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Cryptanalysis deals with the construction of tools and analysis of cryptosystems for

subtle details and possible weaknesses that can be exploited to attack the security

promised by these systems. Several cryptosystems have been proposed but later

proved to be ineffective after rigorous examination. The Nazi used the Enigma

machine, which was believed to be unbreakable, during World War II. Alan Turing

and other mathematicians eventually succeeded in cracking the cryptosystem. More

recently, a candidate for post-quantum public key encryption called SIKE was shown

to be completely broken within an hour using a single core computer.

In this thesis, we present various attacks against practical symmetric key cryp-

tosystems and algorithms for the subset-sum problem. First, we demonstrate new

preimage attacks against round-reduced Keccak. Keccak was chosen as the new

Standard Hashing Algorithm (SHA3) in 2012 superceding the previous standards.

The attacks are based on constructing non-linear structures such that the quadratic

terms are not spread across the whole state. We then present distinguishers in the

weak key setting and key-recovery attacks against round-reduced TinyJAMBU and

distinguishers for round-reduced Ascon. TinyJAMBU and Ascon are among the

finalists for the NIST lightweight cryptography standardization competition. To
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identify distinguishers in the weak key setting for TinyJAMBU, we found a class

of good cubes, whereas for the key-recovery attacks, we applied the monomial trail

concept and MILP tool to find superpolies consisting of key variables. We exploit

superpolies and monomial prediction to give better cube attacks for Ascon.

Finally, we present novel reductions and algorithms for variants of the subset

sum problem. These variants include unique subset-sum, simultaneous subset-sum,

unbounded subset-sum and subset-product problems, which are NP-hard. Some

of these variants are used in building cryptographic schemes. Our algorithms use

multivariate FFT, power series and number-theoretic techniques.
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Chapter 1

Introduction

A significant challenge while constructing a cryptosystem is ensuring it provides

the desired level of security. Cryptanalysis deals with the construction of tools and

analysis of cryptosystems for subtle details and possible weaknesses that can be

exploited to attack the security promised by these systems. It is an essential area of

study because it helps us understand the limitations of cryptographic systems and

improve their security. Several cryptosystems have been proposed but later proved

to be ineffective after rigorous examination.

One of the most famous events in the history of cryptanalysis was the break-

ing of the Enigma machine during World War II. Nazi Germany used the Enigma

machine, which was believed to be unbreakable, during World War II for secure

communication. The Allies, led by Alan Turing and other mathematicians, eventu-

ally succeeded in cracking the Enigma machine, which played a significant role in

the outcome of the war.

NIST (National Institute of Standards and Technology) started the competition

for SHA3 (Secure Hash Algorithm 3) due to concerns over the security of SHA-2,

the previous standard for secure hash algorithms. Many attacks [RO05; WYY05;

Coc07] against SHA-1 (a predecessor to SHA-2) were discovered, which raised con-

cerns about the security of the entire SHA family of hash algorithms. Although

SHA-2 was not directly affected by this vulnerability, it was clear that the security

of the SHA family needed to be reevaluated. In February 2017, a team of researchers



4

announced that they had successfully generated a collision for the SHA-1 hash func-

tion [Ste+17].

In more recent times, the development of quantum computers has raised con-

cerns about the security of current cryptographic systems. Many cryptosystems

that are provably secure in the classical setting have been shown to be vulnerable

against a quantum adversary. For example, the 3-round Luby-Rackoff construction

for pseudorandom functions is proven to be secure in the classical setting, whereas

it was shown broken by a quantum attack [KM10].

Post-quantum cryptography, which aims to develop cryptographic systems that

are secure against attacks by quantum computers, is an active area of research. One

example of post-quantum cryptography is the SIKE protocol [Jao+17], which is a

candidate for post-quantum public key encryption. However, recent research [CD22]

has shown that SIKE can be completely broken within an hour using a single-core

computer.

From the above examples, we can agree that cryptanalysis is an important area of

study for building secure cryptosystems. The field of cryptography can be broadly

classified into symmetric (secret) and asymmetric (public) key cryptography. In

the public key setting, there are two types of keys - secret and public. All parties,

including the adversaries, know the public key, whereas only a subset of the (honest)

parties have access to the secret key. In the symmetric key setting, all the (honest)

parties possess a secret key hidden from the adversaries.

Public key cryptosystems are built on the assumption that specific problems are

computationally hard to solve. To be precise, these problems are believed to be in

NP but not in P. For example, the first public key encryption schemes were based on

variants of hard problems such as factoring, discrete logarithm, Subset Sum problem

(SSUM), etc.

Cryptanalysis of public key cryptosystems mainly involves studying the hardness

of such variants. For example, SSUM is a well-known NP-complete problem [GJ79],

where given (a1, . . . , an, t) ∈ Zn+1
≥0 , the problem is to decide whether there exists
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S ⊆ [n] such that
∑

i∈S ai = t. One of the first public-key cryptosystems is the

Merkle-Hellman cryptosystem [MH78] which is based on a variant of SSUM problem

where the set (a1, . . . , an) is a superincreasing sequence. This cryptosystem was

shown to be broken by Shamir [Sha82]. Similarly, many SSUM based cryptosystems

were found to be vulnerable to different attacks [Adl83; Odl84; LO85].

In recent years, provable-secure cryptosystems based on SSUM such as private-

key encryption schemes [LPS10], tag-based encryption schemes [FMV16], etc., have

been proposed. There are numerous improvements made in the algorithms that

solve the SSUM problem in both the classical [Bri17; JW18; EM20; JVW21; BW21]

and the quantum world [Ber+13a; HM18; LL19]. One of the first algorithms was

due to Bellman [Bel57], who gave a O(nt) time (pseudo-polynomial time) algorithm,

which requires Ω(t) space.

In the secret key setting, the cryptosystems/primitives are based on problems

related to multivariate polynomials. These systems consider the input (the secret

key and the data) as binary strings and repeatedly apply a sequence of operations

(addition, multiplication and shifting) to produce the output. Each bit in the output

can be viewed as a high-degree multivariate polynomial with variables as the input

bits.

Dinur and Shamir [DS09] proposed the cube attack against symmetric-key prim-

itives with a secret key and a public input. It has since evolved into a universal

tool for assessing the security of cryptographic primitives, and it has been success-

fully applied to a variety of symmetric primitives. Let the output bit of a cipher

be an unknown Boolean polynomial f(x, k), over F2, where x = (x1, . . . , xn) is a

vector of public input variables, and k = (k1, . . . , km) is a vector of secret input

variables, and F2 = {0, 1} is the field containing 2 elements. Given a Boolean func-

tion f(x, k) ∈ F2[x, k], let I = (i1, i2, . . . , ic) ⊆ [n] be the index subset such that

t =
∏

i∈I xi. One can express f(x, k) as

f(x, k) = t · pI(x, k) + qI(x, k) ,
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such that none of the monomials in qI(x, k) is divisible by t . The function pI is called

the superpoly of t in f . It can be easily verified that for any constants bj, ∀j /∈ I,

∑
(xi1

,xi2
,...,xic )∈Fc

2

xj=bj ,∀j /∈I

f(x, k) = pI(b, k) .

A cube tester basically computes the above summation (called cube sum) for a

carefully chosen monomial t such that its superpoly pI is equal to the constant zero.

This serves as a distinguishing attack between f and a random polynomial.

To broaden the integral and higher-order differential distinguishers, Todo [Tod15]

introduced the division property. Soon, division property based cube attacks became

a prominent topic in the community. In [Hu+20], a new technique termed monomial

prediction was proposed, which captures the algebraic basics of various attempts to

improve the detection of division property. The goal was simple: detect a monomial

xu1 in the product yu2 of any output bits of a vectorial Boolean function y = f(x).

The monomial prediction approach was shown to be equivalent to the proposed

three-subset division property without unknown subset [Hao+21].

Apart from these, there are numerous attacks developed against symmetric key

primitives such as differential attacks [Knu94; MSK98], linear attacks [Mat93], al-

gebraic attacks [Cou03; CM03], integral attacks [KW02], etc.

1.1 Our Contributions

In this thesis, we present a hardness result for Problem 1.1, new preimage attacks

against Keccak, distinguishers in the weak key setting and key-recovery attacks

against TinyJAMBU, distinguishers for Ascon and algorithms for variants of subset

sum problem. In this section, we will briefly summarise these results, which origi-

nally appeared in a single author paper [Raj19]; and joint works with Dutta [DR22;

DR23]; Dutta and Sarkar [DRS22a; DRS22b].



7

1.1.1 On the Hardness of Monomial Prediction

In Chapter 3, we study the hardness of the following problem for specific parameters.

Problem 1.1. Given a composition f := (f1, . . . , fn) := gr ◦ gr−1 ◦ . . . g0, and a

monomial m, where each gi : Fn
2 −→ Fn

2 , is a quadratic function, decide whether m

is a monomial in f1.

In [Kay10], Kayal considered this computational problem, known as ‘monomial

prediction’, from a complexity-theoretic (hardness) point of view, which can be

broadly (re)stated as follows: Given a blackbox access to an n-variate degree-d

polynomial f(x), over a finite field F and a monomial xe = xe1
1 · · · xen

n , determine

the coefficient of xe in f(x). Before Kayal, a similar search problem was also studied

by Malod [Mal03] in his PhD thesis, from an algebraic complexity theoretic lens.

Kayal termed this problem as CoeffSLP and showed that it is #P-complete over

integers (for a self-contained proof, see [Kay10, Appendix A]). We recall that #P

essentially captures the number of solutions of a given instance, and thus obviously a

#P problem must be at least as hard as the corresponding NP problem. However, for

most of the stream ciphers, f can be thought as a composition of a bunch of linear

and quadratic Boolean functions, and not arbitrary compositions. This makes the

monomial prediction paradigm both theoretically and practically interesting! So,

we restrict ourselves to this particular case and ask the complexity of the following

problem, defined below.

We show that Problem 1.1 is ⊕P-complete. Though it may sound obvious being

‘theoretically’ hard, the hardness proof is far from the obvious. To show the hardness

formally, we define the following language.

L := {(f,m) | coefm(f1) = 1 , where f = (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : Fni
2 −→ Fni+1

2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2[x1, . . . , xn], and deg((gi)j) ≤ 2 } .
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where coefm(f1) denotes the coefficient of m in the polynomial f1. In general, we

will be working with r, ni = poly(n) (so that one can think of the input complexity

with respect to parameter n). Given (f,m) as an input where f is described by

providing a compact representation of gi’s, we want to decide whether (f,m) ∈ L.

Note that this may be ‘easier’ than solving a large system of multivariate polynomial

equations over F2, and thus one cannot rigorously argue the hardness. However, we

show that deciding (f,m) ∈ L is ⊕P-complete.

Theorem 1.2 (⊕P-completeness). Given a composition of quadratic functions f

and a monomial m, deciding whether (f,m) ∈ L is ⊕P-complete.

Remark 1.3. The hardness proof can be adapted to work over a finite field F or

integer ring Z. In fact, over integers, one can show NP-hardness of the above problem

by adapting the proof strategy of [Kay10]. Of course, a hardness proof over Z usually

does not translate to very small characteristic fields like F2.

1.1.2 Preimage Attacks on Round Reduced Keccak using

Non-Linear Structures

In Chapter 4, we present new theoretical preimage attacks for Keccak-384 for

2,3,4 rounds and Keccak-512 for 2,3 rounds. Keccak designed by Guido Bertoni,

Joan Daemen, Michaël Peeters, and Gilles Van Assche [Ber+09] became one of the

candidates for SHA-3. It won the competition in October 2012 and was standardised

as a “Secure Hash Algorithm 3” [Dwo15].

The Keccak hash family is based on the sponge construction [Ber+11b]. Its de-

sign was made public in 2008 and since then, it has received intense security analysis.

In 2016, Guo et al. [GLS16] formalised the idea of linear structures and gave practi-

cal preimage attacks for 2 rounds Keccak-224/256. They also gave better preimage

attacks for Keccak-384/512, all variants of 3-rounds Keccak as well as preimage

attacks for 4-rounds Keccak-224/256. Li et al. [Li+17] improved the complexity of

preimage attack for 3-rounds Keccak-256 by using a new type of structure called
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cross-linear structure. The best-known attacks for 3 and 4 rounds Keccak-224/256

prior to our work are given by Li et al. [LS19] using a new technique called allocating

approach, which consists of two phases - Precomputation phase and Online phase.

They gave the first practical preimage attack for 3-rounds Keccak-224. Theoretical

preimage attacks for higher rounds on Keccak are considered in [Ber10; Cha+14;

MPS13]. Apart from the attacks mentioned above, there are several other attacks

against Keccak such as preimage attacks in [NRM11; MS13; KMS18; KRA18],

collision attacks in [DDS12; DDS13; Köl+13; DDS14; SLG17] and distinguishers in

[AM09; BCD11; Duc+12; JN15; GLS16].

The attacks in Chapter 4 are achieved by carefully constructing non-linear struc-

tures such that the quadratic terms are not spread throughout the whole state and

the number of free variables in the system of equations is more. Table 1.1 summarises

our contributions and the best theoretical preimage attacks up to four rounds. The

space complexity in most of the attacks is constant unless it is explicitly mentioned.

1.1.3 Weak-Keys and Key-Recovery Attacks for TinyJAMBU

In Chapter 5, we give new insights into the structure of TinyJAMBU and present

new attacks against TinyJAMBU. NIST [NIS18] has launched a process for solicit-

ing, evaluating, and standardising lightweight cryptographic algorithms suited for

use in limited contexts when the performance of current NIST cryptographic stan-

dards is unacceptably low. In August 2018, NIST issued a call for algorithms to

be considered for lightweight cryptography standards. There were initially 57 sub-

missions. NIST picked 32 candidates in the second round of trimming on August

30 2019. On March 29, 2021, NIST released ten candidates following the third

round of pruning. TinyJAMBU is one of these candidates. TinyJAMBU employs

a keyed-permutation based on an NLFSR that computes only a single NAND gate

as a non-linear component per round. It is a small variant of the JAMBU mode,

which is the smallest block cipher authenticated encryption mode in the CAESAR

competition [CAE], and it was selected for the third round of the competition.
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Rounds Instances Complexity References

1

224

Practical [KRA18]
256

384

512

2

224 Practical

[GLS16]
256 Practical

384 2129

512 2384

2 384
Time 289

[KMS18]
Space 287

2
384 2113 Section 4.3

512 2321 Section 4.2

3
224 238

[LS19]
256 281

3
384 2322

[GLS16]
512 2482

3
384 2321 Section 4.5

512 2475 Section 4.6

4
224 2207

[LS19]
256 2239

4
384 2378

[MPS13]
512 2506

4 384 2371 Section 4.7

Table 1.1: Summary of preimage attacks for Keccak

In [WH19; WH21], the designers of TinyJAMBU analysed the system against

various attacks. They analysed the differential properties of keyed permutation

Pn, which is the core component of TinyJAMBU. They demonstrated that the

differential probability for P640 rounds is insignificant. They also studied the linear

properties of Pn claiming that 32 sized cube attacks are ineffective against Pn, when
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n ≥ 512.

Using Mixed Integer Linear Programming (MILP), the designers [WH19] count

the least number of active AND gates to find differential and linear trails. This

counting technique, however, disregards the inter-dependency between several AND

gates. This flaw was identified by Saha et al. [Sah+20]. While the designers sug-

gested the 384-round differential trail with probability 2−80 by regarding each AND

gate independently, [Sah+20] confirmed that there is no such trail by taking into

account the dependency. Further, they proposed a forgery attack with complexity

262.68 on 338 rounds and a differential trail with probability 2−70.68 for 384 rounds

using their refined model.

Recently, Teng et al. [Ten+21] looked into the TinyJAMBU cipher’s resistance

to cube attacks. They showed key-recovery attack for 428 rounds and distinguishing

attack for 438 rounds using small size cubes.

In Chapter 5, we study TinyJAMBU from three important and different con-

texts – (i) the weak-key setting, (ii) understanding the exact degree of the feedback

polynomial in the nonce variables (iii) the key-recovery attacks. Most significantly,

this is the first time that the concept of monomial trail, introduced in [Hu+20], and

the MILP tool have been employed together in analyzing TinyJAMBU.

1. We begin by studying TinyJAMBU in the weak-key setting. Since the core

component of TinyJAMBU is the keyed permutation Pn, we analyse the struc-

ture of Pn for any weakness. Using this, we present a class of good cubes which

will help us in our attack. We show that there are at least 2108 keys for which

TinyJAMBU can be distinguished from a random source for up to 476 rounds.

2. Next, we focus on determining the exact degree in the nonce variables of the

feedback polynomial. Using the monomial trail concepts [Hu+20] and MILP

tool, we demonstrate that after 381 rounds, the degree equals 32. This is

the first time one has studied the exact degree of the feedback polynomial of

TinyJAMBU. Moreover, the exact degree from our experiments implies that

TinyJAMBU is secure against cube attacks with 32-dimension cubes after 445
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rounds.

3. Finally, we present key-recovery attacks for reduced round TinyJAMBU. We

again use the monomial trail concept and MILP tool to find superpolies con-

sisting of key variables only for 440 rounds. This leads to an improved key-

recovery attack, which is better than the 428 round key-recovery attack pre-

sented by Teng et al. [Ten+21], in their recent result published in Scientific

Reports - Nature.

1.1.4 New Zero-Sum Distinguishers for Ascon

Ascon [Dob+20] is one of the elegant designs of authenticated encryption with asso-

ciated data (AEAD) that was selected as the first choice for lightweight applications

in the CAESAR competition, which also has been submitted to NIST lightweight

cryptography standardization [NIS18]. On February 7, 2023, NIST announced the

selection of the Ascon family for lightweight cryptography standardisation. It has

been in the literature for a while, however, there has been no successful AEAD that

is secure and at the same time lighter than Ascon.

In Chapter 6, we exploit superpolies and monomial prediction to give better

cube attacks for Ascon. Most importantly, the attacks are not restricted to As-

con, and can be used in other cryptosystems as well since most cryptosystems,

e.g., SHA3 [Dwo15], TinyJambu [WH21], etc. can be thought as a composition of

quadratic functions. In Section 6.2, we present a new zero-sum distinguisher for

5-round Ascon with complexity 214 which improves the best-known cube distin-

guishers [Roh+21] by a factor of 22.

1.1.5 Efficient Reductions and Algorithms for Variants of

Subset Sum

In Chapter 7, we give efficient reductions and (time, space) algorithms for many

variants of subset sum which we define below.
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Problem 1.4 (Subset Sum problem (SSUM)). Given (a1, . . . , an, t) ∈ Zn+1
≥0 , the

subset sum problem is to decide whether t is a realisable target with respect to

(a1, . . . , an), i.e., there exists S ⊆ [n] such that
∑

i∈S ai = t. Here, n is called the

size, t is the target and any S ⊆ [n] such that
∑

i∈S ai = t is a realisable set of the

subset sum instance.

Assumptions. Throughout the paper, we assume that t ≥ max ai for simplicity.

Problem 1.5 (k − SSSUM). Given (a1, . . . , an, t) ∈ Zn+1
≥0 , the k-solution SSUM

(k−SSSUM) problem asks to output all S ⊆ [n] such that
∑

i∈S ai = t provided with

the guarantee that the number of such subsets is at most k.

We denote 1 − SSSUM as unique Subset Sum problem (uSSSUM). In stackex-

change, a more restricted version was asked where it was assumed that k = 1, for

any realisable t. Here we just want k = 1 for some fixed target value t and we do

not assume anything for any other value t′.

Problem 1.6 (Hamming − k − SSSUM). Given an instance of the k − SSSUM,

say (a1, . . . , an, t) ∈ Zn+1
≥0 , with the promise that there are at most k-many S ⊆ [n]

such that
∑

i∈S ai = t, Hamming−k−SSSUM asks to output all the hamming weights

(i.e., |S|) of the solutions.

Problem 1.7 (Subset Product). Given (a1, . . . , an, t) ∈ Zn+1
≥1 , the Subset Product

problem asks to decide whether there exists an S ⊆ [n] such that
∏

i∈S ai = t.

Problem 1.8 (SimulSubsetSum). Given subset sum instances (a1j, . . . , anj, tj) ∈

Zn+1
≥0 , for j ∈ [k], where k is some parameter, the Simultaneous Subset Sum problem

(in short, SimulSubsetSum) asks to decide whether there exists an S ⊆ [n] such that∑
i∈S aij = tj, ∀j ∈ [k].

Time-efficient algorithms for variants of Subset Sum

Our first theorem gives an efficient pseudo-linear Õ(n + t) time deterministic algo-

rithm for Problem 1.6, for constant k.

https://cstheory.stackexchange.com/questions/42502/subset-sum-problem-with-at-most-one-solution-for-any-target
https://cstheory.stackexchange.com/questions/42502/subset-sum-problem-with-at-most-one-solution-for-any-target
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Theorem 1.9 (Algorithm for hamming weight). There is a Õ(k(n+ t))-time deter-

ministic algorithm for Hamming− k − SSSUM.

▶ Remark (Optimality). We emphasize the fact that Theorem 1.9 is likely to be near-

optimal for bounded k, due to the following argument. An O(t1−ϵ) time algorithm for

Hamming−1−SSSUM can be directly used to solve 1−SSSUM, as discussed above.

By using the randomized reduction (Theorem 7.1), this would give us a randomized

nO(1)t1−ϵ-time algorithm for SSUM. But, in [Abb+19] the authors showed that

SSUM does not have nO(1)t1−ϵ time algorithm unless the Strong Exponential Time

Hypothesis (SETH) is false.

Theorem 1.9 is better than the trivial. Consider the usual ‘search-to-decision’

reduction for subset sum: First try to include a1 in the subset, and if it is feasible

then we subtract t by a1 and add a1 into the solution, and then continue with a2, and

so on. This procedure finds a single solution, but if we implement it in a recursive

way then it can find all the k solutions in k ·n·(time complexity for decision version)

time; we can think about an n-level binary recursion tree where all the infeasible

subtrees are pruned. Since the number of solutions is bounded by k, choosing a

prime p > n+ t+ k suffices in [JW18], to make the algorithm deterministic. Thus,

the time complexity of the decision version is Õ((n + t) log k). Hence, from the

above, the search complexity is Õ(kn(n+ t)) which is worse than Theorem 1.9.

Theorem 1.10 (Time-efficient algorithm for Subset Product). There exists a ran-

domized algorithm that solves Subset Product in Õ(n+ to(1)) expected-time.

Remarks. 1. The result in the first part of the above theorem is reminiscent of the

Õ(n + t) time randomised algorithms for the subset sum problem [Bri17; JW18],

although the time complexity in our case is the expected time, and ours is better.

2. The expected time is because to factor an integer t takes expected

exp(O(
√

log(t) log log(t))) time [LP92]. If one wants to remove expected time anal-

ysis (and do the worst case analysis), the same problem can be solved in Õ(n2+to(1))

randomised time. For details, see the end of Section 7.2.2.
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3. While it is true that Bellman’s algorithm gives O(nt) time algorithm, the

state-space of this algorithm can be improved to (expected) nto(1)-time for the

Subset Product, using a similar dynamic algorithm with careful analysis. For de-

tails, see Appendix A.2.3.

Space-efficient algorithms for variants of Subset Sum

Theorem 1.11 (Algorithms for finding solutions in low space). There is a poly(knt)-

time and O(log(knt))-space deterministic algorithm which solves k − SSSUM.

▶ Remark. When considering low space algorithms outputting multiple values, the

standard assumption is that the output is written onto a one-way tape which does

not count into the space complexity; so an algorithm outputting kn logn bits (like in

the above case) could use much less working memory than kn logn; for a reference

see McKay and Williams [MW18].

Theorem 1.11 is better than the trivial. Let us again compare with the

trivial search-to-decision reduction time algorithm, as mentioned in Section 1.1.5.

For solving the decision problem in low space, we simply use Kane’s O(log(nt))-space

poly(nt)-time algorithm [Kan10]. As explained (and improved) in [JVW21], the time

complexity is actually O(n3t) and the extra space usage is Õ(n) for remembering

the recursion stack. Thus the total time complexity is O(kn4t) and it takes Õ(n) +

O(log t) space. While Theorem 1.11 takes O(log(knt)) space and poly(knt) time.

Although our time complexity is worse1, when k ≤ 2O((n log t)1−ϵ), for ϵ > 0, our space

complexity is better.

Theorem 1.12. (Algorithm for Subset Product) Subset Product can be solved de-

terministically in O(log2(nt)) space and poly(nt)-time.

▶ Remark. We cannot directly invoke the theorem in [Kan10, Section 3.3] to con-

clude, since the reduction from Subset Product to SimulSubsetSum requires O(n log(nt))

1Theorem 1.11 is not about time complexity; as long as it is pseudo-polynomial time it’s ok.
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HWSSUM

SimulSubsetSum SSUM SSSUM

UBSSUM

Figure 1.1: Reductions among variants of the Subset Sum problem

space. Essentially, we use the same identity lemma as [Kan10] and carefully use the

space; for details see Section 7.3.2.

Reductions among variants of Subset Sum

Using a pseudo-prime-factorisation decomposition, we show that given a target t in

Subset Product, it suffices to solve SimulSubsetSum with at most log t many instances,

where each of the targets are also ‘small’, at most O(log log t) bits.

Theorem 1.13 (Reducing Subset Product to SimulSubsetSum). There is a deter-

ministic polynomial time reduction from Subset Product to SimulSubsetSum.

▶ Remark. The reduction uses Õ(n log t) space as opposed to the following chain

of reductions: Subset Product ≤P SSUM ≤P SimulSubsetSum. The first reduction

is a natural reduction, from an input (a1, . . . , an, t), which takes log both sides and

adjust (multiply) a ‘large’ M (it could be O(n log t) bit [KP10; PST21]) with log ai,

to reduce this to a SSUM instance with bi := ⌊M log ai⌋. Therefore, the total space

required could be as large as Õ(n2 log t). The second reduction follows from Theo-

rem 7.2. Therefore, ours is more space efficient. Motivated thus, we give an efficient

randomised algorithm for SimulSubsetSum.

In the latter part, we present a few reductions among SSUM, k − SSSUM and

SimulSubsetSum problems. We also extend Problem 1.5-1.6 to the unbounded version

of the Subset Sum problem (UBSSUM) and show similar theorems as above. For

details, see Section 7.4-7.5.



Chapter 2

Preliminaries and Notations

2.1 Notations

In this thesis, N,Z, Q and R will denote the sets of all natural numbers, integers,

rationals and reals, respectively. Let a, b be two m-bit integers.Then, a//b denotes

a/be where e is the largest non-negative integer such that be | a. Observe that a//b

is not divisible by b and the time to compute a//b is O(m log(m) · log(e)). Also,

Õ(N) denotes N · poly(logN).

For any positive integer n > 0, [n] denotes the set {1, 2, . . . , n} while [a, b] denotes

the set of integers i such that a ≤ i ≤ b. Also, 2[n] denotes the set of all subsets of

[n], while log denotes log2. A weight function w : [n] −→ [m], can be naturally

extended to a set S ∈ 2[n], by defining w(S) :=
∑
i∈S

w(i). We also denote Õ(g) to be

g · poly(log g).

Vectors will be denoted by small cases, and matrices and basis sets will be

denoted in capital letters. Let B = {b⃗1, . . . , b⃗k} be a set of vectors in Rn. The

subspace of Rn spanned by B will be denoted by span(B). The norm of a vector

v⃗ = [v1, . . . , vn] is the normal Euclidean norm, i.e, ||v⃗|| =
√∑

i v
2
i . The norm of B

is defined as ||B|| = max
i∈[n]

||⃗bi||. For any two sets of vectors U and V , U + V will

denote the set {u⃗+ v⃗ | u⃗ ∈ U, v⃗ ∈ V }.

F[x1, . . . , xk] denotes the ring of k-variate polynomials over field F. F[[x1, . . . , xk]]

denotes the ring of power series in k-variables over F. We will use the short-hand
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notation x to denote the collection of variables (x1, . . . , xk) for some k. For any

non-negative integer vector e ∈ Zk, xe (and πe(x) ) denotes
∏k

i=1 x
ei
i . Using these

notations, we can will write any polynomial f(x) ∈ Z[x] as f(x) =
∑

e∈S fe · xe

for some suitable set S. We will use the notation πe(x) → f to denote that the

coefficient of πe(x) in f(x) is non-zero. If the coefficient is 0, it will be denoted

using the notation πe(x) ̸→ f .

We denote coefxe(f), as the coefficient of xe in the polynomial f(x) and degxi
(f)

as the highest degree of xi in f(x). Sparsity of a polynomial f(x1, . . . , xk) ∈

F[x1, . . . , xk] over a field F, denotes the number of nonzero terms in f .

2.2 Sets, Polynomials and Probability

Lemma 2.1 ([MVV87, Isolation Lemma]). Let n and N be positive integers, and

let F be an arbitrary family of subsets of [n]. Suppose w(x) is an integer weight

given to each element x ∈ [n] uniformly and independently at random from [N ]. The

weight of S ∈ F is defined as w(S) =
∑

x∈S w(x). Then, with probability at least

1− n/N , there is a unique set S ′ ∈ F that has the minimum weight among all sets

of F .

Lemma 2.2 (Kane’s Identity [Kan10]). Let f(x) =
∑d

i=0 cix
i be a polynomial of

degree at most d with coefficients ci being integers. Let Fq be the finite field of order

q = pk > d+ 2. For 0 ≤ t ≤ d, define

rt =
∑
x∈F∗

q

xq−1−tf(x) = −ct ∈ Fq

Then, rt = 0 ⇐⇒ ct is divisible by p.

Lemma 2.3 (Newton’s Identities). Let X1, . . . , Xn be n ≥ 1 variables. Let

Pm(X1, . . . , Xn) =
∑n

i=1 X
m
i , be the m-th power sum and Em(X1, . . . , Xn) be the mth

elementary symmetric polynomials, i.e., Em(x1, . . . , xn) =
∑

1≤j1≤...≤jm≤n

Xj1 · · ·Xjm,
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then

m · Em(X1, . . . , Xn) =
m∑
i=1

(−1)i−1Em−i(X1, . . . , Xn) · Pi(X1, . . . , Xn) .

Remark 2.4. Em(X1, . . . , Xn) = 0 when m > n.

Lemma 2.5 (Vieta’s formulas). Let f(x) =
∏n

i=1(x− ai) be a monic polynomial of

degree n. Then, f(x) =
∑n

i=0 cix
i where cn−i = (−1)iEi(a1, . . . , an), ∀1 ≤ i ≤ n and

cn = 1.

Lemma 2.6 (Polynomial division with remainder [VG13, Theorem 9.6]). Given a

d-degree polynomial f and a linear polynomial g over a finite field Fp, there exists

a deterministic algorithm that finds the quotient and remainder of f divided by g in

Õ(d log p)-time.

Definition 2.7 (Order of a number mod p). The order of a (mod p), denoted as

ordp(a) is defined to be the smallest positive integer m such that am ≡ 1 mod p.

Theorem 2.8 ([Shp96]). There exists a Õ(p1/4+ϵ) time algorithm to deterministi-

cally find a primitive root over Fp.

Theorem 2.9 ([Nag52]). For n ≥ 25, there is a prime in the interval [n, 6
5
· n].

The following is a naive bound, but it is sufficient for our purpose.

Lemma 2.10. For integers a ≥ b ≥ 1, we have (a/b)b ≤ 22
√
ab.

Proof. Let x =
√

a/b. We need to show that x2b ≤ 22bx, which is trivially true since

x ≤ 2x, for x ≥ 1.

2.3 Attacks against Symmetric Cryptosystems

2.3.1 Cube Attacks

Here we provide a high-level overview of the cube attack model. To initialise its

state, a stream cipher typically uses one secret key, k, and a set of public variables
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x. The secret key remains secret, and it is known only to the encryptor and the

decryptor.

However, the x (or nonce) is considered a public variable. Keystream bits are

typically generated by the ciphers after some initialisation rounds. By interpreting

the keystream bit z as a Boolean polynomial over the secret key k and x, it can be

expressed as z = f(x, k). Let secret key variable be denoted by k = (k1, . . . , km)

and public variable by x = (x1, . . . , xn). The cube attack is based on the principle

of simplifying the polynomial z = f(x, k) in order to obtain the value of k. Let us

set the cube indices I = {i1, . . . , ic} ⊆ [n] in the preprocessing phase. Then we can

express f(x, k) as

f(x, k) =
(∏

i∈I
xi · pI(x, k)

)
+ qI(x, k),

where each monomial of the function qI misses at least one variable from the set

{xi1 , xi2 , · · · , xic}.

In order to use the attack during the online phase, we only need to know its su-

perpoly pI, and we can set the values of non-cube variables xi to 0 (or to 1) to simplify

the long superpoly expression. Consider the CI = {(xi1 , . . . , xic) : xj ∈ {0, 1} for j ∈

I}. The superpoly can then be recovered because
∑

(xi1
,...,xic )∈CI

f(x, k) = pI(x, k).

Thus, the attacker first finds some cube variables and then computes the sum of

the output bits for all possible values of the cube variables to determine the value

of the superpoly. The attacker’s objective is to select cube variables and fix the

remaining public variables in such a way that the superpoly is reduced to a linear

function in secret variables.

The main point of concern is that after a large number of initialisation rounds,

the expression of the output bit always becomes very much complicated.

In reality, after a few rounds of initialisation, it is not possible to compute the

algebraic expression of the output bit in the latest stream ciphers because of the

way they are designed. To tackle this problem, the attacker uses the cipher as a

blackbox. He randomly chooses the cube variables, and the blackbox provides the
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output bits corresponding to all possible values of the cube variables. The value

of the superpoly can be recovered by the attacker by performing the sum on the

values that have been retrieved. The BLR linearity test [BLR90] can be used by

the attacker to determine whether or not the superpoly is linear. A more in-depth

description of the cube attack may be found in [DS09].

In 2009, Aumasson et al. [Aum+09] proposed cube tester to assess the non-

randomness of a Boolean function. The presence of a monomial, balancedness,

constantness, presence of linear variables, and the presence of neutral variables can

be determined by using cube tester. A Boolean function is said to be vulnerable if

it can be distinguished by some property such as the ones mentioned above.

Upper bound of degree

Given a Boolean polynomial f in n variable, we want to find its algebraic degree

after fixing some variables. Let x1, . . . , xn be the variables of the function f . 

Assume that x1, . . . , xk are initially fixed to 0. Now we are interested in checking

whether the reduced polynomial (after setting x1, . . . , xk to 0) has degree n − k or

not. For this purpose, we do the following:

1. Consider xk+1, xk+2, . . . , xn as cube variables.

2. Calculate the cube sum on the reduced polynomial over the prescribed cube

variables.

3. If the cube sum is zero, then we conclude that the degree of the reduced

polynomial is strictly less than n− k.

2.3.2 Monomial Trails

Definition 2.11 (Monomial trail). Let x(i+1) = f (i)(xi) for 0 ≤ i < r. We say a

monomial trail exists from πu(0)(x(0)) to πu(r)(x(r)) = πu(r)(f (r−1)(x(r−1))) (denoted
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as πu(0)(x(0))⇝ πu(r)(x(r))) if there exists a sequence of monomials

(πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r)))

such that πu(i)(x(i))→ πu(i+1)(x(i+1)) for all 0 ≤ i < r.

Example 2.12. Let y = (y0, y1) = f (0)(x0, x1) = (x0⊕x1, x0x1⊕x1) and z = (z0) =

f (1)(y0, y1) = (y0 ⊕ y1 ⊕ y0y1). Consider the monomial x(0,1) = x1. We have

y(0,0) = 1, y(0,1) = y1 = x0x1 ⊕ x1, y(1,0) = y0 = x0 ⊕ x1

y(1,1) = y0y1 = (x0 ⊕ x1) · (x0x1 ⊕ x1) = x0x1 ⊕ x1

which implies x1 → y0, x1 → y1, x1 → y0y1. Also, we have

z(1) = z0 = y0 ⊕ y1 ⊕ y0y1 = x1 ⊕ x0

This implies that y0 → z0, y1 → z0, y0y1 → z0. Combining all the above, we get

x1 → y0 → z0, x1 → y1 → z0, x1 → y0y1 → z0

Hence, we have x1 ⇝ z0 and there are three different monomial trails from x1 to z0.

As seen in Example 2.12, there can be multiple monomial trails from πu(0)(x(0))

to πu(r)(x(r)). Observe that the existence of a monomial trail from πu(0)(x(0)) to

πu(r)(x(r)) does not necessarily imply that πu(0)(x(0)) is a monomial in πu(r)(x(r)).

Considering Example 2.12, we have x0x1 → y0 → z0, i.e., x0x1 ⇝ z0 but x0x1 ̸→ z0.

We can only guarantee the converse, i.e.,

Claim 2.13. If πu(0)(x(0)) ̸⇝ πu(r)(x(r)) then πu(0)(x(0)) ̸→ πu(r)(x(r)).

Let us denote |πu(0)(x(0)) ⇝ πu(r)(x(r))| the number of distinct monomial trails

from πu(0)(x(0)) to πu(r)(x(r)). Then, the monomial πu(0)(x(0)) exists in πu(r)(x(r)) if
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the number is odd.

Claim 2.14. If |πu(0)(x(0))⇝ πu(r)(x(r))| is odd, then πu(0)(x(0))→ πu(r)(x(r)).

We can see that in Example 2.12, |x1 ⇝ z0| = 3 which is odd, therefore, x1 → z0.

But, |x0x1 ⇝ z0| = 2, hence x0x1 ̸→ z0.

Therefore, Claim 2.14 gives us a procedure to find whether a monomial exists in

a polynomial or not. For more details on monomial trails, we refer to [Hu+20].





Chapter 3

On the Hardness of Monomial

Prediction

3.1 Preliminaries

Definition 3.1 (The class ⊕P). In computational complexity theory, the complexity

class ⊕P (pronounced ‘parity P’) is the class of decision problems solvable by a

nondeterministic Turing machine in polynomial time, where the acceptance condition

is that the number of accepting computation paths is odd.

Definition 3.2 (⊕P-complete). A problem L is said to be ⊕P-hard if every problem

in ⊕P can be reduced to L in polynomial time. It is said to be ⊕P-complete if it is

in ⊕P and also ⊕P-hard.

There are interesting problems known to be ⊕P-complete [Val05]. We will also

use one of them in our hardness result; for details see Section 3.2.

How hard are ⊕P-complete problems? It is not hard to show that ⊕P con-

tains the graph isomorphism problem. On the other hand, P⊕P (oracle power to

a machine computing ⊕P function) is not known to contain NP. However, it is

not known (or believed) to be as strong as #P. This distinction is important in

our context since monomial prediction in the general setting over Z is known to be
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#P-complete [Kay10], while the scenario changes when one works over the field F2.

3.2 Hardness Result

We recall the definition of the language and the hardness theorem mentioned in

Section 1.1.1.

L := {(f,m) | coefm(f1) = 1 , where (f1, . . . , fnr+1) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : Fni
2 −→ Fni+1

2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2[x1, . . . , xn], and deg((gi)j) ≤ 2 } .

Theorem 3.3 (⊕P-completeness). Given a composition of quadratic functions f

and a monomial m, deciding whether (f,m) ∈ L is ⊕P-complete.

Proof. The proof is motivated from algebraic complexity theory and uses the Hamil-

tonian Cycle polynomial, HCn, defined below, which is a well-known VNP-complete1

polynomial over F2 [Bür00; Mal03]. Remarkably the motivation for studying the

hardness of HCn is quite different from ours and concerns arithmetic circuit com-

plexity, while in this paper, we are interested in Boolean hardness results!

Recall the definition of Hamiltonian cycle: it is a closed loop on a graph where

every node (vertex) is visited exactly once. It is known that the problem Odd

Hamiltonian Cycle – deciding whether a given graph G = (V,E) has an odd

number of Hamiltonian cycles, is ⊕P-complete [Val05], i.e., it is in ⊕P and also

is ⊕P-hard. We will use Odd Hamiltonian Cycle to show the completeness of L.

In particular, we will show the proof in two parts –

1. Part A - a reduction from Odd Hamiltonian cycle ≤P L this implying that

our problem is ⊕P-hard, and

2. Part B - L is in ⊕P.
1The class VNP, Valiant’s NP, is known as the algebraic NP class in the algebraic complexity

theory.
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Part A: Proof of ⊕P-hardness

Define the Hamiltonian Cycle polynomial (HCn) for a graph with n nodes, with

the adjacency matrix (xi,j)1≤i,j≤n (they are just elements from {0, 1}), as follows:

HCn (x1,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i) ,

where Sn is the symmetric group on a set of size n and the sum is taken over all

n-cycles of Sn (i.e. , every monomial in HCn corresponds to a Hamiltonian cycle in

the complete directed graph on n vertices). Here is the crucial lemma.

Lemma 3.4 (Composition lemma). Let G = (V,E) be a given graph with the

adjacency matrix x = (xi,j)i,j∈[n]. Let y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n

variables. Then, there exist g0, . . . , gn, polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,

and

(ii) coefy1···yn·z1···zn(f1(x,y, z)) = HCn(x), where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

The above lemma directly implies that for a given graph G = (V,E) with adja-

cency matrix (xi,j)i,j, (f := gn ◦ . . . ◦ g0,m := y1 · · · ynz1 · · · zn) ∈ L ⇐⇒ G has an

odd number of Hamiltonian cycles, which would finish the proof.

Proof of Lemma 3.4. In the proof, we will often interchange k-th coordinate with

(i, j)-th position, for k ∈ [n2], where k−1 = (i−1) + n(j−1), and i, j ∈ [n]. Since,

k − 1 ∈ [0, n2 − 1] can be uniquely written as (i− 1) + n(j − 1), for some i, j ∈ [n],

there is a one-to-one correspondence. We divide the proof into two:

Part 1 : Construction of gi’s. Define the polynomial map g0 : Fn2+2n
2 −→ F2n2

2 ,
by defining each coordinate of g0, namely (g0(x,y, z))k, for k ∈ [2n2] by:

(g0(x,y, z))k :=


xi,j , when k ≤ n2,where k − 1 = (i− 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1− n2 = (i− 1) + n(j − 1).

In the above, we used the fact that k−1−n2 ∈ [0, n2−1] and hence the one-to-one
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correspondence exists. Trivially any coordinate (g0(x,y, z))k is at most a quadratic

polynomial.

Now define g1 : F2n2

2 −→ F2n2

2 , on 2n2 variables w := (wi,j)i,j∈[n] and s :=

(si,j)i,j∈[n], as follows:

(g1(w, s))k :=


wi,j · si,j, when k ≤ n2,where k − 1 = (i− 1) + n(j − 1),

(g1(w, s))k−n2 , when n2 < k ≤ 2n2.

Basically, g1 repeats the first n2 coordinates. Again, by definition, each ordinate is a

quadratic polynomial. Now, we can define gℓ : F2n2

2 −→ F2n2

2 , again on 2n2 variables

(w, s), for ℓ > 1, as follows:

(gℓ(w, s))k :=


∑n

r=1wi,r · sr,j , when k ≤ n2,where k − 1 = (i− 1) + n(j − 1),

si,j , when n2 < k ≤ 2n2,where k − 1− n2 = (i− 1) + n(j − 1).

It is easy to see that, by definition, gℓ, restricted to the last n2 coordinates, is an

identity map. Also, trivially, each coordinate is a quadratic polynomial.

Part 2 : Getting HCn as a coefficient of gn ◦ . . . ◦ g0. We will prove two claims

about the structure of the compositions. Here is the first claim.

Claim 3.5. For any ℓ ≥ 1, we have (gℓ(. . . (g0(x,y, z) . . .)k = xi,j · yi · zj, for

k ∈ [n2 + 1, 2n2], where k − 1− n2 = (i− 1) + n(j − 1).

Proof. First, let us prove this for ℓ = 1. Since, there is a one-to-one correspondence

between the k-th coordinate and the pair (i, j), by definition,

g1(g0(x,y, z))k = g1(g0(x,y, z))k−n2 = xi,j · yi · zj .

Since gℓ is an identity map in the last n2 coordinates, for ℓ > 1, the conclusion

follows immediately.

We remark that, in fact, in the above, it can be easily seen that g1(g0(x,y, z))k =
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xi,j · yi · zj, for k ∈ [n2], where k − 1 = (i − 1) + n(j − 1). However, since ℓ grows,

gℓ ◦ . . . g0 looks complicated. Here is the main claim about the structure of the

composition for the first n2 coordinates.

Claim 3.6 (Main claim). For any ℓ ≥ 2, and k ∈ [n2], such that (k − 1) =

(i− 1) + n(j − 1), the following holds:

(gℓ(. . . (g0(x,y, z) . . .))k

= yizj ·
∑

1≤m1,...,mℓ−1≤n

xi,m1xm1,m2 · · · xmℓ−2,mℓ−1
xmℓ−1,j ·

(
ℓ−1∏
s=1

ymszms

)
.

Proof of the Claim. We will prove this by induction on ℓ.

Base case: ℓ = 2. For ℓ = 2, by definition, we have

(g2(g1(g0(x,y, z))k =
n∑

r=1

(xi,ryizr) · (xr,jyrzj)

= yizj ·
∑

1≤r≤n

xi,rxr,jyrzr ,

as desired. In the above, we implicitly used the (i, r)-th coordinate, by which we

mean the k′-th coordinate such that k′ − 1 = (i − 1) + n(r − 1), the similar corre-

spondence as we mentioned at the beginning of the proof of Lemma 3.4. Thus, the

base case is true.

Inductive step: (ℓ+1)-th step. Let us assume that it is true for some ℓ. To show
this for ℓ + 1, again, by definition (and the one-to-one correspondence between k
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and (i, j)), we have

(gℓ+1(. . . (g0(x,y, z) . . .)k

=

n∑
r=1

(gℓ(. . . (g0(x,y, z) . . .)i,r · (xr,jyrzj)

=
∑

1≤r≤n

 ∑
1≤m1,...,mℓ−1≤n

xi,m1
xm1,m2

· · ·xmℓ−2,mℓ−1
xmℓ−1,r ·

(
ℓ−1∏
s=1

yms
zms

)
· yizr

 · (xr,jyrzj)

= yizj ·
∑

1≤m1,...,mℓ−1,mℓ≤n

xi,m1
xm1,m2

· · ·xmℓ−1,mℓ
xmℓ,j ·

(
ℓ∏

s=1

yms
zms

)
.

The second last equality is by induction hypothesis, while in the last equality,

we renamed r by mℓ. In the above, by (i, r)-th coordinate, again, we mean k′-th

coordinate such that k′− 1 = (i− 1)+n(r− 1). This finishes the induction and the

conclusion as well.

Claim 3.6 with k = 1 (i.e. i = j = 1) and ℓ = n, gives the following identity:

(gn(. . . (g0(x,y, z) . . .)1

= y1z1 ·
∑

1≤m1,...,mn−1≤n

x1,m1xm1,m2 · · · xmn−2,mn−1xmn−1,1 ·

(
n−1∏
s=1

ymszms

)
.

The coefficient of the monomial y1z1 · · · ynzn is the Hamiltonian Cycle polynomial

HCn(x), because for any Hamiltonian cycle of length n, we must choose m1, . . . ,mn−1,

each between 2 and n, so that such a choice generates the monomial x1,m1xm1,m2 · · ·

xmn−2,mn−1xmn−1,1. Since, it visits each node exactly once, y1 · · · ynz1 · · · zn is also

generated with the x-monomial. This finishes the proof of part 2.

Since, Lemma 3.4 is now proved, the ⊕P-hardness follows, as well.

Part B: Proof of L ∈ ⊕P

We now show that deciding whether (f,m) ∈ L is ⊕P. To do this, we need to

construct an NP machineM such that the number of accepting paths is odd due to

Definition 3.1. The input to the machine M is (f,m), where m =
∏

i∈I xi, I ⊆ [n].

The output of M is the evaluation of f1 by setting xi = 0, ∀i ∈ [n] \ I, whereas

non-deterministically picking rj ∈ {0, 1} and setting xj = rj, ∀j ∈ I.
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Let |I| = k. As mentioned in the introduction, we can express f1(x) as

f1(x) = m · pI(x) + qI(x)

and we have ∑
(xi1

,...,xik
)∈Fk

2

xj=0,∀j /∈I

f1(x) = pI(x) ∈ {0, 1}

where pI(x) does not contain any variable xi where i ∈ I and none of the monomials

in qI(x) is divisible by m. Therefore, the above sum evaluates to 1 iff m is a

monomial in f1. It is easy to see that each accepting path ofM is essentially a term

in the above summation being evaluated to 1. Hence, m is a monomial in f1 iff the

number of accepting paths in M is odd. This finishes the proof of Part B.





Chapter 4

Preimage Attacks on Round

Reduced Keccak using

Non-Linear Structures

In this chapter, we present the preimage attacks for round reduced Keccak. In

[GLS16], the authors try to set up linear equations between message bits (variables)

and hash bits by controlling the diffusion due to θ and χ from producing any non-

linear terms. Observation 4.1 is used to manage the diffusion due to θ. Lanes are

fixed to constant to prevent χ from creating any non-linear terms. Furthermore, for

Keccak-384/512, the first row of the hash digest can be inverted due to Observa-

tion 4.2.

In most cases, the number of linear equations between the variables and hash

values is strictly less than the hash length. Therefore, they repeat the whole proce-

dure enough times by appropriately changing the constants in the system of linear

equations. This gives a successful preimage attack. In [Li+17] [LS19], similar tech-

niques are used to restrict χ from producing many non-linear terms. In our attacks,

we allow χ to produce non-linear terms, but at the same time, we control the number

of non-linear terms in the state.
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4.1 Structure of Keccak

Keccak hash function is based on sponge construction [Ber+11b] which uses a

padding function pad, a bitrate parameter r and a permutation function f as shown

in Figure 4.1.

Figure 4.1: Sponge function [Ber+11b]

4.1.1 Sponge Construction

As shown in Figure 4.1, the sponge construction consists of two phases - absorbing

and squeezing. It first applies the padding function pad on the input string M ,

which produces M ′ whose length is a multiple of r. In the absorbing phase, M ′ is

split into blocks of r bits namely m1,m2, ...mk. The initial state (IV) is a b bit string

containing all 0. Here b = r + c where c is called the capacity. The first r bits of IV

is XOR-ed with the first block m1 and is given as input to f . The output is XOR-ed

with the next message block m2 and then is given as input to f again. This process

is continued till all the message blocks have been absorbed.

The squeezing phase extracts the required output, which can be of any length.

Let ℓ be the required output length. If ℓ ≤ r, then the first ℓ bits of the output of

the absorbing phase is the output of the sponge construction. Whereas, if ℓ > r,

then more blocks of r bits are extracted by repeatedly applying f on the output of

the absorbing phase. This process is repeated enough times until we have extracted

at least ℓ bits. The final output of the sponge construction is the first ℓ bits that
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have been extracted.

In the Keccak hash family, the permutation function f is a Keccak-f [b] per-

mutation, and the pad function appends 10∗1 to input M . Keccak-f is a special-

ization of Keccak-p permutation.

Keccak-f [b] = Keccak-p[b, 12 + 2γ]

where γ = log2(b/25).

The official version of Keccak have r = 1600 − c and c = 2ℓ where ℓ ∈

{224, 256, 384, 512} called Keccak-224, Keccak-256, Keccak-384 and

Keccak-512.

4.1.2 Keccak-p Permutation

Keccak-p permutation is denoted by Keccak-p[b, nr], where b ∈ {25, 50, 100, 200,

400, 800, 1600} is the length of the input string and nr is the number of rounds of

the internal transformation. The parameter b is also called the width of the permu-

tation. The b bit input string can be represented as a 5× 5×w 3-dimensional array

known as state as shown in Figure 4.2. A lane in a state S is denoted by S[x, y]

which is the substring S[x, y, 0] | S[x, y, 1] | . . . | S[x, y, w − 1] where w is equal to

b/25 and “|” is the concatenation function.

Figure 4.2: Keccak state [Tea]
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In each round, the state S goes through 5 step mappings θ,ρ,π,χ and ι, i.e.

Round(S, ir) = ι(χ(π(ρ(θ(S)))), ir) where ir is the round index. Except for χ, the

rest of the step mappings are linear. In the following, S ′ is the state after applying

the corresponding step mapping to S, “⊕” denotes bitwise XOR and “·” denotes

bitwise AND.

1. θ: The θ step XOR’s S[x, y, z] with parities of its neighbouring columns in

the following manner.

S ′[x, y, z] = S[x, y, z]⊕ P [(x+ 1) mod 5][(z − 1) mod 64]

⊕ P [(x− 1) mod 5][z]

where P [x][z] is the parity of a column, i.e.,

P [x][z] =
4⊕

i=0

S[x, i, z]

Figure 4.3: step θ [Tea]

2. ρ: The ρ step simply rotates each lane by a predefined value given in the table

below, i.e.

S ′[x, y] = S[x, y]≪ r[x][y]

where ≪ means bitwise rotation towards MSB of the 64-bit word.
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4 18 2 61 56 14

3 41 45 15 21 8

2 3 10 43 25 39

1 36 44 6 55 20

0 0 1 62 28 27

y\x 0 1 2 3 4

Figure 4.4: step ρ [Tea]

3. π: The π step interchanges the lanes of the state S.

S ′[y, 2x+ 3y] = S[x, y]

Figure 4.5: step π [Tea]

4. χ: The χ step is the only non-linear operation among the 5 step mappings
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due to the quadratic term.

S ′[x, y, z] = S[x, y, z]⊕ ((S[(x+ 1) mod 5, y, z]⊕ 1)·

S[(x+ 2) mod 5, y, z])

Figure 4.6: step χ [Tea]

5. ι: The ι step is the only step that depends on the round number.

S ′[0, 0] = S[0, 0]⊕RCi

where RCi is a constant which depends on i where i is the round number.

4.1.3 Observations

In this paper, we will be using the following observations made by Guo et al. [GLS16].

The χ step mapping is a row-dependent operation. Let a0, a1, a2, a3, a4 be the 5 input

bits to the χ operation and b0, b1, b2, b3, b4 be the 5 output bits.

Observation 4.1. Let d0, d1, d2, d3, d4 be the elements of a column. Then, the parity

of the column can be fixed to a constant c by choosing for any i ∈ {0, 1, 2, 3, 4}

di = c⊕

(
j=4⊕
j=1

di+j

)
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Observation 4.2. If the output of χ for an entire row is known, i.e. χ([a0, a1, a2, a3, a4])

= [b0, b1, b2, b3, b4], then we have

ai = bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4)

Observation 4.3. If we are given two consecutive bits bi, bi+1 of the output of χ,

we can set up the following linear equation on the input bits.

bi = ai ⊕ (bi+1 ⊕ 1) · ai+2

In the rest of the paper, all the message variables and hash values are represented

in the form of lanes (array) of length 64, and we will use + symbol in place of ⊕.

For a state A, A[x, y] denotes a lane where 0 ≤ x, y ≤ 4. In all the equations, the

value inside the brackets ‘()’ indicates the offset by which the lane is shifted. For

example, A[x, y](k) denotes lane A[x, y] rotated by an offset of k. Every operation

between two lanes is bitwise.

4.2 Preimage Attacks on 2 Rounds Keccak-512

In this subsection, we describe our preimage attack for 2-rounds Keccak-512. The

best-known attack for this variant of Keccak is by Guo et al.[GLS16] with a com-

plexity of 2384. Their preimage attack is based on a linear structure by keeping four

lanes as variables. We give two preimage attacks using six lanes as variables. In

the first preimage attack, we keep the lanes in columns 1, 3, 4 as variables and get

an attack of complexity 2337, which can be improved to 2321. However, the second

preimage attack chooses a different set of lanes as variables and also has a complexity

of 2321.
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4.2.1 Preimage Attack with Complexity 2337

In Figure 4.7, we set the lanes in columns 1, 3 and 4 as variables, and the rest of the

lanes are set to some constant. Therefore, we have 6× 64 = 384 variables. To avoid

the propagation by θ in the first round, we use Observation 4.1, i.e.,
⊕4

j=0 A[i, j] =

αi, ∀i ∈ [0, 2, 3] where αi is some constant and hence include 3 × 64 = 192 linear

constraints to the system. Also, since the hash length is 512, we can invert the first

row of the hash value due to Observation 4.2.

Observe that after the application of the χ operation in the first round, state (4)

contains a lane with quadratic terms. Due to the θ of the second round, these will

get propagated only to the neighbouring columns. Hence, the majority of the lanes

in the state (5) contain only linear terms. However, while equating state (6) and

state (7), we are only able to obtain 2× 64 = 128 linear equations between the hash

values and the variables. Observe that we have set up only 320 linear equations but

have 384 variables.

Applying the techniques used in [GLS16], we can linearize the quadratic term and

use them to create more linear equations between the hash value and the variables.

Notice that in state (5), there is at most one quadratic term in each polynomial. This

is because the state before the application of θ in the second round has only one lane

containing polynomials with only one quadratic term. More precisely, A[4, 4] of state

(4) contains a polynomial of the form p1 + p2.p3 where pi’s are linear polynomials.

This non-linear polynomial can be linearized by adding one more linear equation

to the system, say p3 = β where β is a constant. Therefore, if we linearize one

quadratic term in state (4), we will be able to linearize 11 quadratic terms in state

(5). But, only 3 out of the 11 linearized terms can be equated to the values in

the state (7). Therefore, we can set up an additional 64 linear equations of which

3⌊64/4⌋ = 48 equations are between message bits and hash values. But, we need

to include one more linear equation for the last message bit to be 1 to satisfy the

padding condition of Keccak. Therefore, we have a system of linear equations in

384 variables and 384 equations. Since we have 128 + 48− 1 = 175 linear equations
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(1)

θ−→

(2)

π◦ρ−−→

(3)

ι ◦ χ

(6)

π◦ρ←−−

(5)

θ←−

(4)

=

(7)

χ−1◦ι−1

←−−−−−

(8)

= 0
= 1
= constant
= linear
= quadratic

Figure 4.7: Preimage attack on 2-round Keccak-512
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between hash values and variables, we get a valid preimage with probability 1/2337.

To get a successful preimage attack, we must repeat the above procedure for at

least 2337 times where the system of linear equations is different each time. Ob-

serve that there are enough degrees of freedom to perform this, i.e. 192 bits from

A[1, 0], A[1, 1] and A[4, 0] and 192 bits from αi for i ∈ [0, 2, 3] which sums up to

384 bits. Therefore, we have a preimage attack for 2-rounds Keccak-512 with a

complexity of 2337.

4.2.2 Improved Analysis

In the previous analysis, by equating state (6) and (7), we were able to obtain 128

linear equations between the hash values and variables. Let us now focus on the

second χ operation on the second row of state (6). Observe that the second and

fourth lanes of the second row in state (6) are linear, whereas we know the values

of the first three consecutive lanes of the output of the second χ operation. Using

Observation 4.3, we can set up an additional 64 linear equations, which sums up to

128 + 64 − 1 linear equations between the hash value and variables. Therefore, we

have a primage attack for 2-rounds Keccak-512 with a complexity of 2321.

By choosing a different set of lanes as variables, we have another preimage attack

with complexity 2321. In Figure 4.8, columns 1,2 and 4 are set as variables and the

rest are set to constant. We also set
⊕4

j=0 A[i, j] = αi, ∀i ∈ [0, 1, 3] where αi is some

constant, thus adding 192 linear equations to the system. Observe that in this case,

we can set up 3× 64− 1 linear equations between the hash values and the variables.

We must also include one more linear constraint for the last bit of the message to

be 1 to satisfy the padding condition for Keccak. Therefore, we have a system of

linear equations in 384 variables and 384 equations.

Since we are able to set up only 191 linear equations between the hash values

and the variables, we get a valid preimage with probability 1/2321. Observe that

there are enough degrees of freedom to repeat this procedure for 2321 due to 192 bits

from A[2, 0], A[2, 1] and A[4, 0] and 192 bits from αi for i ∈ [0, 1, 3] which sums up
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Figure 4.8: Better preimage attack on 2-round Keccak-512
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to 384 bits. Therefore, we have a preimage attack for 2-rounds Keccak-512 with a

complexity of 2321.

4.3 Preimage Attack on 2 Rounds Keccak-384

The preimage attack given by Guo et al. [GLS16] for 2 rounds Keccak-384 has a

complexity of 2129 by constructing a linear structure with 6 × 64 variables. In our

attack, we use 8×64 variables as shown in Figure 4.9. In order to avoid propagation

by θ in first round, we add the following 3 × 64 linear constraints into the system,⊕4
j=0 A[i, j] = αi, ∀i ∈ [0, 2, 3] where αi is some constant.

By equating state (5) and state (6), we get 2×64 = 128 linear equations between

variables and hash values. Observe that we have only set up 320 linear equations but

have 8×64 = 512 variables. Applying the linearization technique used in Section 4.2,

we can set up an additional 3 × 64 linear equations of which 3⌊(3 × 64)/4)⌋ = 144

equations are between message bits and hash values. After satisfying the padding

rule, we have a complexity gain over brute force of 2128+144−1 = 2271 and hence a

preimage attack of complexity 2384−271 = 2113. Observe that we have enough degrees

of freedom to repeat this procedure for 2113 times. Note that this result cannot be

compared with the preimage attack given by Kumar et al. [KMS18] because their

attack has a space complexity of 287.

4.4 Preimage Attack for Higher Rounds

In the previous subsections, we were able to get a better preimage attack due to

the fact the states are not filled with quadratic terms. If we were to find a similar

attack for 3-rounds, we need to keep the following guidelines in mind.

1. The state after the application of second θ must be sparse of lanes with linear

terms and comprised mostly of lanes with constant terms. This is because it

would lead to a state with lesser quadratic terms after the application of χ of

the second round.
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Figure 4.9: Preimage attack on 2-round Keccak-384
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2. Even if the propagation due to the θ in the third round cannot be restricted,

the state before the application of the third θ must contain all its quadratic

terms either in a single column or in two columns adjacent to each other. This

would lead to a state with at least one column containing linear terms only

after the application of θ.

4.5 Preimage Attack on 3 Rounds Keccak-384

The following is our attack on Keccak-384 for 3 rounds which uses two message

blocks as shown in Figure 4.10. The first message block is chosen in such a way

that after the application of 3 round Keccak on this block, we get a state such

that A[1, 3] = A[3, 3] = 0 and A[1, 4] = A[4, 4] = 1 where A is state (2) as shown

in Figure 4.10. The first message block can be found by randomly choosing 24×64

message block and expecting one of them to give the required output. This works

because the output of a hash function is random, and therefore the complexity for

brute force preimage attack is 1/2l where l is the number of bits in the hash digest.

The same technique has been used in [LS19] subsection 4.3.

The second message block contains 6 × 64 = 384 variables. We want to keep

columns 2, 4 and 5 unchanged after the application of the first θ. For this, we first

set
⊕4

j=0 A[i, j] = αi, for i ∈ [0, 2] and then set up an equation between column 1

and column 3 so that column 2 does not get affected after the application of first θ.

This means that the αi’s are dependent. Similarly, c2 and c3 can be set according

to αi’s such that columns 4 and 5 do not get affected after the first θ. Therefore,

we have 2 × 64 linear equations in our system. c1 can be fixed to some randomly

chosen value.

To avoid propagation after second θ, we set up 3× 64 linear equations to make

the column parties equal to some constant βi. Observe that after the application

of the second χ, there are two lanes with quadratic terms in state (8). But after

the application of the third θ, the fourth column will contain only linear terms. By

equating state (9) and state (10), we can set up 63 linear equations between message
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Figure 4.10: Preimage attack on 3-round Keccak-384
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bits and hash values. Also, we have one more equation to keep the last message

bit equal to 1. Therefore, we have a preimage attack with a time of complexity

2384−63 = 2321 because computing the first message block has a complexity of 2256.

Note that there are enough degrees of freedom due to the 256 bits from αi’s and

the βi’s, 64 bits from c1 and enough bits from the first message block.

4.6 Preimage Attack on 3 Rounds Keccak-512

We use two message blocks and 4 × 64 = 256 variables for this attack as shown

in Figure 4.11. The first message block is used so that we get enough degree of

freedom to launch a preimage attack. Observe that after the application of θ in

the first round, we require certain lanes to be 1/0 in state (4). To achieve this,

we first set A[1, 0] ⊕ A[1, 1] = α1 where α1 is some constant. Then, we set up 64

linear equations of the form
⊕4

i=0 (A[1, i]⊕ A[3, i](1) = e2 + 1). Observe that due

to this constraint, after the application of first θ, we will get A[2, 0] = A[2, 4] = 1

and A[2, 1] = 0 where A is state (4). Similarly, by fixing x6 and x2 appropriately,

we can get the required state (4).

To avoid propagation due to the θ in the second round, we add only 64 linear

equations to the system to make the parity of the first columns in state (6) as a

constant. Observe that after the application of θ of the third round, the lanes in

the first two columns will contain only one quadratic term. So, if we linearize one

quadratic term in A[2, 4] of state (9), then we have linearized five polynomials in

column 2 of state (10). Similarly, if we linearize one quadratic term in A[4, 2] of

state (9), then we have linearized five polynomials in column 1 of state (10).

But, out of these 6 linearized polynomials, only one can be used to create a

linear equation between message bits and hash value by equating state (10) and

state (11). Therefore, we have ⌊64/2⌋ = 32 linear equations between message bits

and hash value and hence obtained a preimage of complexity 2512−32+1 = 2481. Due

to the first message block, we have enough degree of freedom.
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Figure 4.11: Preimage attack on 3-round Keccak-512
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4.6.1 Improved Analysis

Observe that if we carefully linearize one quadratic term from A[2, 4] and one from

A[4, 2] of state (9), we also linearize one more polynomial in column 4 of state (10),

i.e. we have also linearized a polynomial in the lane A[3, 3]. Therefore, now we have

3⌊64
5
⌋ + 2 = 3 × 12 + 2 = 38. Therefore, we have an improved preimage attack of

complexity 2512−38+1 = 2475.

4.7 Preimage Attack on 4 Rounds Keccak-384

This attack requires two message blocks and 6 × 64 = 384 variables as shown in

Figure 4.12. As done in Section 4.5, the first message block is found by trying

randomly many message blocks so that after the application of 4-rounds and XOR-

ing the second message block, we get state (2). Observe that in state (2), there

are two lanes with entries c and c. We also require state (2) to satisfy one more

equation.

d(−1) + b(−2) + (g(−1) + (c+ a+ b)(−2))(−2) + (a+ b)(1) = k (4.1)

Therefore, we would require a complexity of 2128 to find the appropriate first

message block. We will use the following strategy to obtain state (3). We include

A[0, 0] = A[0, 2] to the system of linear equations, fix x1 = 0 and randomly assign

value to x7 whereas we fix x2 = c, x3 = d, x5 = g. Since we require state (3) after

the application of θ, we have the following equations.

(a+ b) + (A[2, 0] + A[2, 2] + e)(1) = c (4.2)

(A[2, 0] + A[2, 2] + e) + (x6 + x7 + i+ j + k)(1) = g (4.3)

(x6 + x7 + i+ j + k) + (A[1, 0] + A[1, 2] + c)(1) = b (4.4)

(A[1, 0] + A[1, 2] + c) + (x4 + f + h)(1) = d (4.5)
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(x4 + f + h) + (a+ b)(1) = k (4.6)

Therefore, we add equation (7) and (9) to the system of equations and fix x6 and

x4 according to equation (8) and (10). Observe that due to the following equations,

all equations from (2)-(6) are satisfied; particularly, equation (6) is satisfied due to

equation (1).

A[2, 0] + A[2, 2] = (c+ a+ b)(−1) + e (4.7)

x6 = g(−1) + (c+ a+ b)(−2) + x7 + i+ j + k (4.8)

A[1, 0] + A[1, 2] = b(−1) + (g(−1) + (c+ a+ b)(−2))(−1) + c (4.9)

x4 = d(−1) + f + h+ (b+ x6 + x7 + i+ j + k)(−2)

= d(−1) + f + h+ b(−2) + (g(−1) + (c+ a+ b)(−2))(−2)
(4.10)

Also, we include 2 × 64 linear equations for restricting the propagation due

to θ in the second round. Observe that each polynomial in the state (9) has 11

quadratic terms. In [GLS16] subsection 6.3, Guo et al. gave a technique that

carefully linearizes the quadratic terms such that if the number of free variables is t,

we can construct 2⌊(t−5)/8⌋ linear equations between hash values and the variables.

Let A denote state (8), B denote the state after χ of third round and C denote the

state after θ of fourth round. From the definition of χ and θ and neglecting ι step

for the sake of simplicity,

B[x, y, z] = A[x, y, z]⊕ (A[x+ 1, y, z]⊕ 1) · A[x+ 2, y, z]

C[x, y, z] = B[x, y, z]⊕
4⊕

y′=0

B[x− 1, y′, z]⊕
4⊕

y′=0

B[x+ 1, y′, z − 1]

We can linearize B[x − 1, y, z] and B[x, y, z] by guessing the value of A[x + 1, y, z]

for 0 ≤ y ≤ 4. Similarly, we can linearize B[x+ 1, y, z − 1] and B[x+ 2, y, z − 1] by

guessing the value of A[x + 3, y, z − 1] for 0 ≤ y ≤ 4. This helps us in linearizing
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Figure 4.12: Preimage attack on 4-round Keccak-384
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C[x, y, z], but observe that

C[x+ 1, y + 1, z] = B[x+ 1, y + 1, z]⊕
4⊕

y′=0

B[x, y′, z]⊕
4⊕

y′=0

B[x+ 2, y′, z − 1]

which contain a quadratic part in B[x+1, y+1, z]. By linearizing this term, we set

up 13 linear equations of which two equations are between message bits and hash

values. Similarly, by carefully observing C[x+2, y+2, z−1] and C[x+3, y+3, z−1]

and linearizing them, we can set up another 8 linear equations of which two equations

are between message bits and hash values. For more details, refer [GLS16]. In our

case, the number of free variables t = 64 and therefore, we can set up 14 linear

equations between message bits and hash values. Observe that we have enough

degree of freedom due to x7, the parity of the two columns of the second θ and the

rest from the first message block. Therefore, the complexity of our attack is 2371.





Chapter 5

Weak-Keys and Key-Recovery

Attacks for TinyJAMBU

In this chapter, we study TinyJAMBU from three important and different contexts

– (i) the weak-key setting, (ii) understanding the exact degree of the feedback poly-

nomial in the nonce variables (iii) the key-recovery attacks. Teng et al. [Ten+21]

looked into the TinyJAMBU cipher’s resistance to cube attacks. They showed key-

recovery attack for 428 rounds and distinguishing attack for 438 rounds using small

size cubes.

We show that there are at least 2108 keys for which TinyJAMBU can be distin-

guished from a random source for up to 476 rounds and key-recovery attack against

440 rounds.

5.1 Structure of TinyJAMBU

Wu and Huang designed TinyJAMBU [WH19; WH21] which is a variant of

JAMBU [WH14]. It is a family of lightweight authenticated encryption algorithms

and one among the 10 finalists in the NIST Lightweight Cryptography (LWC) Stan-

dardisation project [NIS18]. The family consists of three variants - TinyJAMBU-128,

TinyJAMBU-192 and TinyJAMBU-256, as shown in Table 5.1.

The core permutation Pn updates the state using a non-linear feedback shift
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Table 5.1: TinyJAMBU variants and their recommended parameters

Name State size Size of Rounds

Key Nonce Tag Q Q̂

TinyJAMBU-128 128 128 96 64 640 1024
TinyJAMBU-192 128 192 96 64 640 1152
TinyJAMBU-256 128 256 96 64 640 1280

register for n-rounds where the ith rounds is described in Algorithm 1. We will use

the notation P for P1. The permutations Q and Q̂ mentioned in Table 6.1 are Pn

with different values of n.

feedback = s0 ⊕ s47⊕ ∼ (s70 · x85)⊕ s91 ⊕ ki mod klen;

for i = 1 to 127 do

si = si−1;

end

s0 = feedback;
Algorithm 1: StateUpdate(s, k, i)

5.1.1 Specification of TinyJAMBU-128

As shown in Table 6.1, TinyJAMBU-128 has a 128-bits state and key, whereas the

number of nonce bits is 96. The tag size is 64 bits. The permutation function Q is

P640 whereas Q̂ is P1024.Anonymous Submission to IACR ToSC 21

0 Init
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⊕

3
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⊕
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Figure 5: TinyJAMBU’s mode of operation (encryption phase)
Figure 5.1: TinyJAMBU’s mode of operation (encryption phase)

The authenticated encryption algorithm of TinyJAMBU can be divided into four

phases as shown in Figure 5.1: Initialisation, associated data processing, encryption

and finalisation.
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Initialization: In this phase, the state is set to all zero and is updated by the keyed

permutation Q̂. The 96 bit nonce is divided into 3 parts- nonce0, nonce1 and nonce2

of equal size and updates the state using Algorithm 2.

for i = 0 to 2 do

s36,...,38 = s36,...,38 ⊕ 1;

Update state s using Q;

s96,...,127 = s96,...,127 ⊕ noncei;

end
Algorithm 2: NonceSetup(s, nonce)

Associated date processing: After the initialisation phase, the associated date

(A0, A1) are processed by XORing them to the state and updating it using the keyed

permutation Q as described in Algorithm 3

for i = 0 to 1 do

s36,...,38 = s36,...,38 ⊕ 3;

Update state s using Q̂;

s96,...,127 = s96,...,127 ⊕ Ai;

end
Algorithm 3: AssociatedDateProcessing(s, A0, A1)

Encryption: In the encryption phase, the message M is encrypted to produce the

ciphertext C. In the paper, we will always assume that the size of the message M

denoted by ℓ is a multiple of 32. In Figure 5.1, we have assumed that M consists of

64 bits. In general, Algorithm 4 is performed ℓ/32 times on M0, . . . ,Mℓ/32−1 where

Mi is the ith block of M having size equal to 32.
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for i = 0 to ℓ/32 do

s36,...,38 = s36,...,38 ⊕ 5;

Update state s using Q̂;

s96,...,127 = s96,...,127 ⊕Mi;

Ci = s64,...,95 ⊕Mi;

end
Algorithm 4: Encryption(s,M)

Tag generation: Finally, the 64-bit tag T = (T0, T1) is generated as shown in

Algorithm 5.

for i = 0 to 1 do

s36,...,38 = s36,...,38 ⊕ 7;

Update state s using Q̂;

Ti = s64,...,95;

end
Algorithm 5: TagGeneration(s,M)

5.2 Weak-Keys for TinyJAMBU

In this section, we will present a new cube distinguisher for 451 rounds TinyJAMBU

that works for 2101 keys. We also show another distinguisher for 476 rounds for 280

keys. We will first analyse the feedback polynomial in the permutation P which

will help to find good cubes. Using these cubes, we will further study the key

variables involved in the feedback polynomials, which will help us to find weak-keys

for TinyJAMBU.

To be more precise, let us consider the scenario of a traditional cube attack as

a distinguisher. Let x be the set of all public (nonce) variables, k be the set of key

variables and f(x, k) be the output polynomial. Then, for any cube CI where I ⊆ [n]
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is the index set and n is the number of public variables, we have

f(x, k) =
(∏

i∈I
xi · pI(x, k)

)
+ qI(x, k),

where pI(x, k) does not contain any variable xi, where i ∈ I and every monomial of

qI(x, k) is not divisible by
∏

i∈I xi. In a cube attack, one takes advantage of the fact

that for a properly chosen cube CI and constant values ai, ∀i ∈ [n] \ I, the superpoly

of the output polynomial f(x, k) is a constant, i.e., pI(A, k) is a constant, where

A = {ai | i ∈ [n] \ I}. Observe that for pI(A, k) be to a constant, its degree with

respect to k must be 0.

Therefore, the above attack fails when there is no possible cube with appropriate

constant values that has a superpoly equal to a constant. This happens when the

number of rounds increases because the degree of the polynomials with respect to

both public and key variables increases exponentially. Nevertheless, if we can find

the superpoly pI(A, k) which is a polynomial in the key variables only, then we

can use this information to find weak-keys such that pI(A, k) is a constant. These

weak-keys are essentially ones that satisfy the equation pI(A, k) = constant.

But, to find out the superpolies is itself a difficult task. Using MILP, one can

find superpoly. However, this technique is only possible for small rounds because

the degree of the superpolies will be small. Therefore, instead of extracting the

exact superpolies, we will show a method to decrease the degree of the superpoly by

imposing some constraints on the key variables. By doing so, we will get weak-keys

such that the superpoly is a constant with some probability.

5.2.1 Weak-Key Attacks using Cubes from [Ten+21]

In [Ten+21], the authors presented several cube attacks for TinyJAMBU. In their

experiments, the authors devised five different cube attacks, DA1 to DA5, depending

on the scenario. DA1 and DA2 are attacks against the initialisation phase, i.e.,

• DA1 uses only the first 64 bits of the nonce (i.e., nonce0 and nonce1 only) and
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can observe the keystream after the initialisation phase. But, the total number

of permutation rounds being considered is 1024+3×384. This is according to

[WH19], but Wu and Huang have updated the initialisation phase in [WH21]

from using P384 to P640. This change was made after a recent differential

forgery attack due to [Sah+20].

• DA2 uses all 96 bits of the nonce but observes the keystream after applying r

rounds of permutation after the initialisation phase.

In DA3 to DA5, the authors use the plaintext bits to build new distinguishers.

Since our focus is towards building distinguishers based on nonce bits only; we will

be skipping DA3 to DA5 in further discussions.

In Table 5.2, we have given the best cubes mentioned in [Ten+21] for DA2 where

the authors have used cube indices from 64 to 95, i.e., only nonce2. The zero-sum

value is observed at the 64th index of the final state.

Cube-size Cube indices Rounds

8 69, 70, 71, 76, 81, 86, 91, 92 419

14 64, 65, 70, 72, 76, 77, 78, 81, 85, 86, 87, 88, 92, 95 435

18 66, 67, 68, 72, 73, 75, 77, 79, 81, 82, 83, 84, 87, 88, 89, 90, 93, 94 437

18 67, 68, 69, 70, 72, 73, 75, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 95 438

Table 5.2: Cube attacks from [Ten+21]

In our experiments, we will be considering distinguishing attacks (as well as key-

recovery in the next section) for the keyed permutation Pn. The experiment is as

follows.

1. We start with a state with all the bits set to 0.

2. The bits that are accessible to the attacker are {96, 97, . . . , 127}, i.e., the nonce

bits. (Refer to Algorithm 2).

3. After the public bits are set, the state is updated using Pn.
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4. Finally, the attacker is only given access to the bits at positions {64, 65, . . . , 96}.

The designers of TinyJAMBU [WH21] have mentioned that, from their experiments,

every nonce bit affects all the output bits after 512 rounds. Hence, building distin-

guishers using 32-sized cubes is not possible.

We use a 7 size cube {69, 70, 76, 81, 86, 91, 92}. In our simulations, we use a linear

congruential algorithm and 48-bit integer arithmetic in C to generate random binary

values. We use 1 million random keys to find the bias. We get Pr(Superpoly = 1) =

0.285 (0.485) for 434 (456) rounds.

We present our experimental results in Figure 5.2.
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Figure 5.2: Probability of superpoly being 1 for different rounds for the cube
{69, 70, 76, 81, 86, 91, 92}.

5.2.2 How to Find Good Cubes

The state bits of TinyJAMBU are updated using the nonce, associated data and

plaintext using the permutation P . Let us recall the feedback polynomial in permu-

tation P . It is a quadratic polynomial involving 5 state variables and 1 key variable.

The only quadratic term in the polynomial is s70 · s85.

For the (weak-key) distinguishing attack, we will start with a state s with all

0 entries. As mentioned in Section 5.1.1, the 32 bit nonce is XORed at the 96th
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Figure 5.3: Feedback polynomial in P

position of the state. In any distinguishing attack, the desired cube must have two

good properties.

1. The size of the cube must be small.

2. The number of rounds it can be used as a distinguisher must be large.

To achieve these properties simultaneously, one way is to make sure that the degrees

of the polynomials in the state are as small as possible for the initial rounds. Observe

that the degree of the polynomials in the state can increase only due to the quadratic

term in the permutation P function. Therefore, if we can control the quadratic term

in the initial rounds, the degree of the polynomial can be minimised.

Since the feedback polynomial has a non-linear term s70 ·s85 (i.e., the terms are 15

indices apart) we just need to ensure that in the initial rounds, we can minimise the

number of index pairs (i, i + 15) such that at most one among si or si+15 contains

a nonce variable. In doing so, the feedback polynomial will become linear for up

to certain rounds. Therefore, if we set a cube C = {ci | 0 ≤ i < 32} such that

(ci, ci+15) ̸⊆ C, ∀i ∈ {0, 1, . . . , 16}, then we can ensure for a larger number of rounds,

the state will contain linear polynomials only.

For example, suppose we consider two cube C and C ′ such that (c0, c15) ⊆ C

whereas c0 ∈ C ′, c15 /∈ C ′. As mentioned earlier, we will start with a state with all

0 bits and the 32-bit nonce is XORed at index 96th. This implies that at round 0,

we have s96 = c0 and s111 = c15 while considering the cube C. Also, si = 0 for

all 0 ≤ i < 96. After 26 rounds, the state would get updated in such a way that

s70 = c0 and s85 = c15. Observe that all the polynomials of the state are linear up to

this round. But, in the 27th round, the feedback polynomial will contain the term

c0 · c15 and s127 will become quadratic. When we consider the cube C ′, then after 26
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rounds, we will get s70 = c0 and s85 will be some constant. Therefore, s127 in the

27th will also be linear.

5.2.3 Getting Cubes for Higher Rounds

The best distinguisher mentioned in [Ten+21] works for 438 rounds and uses a cube

of size 18. In this subsection, we will present weak-keys for TinyJAMBU where

the number of rounds is greater than 450. To begin with, we will use the cubes

mentioned in Section 5.2.2, which gives us an advantage over other cubes by making

the feedback polynomials linear for more rounds.

After picking a good cube, we will follow the steps mentioned in Section 5.2.1 to

find key constraints so that we can build better distinguishers, i.e., we will carefully

analyse the feedback polynomial at each round and try to set up constraints on the

key variables so that either we are able to decrease the degree of the polynomial

with respect to nonce variable or completely eliminate a term from the polynomial.

For example, let us consider the 14 sized cube CI where

I = {65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78}

The rest of the nonce variables are set to 0. Observe that the set I has the required

property that ensures that CI is a good cube, i.e., (i, i+15) ̸⊆ I. At the 59th rounds,

the feedback polynomial is

k0 · k15 + k0 · x10 + k0 + k15 + k21 + k58 + x9 + x10 + 1

By setting k0 = 1, the polynomial gets reduced to

k21 + k58 + x9 + 1

Observe that even though the degree of the polynomial with respect to nonce vari-

able has not decreased, the nonce variable x10 does not appear in the polynomial.
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This allows us to control the mixing of nonce variables in subsequent rounds. Simi-

larly, we set k1 = k2 = k3 = k4 = 1 for the next four rounds.

At the 65th round, the feedback polynomial is

k6 · k21 + k6 + k21 · x1 + k21 + k27 + k64 + x1 + 1

In this case, if we set k21 = 1, the polynomial gets reduced to k27 + k64, i.e., the

degree of the polynomial with respect to nonce variable gets reduced to 0 as well

as the number of monomials. By analysing the feedback polynomial in the next 13

rounds, we set ki = 1, ∀i ∈ {22, 23, . . . , 34}.

Let us now focus on the 94th round. Here, we have

k12+ k13 · k35+ k13+ k19+ k35 · k50+ k35 ·x1+ k35 ·x8+ k50+ k56+ k93+x1+x8+x14

We set k35 = 1 to reduce the feedback polynomial. The same goes for ki, ∀i ∈

{35, 36, . . . , 42}. By analysing a few rounds after the 102nd round, we set ki =

1, ∀i ∈ {58, 59, 60, 61, 62}. Giving an addition 10 key constraints ki = 1, ∀i ∈

{64, . . . , 73}, we get a zero sum distinguisher for 451 rounds. Thus, we have a total

of 41 constraints on key for this case.

Next, we relax a few conditions on the key and check experimentally whether we

are getting bias or not. We check that if we take ki = 1, ∀i ∈ {3, 4, 24, 26, 28, 29, 33, 34,

35, 40, 41, 71, 72}, still we get zero sum distinguisher for 451 rounds. Thus instead

of 41 constraints, we now need only 13 constraints.

Cube indices I Rounds Prob.

65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78 {3, 4, 24, 26, 28, 29, 33, 34, 35, 40, 41, 71, 72} 451 0

64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78 {0, 1, 2, 3, 4, 21, 23, 24, 28, 29, 30, 32, 36, 37, 38, 39, 40, 42} 455 0.476

64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78
{ 2, 3, 20, 21, 22, 25, 26, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39,

466 0.467
40, 41, 42, 57, 58, 59, 61, 64, 66, 70, 71, 72, 73, 74, 76, 77}

81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95
{0, 1, 6, 7, 8, 13, 14, 15, 16, 17, 20, 37, 38,

476 0.478
41, 44, 45, 50, 51, 52, 57}

Table 5.3: Weak-key attacks for more than 450 rounds. Constraints are ki = 1 for i ∈ I.
Fourth column represents the probability of the superpoly being 1.

In Table 5.3, we present our experimental results. We use 105 random keys to
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find the probabilities. All cubes are of size 14. One can see from the first row that

superpoly is always equal to 0 for 451 rounds if the key satisfies 13 constraints. From

the last row, it is clear that one can distinguish TinyJAMBU for 476 rounds if the

secret key satisfies 20 constraints. Thus the size of the corresponding weak-key class

is 2108.

5.3 Exact Degree in Nonce of the Feedback Poly-

nomial in Pn

In this section, we will use the concept of monomial trails to find the exact degrees

in nonce of the feedback polynomials for some rounds of TinyJAMBU. To find the

exact degrees, we will use the algorithms mentioned in [Hu+20] and discuss the

important changes required to adapt those algorithms to our scenario.

The exact degree of a polynomial f(x) can be written as deg(f) = max
πu(x)→f(x)

(wt(u)).

Using Claim 2.14, we have a procedure to find the exact degree of f(x) given as

follows.

1. Find a highest degree monomial πu(x) such that πu(x)⇝ f(x).

2. If |πu(x) ⇝ f(x)| is odd, then return wt(u). Else, repeat the whole process

until we find a new monomial whose degree is the largest and has an odd

number of monomial trails.

We will use Mixed Integer Linear Programming (MILP) to find monomial trails

and use Gurobi to solve the MILP instance. The objective function is to maximise

the weight of u whereas the constraints will be set up in such that a solution u will

ensure a monomial trail πu(x) ⇝ f(x). To count the number of monomial trails,

we will use PoolSearchMode in Gurobi, which will help us to find multiple solutions.

Here, we are using the fact that each solution of the model is a monomial trail

πu(x)⇝ f(x).

We now focus on the MILP model for finding the exact degree in nonce of the
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V = {[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1],

[0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1],

[0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0],

[0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1], [0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1],

[0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1],

[0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1], [0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0], [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0], [0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1],

[0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1], [0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1], [0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0],

[0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0], [0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0],

[0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1],

[0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1], [0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1],

[0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0],

[0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1], [0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0],

[0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1], [0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0],

[0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0], [0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0], [0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1],

[0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1], [0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1],

[0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1],

[0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],

[0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1], [0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1], [0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1],

[0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0],

[0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0], [0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1],

[0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1], [0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1], [0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1], [0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1],

[0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0],

[0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0], [0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0], [0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0], [0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0],

[0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1],

[0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],

[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1],

[1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1],

[1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1],

[1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1],

[1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1],

[1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1],

[1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

Figure 5.4: Set V

feedback polynomial of Pn. To make the concepts easy to understand, we will

consider the permutation P taking as input the state s and key k and output an

updated state s′ but the same key k. Observe that the keyed permutation Pn can

be written as

Pn = P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
n times

and the feedback polynomial at the nth round is πe128(Pn(s, k)) where

e128 = [0, 0, . . . , 0, 1
128th index

, 0, . . . , 0, 0]

From the definition of monomial trail, a trail exists from πu(0)(s) to πe128(Pn(s, k))
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Figure 5.5: Inequalities for F

(denoted as πu(0)(s)⇝ πe128(Pn(s, k))) if there is a set of binary vectors u(1), u(2), . . . ,

u(n−1) such that

πu(i−1)(Pi−1(s, k))→ πu(i)(Pi(s, k)), ∀i ∈ [128]

where u(128) = e128 and s is the initial state such that s96+i = xi, ∀i ∈ {0, 1, . . . , 32}

and the rest are 0. Therefore, we only need to find out linear constraints consisting of

ui−1 and ui such that the constraints are satisfied if and only if πu(i−1)(Pi−1(s, k))→

πu(i)(Pi(s, k)). For the sake of simplicity, let us consider the notation (y, k) :=

πu(i−1)(Pi−1(s, k)), then (z, k) := πu(i)(Pi(s, k)) = P(y, k). Also, we will use u :=

u(i−1) and v := u(i). So, we need to find linear constraints u and v such that the
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constraints are satisfied if and only if πu(y, k)→ πv(z, k).

Observe that from the description of P , we have zi = yi+1, ∀i ∈ {0, 1, . . . , 126}

and z127 depends on five entries of y and a single key entry. In other words, only

one entry in z is different from y and it depends only on a few entries of the input.

Let us capture this in a function F which takes as input (y0, y47, y70, y85, y91, ki) and

outputs (z127, z46, z69, z84, z90, ki) such that

zi+1 = yi, ∀i ∈ {47, 70, 85, 91}

z127 = y0 + y47 + y70 · y85 + y91 + ki

Apart from (z127, z46, z69, z84, z90, ki), the rest of the zj’s and kj’s are equal to some

yj’s or kj’s or they are not involved in the function F . Therefore, in the MILP

model, we can set those zj’s and kj’s to their corresponding yj’s or kj’s. We only

need to figure out constraints on u′ and v′ such that
∏

u′(y0, y47, y70, y85, y91, ki) →∏
v′(z127, z46, z69, z84, z90, ki).

We begin by enumerating all binary vectors of dimension 6 into a set V (see

Figure 5.4) such that

[u′, v′] ∈ V ⇐⇒ πu′(y0, y47, y70, y85, y91, ki)→ πv′(z127, z46, z69, z84, z90, ki)

Using the set V, we can generate the linear constraints that define the convex hull

of V. This can be achieved by using the inequality_generator() function in SAGE

[Sag17]. Observe that the convex hull generated does not contain any spurious points

because the points in V are on the surface of a 12 dimensional unit cube. Therefore,

the convex hull is bounded by the unit cube unless the hull is unbounded, which is

not the case. Since the interior of the unit cube does not contain any integer points,

the convex hull won’t contain any spurious points.

Since the number of inequalities affects the running time of the MILP solver, one

needs to make sure they work with a minimal number of constraints. For this, we
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go through the inequalities generated through SAGE and check one by one whether

any inequality can be removed. By doing so, we arrive at a system of 27 linear

inequalities that describes πu′(y0, y47, y70, y85, y91, ki) → πv′(z127, z46, z69, z84, z90, ki)

as shown in Figure 5.5.

Now we have the required inequalities (which we will denote an L), we will

describe the MILP model for finding the largest monomial that has a trail to the

feedback polynomial of Pn. The objective function is to maximize
∑127

i=96 u
(0)
i . This

is because the nonce variables are present at those indexes. We must also set u(0)
i ==

0, ∀i < 96 as we are not interested in monomials containing si where i < 96. Using

the set L, we will create linear inequalities for u(i−1) and u(i) which will ensure that

πu(i−1)(Pi−1(s, k)) → πu(i)(Pi(s, k)). Finally, since we are interested in the feedback

polynomial of Pn, we will set u
(n)
127 == 1 and the rest to 0.

Solving the above model using Gurobi1, will only give us information about

the largest term that has a monomial trail. To conclude that the term is also a

monomial in the feedback polynomial, we need to count the number of monomial

trails. Observe that an optimal solution in the above model is a valid monomial

trail, i.e., u(i)’s gives us all the information of the trail. Therefore, it is enough to

count the number of solutions in the model by only fixing u(0) to the one returned

by optimal. The number of solutions can be obtained by using the PoolSearchMode

of Gurobi which searches for all the solutions. One can see from Figure 5.6 that the

degree of the feedback polynomial after 381 rounds is 32.

5.4 Key-Recovery Attacks

In this section, we will present key-recovery attacks against TinyJAMBU. Like other

key-recovery attacks, our attacks consist of two phases: offline and online phases.

In the offline phase, the attacker finds polynomials consisting of key variables by

using methods such as cube attacks, MILP, etc. Once the attacker is equipped with

these polynomials, in the offline phase, he will try to obtain the evaluations of these
1https://www.gurobi.com
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polynomials and recover certain key bits.

5.4.1 Offline Phase: Finding the Polynomials

In the offline phase of our attack, we will use MILP to extract the polynomials with

key variables. Let CI be a cube with index set I and the output polynomial written

with respect to this cube be

f(x, k) = t · pI(x, k) + qI(x, k)

where t =
∏

i∈I xi. Let A = {ai | i /∈ I} be the set of constants for the non-

cube variables. Our objective is to find the superpoly pI(A, k) which will be used

in the online phase. We will again use the concept of monomial trails to find the

superpolies. This technique was also used in [Hu+20] to find the superpolies for

Trivium.

In our attack, we will consider A to be all zeroes. Recall that in Section 5.3, we

presented a MILP model that would find the degree of the largest monomial contain-
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ing nonce variables only that has a monomial trail to the feedback polynomial. This

is achieved by setting up a system of linear inequalities with the objective function

being “maximise
∑127

i=96 u
(0)
i ”. Then, by counting the number of monomial trails,

we can confirm whether it is monomial in the feedback polynomial or not. We will

simply modify the above MILP model that will help us find every monomial and

build the entire superpoly.

We first begin by modifying the MILP model. The objective function must be

changed to maximizing
∑255

i=128 u
(0)
i . Recall that we considered the input to P as

(s, k) where s is the state and k is the key. Therefore, the objective function is

looking for the largest term consisting of key variables. Since, we are interested in

the superpoly with respect to some t, we need to add the following equalities as

constraints also.

u
(0)
i == 1,∀i ∈ I

u
(0)
i == 0,∀i ∈ {0, 1, . . . , 127} \ I

The rest of the inequalities are exactly the same as the ones used in Section 5.3.

Observe that a solution to the above MILP model gives us a monomial xIkJ for some

index set J such that |J| is the largest and xIkJ has a monomial trail to Pn(s, k)(127).

To confirm that this is a monomial, we must again count the number of solutions

and store it if it is a monomial. Now, to find the next monomial, we must add a

new constraint so that the MILP solver won’t return the same solution again. To be

precise, suppose the MILP solver returns a solution u(0). For the sake of simplicity,

let J = {i | u0
i = 1, i ≥ 128}. Then, we add the constraint,

∑
i∈J

(1− u(0)
i ) >= 0

This constraint ensures that the MILP solver won’t return the same solution twice.

In Table 5.4, we present a few superpolies of the feedback polynomial with respect

to cubes of size 31 for P376 by solving the MILP model mentioned above.
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Non-cube indices Superpoly

4 k13 + k14 + k20

5

k14k28 + k14k22 + k7k14 + k14k20 + k14k65 + k2k14 + k13k14 +
k2k22 + k14k42 + k2k72 + k2k6 + k7k20 + k44k57 + k2k7 + k1k57 +
k1k13+k20k22+k2k87+k2k50+k50k72+k20k28+k20k65+k13k44+
k13k65+k13k87+k14k45+k35k72+k1k45+k2k28+k2k65+k50k87+
k13k72+k6k72+k57k65+k14k34+k44k45+k35k87+k6k87+k35k45+
k45k65 + k2 + k87 + k72 + k20 + k78 + k34 + k42 + k65 + k57 + k71

6
k4k7k14+k1k22+k22k44+k2k14+k4k7+k2k44+k7k22+k1k2+
k7k22 + k2k44 + k1k22 + k22k44 + k4k7 + k1 + k44 + k22 + k28

14 k7k14 + k7

13
k4k7k14 + k4k14 + k4k7 + k7k22 + k1k22 + k22k4 + k14 + k22 +
k4 + k28 + k65

16
k2k7k14+k7k12k14+k7k14+k6k14+k14k50+k7k35+k14+k50+
k7 + k6 + k35

17 k4k14 + k4 + 1

20 k1 + k14 + k44 + k65

28 k14 + k72 + k56 + k12 + k35 + k50 + k87 + k34 + k19 + k93

29 k1 + k14 + k44

31 k1 + k2 + k44 + k45

Table 5.4: Superpolies for P376

5.4.2 Online Phase: Recovering the Key Bits

In the online phase, the attacker is given a blackbox access to TinyJAMBU, i.e.,

the attacker is allowed to choose the value of 32-bit nonce and is given the bits

at position 64, 65, . . . , 95 of the state updated by Pn. Observe that there are 5

linearly independent polynomials in Table 5.4. This implies that the attacker can

get the evaluations of these superpolies by performing cube tester for 440 round

TinyJAMBU. Therefore, the attacker can recover the entire key in time 2123+5·231.



Chapter 6

New Zero-Sum Distinguishers for

Ascon

In this chapter, we present several distinguishers for 5-round Ascon-128. In [Roh+21],

the authors found a distinguisher with complexity 216 for 5-round Ascon by iden-

tifying several cubes based on division property.

We present a zero-sum distinguisher with 215-time complexity for 5-round As-

con-128 by experimentally finding a degree-15 monomial that does not exists in the

polynomial representing one of the output bits. We also present several 13 and 14

sized cubes that can be used as a distinguisher for 5-round Ascon with very high

confidence.

6.1 Structure of Ascon

Dobraunig et al. designed Ascon. It is a permutation-based family of authenticated

encryption with associated data algorithms (AEAD). The Ascon AEAD algorithm

takes as inputs a secret key K, a nonce N , a block header AD (a.k.a associated data)

and a message M . It then outputs a ciphertext C of the same length as M and an

authentication tag T , which authenticates the associated data AD and the message

M . There are two variants of Ascon, namely Ascon-128 and Ascon-128a.
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Fig. 1. Ascon’s mode of operation (encryption phase)

Table 1. Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb IV

Ascon-128 320 64 128 128 128 12 6 80400c0600000000

Ascon-128a 320 128 128 128 128 12 8 80800c0800000000

Addition of constants (pC). We add an 8-bit constant to the bits 56, · · · , 63 of
word X2 at each round.

Substitution layer (pS). We apply a 5-bit Sbox on each of the 64 columns.
Let (x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the
Sbox, respectively. Then the algebraic normal form (ANF) of the Sbox is given in
Equation 1. Note that here xi and yi are the bits of word Xi and Yi, respectively.

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(1)

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation
Σi which is defined in Equation 2. Here ≫ is the right cyclic shift operation
over a 64-bit word.

X0 ← Σ0(Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)

X1 ← Σ1(Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)

X2 ← Σ2(Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)

X3 ← Σ3(Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)

X4 ← Σ4(Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(2)

Figure 6.1: Ascon’s mode of operation (encryption phase)

Table 6.1: Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb IV

Ascon-128 320 64 128 128 128 12 6 80400c0600000000
Ascon-128a 320 128 128 128 128 12 8 80800c0800000000

6.1.1 The Ascon Permutation

The core permutation p of Ascon is based on substitution permutation network

(SPN) design paradigm. It operates on a 320-bit state arranged into five 64-bit

words and is defined as p : pL ◦ pS ◦ pC . The state at the input of r-th round is

denoted by Xr
0∥Xr

1∥Xr
2∥Xr

3∥Xr
4 while Y r

0 ∥Y r
1 ∥Y r

2 ∥Y r
3 ∥Y r

4 represents the state after

the pS layer. We use Xr
i [j] (resp. Y r

i [j]) to denote the j-th bit (starting from left) of

Xr
i (resp. Y r

i ). We now describe the three steps pC , pS, and pL in detail (superscripts

are removed for simplicity).

Addition of constants (pC). We add an 8-bit constant to the bits 56, · · · , 63 of

word X2 at each round.

Substitution layer (pS). We apply a 5-bit Sbox on each of the 64 columns. Let

(x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the Sbox,

respectively. Then the algebraic normal form (ANF) of the Sbox is given in Equa-

tion (6.1). Note that here xi and yi are the bits of word Xi and Yi, respectively.
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y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(6.1)

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation

Σi which is defined in Equation (6.2). Here ≫ is the right cyclic shift operation

over a 64-bit word.



X0 ← Σ0(Y0) = Y0 + (Y0≫ 19) + (Y0≫ 28)

X1 ← Σ1(Y1) = Y1 + (Y1≫ 61) + (Y1≫ 39)

X2 ← Σ2(Y2) = Y2 + (Y2≫ 1) + (Y2≫ 6)

X3 ← Σ3(Y3) = Y3 + (Y3≫ 10) + (Y3≫ 17)

X4 ← Σ4(Y4) = Y4 + (Y4≫ 7) + (Y4≫ 41)

(6.2)

6.2 New Distinguishers for 5 Rounds Ascon-128

As shown in Figure 6.1, X0
0 is set to IV whereas, X0

1 , X
0
2 are set to key bits (secret

bits) and X0
3 , X

0
4 to nonce bits (public bits). Since the ciphertext C1 is obtained

by XOR-ing the message P1 to X5
0 , we will consider zero-sum distinguisher at X5

0

positions only.

In [Roh+21], the authors found a distinguisher with complexity 216 for 5-round

Ascon by setting X0
3 = X0

4 and finding an upper bound on the algebraic degree in

nonce variables using division property. In our experiments, we also set X0
3 = X0

4 .

The road-map. We first show that there is a degree-15 monomial that is not

present in X5
0 [1], and thus, we find a 15 sized cube as a zero-sum distinguisher.

Observe that it is impossible to construct the exact polynomials of X5
0 with respect
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to the key and cube variables because the number of key variables is 128, and this

naturally results in a huge number of monomials. We will use k to denote the key

variables and x to denote the public/cube variables.

From [Roh+21], we know that the degree of X5
0 [1] with respect to the cube

variables is 15. Instead of finding the exact polynomial in X5
0 [1], we will come up with

an approximate polynomial (which in some sense is related to the exact polynomial,

see Property 6.1) that contains the cube variables only. Since the approximate

polynomial contains only cube variables, it has very few monomials compared to the

exact polynomial and this allows us to compute it. The approximate polynomial

has the following property.

Property 6.1. If the exact polynomial has a monomial p · q where p ∈ F2[x] and

q ∈ F2[k], then the approximate polynomial will contain p.

For example, suppose the exact polynomial is f(v1, v2, x1, x2, x3) = x1x2x3 +

x2x3+x1+v1v2+x2v1+v2, then the approvimate polynomial f̃(v1, v2) = v1v2+v1+v2

has Property 6.1.

In other words, if a monomial p is missing from the approximate polynomial,

then it is guaranteed that p · q for any q ∈ F2[k] would not be present in the exact

output polynomial. But, this does not say anything about the presence or absence

of p · q′ in the exact polynomial where q′ ∈ F2[x]. We do not have to worry about

such terms because p · q′ can be ignored by setting the appropriate nonce variables

to 0, to satisfy q′ = 0.

To build these approximate polynomials, we will work over the ring of integers

Z, rather than F2. The reason for this choice is that in SAGE [Sag17], the compu-

tations over F2 polynomials are time consuming compared to computations over Z

polynomial, especially when the degrees are large. We start by building the exact

polynomial over Z up to 2 rounds, i.e., we will consider both key and cube variables

and replace XOR with integer + and · with integer ×. This will give rise to two

issues.

1. Firstly, the coefficients of the monomials will blow up. This can be handled
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Rounds Cube size Cube indices (X0
3 = X0

4 ) Output indices (X5
0 )

5 13
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 6.2: List of cubes for 5-round Ascon-128

by replacing all non-zero coefficients with 1.

2. Secondly, the monomials are no longer multi-linear. This also can be fixed by

reducing the polynomial by modulo x2
i − xi, ∀i.

Observe that as an alternative, we can simply work over F2, find the exact polyno-

mials and then convert them into polynomials over Z. But, this approach seems to

be time-consuming in SAGE.

Next, we get rid of the key variables by evaluating the polynomial at ki = 1, ∀i.

Again, the coefficients may blow up which is handled by replacing all non-zero

coefficients with 1. Observe that these new polynomials have Property 6.1. We

will apply the rest of the 3 rounds on these approximate polynomials to get the

approximate polynomials for X5
0 [1]. In our experiment, while considering cube in-

dices 0, 1, . . . , 14, the approximate polynomial for X5
0 [1] does not contain the mono-

mial
∏14

i=0 xi. This gives us a zero-sum distinguisher for 5 rounds with complex-

ity 215. Observe that this experiment is essentially solving Problem 1.1 for 5-

round Ascon with the monomial m being
∏14

i=0 xi. The source code is available

at: https://github.com/Mahe94/ascon_monomial_detection.git.

In Table 6.2, we provide more cubes which can serve as a distinguisher for 5-

round Ascon-128. We start by randomly guessing a few cubes (i.e., a subset of bit

indices in X0
3 and X0

4 ) of size ℓ that is strictly smaller than 16, and set the rest of

the bits of the nonce (non-cube bits) to 0. For each u ∈ {0, 1}ℓ, we set the cube

variables to u and run 5-round Ascon-128. The output X5
0 with respect to each

https://github.com/Mahe94/ascon_monomial_detection.git
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u is summed up to get the cube sum. We analyse the cube sum at X5
0 bits for 215

randomly generated keys and observe the following:

1. For all the 14 sized cubes, the sum at the output mentioned in Table 6.2 was

0 for every key.

2. For 13 sized cubes, the sum was 0 with high probability.

All indices mentioned in Table 6.2 have an offset of 0. Since, the 14 sized cubes are

giving 0 as the cube-sum for all 215 randomly chosen keys, we can use them as a

distinguisher for 5-round Ascon with very high confidence, owing a complexity of

214 and beating the best-known cube distinguisher [Roh+21], by a factor of 22.



Chapter 7

Efficient Reductions and

Algorithms for Variants of Subset

Sum

7.1 Hardness Results

In this section, we prove some hardness results.

Some of the algorithms presented in this chapter consider that the number of

solutions is bounded by a parameter k. This naturally raises the question of whether

the SSUM problem is hard when the number of solutions is bounded. We will show

that this is true even for the case when k = 1, i.e., uSSSUM is NP-hard under

randomised reduction.

Theorem 7.1 (Hardness of uSSSUM). There exists a randomized reduction which

takes a SSUM instance M = (a1, . . . , an, t) ∈ Zn+1
≥0 , as an input, and produces

multiple SSUM instances SSℓ = (b1, . . . , bn, t
(ℓ)), where ℓ ∈ [2n2], such that if

• M is a YES instance of SSUM =⇒ ∃ℓ such that SSℓ is a YES instance of

uSSSUM.

• M is a NO instance of SSUM =⇒ ∀ℓ,SSℓ is a NO instance of uSSSUM.



80

Proof. The core of the proof is based on the Lemma 2.1 (Isolation lemma). The

reduction is as follows. Let w1, . . . , wn be chosen uniformly at random from [2n]. We

define bi = 4n2ai+wi, ∀i ∈ [n] and the ℓth SSUM instance as SSℓ = (b1, . . . , bn, t
(ℓ) =

4n2t+ ℓ). Observe that all the new instances are different only in the target values

t(ℓ).

Suppose M is a YES instance, i.e., ∃S ⊆ [n] such that
∑

i∈S ai = t. Then, for

ℓ =
∑

i∈S wi, the SSℓ is a YES instance, because

∑
i∈S

bi − t(ℓ) = 4n2

(∑
i∈S

ai − t

)
−

(
ℓ−

∑
i∈S

wi

)
= 0 .

If M is a NO instance, consider any ℓ and S ⊆ [n]. Since M is a NO instance,

4n2(
∑

i∈S ai − t) is a non-zero multiple of 4n2, whereas |ℓ−
∑

i∈S wi| < 4n2, which

implies that

4n2(
∑
i∈S

ai − t)− (ℓ−
∑
i∈S

wi) ̸= 0 =⇒
∑
i∈S

bi ̸= t(ℓ) .

Hence, SSℓ is also a NO instance.

We now show that ifM is a YES instance, then one of SSℓ is a uSSSUM. Let F

contains all the solutions to the SSUM instanceM, i.e., F = {S|S ⊆ [n],
∑

i∈S ai =

t}. Since wi’s are chosen uniformly at random, Lemma 2.1 says that there exists a

unique S ∈ F , such that w(S) =
∑

i∈S wi, is minimal with probability at least 1/2.

Let us denote this minimal value w(S) as ℓ∗. Then, SSℓ∗ is uSSSUM because S is

the only subset such that
∑

i∈S wi = ℓ∗.

Next, we present a simple deterministic Cook’s reduction from SSUM to 2 −

SimulSubsetSum. It is obvious to see that 2 − SimulSubsetSum ∈ NP which implies

that 2− SimulSubsetSum is NP-complete.

Theorem 7.2 (Hardness of 2− SimulSubsetSum). There is a deterministic polyno-

mial time reduction from SSUM to 2− SimulSubsetSum.

Proof. Let (a1, . . . , an, t) be an instance of SSUM. Consider the following 2 −

SimulSubsetSum instances, Sb = [(a1, . . . , an, t), (1, 0, . . . , 0, b)], where b ∈ {0, 1}.
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If the SSUM instance is NO, then both the 2 − SimulSubsetSum are also NO. If the

SSUM instance is a YES, then we argue that one of the Sb instances must be YES. If

SSUM instance has a solution which contains a1, then S1 is a YES instance, whereas

if it does not contain a1, then S0 is a YES instance.

Extension to log−SimulSubsetSum. The above reduction can be trivially ex-

tended to reduce SSUM to SimulSubsetSum, with the number of SSUM instances

k = O(logn). In that case we will work with instances Sb, for b ∈ {0, 1}k. Since the

number of instances is 2k = poly(n), the reduction goes through.

We will now show that 2 − SimulSubsetSum reduces to SSUM, which again can

be generalised to SimulSubsetSum, for any number of SSUM instances k.

Theorem 7.3 (2− SimulSubsetSum is easier than SSUM). There is a deterministic

polynomial time reduction from 2− SimulSubsetSum to SSUM.

Proof. Let [(a1, . . . , an, t1), (b1, . . . , bn, t2)] be a 2 − SimulSubsetSum instance where

without loss of generality t1 ≤ t2. Also, we can assume that t1 ≤
∑n

i=1 ai, otherwise

it does not have a solution.

Now, consider the SSUM instance (γb1 + a1, . . . , γbn + an, γt2 + t1), where γ :=

1+
∑n

i=1 ai. If the 2−SimulSubsetSum instance is YES, this implies that there exist

S ⊆ [n] such that
∑

i∈S ai = t1 and
∑

i∈S bi = t2. This implies that
∑

i∈S γbi + ai =

γt2 + t1 and hence the SSUM instance is also YES.

Now, assume that the SSUM instance is YES, i.e., there exists S ⊆ [n] such that∑
i∈S γbi + ai = γt2 + t1. This implies that γ(t2 −

∑
i∈S bi) + (t1 −

∑
i∈S ai) = 0. If

t1 ̸=
∑

i∈S ai, then from the previous equality, (t1 −
∑

i∈S ai) is a non-zero multiple

of γ =⇒ | t1 −
∑

i∈S ai | ≥ γ. However, by our assumption,

t1 ≤
n∑

i=1

ai =⇒ t1 −
∑
i∈S

ai ≤
∑

i∈[n]\S

ai < 1 +
∑
i∈[n]

ai = γ .

Moreover, t1 −
∑

i∈S ai > −γ, holds trivially, since γ >
∑

i∈[n] ai and t1 > 0.

Therefore, | t1 −
∑

i∈S ai | < γ which implies that both t1 −
∑

i∈S ai = 0 and t2 −∑
i∈S bi = 0. Hence, the 2− SimulSubsetSum instance is also YES.
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7.2 Time-Efficient Algorithms

7.2.1 Time-Efficient Algorithm for Hamming− k − SSSUM

In this section, we present an Õ(k(n+t))-time deterministic algorithm for outputting

all the hamming weight of the solutions, given a Hamming − k − SSSUM instance,

i.e., there are only at most k-many solutions to the SSUM instance (a1, . . . , an, t) ∈

Zn+1
≥0 . The basic idea is simple: We want to create a polynomial whose roots are of

the form µwi , so that we can first find the roots µwi (over Fq), and from them we can

find wi. To achieve that, we work with k-many polynomials fj :=
∏n

i=1(1+µj ·xai),

for j ∈ [k]. Note that the coefficient of xt in fj is of the form
∑

i≤k λi·µjwi (Claim 7.5).

By Newton’s Identities (Lemma 2.3) and Vieta’s formulas (Lemma 2.5), we can now

efficiently construct a polynomial whose roots are µwi . The details are given below.

Proof of Theorem 1.9. We start with some notations that we will use throughout

the proof.

Basic notations. Assume that the SSUM instance (a1, . . . , an, t) ∈ Zn+1
≥0 has ex-

actly m (m ≤ k) many solutions, and they have ℓ many distinct hamming weights

w1, . . . , wℓ; since two solutions can have same hamming weight, ℓ ≤ m. Moreover,

assume that there are λi many solutions which appear with hamming weight wi, for

i ∈ [ℓ]. Thus,
∑

i∈[ℓ] λi = m ≤ k.

Choosing prime q and a primitive root µ. We will work with a fixed q in this

proof, where q > n + k + t := M (we will mention why such a requirement later).

We can find a prime q in Õ(n+k+ t) time since we can go over every element in the

interval [M, 6/5 ·M ], in which we know a prime exists (Theorem 2.9) and primality

testing is efficient [AKS04]. Once we find q, we choose µ such that µ is a primitive

root over Fq, i.e., ordq(µ) = q − 1. This µ can be found in Õ((n + k + t)1/4+ϵ) time

using Theorem 2.8. Thus, the total time complexity of this step is Õ(n+ k + t).
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The polynomials. Define the k-many univariate polynomials as follows:

fj(x) :=
∏
i∈[n]

(1 + µjxai) , ∀ j ∈ [k] .

We remark that we do not know ℓ apriori, but we can find m efficiently.

Claim 7.4 (Finding the exact number of solutions). Given a Hamming−k−SSSUM

instance, one can find the exact number of solutions, m, deterministically, in Õ((n+

t)) time.

Proof. Use [JW18] (see Lemma A.2, for the general statement) which gives a deter-

ministic algorithm to find the coefficient of xt of
∏

i∈[n] (1 + xai) over Fq; this takes

time Õ((n+ t)).

Since we know the exact value of m, we will just work with fj for j ∈ [m], which

suffices for our algorithmic purpose. Here is an important claim about coefficients

of xt in fj’s.

Claim 7.5. Cj = coefxt(fj(x)) =
∑

i∈[ℓ] λi · µjwi, for each j ∈ [m].

Proof. If S ⊆ [n] is a solution to the instance with hamming weight, say w, then

this will contribute µjw to the coefficient of xt of fj(x). Since, there are ℓ many

weights w1, . . . , wℓ with multiplicity λ1, . . . , λℓ, the claim easily follows.

Using Lemma A.2, we can find Cj mod q for each j ∈ [m] in Õ((n+ t log(µj)))

time, owing total Õ(k(n+ t)), since q = O(n+ k+ t), µ ≤ q− 1, and
∑

j∈[m] log j =

log(m!) ≤ log(k!) = Õ(k).

Using the Newton’s Identities (Lemma 2.3), we have the following relations, for

j ∈ [m]:

Ej (µ
w1 , . . . , µwℓ) ≡ j−1 ·

(
j∑

i=1

(−1)i−1 Ej−i (µ
w1 , . . . , µwk) · Pi (µ

w1 , . . . , µwℓ)

)
mod q (7.1)
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In the above, by Ej(µ
w1 , . . . , µwℓ), we mean Ej(µ

w1 , . . . , µw1︸ ︷︷ ︸
λ1 times

, . . . , µwℓ , . . . , µwℓ︸ ︷︷ ︸
λℓ times

), and

similar for Pj. Since q > k, j−1 mod q exists, and thus the above relations are valid.

Here is another important and obvious observation, just from the definition of Pj’s:

Observation 7.6. For j ∈ [k], Cj ≡ Pj (µ
w1 , . . . , µwℓ) mod q.

Note that we know E0 = 1 and Pj’s (and j−1 mod q) are already computed. To

compute Ej, we need to know E1, . . . , Ej−1 and additionally we need O(j) many

additions and multiplications. Suppose, T (j) is the time to compute E1, . . . , Ej.

Then, the trivial complexity is T (m) ≤ Õ(k2) + Õ(k(n+ t)). But one can do better

than Õ(k2) and make it Õ(k) (i.e solve the recurrence, using FFT), owing the total

complexity to T (m) ≤ Õ(k(n + t)) (since q = O(n + k + t)). For details, see

Appendix A.1.3.

Once, we have computed Ej, for j ∈ [m], define a new polynomial

g(x) :=
m∑
j=0

(−1)j · Ej(µ
w1 , . . . , µwℓ) · xj .

Using Lemma 2.5, it is immediate that g(x) =
∏ℓ

i=1(x− µwi)λi . Further, by defini-

tion, deg(g) = m. From g, now we want to extract the roots, namely µw1 , . . . , µwℓ

over Fq. We do this, by checking whether (x − µi) divides g, for i ∈ [n] (since

wi ≤ n). Using Lemma 2.6, a single division with remainder takes Õ(k), therefore,

the total time to find all the wi is Õ(nk) = Õ(nk).

Here, we remark that we do not use the deterministic root finding or factoring

algorithms (for e.g. [Sho90; BKS15]), since it takes Õ(mq1/2) = Õ(k ·(k+t)1/2) time,

which could be larger than Õ(k(n+ t)).

Reason for choosing q and µ. In hindsight, there are three important properties

of the prime q that will suffice to successfully output the wi’s using the above

described steps:

1. Since, Lemma A.2 requires to compute the inverses of numbers upto t, hence,

we would want q > t.
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2. While computing Ej(µ
w1 , . . . , µwk) using Lemma 2.3 in the above, one should

be able to compute the inverse of all j’s less than equal to m. So, we want

q > m,.

3. To obtain wi from µwi mod q, we want ordq(µ) > n (for definition see Defi-

nition 2.7). Since wi ≤ n, this would ensure that we have found the correct

wi.

Here, we remark that we do not need to concern ourselves about the ‘largeness’

of the coefficients of Cj and make it nonzero mod q, as required in [JW18]. For the

first two points, it suffices to choose q > k + t. Since µ is a primitive root over Fq,

this guarantees that ordq(µ) = q−1 > n and thus we will find wi from µwi correctly.

Total time complexity. The complexity to find the correct m, q and µ is Õ(n+

k + t). Finding the coefficients of g takes Õ(k(n + t)) and then finding wi from g

takes Õ(nk) time. Thus, the total complexity remains Õ(k(n+ t)).

▶ Remark. The above algorithm can be extended to find the multiplicities λi’s in

Õ(k(n+ t) + k3/2) by finding the largest λi, by binary search, such that (x− µwi)λi

divides g(x). Finding each λi takes Õ(m log(λi)) over Fq, for the same q as above,

since the polynomial division takes Õ(m) time and binary search introduces a mul-

tiplicative O(log(λi)) term. Since,
∑

i∈[ℓ] log(λi) = log
(∏

i∈[ℓ] λi

)
, using AM-GM,∏

i∈[ℓ] λi ≤ (m/ℓ)ℓ, which is maximized at ℓ =
√
m ≤

√
k, implying

∑
i∈[ℓ] log(λi) ≤

O(
√
k log k). Since m ≤ k, this explains the additive k3/2 term in the complexity.
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Input: A k − SSSUM instance a1, . . . , an, t

Output: Hamming weights of all subsets S ⊆ [n] such that
∑

i∈S ai = t

Using Lemma A.2, find the number of solutions m for the k − SSSUM

instance a1, . . . , an, t and terminate if m = 0;

Choose a prime q from the interval [k + t, 6/5 · (k + t)] ;

Find a primitive root µ over Fq;

for j ∈ [m] do
Using q in Lemma A.2, find Cj = coefxt(fj(x)) where

fj(x) =
∏

i =n(1 + µjxai);

end

Compute E0, E1, . . . , Em from P1, . . . , Pm where Pi ≡ Ci mod q using FFT;

W = {};

for i ∈ [n] do

if (x− µi) | g(x) then

W = W ∪ {i};

end

end

return W ;
Algorithm 6: Algorithm for Hamming− k − SSSUM

7.2.2 Time-Efficient Algorithm for Subset Product

In this section, we give a randomized Õ(n + to(1)) expected time algorithm for

Subset Product. Essentially, we factor all the entries in the instance in Õ(n + to(1))

expected time. Once we have the exponents, it suffices to solve the correspond-

ing SimulSubsetSum instance. Now, we can use the efficient randomised algorithm

for SimulSubsetSum (Theorem 7.7) to finally solve Subset Product. So, first we give

an efficient algorithm for SimulSubsetSum.

Theorem 7.7 (Algorithm for SimulSubsetSum). There is a randomized Õ(kn +∏
i∈[k](2ti + 1))-time algorithm that solves SimulSubsetSum, with target instances
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t1, . . . , tk.

Proof. Let us assume that the input to the SimulSubsetSum problem are k SSUM

instances of the form (a1j, . . . , anj, tj), for j ∈ [k]. Define a k-variate polynomial

f(x), where x = (x1, . . . , xk), as follows:

f(x) =
n∏

i=1

(
1 +

k∏
j=1

x
aij
j

)
.

Here is an immediate but important claim. We denote the monomial m :=
∏k

i=1 x
ti
i

and coefm(f) as the coefficient of m in the polynomial f(x).

Claim 7.8. There is a solution to the SimulSubsetSum instance, i.e., ∃S ⊆ [n] such

that
∑

i∈S aij = tj, ∀j ∈ [k] iff coefm(f(x)) ̸= 0.

Therefore, it is enough to compute the coefficient of f(x). The rest of the proof

focuses on computing f(x) efficiently, to find coefm(f).

Let p be prime such that p ∈ [N+1, (n+N)3], where N :=
∏k

i=1(2ti+1). Define

an ideal I, over Z[x] as follows: I := ⟨xt1+1
1 , . . . , xtk+1

k , p⟩. Since, we are interested

in coefm(f), it suffices to compute f(x) mod ⟨xt1+1
1 , . . . , xtk+1

k ⟩, and we do it over a

field Fp (which introduces error); for details, see the proof in the end (Randomness

and error probability paragraph).

Using Lemma A.4, we can compute all the coefficient of ln(f(x)) mod I in time

Õ(kn+
∏k

i=1 ti). It is easy to see that the following equalities hold.

f(x) mod I ≡ exp (ln(f(x))) mod I ≡ exp (ln(f(x)) mod I) mod I .

Since we have already computed ln(f(x)) mod I, the above equation implies that

it is enough to compute the exponential which can be done using Lemma A.3. This

also takes time Õ(kn+
∏k

i=1(2ti + 1)).
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Randomness and error probability. Note that there are Ω(n+N)2 primes in

the interval [N + 1, (n + N)3]. Moreover, since coefm(f) ≤ 2n, at most n prime

factors can divide coefm(f(x)). Therefore, we can pick a prime p randomly from

this interval in poly(log(n+N)) time and the probability of p dividing the coefficient

is O(n +N)−1. In other words, the probability that the algorithm fails is bounded

by O ((n+N)−1). This concludes the proof.

We now compare the above result with some obvious attempts to solve the

SimulSubsetSum problem, before moving into solving the Subset Product problem.

A detailed comparison with time complexity of [Kan10]. Kane [Kan10,

Section 3.3] showed that the above problem can be solved deterministically in CO(k)

time and O(k logC) space, where C :=
∑

i,j aij +
∑

j tj +1, which could be as large

as (n + 1) · (
∑

j∈[k] tj) + 1, since aij can be as large as tj. As argued in [JVW21,

Corollary 3.4 and Remark 3.5], the constant in the exponent, inside the order no-

tation, can be as large as 3 (in fact directly using [Kan10] gives larger than 3; but

modified algorithm as used in [JVW21] gives 3). Use AM-GM inequality to get

(
(n+ 1) · (

∑
j

tj) + 1

)3k

>

(
2

k
·
∑
j

tj + 1

)3k
AM-GM
≥

k∏
j=1

(2tj + 1)3 .

Assuming N =
∏k

j=1 (2tj + 1), our algorithm is near-linear in N while Kane’s algo-

rithm [Kan10] takes at O(N3) time; thus ours is almost a cubic improvement.

Comparison with the trivial algorithm. It is easy to see that a trivial O(n ·

(t1 + 1)(t2 + 1) . . . (tk + 1)) time deterministic algorithm for SimulSubsetSum exists.

Since, ti ≥ 1, we have

n

2
·
∏
i∈[k]

(1 + ti) ≥
n

2
· 2k ≥ kn , and n

2
·
∏

(1 + ti) ≥
n

2k+1
·
∏

(2ti + 1) .

Here, we used 2(1 + x) > (2x + 1), for any x ≥ 1. Therefore, n ·
∏

i∈[k](1 + ti) ≥
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kn+ n/2k+1 ·
∏
(2ti + 1). Thus, when k = o(logn), our complexity is better.

Proof of Theorem 1.10

Once we have designed the algorithm for SimulSubsetSum, we design a time-efficient

algorithm for Theorem 1.10.

Proof. Let (a1, . . . , an, t) ∈ Zn+1
≥0 be the input for Subset Product problem. Without

loss of generality, we can assume that all the ai divides t because if some ai does not

divide t, it will never be a part of any solution and we can discard it. Let us first

consider the prime factorisation of t and aj, for all j ∈ [n]. We will discuss about

its time complexity in the next paragraph. Let

t =
k∏

j=1

p
tj
j , ai =

k∏
j=1

p
eij
j , ∀ i ∈ [n] ,

where pj are distinct primes and tj are positive integers and eij ∈ Z≥0. Since,

pi ≥ 2, trivially,
∑k

i=1 ti ≤ log(t), and
∑k

i=1 eij ≤ log(t), j ∈ [n]. Also, the

number of distinct prime factors of t is at most O(log(t)/ log log(t)); therefore,

k = O(log(t)/ log log(t)).

Time complexity of factoring To find all the primes that divide t, we will

use the factoring algorithm given by Lenstra and Pomerance [LP92] which takes

expected to(1) 1 time to completely factor t into prime factors pj (including the

exponents tj). Using the primes pj and the fact that 0 ≤ eij ≤ log(t), computing

eij takes log2(t) log log(t) time, by performing binary search to find the largest x

such that pxj | ai. So, the time to compute all exponents ei,j, ∀i ∈ [n], j ∈ [k] is

O(nk log2(t) log log(t)). Since, k ≤ O(log t/ log log(t)), the total time complexity is

Õ(n+ to(1)).

1Expected time complexity is exp(O(
√

log t log log t)), which is smaller than tO(1/
√

log log t) =
to(1), which will be the time taken in the next step. Moreover, we are interested in randomized
algorithms, hence expected run-time is to(1)
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Setting up SimulSubsetSum Now suppose that S ⊆ [n] is a solution to the

Subset Product problem, i.e.,
∏

i∈S ai = t. This implies that

∑
i∈S

eij = tj , ∀ j ∈ [k] .

In other words, we have a SimulSubsetSum instance where the jth SSUM instance is

(e1j, e2j, . . . , enj, tj), for j ∈ [k]. The converse is also trivially true. We now show

that there exists an Õ(kn+
∏

i∈[k](2ti+1)) time algorithm to solve SimulSubsetSum.

Randomized algorithm for Subset Product Using Theorem 7.7, we can decide

the SimulSubsetSum problem with targets t1, . . . , tk in Õ(kn +
∏

i∈[k](2ti + 1)) time

(randomized) while working over Fp for some suitable p (we point out towards the

end). Since k ≤ O(log(t)/ log log(t)), we need to bound the term
∏

i∈[k](2ti + 1).

Note that,

∏
i∈[k]

(2ti + 1) =
∑
S⊆[k]

2|S| ·

(∏
i∈S

ti

)

≤ 22k ·

∏
i∈[k]

ti

 .

We now focus on bounding the term
∏

i∈[k] ti. By AM-GM,

∏
i∈[k]

ti ≤

(∑
i∈[k] ti

k

)k

≤
(

log(t)
k

)k

≤ 2
O
(√

k log(t)
)

[Lemma 2.10]

≤ 2
O
(√

log(t)2/ log log(t)
)

≤ tO(1/
√

log log(t)) = to(1)

Note that the prime p in the Theorem 7.7 was p ∈ [N +1, (n+N)3], where N :=∏k
i=1(2ti+1)−1. As shown above, we can bound N = to(1). Thus, p ≤ O((n+to(1))3),

as desired. Therefore, the total time complexity is Õ(n log(t)/ log log(t) + to(1)) =

Õ(n+ to(1)). This finishes the proof.
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Removing the expected-time If one wants to understand the worst-case analy-

sis, we can use the polynomial time reduction from Subset Product to SimulSubsetSum

in Section 7.4. Of course, we will not get prime factorisation; but the pseudo-prime

factors will also be good enough to set up the SimulSubsetSum with similar parame-

ters as above, and the SimulSubsetSum instance can be similarly solved in Õ(n+to(1)

time. Since the reduction takes n2poly(log t) time, the total time complexity becomes

Õ(n2 + to(1)).

7.3 Space-Efficient Algorithms

7.3.1 Space-Efficient Algorithm for k − SSSUM

In this section, we will present a low space algorithm (Algorithm 7) for finding all

the realisable sets for k − SSSUM. Unfortunately, proof of Theorem 1.9 fails to

give a low space algorithm, since Lemma A.2 requires Ω(t) space (eventually it

needs to store all the coefficients mod xt+1). Instead, we work with a multivariate

polynomial f(x, y1, . . . , yn) =
∏n

i=1(1 + yix
ai) over Fq, for a large prime q = O(nt)

and its multiple evaluations f(α, c1, . . . , cn), where (α, c1, . . . , cn) ∈ Fn+1
q .

Observe that, the coefficient of xt in f is a multivariate polynomial pt(y1, . . . , yn);

each of its monomial carries the necessary information of a solution, for the instance

(a1, . . . , an, t). More precisely, S is a realisable set of (a1, . . . , an, t) ⇐⇒
∏

i∈S yi

is a monomial in pt. And, the sparsity (number of monomials) of pt is at most k.

Therefore, it boils down to reconstructing the multivariate polynomial pt efficiently.

We cannot use the trivial multiplication since it takes Õ(2nt) time! Instead, we use

ideas from [Kan10] and [KS01].

Proof of Theorem 1.11. Here are some notations that we will follow throughout the

proof.

Basic notations. Let us assume that there are exactly m (m ≤ k) many realisable

sets S1, . . . , Sm, each Si ⊆ [n]. We remark that for our algorithm we do not need to
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apriori calculate m.

The multivariate polynomial. For our purpose, we will be working with the

following (n+ 1)-variate polynomial:

f(x, y1, . . . , yn) :=
∏
i∈[n]

(1 + yix
ai) .

Since, we have a k − SSSUM instance (a1, . . . , an, t), coefxt(f) has the following

properties.

1. It is an n-variate polynomial pt(y1, . . . , yn) with sparsity exactly m.

2. pt is a multilinear polynomial in y1, . . . , yn, i.e., individual degree of yi is at

most 1.

3. The total degree of pt is at most n.

4. if S ⊆ [n] is a realisable set, then yS :=
∏

i∈S yi, is a monomial in pt.

In particular, the following is an immediate but important observation.

Observation 7.9. pt(y1, . . . , yn) =
∑

i∈[m] ySi
.

Therefore, it suffices to know the polynomial pt. However, we cannot treat

yi as new variables and try to find the coefficient of xt since the trivial multipli-

cation algorithm (involving n + 1 variables) takes exp(n)-time. This is because,

f(x, y1, . . . , yn) mod xt+1 can have 2n · t many monomials as coefficient of xi, for

any i ≤ t can have 2n many multilinear monomials.

However, if we substitute yi = ci ∈ Fq, for some prime q, we claim that we

can figure out the value pt(c1, . . . , cn) from the coefficient of xt in f(x, c1, . . . , cn)

efficiently (see Claim 7.11). Once we have figured it out, we can simply interpolate

using the following theorem to reconstruct the polynomial pt. Before going into the

technical details, we state the sparse interpolation theorem below; for simplicity, we

consider multilinearity (though [KS01] holds for general polynomials as well).



93

Theorem 7.10 ([KS01]). Given a blackbox access to a multilinear polynomial

g(x1, . . . , xn) of degree d and sparsity at most s over a finite field F with |F| ≥ (nd)6,

there is a poly(snd)-time and O(log(snd))-space algorithm that outputs all the mono-

mials of g.

▶ Remark. We represent one monomial in terms of indices (to make it consistent

with the notion of realisable set), i.e., for a monomial x1x5x9, the corresponding

indices set is {1, 5, 9}. Also, we do not include the indices in the space complexity,

as mentioned earlier.

Brief analysis on the space complexity of [KS01]. Klivans and Spielman

[KS01], did not explicitly mention the space complexity. However, it is not hard to

show that the required space is indeed O(log(snd)). [KS01] shows that substituting

xi = yk
i−1 mod p, for some k ∈ [2s2n] and p > 2s2n, makes the exponents of the new

univaraite polynomial (in y) distinct (see [KS01, Lemma 3]); the algorithm actually

tries for all k and find the correct k. Note that the degree becomes O(s2nd). Then,

it tries to first find out the coefficients by simple univariate interpolation [KS01,

Section 6.3]. Since we have blackbox access to g(a1, . . . , an), finding out a single

coefficient, by univariate interpolation (which basically sets up linear equations and

solves it) takes O(log(snd)) space and poly(snd) time only. In the last step, to find

one coefficient, we can use the standard univariate interpolation algorithm which

uses the Vandermonde matrices and one entry of the inverse of the Vandermonde is

log-space computable 2.

At this stage, we know the coefficients (one by one), but we do not know

which monomials the coefficients belong to. However, it suffices to substitute

xi = 2yk
i−1 mod p. Using this, we can find the correct value of the first exponent

in the monomial. For e.g. if after the correct substitution, y10 appears with coef-

ficient say 5, next step, when we change just x1, if it does not affect the coefficient

5, y1 is not there in the monomial corresponding to the monomial which has co-
2In fact Vandermonde determinant and inverse computations are in TC0 ⊂ LOGSPACE,

see [MT98].



94

efficient 5, otherwise it is there (here we also use that it is multilinear and hence

the change in the coefficient must be reflected). This step again requires univariate

interpolation, and one has to repeat this experiment with respect to each variable

to know the monomial exactly corresponding to the coefficient we are working with.

We can reuse the space for interpolation and after one round of checking with every

variable, it outputs one exponent at this stage. This requires O(log(snd)-space and

poly(snd) time.

With a more careful analysis, one can further improve the field requirement to

|F| ≥ (nd)6 only (and not dependent on s); for details, see [KS01, Theorem 5 & 11].

Now we come back to our subset sum problem. Since we want to reconstruct

an n-variate m sparse polynomial pt which has degree at most n, it suffices to

work with |F| ≥ n12. However, we also want to use Kane’s identity (Lemma 2.2),

which requires q > deg(f(x, c1, . . . , cn)) + 2, and deg(f(x, c1, . . . , cn)) ≤ nt. Denote

M := max(nt + 3, n12). Thus, it suffices to we work with F = Fq where q ∈

[M, (6/5) ·M ], such prime exists (Theorem 2.9) and easy to find deterministically in

poly(nt) time and O(log(nt)) space using [AKS04]. In particular, we will substitute

yi = ci ∈ [0, q − 1].

Claim 7.11. Fix ci ∈ [0, q− 1], where q ∈ [M, (6/5) ·M ]. Then, there is a poly(nt)-

time and O(log(nt)) space algorithm which computes pt(c1, . . . , cn) over Fq.

Proof. Note that, we can evaluate each 1 + cix
ai , at some x = α ∈ Fq, in Õ(lognt)

time and O(log(nt)) space. Multiplying n of them takes Õ(n log(nt))-time and

O(log(nt)) space.

Once we have computed f(α, c1, . . . , cn) over Fq, using Kane’s identity (Lemma 2.2),

we can compute pt(c1, . . . , cn), since

pt(c1, . . . , cn) = −
∑
α∈F∗

q

αq−1−tf(α, c1, . . . , cn)

As each evaluation f(α, c1, . . . , cn) takes Õ(n log(nt)) time, and we need q− 1 many
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additions, multiplications and modular exponentiations, the total time to compute

is poly(nt). The required space still remains O(log(nt)).

Once, we have calculated pt(c1, . . . , cn) efficiently, now we try different values

of (c1, . . . , cn) to reconstruct pt using Theorem 7.10. Since, pt is a n-variate at

most k sparse polynomial with a degree at most n, it still takes poly(knt) time and

O(log(knt)) space. This finishes the proof.

Input: A k − SSSUM instance a1, . . . , an, t
Output: All realisable subsets S ⊆ [n] such that

∑
i∈S ai = t

Pick a prime q ∈ {M, (6/5) ·M} where M = max(nt+ 3, n12);
Let O be the algorithm mentioned in Theorem 7.10;
for each pt(c1, . . . , cn) query requested by O do

Send −(
∑
α∈F∗

q

αq−1−tf(α, c1, . . . , cn)) to O;

end
pt be the polynomial return by O;
F = {};
for each monomial yS in pt do
F = F ∪ {S}

end
return F ;

Algorithm 7: Algorithm for k − SSSUM

7.3.2 Space-Efficient Algorithm for Subset Product

The proof of Theorem 1.12 uses the idea of reducing Subset Product to an instance

of SimulSubsetSum and then solving SimulSubsetSum by computing the coefficient

of

f(x) =
n∏

i=1

(
1 +

k∏
j=1

x
aij
j

)

where x = (x1, . . . , xk) using an extension of Lemma 2.2. We cannot directly

use [Kan10] as it requires large space (O(n log(nt)) space to be precise) to store

the SimulSubsetSum instance. Instead we compute the coefficient of f(x) without

storing the SimulSubsetSum instance using Lemma 7.12.

The low space algorithm presented in this proof depends on the generalisation
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of Lemma 2.2. Here we present Kane’s identity for bivariate polynomials which can

be easily extended to k-variate polynomials.

Lemma 7.12 (Identity lemma [Kan10]). Let f(x, y) =
∑d1

i=0

∑d2
j=0 ci,jx

iyj be a

polynomial of degree at most d1 + d2 with coefficients ci,j being integers. Let Fq be

the finite field of order q = pm > max(d1, d2) + 1. For 0 ≤ t1 ≤ d1, 0 ≤ t2 ≤ d2,

define

rt1,t2 =
∑
x∈F∗

q

∑
y∈F∗

q

xq−1−t1yq−1−t2f(x, y) = ct1,t2 ∈ Fq

Proof. Let n be a positive integer, then the two following identities hold:

1. Identity 1:-
∑

x∈F∗
q
xn = −1 if q − 1 |n because xn = x(q−1)m = 1 due to

Fermat’s Little theorem.

2. Identity 2:-
∑

x∈F∗
q
xn = 0, if q − 1 ∤ n. This is because we can rewrite the

summation as
∑q−2

i=0 g
i·n =

gn(q−1) − 1

gn − 1
= 0 where g is a generator of F∗

q.

Let us now consider
∑

x∈F∗
q

∑
y∈F∗

q
xq−1−t1yq−1−t2f(x, y).

∑
x∈F∗

q

∑
y∈F∗

q

xq−1−t1yq−1−t2f(x, y) =
∑
x∈F∗

q

∑
y∈F∗

q

xq−1−t1yq−1−t2

(
d1∑
i=0

d2∑
j=0

ci,jx
iyj

)

=

d1∑
i=0

d2∑
j=0

ci,j

∑
x∈F∗

q

∑
y∈F∗

q

xq−1−t1+iyq−1−t2+j


=

∑
i∈[0,d1]\{t1}
j∈[0,d2]\{t2}

ci,j

∑
x∈F∗

q

∑
y∈F∗

q

xq−1−t1+iyq−1−t2+j


+ ct1,t2

= ct1,t2

Observe that when i ∈ [0, d1] \ {t1}, we have
∑

x∈F∗
q
xq−1−t1+i = 0 because |i− t1| ≤

d1 < q − 1 =⇒ q − 1 + i − t1 is not a multiple of q − 1. The same goes for

j ∈ [0, d2] \ {t2}.
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▶ Remark. Lemma 7.12 can be easily extended to k variables which was used by the

authors of [Kan10] to solve SimulSubsetSum with k many SSUM instances in space

O(k log(n
∑k

i=1 ti)) and time (poly(n, t1, . . . , tk))
O(k). In this case, the order of the

finite field must be greater than max(d1, . . . , dk) + 1 where di’s are the individual

degrees of the polynomial.

Issue with directly invoking [Kan10]. Using Theorem 1.13, we can reduce

a Subset Product instance (a1, . . . , an, t) to a SimulSubsetSum instance containing

k SSUM instances (e1i, . . . , eni, ti), ∀i ∈ [k] where k ≤ log(t). The space required

for the SimulSubsetSum instance is the number of bits in eij, tj. We know that

ai =
∏k

j=1 p
eij
i =⇒ 2

∑k
j=1 log(eij) ≤ 2

∑k
j=1 eij ≤ ai because pi ≥ 2, ∀i ∈ [k]. Therefore,

we have
∑

i,j log(ei,j) ≤
∑n

i=1 log(ai) ≤ n log(t). Similarly,
∑

i log(ti) ≤ log(t).

Therefore, the space required for the SimulSubsetSum is O(n log(t)). And, if we

directly use the low-space algorithm for SimulSubsetSum from [Kan10], the total

space complexity would become O((n+ log(nt)) · log(t)).

To avoid the n-factor in the space complexity, we will not be storing the entire

SimulSubsetSum instance. Instead, for each summation in the k variate version of

Lemma 7.12, we will compute the values of eij and tj and discard them after using

them. To be precise, for g = (t1, . . . , tk), we have

cg = (−1)k
∑

x∈(F∗
q)

k

f(x) ·
k∏

i=1

xq−1−ti
i

where f(x) =
∏n

i=1

(
1 +

∏k
j=1 x

eij
j

)
and cg = coefg(f(x)). The values of eij and

ti is only required in f(x) and
∏k

i=1 x
q−1−ti
i respectively. Since, eij and ti are the

powers of pi in aj and t respectively, we can’t use pseudo-prime-factorisation as

this would require us to use O(n log(t)) space to compute a pseudo-prime-factor set.

Therefore, we will use naive prime-factorisation algorithm that runs in Õ(t) time

which is affordable because we are interested in poly(knt).
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Choosing the prime q. Observe that the total degree of f(x) is
∑

ij eij ≤ n ·

(
∑

i ti) ≤ n log t because 0 ≤ eij ≤ tj and
∑

i ti ≤ log(t). Therefore, the maximum

individual degree is bounded by n log(t). Since, Lemma 7.12 requires a prime q that

depends on the maximum individual degree of the polynomial, it suffices to work

with N = ⌈n log(t)⌉ and q > N . Observe that we need to compute the coefficient

modulo q, therefore, we need to ensure that q does not divide the coefficient. To

achieve this, we will use Lemma 7.12 for different primes q ∈ [N+1, (n+N)3] which

contains Ω(n + N)2 prime. This works because the coefficient can be at most 2n,

therefore, it will have at most n prime factors. So, at least one prime in the range

will not divide the coefficient.

Computing f(x) and
∏k

i=1 x
q−1−ti
i using low space. We will make sure that ti

is the exponent of the ith smallest prime factor of t. To find an eij, we will first find

the ith smallest prime pi that divides t and then compute the largest power of pi

that divides aj. Once, we find eij, we can use it to compute
∏k

j=1 x
eij
j part of f(x)

and discard it as shown in Algorithm 8. Similarly, we can compute
∏k

i=1 x
q−1−ti
i .

Space and Time complexity. Observe that Algorithm 8 uses only O(log(nt))

space for variables that are used throughout the algorithm and reuses O(log(t))

space while computing ti, eij, pℓ values. It uses k log(nt) = O(log2(nt)) space for y,

therefore, the total space complexity is O(log2(nt)). Whereas the time complexity

is poly(nt) because each loop runs for poly(nt) iterations and finding the exponents

take Õ(t) time.

7.4 An Efficient Reduction from Subset Product to

SimulSubsetSum

In this section, we will present a deterministic polynomial time reduction from

Subset Product to SimulSubsetSum. In Section 7.2.2, we have given a pseudo-polynomial

time reduction from Subset Product to SimulSubsetSum by performing prime factori-
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Input: A Subset Product instance (a1, . . . , an, t) ∈ Nn+1

Output: Decides whether the Subset Product instance has a solution
k = 0;
for each prime pi | t do

k = k + 1;
end
N = ⌈n log(t)⌉;
for each prime q ∈ [N + 1, (n+N)3] do

cg = 1;
for each y ∈ (F∗

q)
k do

prodx1 = 1;
for i ∈ [k] do

Compute ith smallest prime that divides t and find ti;
prodx1 = prodx1 ∗ yq−1−ti

i ;
Discard ti;

end
f = 1;
for i ∈ [n] do

prodx2 = 1;
for j ∈ [k] do

Compute jth smallest prime pj that divides t;
Using pj compute eij which is the largest integer such that
p
eij
j | ai;

prodx2 = prodx2 ∗ y
eij
j ;

Discard pj and eij;
end
f = f ∗ (1 + prodx2);

end
cg = f ∗ prodx1;

end
if cg ̸= 0 then

return True;
end

end
return False;
Algorithm 8: Algorithm for solving Subset Product using low space
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sation of the input (a1, . . . , an, t). The polynomial time reduction also requires to

factorise the input, but the factors are not necessarily prime. To be precise, we

define pseudo-prime-factorisation which can be achieved in polynomial time.

Definition 7.13 (Pseudo-prime-factorization). A set of integers P ⊂ N is said to

be pseudo-prime-factor set of (a1, . . . , an) ∈ Nn if

1. the elements of P are pair-wise coprime, i.e., ∀p1, p2 ∈ P , gcd(p1, p2) = 1,

2. there are only non-trivial factors of ai’s in P, i.e., ∀p ∈ P , ∃i ∈ [n] such that

p | ai,

3. every ai’s can be uniquely expressed as a product of powers of elements of P,

i.e., ∀i ∈ [n], ai =
∏

p∈P pep , ∀i ∈ [n] where ep ≥ 0.

For a given (a1, . . . , an), P may not be unique. A trivial example of a pseudo-

prime-factor set of P for (a1, . . . , an) is the set of all distinct prime factors of
∏n

i=1 ai.

The following is an important claim which will be used to give a polynomial time

reduction from Subset Product to SimulSubsetSum.

Claim 7.14. For any pseudo-prime-factor set P of (a1, . . . , an), we have |P| ≤ k

where k is the number of distinct prime factors of
∏n

i=1 ai.

Proof. The proof uses a simple pigeonhole principle argument. Let g1, . . . , gk be the

distinct prime factors of
∏n

i=1 ai. From the definition of P , we know that g1, . . . , gk

are the only distinct prime factors of
∏

p∈P p. Therefore, if there are more than k

numbers in P , then there must exist p1, p2 ∈ P such that gcd(p1, p2) ̸= 1 which

violates pair-wise coprime property of P .

▶ Constructing P suffices. We now show that having a pseudo-prime-factor set

P for (a1, . . . , an, t) helps us to reduce a Subset Product instance (a1, . . . , an, t) to

SimulSubsetSum with number of instances |P|, in polynomial time. Without loss of

generality, we can assume that ai | t and ai, t ≤ 2m, ∀i ∈ [n] for some m. Trivially,

m ≤ log t. So, using Claim 7.14, we have |P| ≤ (n+ 1) ·m = poly(n log t).
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From Definition 7.13, we have unique non-negative integers eij and tj such that

t =
∏

j∈|P| p
tj
j and ai =

∏
j∈|P| p

eij
j , ∀i ∈ [n]. Since, ai | t, we have eij ≤ tj ≤ m, ∀i ∈

[n], j ∈ [|P|] and they can be computed in poly(m,n) time.

Let us consider the |P | − SimulSubsetSum instance where the ith SSUM in-

stance is (e1i, e2i, . . . , eni, ti). Then, due to unique factorization property of P ,

the Subset Product instance is YES, i.e., ∃S ⊆ [n] such that
∏

i∈S ai = t iff the

SimulSubsetSum instance with number of instances |P|, is a YES.

7.4.1 Polynomial Time Algorithm for Computing Pseudo-

Prime-Factors

We will now present a deterministic polynomial time algorithm for computing a

pseudo-prime-factor set P for (a1, . . . , an). We will use the notation P(a1, . . . , an)

to denote a pseudo-prime-factor set for (a1, . . . , an). Also, let S(a1, . . . , an) be the

set of all pseudo-prime-factor sets; this is a finite set.

The following lemma is a crucial component in Algorithm 9. We use a//b to

denote a/be such that be+1 ∤ a.

Lemma 7.15. Let (a1, . . . , an) be n integers. Then,

1. If a1 is coprime with ai, ∀i > 1, then for any P(a2, . . . , an) ∈ S(a2, . . . , an),

P(a2, . . . , an) ∪ {a1} ∈ S(a1, . . . , an).

2. P(g, a1//g, a2//g, . . . , an//g) ∈ S(a1, . . . , an), for given ai, i ∈ [n] and any

factor g of some ai.

Proof. The first part of the lemma is trivial. For the second part, let g be a non-

trivial factor of some ai and

P := {p1, . . . , pk} ∈ S(g, a1//g, a2//g, . . . , an//g) ,

be any pseudo-prime-factor set. Then, pi’s are pair-wise coprime and since each pi

divides either g or ai//g for some i ∈ [n], it also divides some ai because g is a factor
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of some ai. Also, we have unique non-negative integers eip, egp s.t.

ai//g =
∏
p∈P

peip , ∀i ∈ [n] and g =
∏
p∈P

pegp .

Combining these equation, we get ai = ai//g ∗ gfig =
∏

p∈P peip+egp∗fig . Here fig is

the maximum power of g that divides ai. Therefore, {p1, . . . , pk} is also a pseudo-

prime-factor set for (a1, . . . , an).

Pre-processing. Using Lemma 7.15, Algorithm 9 performs a divide-and-conquer

approach to find P(a1, . . . , an). Observe that we can always remove duplicate el-

ements and 1’s from the input since it does not change the pseudo-prime-factors.

Also, we can assume without loss of generality that ai//a1 =: ai, ∀i > 1 because of

the second part in Lemma 7.15, with g = a1, since it gives us P(a1, a2//g, . . . , an//g)

and we know it suffices to work with these inputs.

If a1 is coprime to the rest of the ai’s, then the algorithm will recursively call

itself on (a2, . . . , an) and combine P(a2, . . . , an) with {a1}. Else, there exist an i > 1

such that gcd(a1, ai) ̸= 1. So, the algorithm finds a factor g of a1 using Euclid’s

GCD algorithm and computes P(g, a1//g, . . . , an//g). At every step, we remove

duplicates and 1’s. Hence, the correctness of Algorithm 9 is immediate, assuming it

terminates.

To show the termination and time complexity of Algorithm 9, we will use the

‘potential function’ P(I) :=
∏

a∈I a, where I is the input and show that at each

recursive call, the value of the potential function is halved. Initially, the value of

the potential function is
∏n

i=1 ai. We also remark that since the algorithm removes

duplicates and 1’s; the potential function can never increase by the removal step

and so it never matters in showing the decreasing nature of P.

1. a1 is coprime to the rest of the ai’s: In this case, the recursive call has input

(a2, . . . , an). Since, a1 ≥ 2, the value of potential function is

P(a2, . . . , an) =
n∏

i=2

ai < (
n∏

i=1

ai)/2 = P(a1, . . . , an)/2
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2. a1 shares a common factor with some ai. Let g = gcd(a1, ai) ̸= 1. Since, we

have assumed ai//a1 = ai, this implies that ai is not a multiple of a1. This

implies that 2 ≤ g ≤ a1/2. Therefore, the new value of potential function is

P(g, a1//g, . . . , an//g) = g
n∏

j=1

aj//g

≤ (a1//g)× ((ai//g)× g)×
∏

j∈[n]\{1,i}

aj

≤ a1
g
·

n∏
j=2

aj

≤ (
n∏

j=1

aj)/2 = P(a1, . . . , an)/2 .

We used the fact that since, 2 ≤ g | ai, therefore, g × (ai//g) ≤ ai.

Time complexity. In both cases, the value of the potential function is halved. So,

the depth of the recursion tree (in-fact, it is just a line) is at most log(
∏n

i=1 ai) ≤ m·n.

Also, in each recursive call, the input size is increased at most by one but the integers

are still bounded by 2m. This implies that input size, for any recurrence call, can

be at most (m + 1) · n. Since there is no branching, the total time complexity is

poly(m,n) = poly(log t, n).

7.5 Extending Theorems to Unbounded Subset

Sum

In this section, we efficient algorithm for UBSSUM. The UBSSUM is an unbounded

variant of SSUM problem, which is also NP-hard [Joh85].

Definition 7.16 (Unbounded Subset Sum (UBSSUM)). Given (a1, . . . , an, t) ∈

Zn+1
≥0 , the UBSSUM problem asks whether there exists β1, . . . , βn such that βi are

non-negative integers and
∑n

i=1 βiai = t.

Similar to the SSUM, the UBSSUM problem also has a O(nt) dynamic program-
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Input: (a1, a2 . . . , an) ∈ Nn which are m-bit integers such that
ai//a1 = ai > 1, ∀i > 1

Output: Pseudo-prime-factor set P for (a1, a2, . . . , an)
if n == 0 then

return ∅;
end
if ∃i > 1 such that gcd(a1, ai) ̸= 1 then

g = gcd(a1, ai);
I = {g};
for i ∈ [n] do

a′i = ai//g;
if a′i /∈ I and a′i ̸= 1 then

I = I ∪ {a′i}
end

end
return P(I);

end
else

return P(a2, . . . , an) ∪ {a1};
end

Algorithm 9: Algorithm for Pseudo-prime-factor set

ming algorithm. Interestingly, this problem has a O(n+mini a
2
i )-time deterministic

algorithm [HR96]. Recently, Bringmann [Bri17] gave an Õ(t) deterministic algo-

rithm for UBSSUM. We now define two variants of the UBSSUM problem which is

very similar to k − SSSUM and Hamming− k − SSSUM.

Definition 7.17 (k − SUBSSUM). Given (a1, . . . , an, t) ∈ Zn+1
≥0 , the k − SUBSSUM

problem asks to output all (β1, . . . , βn) where βi are non-negative integers and∑n
i=1 βiai = t provided the number of such solutions is at most k.

Definition 7.18 (Hamming − k − SUBSSUM). Given a k − SUBSSUM instance

(a1, . . . , an, t) ∈ Zn+1
≥0 , Hamming − k − SUBSSUM asks to output all the hamming

weights of the solutions, i.e.,
∑n

i=1 βi.

Remark 7.19. We want a⃗ · v⃗ = t, where v⃗ ∈ Zn
≥0. Similarly, like in the SSUM case

(i.e., v⃗ ∈ {0, 1}n), we want |v|1, which is exactly the quantity
∑

i βi, as above. Thus,

this definition can be thought of as a natural extension of the hamming weight of the

solution, in the unbounded regime.
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We will present a deterministic polynomial time reduction from UBSSUM to

SimulSubsetSum, which will be used later in this section.

Theorem 7.20 (UBSSUM reduces to SimulSubsetSum). There exists a deterministic

polynomial time reduction from UBSSUM to SimulSubsetSum.

Proof. Let (a1, . . . , an, t) ∈ Zn+1
≥0 be an instance of UBSSUM. The reduction gener-

ates the following SSUM instance

(a1, 2a1, 4a1, . . . , 2
γa1︸ ︷︷ ︸

γ+1 entries

, a2, 2a2, . . . , 2
γa2︸ ︷︷ ︸

γ+1 entries

, . . . , an, 2an, . . . , 2
γan︸ ︷︷ ︸

γ+1 entries

, t)

of size n(γ + 1) where γ = ⌊log(t)⌋.

Let (β1, . . . , βn) be a solution to the UBSSUM instance, i.e.,
∑n

i=1 βiai = t. Since,

βi, ai, t are all non-negative integers, we have βi ≤ t, ∀i ∈ [n]. Therefore, β is at

most (γ + 1)-bit integer. Let β
(j)
i be the jth bit of βi, then we have

t =
n∑

i=1

βiai =
n∑

i=1

(
γ∑

j=0

β
(j)
i 2j

)
· ai =

n∑
i=1

γ∑
j=0

β
(j)
i · (2jai)

which implies that the SSUM instance also has a solution. Similarly, we can show

the reverse direction, i.e., if SSUM instance has a solution, then UBSSUM is also has

a solution. This concludes the proof.

▶ Remark. Observe that in Theorem 7.20, there is a one-to-one correspondence

between the solutions of the UBSSUM and the solutions of the SimulSubsetSum

instance. Therefore, the reduction preserves the number of solutions. Also, any

T (n, t) time algorithm that solve SSUM gives an T (n log(t), t)-time algorithm to

solve UBSSUM.

We will now show that the Theorem 1.9-1.11 can be extended to, in the UBSSUM

regime.

Theorem 7.21. There is an Õ(k(n+t))-time deterministic algorithm for Hamming−

k − SUBSSUM.
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Proof sketch. The algorithm is almost similar to Algorithm 6, except the definitions

of the polynomials fj(x). Here also, we fix q and µ similarly. We require the exact

number of solutions m(m ≤ k) in Section 7.2.1 (see Claim 7.4). To do that, define

the polynomial f0:

f0(x) :=
n∏

i=1

(
1

1− xaj

)
=

(
n∏

i=1

(1− xai)

)−1

=

(
n∏

i=1

(
1 + xai + x2ai + . . .

))

=: (h0(x))
−1 .

In the above, we used the inverse identity 1/(1 − x) =
∑

i≥0 xi. Expanding

the above, is easy to see that coefxt(f0(x)) = m, where m is the exact number of

solutions to the k − SUBSSUM. Note that, we can compute f−1
0 = h0(x) mod xt+1,

over Fq efficiently in Õ(k+t) time. Finding inverse is easy and can be done efficiently

(see [VG13, Theorem 9.4]).

Once, we know m, we define m many polynomials fj, for j ∈ [m], as follows.

fj(x) :=
n∏

i=1

(
1

1− µjxaj

)
=

(
n∏

i=1

(
1− µjxai

))−1

=: (hj(x))
−1

It is not hard to observe that coefxt(fj(x)) =
∑

i∈[ℓ] λi · µjwi , where w1, . . . , wℓ

are the distinct hamming weights with multiplicities λ1, . . . , λℓ (similar to Observa-

tion 7.6). To find the coefficients of fj(x), we first compute the coefficients of hj(x),

using Lemma A.2, in Õ(k(n+ t)) time and find its inverses, using [VG13, Theorem

9.4], which can again be done in Õ(k(n + t)) time. Once we have computed the

coefficients of fj(x), the rest proceeds the same as Section 7.2.1.

Theorem 7.22. There is a poly(knt)-time and O(log(knt))-space deterministic al-

gorithm which solves k − SUBSSUM.

Proof idea. The algorithm first reduces UBSSUM to SSUM using Theorem 7.20

which preserves the number of solutions but the size of the SSUM instance is now

n log t. Then, it runs Algorithm 7 on the SSUM instance to find all its solutions.
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From the solutions of the SSUM instance, it constructs all the solutions of the

UBSSUM instance. This gives poly(knt)-time and O(log(knt log t)) = O(log(knt))-

space algorithm.





Chapter 8

Conclusions

In this thesis, we present a hardness result for Problem 1.1, new preimage attacks

against Keccak, distinguishers in the weak key setting and key-recovery attacks

against TinyJAMBU, distinguishers for Ascon and algorithms for variants of sub-

set sum problem. We now present some questions which require further rigorous

investigations.

8.1 Scope for Further Work

1. In Chapter 3, we are unable to show NP-hardness of L. We do not know

whether ⊕P contains NP or not. In fact, P⊕P is not known to contain NP.

Therefore, it will be interesting to show NP-hardness of the above problem.

Also, it would be interesting to study the complexity of this problem in the

quantum setting.

2. Is it possible to use the non-linear structure techniques in the cryptanalysis of

other sponge-based cryptosystems?

3. One of the major issues while implementing the monomial prediction technique

using MILP is the blow-up in the number of variables as the number of rounds

increases. Can we come up with tricks to control this blow-up?

4. Can we improve the time complexity of Theorem 1.11? Because of using
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Theorem 7.10, the complexity for interpolation is already cubic. Whether some

other algebraic (non-algebraic) techniques can improve the time complexity,

while keeping it low space, is not at all clear.

5. Can we use these algebraic-number-theoretic techniques, to give a determin-

istic Õ(n+ t) time algorithm for decision version of SSUM?

6. Can we improve Section 7.2.1 to find both the hamming weights wi as well as

the multiplicities λi, in Õ(k(n+ t)) time?

7. Can we improve the complexity of Theorem 7.7 to Õ(n+
∑k

i=1 ti)?

8. What can we say about the hardness of SimulSubsetSum with k subset sum

instances where k = ω(log(n))?
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Appendix A

Algorithms Related to

Polynomials and Subset-Sum

A.1 Generalizing Jin and Wu’s Technique [JW18]

to Different Settings

A.1.1 Revisiting [JW18] with Weighted Coefficient

In [JW18, Lemma 5], Jin and Wu established the main lemma which shows that

one can compute

A(x) :≡
∏
i∈[n]

(1 + xai) mod ⟨xt+1, p⟩ , for any prime p ∈ [t+ 1, (n+ t)3] ,

in Õ(t) time. Further, choosing a random p, one can decide nonzeroness of coefxt(A(x)),

with high probability. In this paper, we will work with a more general polynomial

G(x) :≡
∏
i∈[n]

(1 +W b · xai) mod ⟨xt+1, p⟩ ,

for some integer W , not necessarily 1 and b ∈ Z≥0. Therefore, the details slightly

differ. For completeness, we give the details. However, before going into the details,

we define some basics of power series and expansion of exp (respectively ln), which
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will be crucially used in the proof of Lemma A.2. In general, we will be working

with primes p such that log(p) = O(log(n+ t)), thus log(p) terms in the complexity

can be subsumed in Õ notation.

Basic Power series tools. We denote F[x] as the ring of polynomials over a field

F, and F[[x]] denote the ring of formal power series over F which has elements of

the form
∑

i≥0 aix
i, for ai ∈ F. Two important power series over Q[[x]] are:

ln(1 + x) =
∑
k≥1

(−1)k−1xk

k
, and exp(x) =

∑
k≥0

xk

k!
.

They are inverse to each other and satisfy the basic properties:

exp (ln (1 + f(x))) = 1 + f(x),

ln ((1 + f(x)) · (1 + g(x))) = ln(1 + f(x)) + ln(1 + g(x)) ,

for every f(x), g(x) ∈ xQ[x] (i.e., constant term is 0). Here is an important lemma

to compute exp(f(x)) mod xt+1; for details see [Bre76]; for an alternative proof,

see [JW18, Lemma 2].

Lemma A.1 ([Bre76]). Given a polynomial f(x) ∈ xF[x] of degree at most t(t <

p), one can compute a polynomial g(x) ∈ Fp[x] in Õ(t) time such that g(x) ≡

exp(f(x)) mod ⟨xt+1, p⟩.

Here is the most important lemma, which is an extension of [JW18, Lemma 4],

where the authors considered the simplest form. In this paper, we need the exten-

sions for the ‘robust’ usage of this lemma (in Section 7.2.1).

Lemma A.2 (Coefficient Extraction Lemma). Let A(x) =
∏

i∈[n](1 +W b · xai), for

any non-negative integers ai, b and W ∈ Z. Then, for a prime p > t, one can

compute coefxr(A(x)) mod p for all 0 ≤ r ≤ t, in time Õ((n+ t log(Wb))).
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Proof. Let us define B(x) := ln(A(x)) ∈ Q[[x]]. By definition,

B(x) = ln

∏
i∈[n]

(
1 +W b · xai

) =
∑
i∈[n]

ln
(
1 +W b · xai

)
=
∑
i∈[n]

∞∑
j=1

(−1)j−1

j
·W jb · xaij .

Let Bt(x) := B(x) mod ⟨xt+1, p⟩. Define Sk := {i | ai = k}. Moreover, let us define

dk,j :=


∑

i∈Sk
W jb, if Sk ̸= ϕ ,

0, otherwise .

Then, by rewriting the above expression, we get

Bt(x) ≡
∑
i∈[n]

⌊t/ai⌋∑
j=1

(−1)j−1

j
·W jb · xaij ≡

∑
k∈[t]

⌊t/k⌋∑
j=1

(−1)j−1 · dk,j
j

· xjk mod p .

Since p > t, j−1 mod p exists, for j ∈ [t]. So we pre-compute all j−1 mod p, which

takes total Õ(t) time. Further, we can pre-compute |Sk|, ∀ k ∈ [t] in Õ((n+ t)) time,

just by a linear scan.

Moreover, computing each dk,j = |Sk| ·W jb, takes Õ(log(Wbt)) time, since j ≤ t

(assuming we have computed |Sk|). Thus, the total time complexity to compute

coefficients of Bt(x) is

Õ((n+ t)) + Õ(t) +
∑
k∈[t]

∑
j∈⌊t/k⌋

Õ(log(Wbt)·) = Õ((n+ t log(Wb))) .

In the last, we use that
∑⌊t/k⌋

k=1 1 = O(t log t), which gives the sum to be Õ((n +

t log(Wb))) (log t is absorbed inside the Õ).

The last step is to compute A(x) ≡ exp(Bt(x)) mod ⟨xt+1, p⟩. Since one can

compute Bt(x) in time Õ((n + t log(Wb))), using Lemma A.1, one concludes to

compute the coefficients of xr of A(x), 0 ≤ r ≤ t, over Fp in similar time of Õ((n+
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t log(Wb))).

▶ Remark. When |W | = 1, it is exactly [JW18, Lemma 5]. One can also work

with A(x) =
∏

i∈[n](1−W b ·xai); the negative sign does not matter since we can use

ln(1− x) = −
∑

i≥1 −xi/i and the proof goes through.

A.1.2 Fast Multivariate Polynomial Multiplication

In this section, we will study the time required to compute

A(x1, . . . , xk) :≡
n∏

i=1

(
1 +

k∏
j=1

x
aij
j

)
mod ⟨xt1+1

1 , xt2+1
2 , . . . , xtk+1

k , p⟩

for some prime p. The case when k = 1 has been studied in [JW18, Lemma 5] where

the authors gave an Õ(n + t1) time algorithm for p ∈ [t1 + 1, (n + t1)
3]. Here we

will present the generalisation of this lemma which is used in Theorem 7.7 using

multivariate FFT.

Lemma A.3 (Fast multivariate exponentiation). Let x = (x1, . . . , xk) and f(x) =∑t1
i=1 fi(x) · xi

1 ∈ Fp[x] where fi(x) ∈ Fp[x2, . . . , xk] such that

1. f(x) mod ⟨x1, . . . , xk⟩ = 0, i.e., the constant term of f(x) is 0, and,

2. degxj
(f) = tj, for positive integers tj.

Then, there is an Õ(
∏k

i=1(2ti + 1)) time deterministic algorithm that computes a

polynomial g(x) ∈ Fp[x] such that g(x) ≡ exp(f(x)) mod ⟨xt1+1
1 , . . . , xtk+1

k ⟩ over

Fp.

Proof. Let g(x) = exp(f(x)) =
∑∞

i=0 gi(x2, . . . , xk) · xi
1, where gi ∈ Fp[[x2, . . . , xk]].

Differentiate wrt x1 to get:

g′(x) :=
∂g(x)

∂x1

= g(x) · ∂f(x)
∂x1

.
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By comparing the coefficients of xi
1 on both sides, we get (over Fp):

gi ≡ i−1 ·
i−1∑
j=0

fi−j · gj mod ⟨xt2+1
2 , . . . , xtk+1

k ⟩ ,

where g0 = 1. By initializing g0 = 1, the rest gi to 0 and calling Compute(0, t1)

procedure in Algorithm 10, we can compute all the coefficients up to xt1
1 , in the

polynomial g(x) mod ⟨xt2+1
2 , . . . , xtk+1

k ⟩, over Fp.

Input: integers ℓ, r and polynomials fi, gi
Output: Updated values of gi
if ℓ < r then

m = ⌊(ℓ+ r)/2⌋;
Compute(ℓ,m);
for i ∈ {m+ 1, . . . , r} do

gi = gi + i−1
∑m

j=ℓ(i− j)fi−jgj mod ⟨xt2+1
2 , xt3+1

3 , . . . , xtk+1
k , p⟩;

end
Compute(m+ 1, r);

end
return gℓ, . . . , gr;

Algorithm 10: Algorithm for Compute(ℓ, r)

To speed up this algorithm, we can set A(x) =
∑r−ℓ

i=0 ifix
i
1 and B(x) =

∑m−ℓ
i=0 gi+ℓx

i
1;

here the fi and gi+ℓ have been computed modulo ⟨xt2+1
2 , . . . , xtk+1

k ⟩ already. Use mul-

tidimensional FFT [Cor+09, Chapter 30] to compute C(x) = A(x)B(x) to speed

up the for loop which takes O(
∏k

i=1(2ti + 1) log(
∏k

i=1(2ti + 1))) time.

Observe that
∑m

j=ℓ(i − j)fi−jgj is the coefficient of xi−ℓ
1 in C(x); importantly

degxi
(C) ≤ 2ti, for i ≥ 2. The extraction of the coefficient of xi

1 in C(x) for all i,

mod ⟨xt2+1
2 , xt3+1

3 , . . . , xtk+1
k ⟩ can be performed in O(

∏k
i=1(2ti+1)) time. This is done

by traversing through the polynomial and collecting coefficient along with monomials

having the same xi
1 term (and there can be at most

∏k
i=2(2ti+1) many terms). Thus,

the total time complexity of computing g(x) mod ⟨xt2+1
2 , xt3+1

3 , . . . , xtk+1
k ⟩ is

T (t1, t2, . . . , tk) = 2T (t1/2, t2, . . . , tk) + Õ(
k∏

i=1

(2ti + 1)) = Õ(
k∏

i=1

(2ti + 1)) ,
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as desired.

Lemma A.4 (Fast logarithm computation). Let A(x) =
∏n

i=1

(
1 +

∏k
j=1 x

aij
j

)
.

Then, there exists an Õ(kn +
∏k

i=1 ti) time deterministic algorithm that computes

coefxe(ln(A(x))) mod p for all e, such that e = (e1, . . . , ek) with ei ≤ ti.

Proof. Let us define B(x) := ln(A(x)). Then,

B(x) = ln
(

n∏
i=1

(1 +
k∏

j=1

x
aij
j )

)

=
n∑

i=1

ln
(
1 +

k∏
j=1

x
aij
j

)

=
n∑

i=1

∞∑
ℓ=1

(
(−1)ℓ−1

ℓ
(

k∏
j=1

x
aij
j )ℓ

)
.

Without loss of generality, we can assume that t1 ≤ ti, ∀i > 1. Let C(x) := B(x)

mod ⟨xt1+1
1 , . . . , xtk+1

k , p⟩. Since, we are interested where the individual degree of

xj can be at most tj, the index ℓ in the above equation (for a fixed i) must satisfy

aij · ℓ ≤ tj for each j ∈ [k]. This implies ℓ ≤ tj/aij, for j ∈ [k]. Therefore, define

Mi := mink
j=1⌊tj/aij⌋. Now, one can express C(x) using Mi since it suffices to look

at the index ℓ till Mi (for a fixed i), as argued before.

Importantly, note that the above equation involves
∏k

j=1 x
aijℓ
j which has individ-

ual degree > 0, since both aij, ℓ ≥ 1. Thus, define T := {e = (e1, . . . , ek) ∈ Zk | 1 ≤

ei ≤ ti, ∀i ∈ [k]}. Then,

C(x) =
n∑

i=1

Mi∑
ℓ=1

(
(−1)ℓ−1

ℓ
(

k∏
j=1

x
aij
j )ℓ

)

=
∑
e∈T

t1/e1∑
ℓ=1

(
se × (−1)ℓ−1

ℓ

k∏
j=1

xeiℓ
j

)
,

where se = | {i ∈ [n] | (ai1, . . . , aik) = e} |. Essentially, for a given se, the quantity

computes how many times aij is equal to ej, for all j ∈ [k]. Using se, we can

interchange the order of the summation as shown above. Moreover, we can pre-

compute se, for all e ∈ T in time O
(
kn+

∏k
i=1 ti

)
.
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Observe that coefxe(B(x)) = coefxe(C(x)), for any (e1, . . . , ek) ∈ T . Since,

ℓ ≤ t1 < p, ℓ−1 exists and can be pre-computed in Õ(t1).

Time complexity. Observe that we have

C(x) =
∑
e∈T

t1/e1∑
ℓ=1

(
se × (−1)ℓ−1

ℓ

k∏
j=1

xeiℓ
j

)

=

t2∑
e2=1

t3∑
e3=1

· · ·
tk∑

ek=1

 t1∑
e1=1

t1/e1∑
ℓ=1

(
se × (−1)ℓ−1

ℓ

k∏
j=1

xeiℓ
j

)

The time taken to compute all coefxe(C(x)), given se, is the number of itera-

tions over all (e2, . . . , ek), for 1 ≤ ei ≤ ti, i > 1 and ℓ ∈ [t/e1], which is atmost∑t1
j=1⌊t1/j⌋ ×

∏k
i=2 ti = Õ(

∏k
i=1 ti), since

∑t1
j=1 t1/j = O(t1 log t1). Thus, the total

time is Õ(kn+
∏k

i=1 ti).

A.1.3 Solving Linear Recurrence: Tool for Section 7.2.1

In this section, we briefly sketch how to speed up the algorithm of computing Ei,

for i ∈ [m], using FFT, rather than just going through one by one. Equation (7.1)

gives the following relation:

Ej ≡ j−1 ·

∑
i∈[j]

(−1)j−i−1Ei · Pj−i

 mod q .

Here, by Ej (respectively Pj), we mean Ej(µ
w1 , . . . , µwℓ) (respectively Pj). We can

assume that Pj’s are already pre-computed and hence contribute to the complexity

only once. This calculation is very similar to [JW18, Lemma 2], with a similar

relation. But we give the details, for completeness.

Eventually, once we have computed Pj’s, we can use FFT (Algorithm 11) to find

Ej’s, which eventually gives T (m) ≤ Õ(k(n+ t)).

To elaborate, in the for-loop 7-8 in Algorithm 11, we want to find
∑s

i=ℓ(−1)j−iEi·
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Input: Pi, for i ∈ [m], q and E0 = 1
Output: Ei for i ∈ [m]
Initialize Ej ← 0, for j ∈ [m];
return Compute(0,m);
Procedure Compute(ℓ, u) ▷ the values returned by Compute(ℓ, u) are the
final values Eℓ, . . . , Eu are computed;

for ℓ < u do
s← ⌊ ℓ+u

2
⌋

Compute(ℓ, s);
for j ← s+ 1, . . . , u do

Ej ← Ej + j−1 · (
∑s

i=ℓ (−1)j−iEi · Pj−i) mod q;
end
Compute(s+ 1, u)

end
return Eℓ, . . . , Eu;

Algorithm 11: Algorithm for computing Ei

Pj−i for all j ∈ {s+ 1, . . . , u}. To achieve this, we define the polynomials:

F (x) :=
u−ℓ∑
k=0

(−1)k−1Pkx
k, and G(x) :=

s−ℓ∑
j=0

Ej+ℓx
j .

Note that our F (x) is different than used in [JW18], because of a slightly differ-

ent recurrence relation. We can compute H(x) = F (x) · G(x), in time Õ((u − ℓ)).

Observe that
∑u

i=ℓ (−1)j−i−1Pj−i · Ei = coefxj−ℓ(H(x)) because (−1)j−i−1Pj−i =

coefxj−i(F (x)) and Ei = coefxi−ℓ(G(x)). Therefore, the inner for loop can be com-

puted in Õ((u− ℓ)) time.

Final time complexity. Let T ′(m) is the complexity of computing E1, . . . , Em

assuming precomputations of Pj and j−1. Then,

T ′(m) ≤ 2T ′(m/2) + Õ(m) =⇒ T ′(m) ≤ Õ(m) .

Therefore, the total complexity of computing E1, . . . , Em, is T (m) = T ′(m)+Õ(k(n+

t)), where Õ(k(n + t)) is for the time for computing Pj’s (and j−1). Since, q =

O(n+ k + t) and m ≤ k, we get T (m) = Õ(k(n+ t)), as we wanted.
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A.2 Algorithms

A.2.1 Trivial Solution for k − SSSUM

Bellman’s dynamic programming solution for the decision version of SSUM is based

on the recurrence relation S((a1, . . . , an), t) = S((a1, . . . , an−1), t)⊕S((a1, . . . , an−1), t−

an) where S((a1, . . . , aj), t
′) = 1 ⇐⇒ t′ is a realisable target of (a1, . . . , aj). Us-

ing this relation, the algorithm needs to store only the values of S((a1, . . . , aj−1), t
′)

for all 1 ≤ t′ ≤ t to compute S((a1, . . . , aj), t
′′) for all 1 ≤ t′′ ≤ t. So, the time

complexity is O(nt) whereas the space complexity is Ω(t).

To find all the solutions, we modify the above algorithm by adding a pointer

from S((a1, . . . , aj), t
′) to S((a1, . . . , aj−1), t − aj) when both are equal to 1. The

same is done for S((a1, . . . , aj), t
′) and S((a1, . . . , aj−1), t). Apart from these, we

also add a pointer from S(ai, ai) to a new node S({}, 0) where 1 ≤ i ≤ n. This

gives a directed graph of size O(nt) because the out-degree of each node is at most

2. To find all the solutions to the SSUM , we simply run a modified version of DFS

algorithm1 on this graph to finds all the paths from S((a1, . . . , an), t) to S({}, 0).

It is evident that if the number of solutions to the SSUM instance is k, then the

number of paths is also k. The modified DFS algorithm goes through all the neigh-

bouring vertices of a given vertex, no matter if they are visited or not. Furthermore,

any path that starts from S((a1, . . . , an), t) will end at S({}, 0).

Clearly, this algorithm will terminate because the graph is directed acyclic. The

running time and space of the modified DFS algorithm is O(nk) because each path

is of length at most n and the algorithm traverses through each path at most twice

(the first traversal ends at S({}, 0) which finds the path and the second one is

backtracking). Therefore, the total time and space complexity is O(n(t+ k)).

1The graph is a directed acyclic one and we can use the al-
gorithm mentioned in https://stackoverflow.com/questions/20262712/
enumerating-all-paths-in-a-directed-acyclic-graph

https://stackoverflow.com/questions/20262712/enumerating-all-paths-in-a-directed-acyclic-graph
https://stackoverflow.com/questions/20262712/enumerating-all-paths-in-a-directed-acyclic-graph
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A.2.2 Trivial Dynamic Algorithm for SimulSubsetSum

In this section, we sketch a dynamic pseudo-polynomial time algorithm which solves

SimulSubsetSum, with targets t1, . . . , tk, in O(n(t1 + 1) . . . (tk + 1)) time. This is a

direct generalisation of Bellman’s work [Bel57].

The algorithm considers an n × (t1 + 1) × · · · × (tk + 1) boolean matrix M

and populates it with 0/1 entries. M [i, j1, j2, . . . , jk] has 1 iff the SimulSubsetSum

instance with ℓth SSUM instance (a1ℓ, a2ℓ, . . . , aiℓ, ji) has a solution. Here i ∈ [n] and

ji ∈ [0, ti]. Even though we have remarked that wlog ti ≥ 1, ∀i ∈ [n], we cannot

do the same for aij’s. This forces us to look at ji ∈ [0, ti], ∀i ∈ [k]. The algorithm

starts by setting M [1, a11, a12, . . . , a1k] = 1 and M [1, j1, j2, . . . , jk] = 0 for the rest.

Then, using the following recurrence relation, the algorithm populates the rest of

the matrix.

M [i, j1, j2, . . . , jk] = M [i− 1, j1, j2, . . . , jk] +M [i− 1, j1 − ai1, j2 − ai2, . . . , jk − aik]

i.e., M [i, j1, j2, . . . , jk] is set to 1 iff either M [i− 1, j1, j2, . . . , jk] = 1 or M [i− 1, j1−

ai1, j2 − ai2, . . . , jk − aik] = 1. Since, the size of the matrix is n(t1 + 1) . . . (tk + 1),

the running time of the algorithm is O(n(t1 + 1) . . . (tk + 1)).

A.2.3 Dynamic Programming Approach for Subset Product

In this section, we will briefly discuss the modification to Bellman’s dynamic pro-

gramming approach for SSUM to solve Subset Product in deterministic (expected)

time O(nto(1)).

The algorithm starts by removing all ai that does not divide t. Then using

the factoring algorithm in [LP92], we can factor t into prime factor pj, i.e., t =∏
i∈[k] p

tj
j = t, where k = O(log(t)/ log log(t)). We now compute the DP table T of
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size n× (t1 + 1)× · · · × (tk + 1) such that

T [i, x1, . . . , xk] = 1, if and only if there exists S ∈ [i], such that
∏
j∈S

aj =
∏
j∈[k]

p
xj

j .

Observe that the time complexity of the algorithm is the time taken to populate

the DP table with either 1 or 0. Since the size of the DP table is n ×
∏

i∈[k](1 +

ti), using the similar analyse mentioned in Section 7.2.2, we can bound the term∏
i∈[k](1 + ti) by to(1). Therefore, the total time complexity is O(nto(1)).
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