Kindle: A Comprehensive Framework for Exploring OS-Architecture Interplay in Hybrid Memory Systems

IISWC 2024

Arun KP Debadatta Mishra

Indian Institute of Technology, Kanpur

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Hybrid memory provides benefits of both DRAM and NVM.

- Hybrid memory provides benefits of both DRAM and NVM.
- Applications can take advantage of hybrid memory using services at different levels.

- Hybrid memory provides benefits of both DRAM and NVM.
- Applications can take advantage of hybrid memory using services at different levels.
- ✤ Hybrid memory service example → page migration, data persistence, etc.

Hybrid memory service may span multiple layers.

- Hybrid memory service may span multiple layers.
- * HSCC \rightarrow page migration (OS + hardware)

HSCC: Hardware/software cooperative caching for hybrid DRAM/NVM memory architectures

- Hybrid memory service may span multiple layers.
- * HSCC \rightarrow page migration (OS + hardware)
- ***** SSP \rightarrow data persistence (OS + hardware)

HSCC: Hardware/software cooperative caching for hybrid DRAM/NVM memory architectures

SSP: Eliminating redundant writes in failure-atomic NVRAMs via shadow sub-paging

- Hybrid memory service may span multiple layers.
- * HSCC \rightarrow page migration (OS + hardware)
- ***** SSP \rightarrow data persistence (OS + hardware)
- SoftWrAP → data persistence (user library)

HSCC: Hardware/software cooperative caching for hybrid DRAM/NVM memory architectures SSP: Eliminating redundant writes in failure-atomic NVRAMs via shadow sub-paging Softwrap: A lightweight framework for transactional support of storage class memory

Exploration of ideas in hybrid memory systems require a framework.

- Exploration of ideas in hybrid memory systems require a framework.
- * Framework \rightarrow cater to ideas at multiple layers.

- Exploration of ideas in hybrid memory systems require a framework.
- * Framework \rightarrow cater to ideas at multiple layers.
- ✤ Framework → allow quick prototyping of ideas.

- Exploration of ideas in hybrid memory systems require a framework.
- * Framework \rightarrow cater to ideas at multiple layers.
- * Framework \rightarrow allow quick prototyping of ideas.
- * Framework \rightarrow hosts lightweight OS.

COMPUTER SCIENCE & ENGINEERING

13/60

Kindle is a lightweight full-system simulation framework for hybrid memory systems.

Kindle uses gemOS as OS component in framework.

- Kindle uses gemOS as OS component in framework.
- gemOS is lightweight, allows easy integration of hybrid memory support in OS.

- Kindle uses gemOS as OS component in framework.
- gemOS is lightweight, allows easy integration of hybrid memory support in OS.
- Application allocates memory from DRAM, NVM using memory allocation API.

Kindle provides full process persistence in hybrid memory system.

- Kindle provides full process persistence in hybrid memory system.
- Kindle uses *gem5* as hardware component in framework.

- Kindle provides full process persistence in hybrid memory system.
- Kindle uses gem5 as hardware component in framework.
- Enables prototyping solutions crossing OS-Architecture boundaries.

Supports end-to-end study of real-world applications.

COMPUTER SCIENCE & ENGINEERING

- * Supports end-to-end study of real-world applications.
- * Kindle consists for two parts.

* Preparation part \rightarrow generate artifacts for simulation.

COMPUTER SCIENCE & ENGINEERING

* Preparation part \rightarrow generate artifacts for simulation.

* Simulation part \rightarrow run application with persistence.

COMPUTER SCIENCE & ENGINEERING

25/60

* Process persistence \rightarrow consistent virtual address space management.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

- * Process persistence \rightarrow consistent virtual address space management.
- * Page table in NVM \rightarrow Wrap modifications in failure atomicity (persistent scheme).
- * Page table in DRAM \rightarrow Checkpoint state to NVM periodically (rebuild scheme).

- Micro-benchmark sequentially access all pages in the allocated space.
- End-to-end execution time for consistently maintaining execution context.

- Micro-benchmark sequentially access all pages in the allocated space.
- End-to-end execution time for consistently maintaining execution context.
- * Rebuild scheme \rightarrow higher execution time for all allocation sizes.

- Micro-benchmark sequentially access all pages in the allocated space.
- End-to-end execution time for consistently maintaining execution context.
- * Rebuild scheme \rightarrow higher execution time for all allocation sizes.
 - * Overhead $\rightarrow \sim$ 74.2 \times (512MB) w.r.t Persistent.

- Micro-benchmark stride access with predefined gap, e.g. 1GB, to map different page table levels.
- End-to-end execution time for consistently maintaining execution context.

- Micro-benchmark stride access with predefined gap, e.g. 1GB, to map different page table levels.
- End-to-end execution time for consistently maintaining execution context.
- ✤ Persistent → slightly more execution time compared to Rebuild for 1GB, 2MB.

Alloc/Free Size	Persistent (msec)	Rebuild (msec)
64MB	325	19377
128MB	389	23438
256MB	517	29376

- ✤ Micro-benchmark → sequence of fixed size mmap and munmap operations.
- End-to-end execution time for consistently maintaining execution context.

Alloc/Free Size	Persistent (msec)	Rebuild (msec)
64MB	325	19377
128MB	389	23438
256MB	517	29376

- ✤ Micro-benchmark → sequence of fixed size mmap and munmap operations.
- End-to-end execution time for consistently maintaining execution context.
- ✤ Persistent scheme overhead \rightarrow \sim 1.6 \times from 64MB to 256MB.

Alloc/Free Size	Persistent (msec)	Rebuild (msec)
64MB	325	19377
128MB	389	23438
256MB	517	29376

- ✤ Micro-benchmark → sequence of fixed size mmap and munmap operations.
- End-to-end execution time for consistently maintaining execution context.
- ✤ Persistent scheme overhead \rightarrow \sim 1.6 \times from 64MB to 256MB.
- ***** Rebuild scheme overhead $\rightarrow \sim 1.5 \times$ from 64MB to 256MB.

Existing work re-evaluation using Kindle

COMPUTER SCIENCE & ENGINEERING

SSP provides NVM memory consistency at cache line granularity.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

- SSP provides NVM memory consistency at cache line granularity.
- Used periodic consistency interval of 1, 5 and 10 msec.

- SSP provides NVM memory consistency at cache line granularity.
- Used periodic consistency interval of 1, 5 and 10 msec.
- Page consolidation thread is fixed to 1 msec.

- SSP provides NVM memory consistency at cache line granularity.
- Used periodic consistency interval of 1, 5 and 10 msec.
- Page consolidation thread is fixed to 1 msec.
- Execution time with SSP normalized to time with no memory consistency.

- SSP provides NVM memory consistency at cache line granularity.
- Used periodic consistency interval of 1, 5 and 10 msec.
- Page consolidation thread is fixed to 1 msec.
- Execution time with SSP normalized to time with no memory consistency.
 - * Average \sim 3× reduction in overhead from 1 msec to 10 msec.

* HSCC uses DRAM as cache managed by OS.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

* HSCC uses DRAM as cache managed by OS.

* HSCC tracks access counts to NVM pages to select for migration.

COMPUTER SCIENCE & ENGINEERING

- HSCC uses DRAM as cache managed by OS.
- HSCC tracks access counts to NVM pages to select for migration.

Execution time with OS migration activities normalized to time without OS activities.

- HSCC uses DRAM as cache managed by OS.
- HSCC tracks access counts to NVM pages to select for migration.

- Execution time with OS migration activities normalized to time without OS activities.
- Migration interval is 31.25 msec and fetch thresholds are 5, 25 and 50

- HSCC uses DRAM as cache managed by OS.
- HSCC tracks access counts to NVM pages to select for migration.

- Execution time with OS migration activities normalized to time without OS activities.
- Migration interval is 31.25 msec and fetch thresholds are 5, 25 and 50
- Gapbs_pr shows the minimum overhead.

Benchmark	Th-5	Th-25	Th-50
Gapbs_pr	354	273	132
G500_sssp	4489	1475	1346
Ycsb_mem	23093	1661	221

* Table shows number of pages migrated for different thresholds.

COMPUTER SCIENCE & ENGINEERING

Benchmark	Th-5	Th-25	Th-50
Gapbs_pr	354	273	132
G500_sssp	4489	1475	1346
Ycsb_mem	23093	1661	221

* Table shows number of pages migrated for different thresholds.

* Number of pages migrated reduces with increase in fetch threshold.

Benchmark	Th-5	Th-25	Th-50
Gapbs_pr	354	273	132
G500_sssp	4489	1475	1346
Ycsb_mem	23093	1661	221

- Table shows number of pages migrated for different thresholds.
- * Number of pages migrated reduces with increase in fetch threshold.
- * Ycsb_mem $\rightarrow \sim 13 \times$ reduction in number of pages migrated for Th-25 compared to Th-5.

Benchmark	Fetch Threshold	Page Selection (%)	Page Copy (%)
Gapbs_pr	Th-5	1.74	98.26
	Th-25	1.92	98.08
	Th-50	2.06	97.94

* Migrating a page to DRAM consists of *page selection* and *page copy*

Benchmark	Fetch Threshold	Page Selection (%)	Page Copy (%)
Gapbs_pr	Th-5	1.74	98.26
	Th-25	1.92	98.08
	Th-50	2.06	97.94

* Migrating a page to DRAM consists of *page selection* and *page copy*

* Table shows percentage of time spent as part of OS migration activity.

Benchmark	Fetch Threshold	Page Selection (%)	Page Copy (%)
Gapbs_pr	Th-5	1.74	98.26
	Th-25	1.92	98.08
	Th-50	2.06	97.94

- * Migrating a page to DRAM consists of *page selection* and *page copy*
- * Table shows percentage of time spent as part of OS migration activity.
- * Gapbs_pr \rightarrow Page selection time is less than \sim 2% across all fetch thresholds.

Benchmark	Fetch Threshold	Page Selection (%)	Page Copy (%)
Gapbs_pr	Th-5	1.74	98.26
	Th-25	1.92	98.08
	Th-50	2.06	97.94

- * Migrating a page to DRAM consists of *page selection* and *page copy*
- * Table shows percentage of time spent as part of OS migration activity.
- * Gapbs_pr \rightarrow Page selection time is less than \sim 2% across all fetch thresholds.
- Page copy occupies majority of execution time across all benchmarks.

Kindle enables hybrid memory exploration crossing architecture-OS boundary.

COMPUTER SCIENCE & ENGINEERING

- Kindle enables hybrid memory exploration crossing architecture-OS boundary.
- Kindle uses gemOS to circumvent the challenges of integrating NVM support in conventional OS for gem5.

- Kindle enables hybrid memory exploration crossing architecture-OS boundary.
- Kindle uses gemOS to circumvent the challenges of integrating NVM support in conventional OS for gem5.
- * Kindle provides full process persistence.

- Kindle enables hybrid memory exploration crossing architecture-OS boundary.
- Kindle uses gemOS to circumvent the challenges of integrating NVM support in conventional OS for gem5.
- * Kindle provides full process persistence.
- We compared two schemes to consistently maintain page table using Kindle.

- Kindle enables hybrid memory exploration crossing architecture-OS boundary.
- Kindle uses gemOS to circumvent the challenges of integrating NVM support in conventional OS for gem5.
- * Kindle provides full process persistence.
- We compared two schemes to consistently maintain page table using Kindle.
- We showed utility of Kindle with two prototype implementations of state-of-the-art hybrid memory schemes, SSP and HSCC.

Questions?

Scan for Kindle

COMPUTER SCIENCE & ENGINEERING

IT KANPUR