0.4 A2
°
()
N
g
502
] l
, A . HE [P
SPLASH-2 FFT FFTW Transpose

Fig. 16. Execution time on 32 processors for DSM: matrix transpose.

Gradient, 92.6 percent in DDOTI, and 98.7 percent in SMVM
on a 4-processor system, which is 30.6 percent (Conjugate
Gradient), 5 percent (DDOTI), and 17.1 percent (SMVM)
higher than in the normal executions. The higher occupancy
in our system explains why the relative speedup of the
active memory applications over the normal executions gets
smaller as the number of processors increases. It is also the
reason that 4-processor active memory speedup in DDOTI
is smaller than the 2-processor one (though still higher than
the 4-processor normal speedup).

6.3 Multinode Active Memory Systems

This section presents simulation results for our matrix
transpose and parallel reduction techniques on multinode
active memory systems. We analyze parallel execution time
and scalability for both normal and active memory systems.
We also explore the effects of network latency on the
achieved speedup.

6.3.1 Matrix Transpose

We present the results for three matrix transpose applica-
tions. Fig. 16 shows the comparison of parallel execution
time for both normal and active memory applications with
two different network hop times running on a 32-node
(uniprocessor node) DSM system. The benchmarks show
speedup of 1.54 to 2.16 with 150 ns hop times and 1.34 to
2.09 with 50 ns, respectively. Recall that we optimized the
normal applications with tiling and padding to avoid naive
comparisons.

As explained in Section 6.1.1, the matrix transpose
technique improves performance by eliminating the trans-
pose phase, which leads to reduction in memory access
time, processor busy time, and TLB stall time. Saving cache
misses improves performance even more in multinode
systems through the elimination of many longer-latency
remote memory accesses. In addition, we also reduce
synchronization stall time in multinode systems. While this
active memory technique distributes memory accesses over
the entire program execution, the normal applications
generate bursts of memory accesses (especially remote

DSM: Matrix Transpose

I I

35 —— Prefetched AM with h=50ns 7

—— Prefetched Normal with h=50ns

—=— AM with h=50ns s

30l < AMwith h=150ns e |
o Normal with h=50ns -

—— Normal with h=150ns

16
Number of Processors

Fig. 17. Scalability of prefetched FFT for DSM: matrix transpose.

accesses) during the transpose phase, resulting in system-
bus and network congestion and, hence, load imbalance
and high synchronization stall time. Further, normal
applications require barriers both before and after the
transpose phase, but the active memory system needs only
one (see Section 3.1).

Figs. 17, 18, 19, and 20 show the speedup of three
benchmarks relative to uniprocessor normal execution with
two different network hop times as the number of processors
increases. These results show that our active memory system
scales significantly better than normal memory systems. In all
configurations—for different numbers of processors and
network hop times—our active memory system always
outperforms the normal system. Further, the performance
gap between our system and the normal system widens as the
number of processors increases. For example, for FFTW with
150 ns hop times, our system is 6 percent faster than the
normal system on one processor, but 58 percent faster for
32 processors. The scalability of the active memory system
stems mainly from reducing remote memory accesses. For
instance, while we save only local misses in a 1-processor
system, we can save half local misses and half remote misses
in a 2-processor system. Though the total number of reduced
cache misses is the same, we can get better speedup on a
2-processor system because we save the larger remote cache
miss penalties.

Fig. 17 includes results for a software prefetched
SPLASH-2 FFT. To the extent that it can hide remote miss
latencies, software prefetching has a similar effect as our
active memory technique. The benefit of active memory
systems is reduced if software prefetching is used in normal
applications. However, note that our active memory system
still gives better performance than normal memory systems.
First, our system can also take advantage of the prefetch
optimization. The active memory speedup of the prefetched
version is 32.10, while the nonprefetched active memory
speedup is 28.72 in a 32-processor system. Second, though
software prefetching can tolerate cache miss penalties, it
still generates the same number of memory accesses. Our
technique actually reduces the number of memory accesses

304

DSM: Matrix Transpose

I I
351 —— Speculative AM with h=50ns 7
—— Speculative AM with h=150ns

—=— AM with h=50ns

304 AM with h=150ns
—=— Normal with h=50ns
—+— Normal with h=150ns

32

]
Number of Processors

Fig. 18. Scalability of speculative FFT for DSM: matrix transpose.

by improving locality. This difference results in lower
memory system congestion and smaller synchronization
stall times. The simulation results show a 79 percent
reduction in synchronization stall time in our system.

Fig. 18 presents results for the speculative matrix
transpose protocol discussed in Section 4.2.2 and shows
the success of our technique. The speculative AM execution
with a 150 ns hop time is faster than any other
nonspeculative AM or normal execution (even with faster
50 ns hop times) and the speculative AM system with a 50 ns
hop time always shows the best performance. In addition,
the performance gap widens as the number of processors
increases. Correct speculation changes remote memory
accesses into local accesses, which, in conjunction with
our AM-accelerated transpose operations, improves perfor-
mance even further. Note that AM speculation can be more
accurate than non-AM speculation. For a cache line write-
back, the memory controller predicts the next consumer and
pushes the cache line speculatively. In a non-AM context,
the next consumer can be any node in the system, so the

DSM: Matrix Transpose

30 T T
< AM with h=50ns
* AM with h=150ns
o Normal with h=50ns
—— Normal with h=150ns

25

12 4 8 16 32
Number of Processors

Fig. 19. Scalability of FFTW for DSM: matrix transpose.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, MARCH 2004
DSM: Matrix Transpose
30—
o~ AM with h=50ns
»— AM with h=150ns
o Normal with h=50ns
o5|| =+ Normal with h=150ns
20 b
Ey
315 :
o
(7]
101 f
5 P
,x/,',f"/i', -
=
ol
12 4 8 32

16
Number of Processors

Fig. 20. Scalability of transpose for DSM: matrix transpose.

prediction must be made from the entire set of nodes.
However, the prediction domain of the AM system is
limited to a binary choice between either the original matrix
or the shadow matrix. The synergy in the combination of
our active memory technique and our protocol speculation
technique allows for latency hiding of AM operations and
improved prediction accuracy.

6.3.2 Parallel Reduction

We present results for four parallel reduction applications.
Fig. 21 shows the comparison of parallel execution time on a
32-processor system. The active memory system achieves
speedup of 1.19 to 2.81 with 150 ns hop times and 1.15 to 2.71
with 50 ns, respectively. All the applications (normal and
AM) use software prefetching to hide remote memory
latency.

AM parallel reduction benefits from eliminating the
merge phase, which leads to processor busy time savings
(by executing the merge phase in the memory controller)

DSM: Parallel Reduction

N1: Normal execution with 150ns hop time SY':’Ch

12 A1: AM-optimized execution with 150ns hop time Il Write
- N2: Normal execution with 50ns hop time [Read
Il Busy

A2: AM-optimized execution with 50ns hop time

N1 N1 N1
=] -

N1
N2
A N2
08 L A1 N2]
B N2
Al
0.8 A2 | A2
0.4 Al
A2
0.2} I |
0 I

DenseMMM Spark98Kernel SparseFlow MSA

1

Normalized Parallel Execution Time on 32 Processors

Fig. 21. Execution time on 32 processors for DSM: parallel reduction.

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 305

DSM: Parallel Reduction

30 T T
< AM with h=50ns
x AM with h=150ns
o Normal with h=50ns
—— Normal with h=150ns

25

12 4 8 16 32
Number of Processors

Fig. 22. Scalability of DenseMMM for DSM: parallel reduction.

and read stall time savings (by removing cache misses,
especially remote misses, during the merge phase), the
latter being dominant. We found that the busy time
reduction in each benchmark is 8.6 percent (DenseMMM),
13.8 percent (Spark98Kernel), 63.7 percent (SparseFlow),
27.6 percent (MSA), and the L2 cache read stall time savings
is 94 percent, 24 percent, 89 percent, and 94 percent,
respectively. DenseMMM has a dominant busy time and
the merge phase forms a small portion of the total execution
time. As a result, Amdahl’s Law limits the achievable
performance gain. The surprisingly high speedup of
SparseFlow stems from the sparse structure of the write
operations to the reduction vector. In normal executions,
even if a cache line does not contribute to the final reduced
vector, every data point needs to be visited in the merge
phase since it is hard to know (especially if the reduced
vector is sparsely written) which cache lines ultimately
contribute to the final reduced value. However, in the active
memory case, the reduction is exposed to the memory
controller and the memory controller touches only those

DSM: Parallel Reduction

30

—=— AM with h=50ns
—— AM with h=150ns
—=— Normal with h=50ns
25| —+— Normal with h=150ns

20- Ao

| |
4 8 16 32
Number of Processors

Fig. 23. Scalability of Spark98Kernel for DSM: parallel reduction.

DSM: Parallel Reduction

T T
< AM with h=50ns
»— AM with h=150ns
& Normal with h=50ns
—— Normal with h=150ns

25

1
Number of Processors

Fig. 24. Scalability of SparseFlow for DSM: parallel reduction.

cache lines that contribute to the final reduced value
because the processors request only these shadow lines.
Figs. 22, 23, 24, and 25 show the active memory speedup
of the four benchmarks as the number of processors varies.
It is clear that the active memory optimization achieves
significantly better scalability than the normal applications.
Active memory applications are always faster than normal
executions and, as the number of processors increases, the
performance gap widens. The scalability of the parallel
reduction technique results from the memory access pattern
of the merge phase. Since the total volume of memory
accesses in the merge phase remains constant, with
P processors, 1—17 fraction of the accesses remain local while
the remaining £5! fraction are remote memory accesses. In
normal memory systems, this remote memory fraction
increases with increasing P, therefore the merge phase
suffers from an increasing number of remote memory
accesses as the system scales. With active memory
optimization, however, these accesses are moved from the
critical path of execution to the writeback messages.

DSM: Parallel Reduction

30

—=— AM with h=50ns
—— AM with h=150ns
—=— Normal with h=50ns
—+— Normal with h=150ns

25

o1 | |
12 4 8 16 32
Number of Processors

Fig. 25. Scalability of MSA for DSM: parallel reduction.

306

Therefore, the scalability of the merge phase is greatly
enhanced, resulting in the widening performance gap
between active memory optimization and normal execution
as the system scales.

7 CONCLUSIONS

Our active memory controller architecture and coherence
protocol extensions improve the memory system perfor-
mance of applications that exhibit poor cache behavior on a
spectrum of machine configurations, from uniprocessors
through single-node multiprocessors to distributed shared
memory systems. We have detailed the microarchitecture of
our novel active memory controller that extends the cache
coherence mechanism to implement address remapping
operations without requiring cache flushes. The address
remapping techniques improve spatial locality, enhancing
cache performance in both uniprocessor and multiprocessor
systems. However, they create data coherence problems
that our programmable active memory controller solves by
executing augmented cache coherence protocols. In addi-
tion, the same cache coherence mechanism allows us to
efficiently extend traditional uniprocessor active memory
techniques to multiprocessor systems. The end result is a
completely transparent and highly scalable memory system.

The heart of our memory system is the active memory
controller that runs active memory protocols merging the
data coherence mechanism and active memory operations.
Our active memory controller provides flexibility without
sacrificing performance. The programmability of the AMPU
supports various active memory techniques without any
additional hardware cost and the AMDU accelerates
address remapping operations with its specialized cache
line assembly and disassembly hardware.

Through detailed simulation, we have shown that our
active memory system achieves significant uniprocessor
speedup and that the same memory architecture accom-
plishes remarkable scalability in SMP and DSM multi-
processors. A class of applications that takes advantage of
our active memory techniques enjoy speedup from 1.3 to 7.6
on uniprocessors and super-linear scalability in multi-
processors, without sacrificing the performance of conven-
tional nonactive applications.

ACKNOWLEDGMENTS

This research was supported by US National Science
Foundation CAREER Award CCR-9984314.

REFERENCES

[1] M.C. Carlisle and A. Rogers, “Software Caching and Computation
Migration in Olden,” Proc. Fifth ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming, pp. 29-38, July 1995.

[2] M. Chaudhuri, D. Kim, and M. Heinrich, “Cache Coherence
Protocol Design for Active Memory Systems,” Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications,
pp- 83-89, June 2002.

[3] “DIS Benchmark Suite” http://www.aaec.com/projectweb/dis/,
2002.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.3, MARCH 2004

[4] JJ. Dongarra et al., “A Set of Level 3 Basic Linear Algebra
Subprograms,” ACM Trans. Math. Software, vol. 16, no. 1, pp. 1-17,
Mar. 1990.

[5]]. Drapper et al., “The Architecture of the DIVA Processing-in-
Memory Chip,” Proc. 16th ACM Int’l Conf. Supercomputing, pp. 14-
25, June 2002.

[6] M. Frigo and S.G. Johnson, “FFTW: An Adaptive Software
Architecture for the FFT,” Proc. 23rd Int’l Conf. Acoustics, Speech,
and Signal Processing, pp. 1381-1384, May 1998.

[71 M.J. Garzaran et al., “Architectural Support for Parallel Reduc-
tions in Scalable Shared-Memory Multiprocessors,” Proc. 10th Int’l
Conf. Parallel Architectures and Compilation Techniques, Sept. 2001.

[8] K. Gharachorloo et al., “Architecture and Design of AlphaServer
GS314,” Proc. Ninth Int’l Conf. Architectural Support for Program-
ming Languages and Operating Systems, pp. 13-24, Nov. 2000.

[9]]. Gibson et al., “FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop,” Proc. Ninth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 49-58, Nov.
2000.

[10] B. Goeman, H. Vandierendonck, and K.D. Bosschere, “Differential
FCM: Increasing Value Prediction Accuracy by Improving Table
Usage Efficiency,” Proc. Seventh Int’l Symp. High-Performance
Computer Architecture, pp. 147-216, Jan. 2001.

[11] M. Heinrich, E. Speight, and M. Chaudhuri, “Active Memory
Clusters: Efficient Multiprocessing on Commodity Clusters,” Proc.
Fourth Int'l Symp. High-Performance Computing, pp. 78-92, May
2002.

[12] “InfiniBand Architecture Specification, Volume 1.0, Release 1.0,”
InfiniBand Trade Assoc., 24 Oct. 2000.

[13] Y. Kang et al, “FlexRAM: Toward an Advanced Intelligent
Memory System,” Proc. Int’l Conf. Computer Design, pp. 192-141,
Oct. 1999.

[14] D. Keen et al., “Cache Coherence in Intelligent Memory Systems,”
Proc. ISCA 2000 Solving the Memory Wall Problem Workshop, June
2000.

[15] D. Kim, M. Chaudhuri, and M. Heinrich, “Leveraging Cache
Coherence in Active Memory Systems,” Proc. 16th ACM Int’l Conf.
Supercomputing, pp. 2-13, June 2002.

[16] J. Kuskin et al., “The Stanford FLASH Multiprocessor,” Proc. 21st
Int’l Symp. Computer Architecture, pp. 302-313, Apr. 1994.

[17] A.-C.Lai and B. Falsafi, “Memory Sharing Predictor: The Key to a
Speculative Coherent DSM,” Proc. 26th Int'l Symp. Computer
Architecture, pp. 172-183, May 1999.

[18] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” Proc. 24th Int’'l Symp. Computer Architecture,
pp- 241-251, June 1997.

[19] C.-K. Luk and T.C. Mowry, “Memory Forwarding: Enabling
Aggressive Layout Optimizations by Guaranteeing the Safety of
Data Relocation,” Proc. 26th Int’l Symp. Computer Architecture,
pp- 88-99, May 1999.

[20] R. Manohar and M. Heinrich, “A Case for Asynchronous Active
Memories,” Proc. ISCA 2000 Solving the Memory Wall Problem
Workshop, June 2000.

[21] B.K. Mathew et al., “Design of a Parallel Vector Access Unit for
SDRAM Memory Systems,” Proc. Sixth Int’l Symp. High Perfor-
mance Computer Architecture, pp. 39-48, Jan. 2000.

[22] “Netlib Sparse BLAS,” http:/ /netlib.bell-labs.com/netlib/sparse-
blas/, 2002.

[23] “NIST Sparse BLAS,” http://math.nist.gov/spblas/, 2002.

[24] D.R. O’'Hallaron, “Spark98: Sparse Matrix Kernels for Shared
Memory and Message Passing Systems,” Technical Report CMU-
(CS-97-178, Oct. 1997.

[25] D.R. O’Hallaron, J.R. Shewchuk, and T. Gross, “Architectural
Implications of a Family of Irregular Applications,” Proc. Fourth
IEEE Int’l Symp. High Performance Computer Architecture, pp. 80-89,
Feb. 1998.

[26] M. Oskin, F.T. Chong, and T. Sherwood, “Active Pages: A
Computation Model for Intelligent Memory,” Proc. 25th Int’l
Symp. Computer Architecture, pp. 192-143, June 1998.

[27] M. Prvulovic, Z. Zhang, and]. Torrellas, “ReVive: Cost-Effective
Architectural Support for Rollback Recovery in Shared-Memory
Multiprocessors,” Proc. 29th Int’l Symp. Computer Architecture,
pp- 111-122, May 2002.

[28] “SGI 3000 Family Reference Guide,” http://www.sgi.com/
origin/3000/, 2002.

KIM ET AL.: ARCHITECTURAL SUPPORT FOR UNIPROCESSOR AND MULTIPROCESSOR ACTIVE MEMORY SYSTEMS 307

[29] Sun Microsystems, “Sun Enterprise 10000 Server—Technical
White Paper,” http://www.sun.com/servers/white-papers/,
2002.

[30] “Third Generation I/O Architecture,” http://www.intel.com/
technology /3GIO/, 2002.

[31] S.C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proc. 22nd Ann. Int'l Symp.
Computer Architecture, pp. 24-36, June 1995.

[32] W.A. Wulf and S.A. McKee, “Hitting the Memory Wall: Implica-
tions of the Obvious,” Computer Architecture News, vol. 23, no. 1,
pp- 14-24, Mar. 1995.

[33] L. Zhang et al., “The Impulse Memory Controller,” IEEE Trans.
Computers, special issue on advances in high-performance
memory systems, vol. 50, no. 11, pp. 1117-1132, Nov. 2001.

Daehyun Kim is a PhD student in electrical and
computer engineering at Cornell University. He
received the MS degree in electrical engineering
from the Korea Advanced Institute of Science
and Technology in 1999 and the BS degree in
electronic engineering from Yonsei University,
Korea, in 1997. His research interests include
memory systems design and performance ana-
lysis, especially multithread and multiprocessor
memory systems. He also has interests in
multiprocessor architecture, cache coherence protocols, hardware/
software codesign, and simulation methodology.

Mainak Chaudhuri received the BTechn degree
in electronics and electrical communication
engineering from the Indian Institute of Technol-
ogy, Kharagpur, in 1999, and the MS degree in
electrical and computer engineering from Cornell
University in 2001, where he is currently working
toward the PhD degree. His research interests
include micro-architecture, parallel computer
architecture, cache coherence protocol design,
and cache-aware parallel algorithms for scien-
tific computation. He is a student member of the IEEE and the IEEE
Computer Society.

Mark Heinrich received the PhD degree in
electrical engineering from Stanford University in
1998, the MS degree from Stanford in 1993, and
the BSE degree in electrical engineering and
computer science from Duke University in 1991.
He is an associate professor in the School of
Electrical Engineering and Computer Science at
the University of Central Florida and the founder
of its Computer Systems Laboratory. His re-
search interests include active memory and 1/0O
subsystems, novel parallel computer architectures, data-intensive
computing, scalable cache coherence protocols, multiprocessor design
and simulation methodology, and hardware/software codesign. He is the
recipient of a US National Science Foundation CAREER Award
supporting novel research in data-intensive computing. He is a member
of the IEEE and the IEEE Computer Society.

Evan Speight received the PhD degree in
electrical and computer engineering at Rice
University in 1999, the MS degree from Rice in
1994, and the BS degree in electrical engineer-
ing from Stanford University in 1991. He is an
assistant professor in the School of Electrical
and Computer Engineering at Cornell University
and a member of the Computer Systems
Laboratory. His current research interests in-
b clude distributed computing, parallel processing,
computer architecture, location-independent data access, operating
systems research, and fault-tolerant computing. He is a member of the
IEEE and the IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

