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In the area of education, the use of machine learning and artificial intelligence has grown a lot in
the past few years. This surge has resulted in the development of various AI-assisted solutions
aimed at enhancing educational practices. Among these tools is PRIORITY, which was specifi-
cally created to support problem setters of ESC101, an introductory programming course offered
at IIT Kanpur.
PRIORITY provides a web-based platform that allows users to search for programming queries
from previous versions of ESC101 course. It employs machine learning algorithms to label each
programming question automatically, making them searchable. Each programming query includes
a problem statement and a designated correct answer, making the process of extracting relevant
features from this type of data complicated. In addition, PRIORITY entails estimating the level of
difficulty for each programming problem which is the other component of PRIORITY system.
In our work on PRIORITY, we have focused on strengthening the label prediction component’s
robustness. In the previous version, for label prediction only the solution to the programming
problem is considered. Nonetheless, we have made some progress by incorporating the problem
statement. This modification has improved the system’s performance in predicting the correct la-
bels overall.
In our research, we experimented with two distinct methods for representing problem statements:
FasText and Bag of Words. We trained the model with N one-vs-rest classifiers (one for each
label). Interestingly, we observed that the Bag of Words-based model occasionally yielded better
results compared to the FasText-based model, and vice versa. To improve the predictive capabili-
ties of our system, we combined our statement-based model with a previously developed Abstract
Syntax Tree (AST) model. This integration aimed to achieve better Label Preddictions Overall
and for each problem statement. We explored two ways for fusing the results of two models: Late
Fusion and Early Fusion. Further we adopted two Ranking-style strategies one which is focused
on coverage of important labels and other to avoid inclusion of unsure labels. In sum, our results
help move forward priority system’s label prediction task that is more reliable.
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CHAPTER 1

Introduction

Contents
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Machine Learning and Artificial intelligence at start were in headlines for the claims to surpass
humans in games, which was great but not very revolutionary. However, with time these technolo-
gies have substantially increased there capabilities in several areas, such as text comprehension,
which was for a long time an ability which distinguished humans from machines. As a result,
these machine learning algorithms are now getting used in every areas to solve more problems
which were earlier only can be handled by humans. One such area is education various new tools
and AI-solutions are getting developed for improving the teaching process as shown in [16].

At IIT Kanpur, a popular course called Fundamentals of Computing (ESC101) is conducted
annually, attracting a large number of students. As part of this course, weekly lab sessions are
held, during which students are given a set of programming questions related to the topics covered
that week. Designing a fresh set of problems each year poses a significant challenge for the tutors
responsible for this task. To simplify their work, PRIORITY as described in [15] and [10] offers a
web-based portal that grants tutors access to an extensive library of programming questions from
previous iterations of the course. This resource serves to assist tutors in creating new problem sets
effectively.
PRIORITY is an online platform that indexes a database of programming-related queries. It per-
mits users to search the database based on particular programming concepts, required skills, and
difficulty levels. As depicted in Figure 1.1, the search page of PRIORITY enables users to conduct
such targeted queries.
The PRIORITY database contains roughly 2000 programming queries. In order to create index
for the database, each problem must be labelled in accordance with the programming principles
outlined on the website and assigned a difficulty score. Nonetheless, manually labelling such a
vast collection is a laborious task. As a solution, PRIORITY uses Machine Learning techniques
to annotate the database automatically [15].
At first, a small group of past tutors who used to set problems for the ESC101 course were asked
to label a small part of the PRIORITY data manually. As a result, we now have a small number of
programming questions labelled, while most of them are still unlabelled[10].
The Thesis "Real world deployments of AI-assisted tools for compilation error repair and program
retrieval" [10] proposes to create these automated annotations using two separate machine learn-
ing tasks. The first task is to make ML models that can predict the programming concepts or skills
(Label Prediction) that go with a problem. The second job is to make ML models that can predict
how hard a problem is(Difficulty score prediction).
One of the main challenges in the Label Prediction task is to effectively perform feature engineer-

1



2 Chapter 1. Introduction

Figure 1.1: Priority Search Page
Image credits:[10]

ing. Several approaches have been proposed in theses [3] and [16] to extract significant features
from the Abstract Syntax Tree (AST) of the solutions for each programming question. These ap-
proaches outline different methods for capturing important information from the AST.
This thesis introduces modifications to the back-end machine learning components of PRIORITY
to enhance its performance in the Label Prediction task. The results obtained after implement-
ing these changes demonstrate a substantial improvement. The details of these enhancements are
summarized in Section1.1. Also, now PRIORITY is integerated to PRUTOR platform(an online
tool to give programming assignments) the details regarding this are discussed in thesis [17]

This thesis is part of a group of three companion theses, along with [14] and [17]. To gain a
comprehensive insight into the research conducted in this specific domain, it is advisable to refer
to all three theses.

1.1 Our Contributions

• In the previous version of PRIORITY, feature extraction was based on the Abstract Syntax
Tree (AST) of the solution C program for programming questions. This thesis suggests
a different approach by utilizing the problem statement itself to extract features for Label
Prediction. Various text representation techniques, including Bag of Words (BOW) and deep
learning-based techniques like FastText, were explored to represent the question statement.
The statement label prediction task was approached in two steps. First, supervised learning

2



1.1. Our Contributions 3

was employed to identify the significant regions in the statement that are relevant to the
question. Then, a one-vs-rest SVM classifier was used to predict labels for these important
portions. The details of Statement based Label Prediction is discussed breifly in chapter 2.

• In the prior method, Label Prediction involved training a One-vs-All Logistic Regression
model on AST features using filter-based supervised feature selection[3].In this thesis we
looked into an Early fusion-based Multi-modal method, in which features from both the
AST and Statements are combined to train a one-vs-rest classifier. We also looked into how
Deep Learning techniques could be used for the Label Prediction job. In particular, we tried
out Wide and Deep networks architecture [4] and we also tried to modify the network a bit.
chapter 3 talks in brief about the results of these experiments.

3
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2.6.1 Micro metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.2 Relevance Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.3 Standard Label Prediction Conclusion: . . . . . . . . . . . . . . . . . . . . . . . 25

In order to make the problems database searchable for tutors, PRIORITY[10] introduces two
parameters: problem concepts tags and difficulty score. These parameters allow tutors to search
and retrieve relevant problems from the database. Machine learning techniques are employed to
tag the problems with appropriate labels as defined in [15], which is a crucial component of the
tagging process.

The PRIORITY dataset includes problem statements, code solutions, and associated labels for
each problem. While previous work in [3] and [16] focused on using code solutions to train a
supervised model for label prediction, this chapter explores the utilization of problem statements
for the same purpose. We will begin by addressing two important challenges related to the dataset,
and then proceed to discuss the step-by-step process of predicting labels using text features.

2.1 Dataset

As per [3] and [15] the PRIORITY dataset comprises 28 labels that represent various programming
concepts or skills associated with solving specific problems. Each label corresponds to a specific
programming concept or skill. Detailed descriptions of these labels can be found in thesis1. Ad-
ditionally, the dataset includes two main problems that serve as the focal points of analysis and
exploration. These problems provide a concrete context for understanding and applying the label
prediction techniques discussed in the thesis .

2.1.1 Class Imbalance Problem

As described in [3],[16] and [15]. The labeled dataset used for training the machine learning
models exhibits a significant scarcity of labeled data points. This scarcity is visually depicted in
Figure 3.1, which illustrates the frequency of occurrence of the programming labels. The plot
clearly demonstrates a heavy class imbalance problem, wherein certain labels have a much higher
frequency of data points compared to others. This imbalance is further exacerbated by a long tail
distribution, indicating that a few popular labels have a disproportionately larger number of asso-
ciated data points, while several labels have very few data points linked to them. Specifically, the
eight least frequent labels have fewer than 20 programming questions associated with them. The
presence of this severe class imbalance in the labeled dataset is anticipated to have a detrimental
impact on the performance of machine learning models, particularly for the labels with limited
data points.

2.1.2 Ignored Labelling

As noticed by [15] and [3] during the labeling process of the dataset, tutors assigned labels to
the programming questions. However, an issue arose when certain labels had multiple levels or

6



2.2. Data Pre-processing 7

Figure 2.1: Label Frequencies
Image Credits[15]

subcategories. For instance, labels like "arithmetic basic" and "arithmetic advanced" may exist,
and a question could possess qualities that correspond to both labels. However, in some cases,
only one of the levels, such as "arithmetic advanced," was marked while the other level was left
unmarked. This situation created a challenge during the training process and compromised the
accuracy of insights obtained from the data. The ambiguity caused by the missing labels and the
presence of overlapping qualities underscores the need for careful consideration and standardized
guidelines when labeling data with hierarchical or multi-level labels.

2.2 Data Pre-processing

• We began with a csv file including information from the PRIORITY dataset, such as prob-
lem statements, solution code, template code, and a list of labels for each coding question.
We cleaned the text data in many ways, including removing HTML tags, tokenization, low-
ercasing, stop word removal, stemming, and lemmatization.

• Following that, we separated the question statements into windows or chunks, because not
all windows contribute to a particular label determination.

7



8 Chapter 2. Label prediction using text features

• We experimented with various approaches for representing these text windows as numeric
vectors, including FastText and Bag-of-Words (BoW).

• Finally after all these steps,We acquired a set of vectors for each problem statement, repre-
senting each window within the statement.

2.2.1 Text Pre-processing

This section discuss about all steps followed to clean the problem statements before representing
it as a numeric vector:

2.2.1.1 Removal of Html tags and Special characters

• HTML tags structure and format websites. They focus on text display rather than content.
Focus on meaningful information and remove formatting and unnecessary aspects when
processing text data is a crucial step.

• These tags can introduce noise and inconsistencies in the data. These may includes special
symbols, foramtting related information which are not really relevant to the actual text of
the problem statement.

• Tokenization can be impacted by HTML tags. The failure to remove tags before analysing
or representing the text increases the risk that the tags will be included in the tokenization
process.

• We have used Python Html Parser [8] to parse the and filter out the Html tags.

• Similar to this, extraneous noise can be introduced into the text by special characters such
punctuation marks, symbols, and other non-alphanumeric characters. Eliminating these
special characters makes it easier to ignore the background noise and focus on the text’s
important content.

• For removing special characters we have used python regular expression matching [12].

2.2.1.2 Tokenization

• In both the cleaning and the preparation of text, tokenization is an essential step. Tokens
are often words or even smaller linguistic units like punctuation marks or numerals, and this
process requires breaking a text down into those component parts. These tokens are then
referred to as individual units. For this set up we have used words as the units.

• The process of constructing a vocabulary or word list for a given text can be aided by to-
kenization. The fact that each token is unique and represents a different word in the text
enables us to perform statistical analysis on the text corpus, as well as analyse the frequency
and distribution of words, determine which words are significant based on the prediction
label.

• Tokenization also serves as a pre-requisite step for stemming and lemmatization.

8



2.2. Data Pre-processing 9

• For our given setup we have used whitespace tokenizer from NLTK [1] .

• For the statement "consider an array of integers" after tokenization result for it will be
"[’consider’, ’an’, ’array’, ’of’, ’integers’]"

2.2.1.3 Lowercasing

• Lowercasing is a common step in text cleaning and preprocessing tasks. It involves convert-
ing all the text to lowercase letters

• Lowercasing helps maintain consistency in the text. It ensures that the same word appears in
the same case throughout the text, avoiding variations due to capitalization errors or different
writing styles.

2.2.1.4 Stopword Removal

• Stopword removal is a crucial step in text cleaning and preprocessing tasks. It involves
removing common words that do not carry significant meaning or contribute to the overall
understanding of the text.

• Stopwords include articles (e.g., "the", "a", "an"), prepositions (e.g., "in", "on", "at"), and
conjunctions (e.g., "and", "or", "but"). These words frequently appear in text but have little
semantic value. By eliminating stopwords, we can reduce the amount of background noise
in the text and concentrate on the more meaningful and informative words.

• The elimination of stopwords can increase the efficiency of topic modelling and text classi-
fication tasks. By omitting prevalent words that lack a distinct meaning, we can concentrate
on more significant and discriminatory terms. This can result in a more accurate identifica-
tion of program labels containing problematic text.

2.2.1.5 Stemming

• Stemming is a text preprocessing technique that reduces words to their root or fundamental
form, also known as stems. It involves removing suffixes and prefixes from words in order
to normalise them and combine words with similar meanings together.

• Stemming reduces vocabulary by simplifying words. It simplifies words to a stem, which
aids information retrieval and text analysis. Stemming lets us combine numerous word
forms into one.Stemming improves search and retrieval word matching.

• For our given setup we have used PorterStemmer from NLTK [1].

• For example words like "recursion" and "recursively" both when applied stemming produces
"recurs".

9



10 Chapter 2. Label prediction using text features

2.2.1.6 Lemmatization

• The method of lemmatization is used as a text preparation tool, and it boils down words
to their dictionary forms. Lemmatization, in contrast to stemming, takes into account the
context and meaning of words, producing lemmas that are more linguistically accurate and
meaningful.

• Lemmatization is useful since it reduces words to their simplest form without altering their
meaning. It simplifies language to its most basic elements, making it easier to comprehend
the meaning of text in context.Lemmatization helps in analysis and interpretation because it
keeps the essential meaning of words.

• For our given setup we have used WordNetLemmatizer from NLTK [1].

• For example words like "arrays" and "array" both when applied Lemmatization produces
"array".

2.2.2 Splitting into windows

2.2.2.1 Simple windowing

• This step is performed after cleaning the text. This procedure includes slicing the statement
of the question into a number of smaller windows, each of which comprises a set number of
consecutive words.

• By dividing the question statement into windows, we make smaller pieces of text that can be
looked at and handled separately. This windowing method lets us figure out the local context
and how words relate to each other in a small area. It helps to get the specific information
and patterns for each window, which can help with the label prediction job.

• For instance, if we have a question statement that consists of 30 words and choose a window
size of 5, we will need to generate six windows, with each window comprising five words
in a row in order to complete the analysis. It’s possible to label these windows as "Window
1: words 1-5," "Window 2: words 6-10," "Window 3: words 11-15," and so on.

• By breaking down the question statement into smaller windows, we aim to capture the
nuanced details and context within the text, improving the model’s ability to understand and
predict the labels associated with each window.

2.2.2.2 Sliding Window

• We used the window stride method in addition to slicing the query phrase up into windows
of a predetermined size each time. When we capture each window, how we slide the window
over the text is determined by the window stride value that we use.

• For instance, if we have a window size of 10 and a stride of 5, we start by selecting the first
10 words of the question statement as our initial window. After processing and capturing
the information from this window, instead of moving directly to the next 10 words, we slide
the window by 5 words.

10



2.3. Text Representation 11

• If we have a question statement that consists of 30 words and choose a window size m of 10,
with a stride value of 5, we will generate five windows each of size 10 having overlapping
words with "Window 1: words 1-10," "Window 2: words 6-15," "Window 3: words 11-20,"
and so on.

• Using the window stride method helps ensure that we do not miss any important information
while processing the question statement. It enables us to capture a wider range of context by
considering overlapping windows, which can be particularly beneficial in scenarios where
the target information is spread across multiple parts of the text.

2.3 Text Representation

Once we have obtained the cleaned windows for the problem statements, the next step is to convert
them into numeric vector representations. In our study, we experimented with two approaches that
are Bag of Words (BoW) representation and FastText representation.
By experimenting with both BoW and FastText representations, we aimed to compare their per-
formance in capturing the important features of the problem statements. The BoW representation
is straightforward and computationally efficient, while the FastText representation offers more nu-
anced semantic information. The choice between the two depends on the specific requirements of
the label prediction task.

2.3.1 Bag of words

• The Bag of Words (BoW) representation is a popular way to show text data, like the windows
in our study that were made from the problem statements.It is a simple yet effective approach
that captures the presence of individual words in a document.

• In the BoW representation, each window is turned into a vector, where each dimension
represents a different word in the language. The parts of the vector show how often or
whether certain words are present or absent in the window. This representation doesn’t
care about the order of the words; it only looks at the binary presence of the words in the
vocabulary.

• Let’s refer to the vocabulary size as V , the window size as m and let for a problem state-
ment we have p windows. We construct a V-dimensional vector for every window. Each
dimension’s value reflects the presence or absence of the relevant word in the window. A
word’s matching dimension value is one if it is visible in the window, while it is 0 if it is
not. Finally, we’ll get a boolean matrix of size p ⇤ V .

• To show this, let’s look at an example with vocabulary "array","matrix","addition" If we
have a window that says "Perform a matrix addition" the BoW representation would be [0,
1, 1]. This means that the words "matrix" and "addition" are in the window, but the word
"array" is not.

• The Bag of Words method ignores grammar, syntax, and word order, which can be good and
bad. It loses text sequence and context but is computationally efficient and straightforward

11



12 Chapter 2. Label prediction using text features

to implement. The BoW format is good for prediction of labels, where word presence is
more important than word order e.g arrays, Arithemetic bit etc.

• In our approach, we have taken a more focused approach to constructing the vocabulary for
each label in the label prediction task. Instead of considering the complete vocabulary of
the problem statements, we have restricted the vocabulary to specific words that are relevant
to each target label. This is discussed breifly in Section 2.2.1.1

2.3.1.1 Restricted Vocabulary

Let m denote the total number of documents, w represent the number of unique words in the
vocabulary, and k be the number of top labels to consider (in this case, k = 30).

For each document i, we construct a boolean label vector, denoted as yi, of size |L|. Each
entry yji is either 1 or 0, indicating the presence or absence of label j in document i, respectively.

Similarly, we construct a word matrix X of size w ⇥ m. Each entry Xj
i is a binary value

indicating the presence (1) or absence (0) of word j in document i.

To determine the correlation between each label and word, we calculate the Pearson correla-
tion coefficient, denoted as ⇢(l, w), between label l and word w. This correlation coefficient is
computed as:

⇢(l, w) =
1

m

mX

i=1

⇣
yli � mean(yl)

⌘
(Xw

i � mean(Xw))

where the sum ranges over all documents i, mean(yl) represents the mean of the label vector
yl, and mean(Xw) represents the mean of the word vector Xw.

Next, for each label l, we select the top k words with the highest absolute correlation coeffi-
cients. These k words form the restricted vocabulary Vl for label l.

Therefore, for each label l in the top k labels, the restricted vocabulary Vl is given by:

Vl = {w | |⇢(l, w)| is among the k highest absolute correlation coefficients}

By selecting the top k labels and their corresponding words based on the highest absolute
correlation coefficients, we obtain a restricted vocabulary that captures the most relevant and in-
formative words for each label.

2.3.1.2 Why Restricted Vocabulary ?

• By selecting the words with the highest correlation coefficients for each label, the restricted
vocabulary is made more specific to the semantics associated with those labels. This aids in
capturing the most pertinent words that contribute to each label’s comprehension.

• By concentrating on the most highly correlated words, the restricted vocabulary eliminates
less informative or distracting words that may not significantly contribute to the labelling
task. This results in a textual representation that is more concise and meaningful.

12



2.3. Text Representation 13

• The restricted vocabulary provides a clearer insight into the relationship between words and
labels. By selecting words based on their correlation with specific labels, it becomes easier
to interpret and understand the factors influencing the labeling process.

• Overall, this help in reducing the unwanted computation in per label model’s training and
also increases the predictive performance per label.

Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9692 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.6462 0.4118 0.35 0.3784
Loops_Basic 0.5692 0.375 0.25 0.3
TerminalIO_Advanced 0.8462 0.125 0.25 0.1667
Arrays_Basic 0.7385 0.3333 0.2143 0.2609
Pointers_Advanced 0.9077 0.0 0.0 0.0
Conditionals_Flags 0.8923 0.0 0.0 0.0
Structures_Basic 0.9692 1.0 0.3333 0.5
Char-String_Basic 0.7846 0.1667 0.1 0.125
Conditionals_Basic 0.6923 0.2941 0.3846 0.3333
Functions_Advanced 0.7692 0.5333 0.5 0.5161
Arithmetic_Advanced 0.9692 0.5 0.5 0.5
Conditionals_Switch 0.9077 0.0 0.0 0.0
Algorithms_Recursion 0.8769 0.375 0.5 0.4286
Structures_Advanced 0.9692 0.3333 1.0 0.5
Algorithms_DP 0.9538 1.0 0.25 0.4
Conditionals_Advanced 0.8769 0.0 0.0 0.0
Loops_Advanced 0.6308 0.6667 0.4516 0.5385
Arrays_Advanced 0.9385 0.8333 0.625 0.7143
Char-String_Advanced 0.8308 0.0 0.0 0.0
TerminalIO_Basic 0.8154 0.0 0.0 0.0
Pointers_Basic 0.9385 0.75 0.5 0.6
Structures_DS 0.9846 1.0 0.6667 0.8
Arrays_Memory 0.8154 0.25 0.1 0.1429
Algorithms_DC 0.9692 1.0 0.3333 0.5
Functions_Basic 0.7692 0.6 0.5 0.5455
Loops_Invariants 0.8769 0.0 0.0 0.0
Overall 0.8533 0.3042 0.422 0.3535
Micro 0.8533 0.3057 0.4137 0.3232

Table 2.1: Bag of words Statement Label Prediction

2.3.2 FastText

Fasttext is useful since it uses subword details which capture the context of the sentence very well.
Let’s say a window containing some words as W = (w1, w2, ..., wn), where each wi represents a
word. To represent this window using FastText, we used pre-trained word embeddings from the
FastText model trained on a large corpus such as Wikipedia.

For each word in the window, we retrieve its corresponding pre-trained FastText embedding

13



14 Chapter 2. Label prediction using text features

vector, denoted as vi 2 Rd, where d is the dimensionality of the word embeddings. These embed-
ding vectors capture the semantic information of the words in a continuous vector space.

To obtain the FastText representation vw of the window W , we can average the individual
word embeddings:

vw =
1

n

nX

i=1

vi,

where vw 2 Rd represents the FastText representation of the window W , n is the number of
words in the window, and

P
denotes the summation over all word embeddings.

The FastText representation vw is a dense vector in a high-dimensional space which in our
case was 100, where each dimension captures different aspects of the window’s semantic infor-
mation. This representation can then be used as input features for downstream tasks such as label
prediction.

By using FastText representation, we aim to capture the rich semantic meaning of the windows
and enable the model to leverage the subword information to handle unseen or morphologically
variant words. Our approach works in this context since we had very less data in order to fine tune
fastText embeddings.

Overall, the FastText representation provides a powerful and efficient way to capture the se-
mantic information of the window-based text, enabling effective downstream tasks such as state-
ment label prediction.

2.3.2.1 FastText over Bag of Words

• FastText is a more robust representation than bag of words, since it offers the advantage of
getting the semantic details which is not same incase of Bag of words.

• FastText embeddings are trained on very large data corpus of wikipedia which brings them
with a pre-trained semantic rich information, this enable the model to capture the nuances
and context of the text windows in our case for relevance classifier as well as label predic-
tion.

• FastText representations are dense vectors which are on calculated for each of the windows
of sentences will be able to give us more robust similarity and differences information to
other windows than bag of words.

• Overall, using FastText enables the models to capture the semantic details of the windows
in prediction tasks and also with dealing with variations of words for like synonyms and
antonyms. These benifits will contribute to increase the model performance on the predic-
tion tasks like label prediction and relevance prediction.

2.4 Removing Irrelevant Windows

Prior to performing label prediction, it was recognized that not all windows in the programming
question are relevant for all labels. Additionally, some programming questions included a story

14



2.4. Removing Irrelevant Windows 15

component that was completely unrelated to the actual question. These stories were included to
provide a real-life context but did not contribute to the label prediction process. To address this
issue, a filter layer was introduced to remove the irrelevant windows and focus on the essential
parts of the question. The filter layer acted as a gatekeeper, selectively allowing only the pertinent
windows to pass through for the final label prediction. By eliminating the irrelevant content, the
model’s attention was directed towards the relevant portions of the question, enhancing the accu-
racy and effectiveness of the label prediction task.
To address the challenge of filtering out irrelevant windows from the programming question, two
approaches were considered.
Approach 1: Using similarity matching. A collection of text related to programming and pro-
gramming in C was gathered from Wikipedia articles. From these texts, word windows were
created, and vectors were generated for each window. This resulted in a set of vectors that rep-
resented programming-related content. When presented with a problem statement, the approach
involved finding the average distance from the k nearest neighbors. Based on these distances, the
top T windows were considered relevant.
Approach 2: focused on employing supervised learning to train a model capable of classifying
whether a given window was relevant or not. This approach relied on training a model using
labeled data to learn the patterns and characteristics of relevant windows. The details and imple-
mentation of this approach are discussed in depth in sections 2, 3, and 4.
Considering the availability of sufficient C-related articles for our specific case, it was decided to
proceed with Approach 2. The subsequent sections provide a comprehensive exploration of the
methodology, experimental results, and analysis related to this approach.

2.4.1 Marking Hot Regions

In order to train a model to classify relevant windows, the problem statements from the PRIORITY
dataset were utilized. For each labeled problem in the dataset, the relevant portions of the prob-
lem statements were identified and marked. This process was carried out manually by our team
members individually. By involving multiple team members in the marking process, we aimed
to minimize individual biases and ensure a diverse range of perspectives on what constitutes rel-
evant portions. This approach allowed for a comprehensive and well-rounded assessment of the
relevance of different parts of the problem statements.

2.4.2 Vocabulary Generation

Now to determine which window carries how much relevance, we first need to assign a score to
each word in the vocabulary. This is achieved by traversing each problem statement in the dataset
and incrementing the score value for words that fall within the marked important sections. For
instance, let’s consider the following text:

"We have apples and oranges with their corresponding quantity, given a 2d array of apples and
oranges."

Suppose person 1 marks "given a 2d array of apples and oranges" as relevant, person 2 marks
"given a 2d array," and person 3 marks "2d array." In this example, our vocabulary would be

15



16 Chapter 2. Label prediction using text features

represented as:

V = {”given” : 2, ”2d” : 3, ”array” : 3, ”apples” : 1, ”oranges” : 1, ”and” : 1}

Here, each word in the vocabulary is associated with a score that indicates how many people have
marked it as relevant and the frequency of its relevance. By accumulating these scores, we obtain
a quantitative measure of the relevance of each word within the problem statements.

2.4.3 Creating Relevance Dataset

After creating the vocabulary for the relevance dataset, we assign a score, denoted as S(w), to
each window, w, based on the words present within it. The score of a window is determined by
taking the average of the scores of the words it contains. Mathematically, the score of a window
can be represented as:

S(w) =
1

|w|

|w|X

i=1

Sword(wi)

where |w| represents the number of words in the window and Sword(wi) represents the score
of the word wi present in the window.
To create a dataset for the relevant or not classifier, we follow the following steps:

1. For each problem in the dataset, we convert it into windows of words using the techniques
outlined in Section 1. We then calculate the scores, S(w), for each window based on the
vocabulary obtained in the previous steps.

2. Next, we rank the windows based on their corresponding scores. This ranking allows us to
prioritize the windows based on their relevance scores, with higher-ranked windows consid-
ered more relevant. Mathematically, the ranking process can be represented as:

R(w) = rank(S(w))

where R(w) represents the rank of the window w based on its score S(w).

3. Let the total number of windows be denoted as N . We compare N to a predetermined
threshold value, denoted as K. If N is less than K, we mark all windows as relevant since
the number of windows is below the threshold.

4. However, if the number of windows N is greater than K, we employ a selection process to
determine the relevant windows. We mark the top K windows as relevant, ensuring that the
most relevant windows are included. Additionally, we select a percentage p of the remaining
windows from the left side (after excluding the top K windows) and mark them as relevant
as well. This process can be represented mathematically as:

16
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Figure 2.2: Bag of Words Pipeline

relevant(w) =

8
>>><

>>>:

True if R(w)  K

True if K < R(w)  K +
⌃
N�K
100 · p

⌥

False otherwise

By following these steps, we obtain a dataset consisting of windows that are marked as either
relevant or irrelevant. This dataset can be used to train a binary classifier to distinguish between
relevant and irrelevant windows in future predictions.

2.5 ML MODEL

After obtaining the preprocessed vectors for label prediction, we have two pipelines based on the
Bag of Words (BOW) vectors and FastText vectors. The pipelines are as follows:

• For BOW vectors, the pipeline involves using the full vocabulary initially and then reducing
the dimensionality of the vectors using the restricted vocabulary. This is depicted in Figure
2.1. Afterward, the one-vs-rest model is trained using these reduced-dimensional vectors
for label prediction(as shown in Figure 2.1). However, when using the relevant classifier,
the first step is to remove the irrelevant windows before reducing the dimensionality using
the restricted vocabulary. This process is illustrated in (as shown in Figure 2.3).

• For FastText, the pipeline is similar, but with one key difference. In this we do not have
the restricted vocabulary step. So, the FastText vectors are directly fed into the training(as
shown in Figure 2.2) and if relevance classifier is used then after filtering out the irrelevant
vectors training step is done(as shown in Figure 2.4).

The subsequent sections will brief regarding the training and incurred results.

2.5.1 Training Relevance Classifier

In order to train the relevance classifier, we will conduct experiments using both the Bag of Words
(BOW) encodings and the FastText encodings. Our objective is to train a single classifier capable
of determining the relevance of a given window. To achieve this, we have explored five different
classifiers: K nearest neighbors [6], decision trees[13], random forests[2], Support Vector Ma-
chines (SVM) [5], and Logistic Regression [9].

17



18 Chapter 2. Label prediction using text features

Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9538 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.6 0.4118 0.3043 0.35
Loops_Basic 0.5846 0.375 0.2609 0.3077
TerminalIO_Advanced 0.8462 0.0 0.0 0.0
Arrays_Basic 0.7385 0.4444 0.25 0.32
Pointers_Advanced 0.9231 0.0 0.0 0.0
Conditionals_Flags 0.8769 0.0 0.0 0.0
Structures_Basic 0.9692 1.0 0.3333 0.5
Char-String_Basic 0.8154 0.3333 0.2 0.25
Conditionals_Basic 0.6615 0.2941 0.3333 0.3125
Functions_Advanced 0.8 0.6 0.5625 0.5806
Arithmetic_Advanced 0.9692 0.5 0.5 0.5
Conditionals_Switch 0.9077 0.0 0.0 0.0
Algorithms_Recursion 0.8769 0.375 0.5 0.4286
Structures_Advanced 0.9692 0.3333 1.0 0.5
Algorithms_DP 0.9538 1.0 0.25 0.4
Conditionals_Advanced 0.8769 0.0 0.0 0.0
Loops_Advanced 0.6923 0.6667 0.5185 0.5833
Arrays_Advanced 0.9538 0.8333 0.7143 0.7692
Char-String_Advanced 0.8615 0.0 0.0 0.0
TerminalIO_Basic 0.8308 0.0 0.0 0.0
Pointers_Basic 0.9231 0.75 0.4286 0.5455
Structures_DS 0.9846 1.0 0.6667 0.8
Arrays_Memory 0.8462 0.0 0.0 0.0
Algorithms_DC 0.9538 1.0 0.25 0.4
Functions_Basic 0.7231 0.4667 0.4118 0.4375
Loops_Invariants 0.8923 0.0 0.0 0.0
Overall 0.856 0.309 0.4162 0.3547
Micro 0.856 0.3116 0.4085 0.3257

Table 2.2: Bag of words Statement Label Prediction with relevant windows

Model Accuracy Precision Recall F1_score
KNN 0.9504 0.9546 0.995 0.9744
Decision Tree 0.9266 0.9571 0.9658 0.9614
Random Forest 0.9542 0.957 0.9965 0.9763
Logistic Regression 0.8694 0.9693 0.8903 0.9281
SVM 0.9485 0.9484 1.0 0.9735

Table 2.3: Relevant Windows Prediction

By utilizing these diverse classifiers, we aim to evaluate their performance in accurately classi-
fying windows as relevant or irrelevant. Each classifier brings its own strengths and characteristics,
allowing us to analyze their effectiveness in this specific task. Through rigorous experimentation
and evaluation, we can determine which classifier exhibits the highest accuracy and precision in
capturing the relevance of the windows.
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Figure 2.3: BOW Pipeline with filtered windows

Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.8 0.4118 0.7 0.5185
Loops_Basic 0.6615 0.4375 0.35 0.3889
TerminalIO_Advanced 0.8615 0.125 0.3333 0.1818
Arrays_Basic 0.8615 0.3333 0.5 0.4
Pointers_Advanced 0.9846 0.0 0.0 0.0
Conditionals_Flags 0.9538 0.0 0.0 0.0
Structures_Basic 0.9538 0.0 0.0 0.0
Char-String_Basic 0.8615 0.1667 0.2 0.1818
Conditionals_Basic 0.6154 0.1176 0.1667 0.1379
Functions_Advanced 0.8308 0.3333 0.8333 0.4762
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 0.9846 0.0 0.0 0.0
Algorithms_Recursion 0.9231 0.625 0.7143 0.6667
Structures_Advanced 0.9538 0.0 0.0 0.0
Algorithms_DP 1.0 1.0 1.0 1.0
Conditionals_Advanced 0.9692 0.0 0.0 0.0
Loops_Advanced 0.7231 0.619 0.5652 0.5909
Arrays_Advanced 0.9077 0.1667 0.5 0.25
Char-String_Advanced 0.9385 0.0 0.0 0.0
TerminalIO_Basic 0.9385 0.0 0.0 0.0
Pointers_Basic 0.9385 0.25 0.5 0.3333
Structures_DS 0.9846 0.5 1.0 0.6667
Arrays_Memory 0.9385 0.25 0.5 0.3333
Algorithms_DC 1.0 1.0 1.0 1.0
Functions_Basic 0.7846 0.1333 0.6667 0.2222
Loops_Invariants 0.9385 0.0 0.0 0.0
Overall 0.9016 0.4727 0.3006 0.3675
Micro 0.9016 0.4344 0.3094 0.3306

Table 2.4: FastText Statement Label Prediction with Relevant Windows
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20 Chapter 2. Label prediction using text features

Figure 2.4: FastText Pipeline with filtered windows

2.5.2 Hyperparameter Tuning:

We first extract the set of windows from the training set of all the problem statements. The valida-
tion set is then built using these windows using which the classifier hyper-parameter is tuned for
relevance clasifier. And to the label classifier we get a subset of problems gradually based on the
population for each label then we treat this subset as the validation set to tune the parameters.

2.5.3 Predicting Relevant Windows

Given a question consisting of multiple windows, our goal is to assign a relevance score to each
window. Let’s denote the relevance score of window i as R(i) (R(i) 2 {0, 1}).
To calculate the relevance score, we first obtain the probability score for each window, denoted
as P(i). This probability score represents the likelihood of a window being relevant. We can use
various techniques, such as machine learning models, to estimate these probabilities based on the
characteristics of the window.
Once we have the probability scores for all windows, we rank them in descending order. This rank-
ing enables us to identify the windows with higher probabilities and, hence, higher relevance.To
determine the threshold for relevance, we introduce a parameter K, which represents the desired
number of relevant windows. If the total number of windows in the question is denoted as N, we
apply the following criteria:

• If N < K, we consider all windows as relevant (R(i) = 1 for all windows).

• If N � K, we assign a relevance score of 1 to the top K windows based on their probability
scores (R(i) = 1 for i = 1 to K).

• For the remaining (N - K) windows, we introduce another parameter, p% (0 � p � 100).
We select the top p% of these windows based on their probability scores and assign them a
relevance score of 1. The remaining (1 - p)% windows are assigned a relevance score of 0.

By following this approach, we can effectively determine the relevance of each window within the
question, providing a quantitative measure of their importance.

2.5.4 Training Label Predictor

To train for label prediction based on the window vectors, we adopt a one-vs-rest approach, where
we train individual classifiers for each of the 28 labels. This approach allows us to handle the
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Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.6615 0.7647 0.4194 0.5417
Loops_Basic 0.4308 0.9375 0.2941 0.4478
TerminalIO_Advanced 0.8769 0.5 0.5 0.5
Arrays_Basic 0.6923 0.6667 0.2609 0.375
Pointers_Advanced 0.9846 0.0 0.0 0.0
Conditionals_Flags 0.9077 0.0 0.0 0.0
Structures_Basic 0.9846 1.0 0.5 0.6667
Char-String_Basic 0.8923 1.0 0.4615 0.6316
Conditionals_Basic 0.4615 0.8235 0.3043 0.4444
Functions_Advanced 0.7692 0.6 0.5 0.5455
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 0.9846 0.0 0.0 0.0
Algorithms_Recursion 0.9385 0.625 0.8333 0.7143
Structures_Advanced 0.9538 0.0 0.0 0.0
Algorithms_DP 0.9846 1.0 0.5 0.6667
Conditionals_Advanced 0.8769 0.0 0.0 0.0
Loops_Advanced 0.4769 0.9048 0.3725 0.5278
Arrays_Advanced 0.9077 0.3333 0.5 0.4
Char-String_Advanced 0.9077 0.0 0.0 0.0
TerminalIO_Basic 0.7846 0.25 0.0833 0.125
Pointers_Basic 0.9077 0.5 0.3333 0.4
Structures_DS 1.0 1.0 1.0 1.0
Arrays_Memory 0.9077 0.25 0.25 0.25
Algorithms_DC 1.0 1.0 1.0 1.0
Functions_Basic 0.5692 0.5333 0.2759 0.3636
Loops_Invariants 0.9231 0.0 0.0 0.0
Overall 0.8473 0.3385 0.6358 0.4418
Micro 0.8473 0.3385 0.6615 0.4327

Table 2.5: Fastext Label Prediction using Multilabel Ranking

multi-label nature of the problem effectively. Since each problem is associated with multiple win-
dows, we make an assumption that if a label is present (on) for a particular problem, it is also
considered present (on) for all the windows associated with that problem. Similarly, if a label is
absent (off) for a problem, it is assumed to be absent (off) for all the windows of that problem. By
leveraging this assumption, we train the classifiers using the labeled problem statements and their
corresponding windows.
For the label prediction task, we utilize linear support vector machines (SVM) as our classifier of
choice. SVMs are well-suited for multi-label classification problems and have shown good perfor-
mance in various text classification tasks. The results obtained from the trained classifiers will be
further discussed and analyzed in the subsequent section, shedding light on the effectiveness and
performance of the approach in accurately predicting the labels for the given problem statements.
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2.5.5 Label Prediction

In the standard one-vs-rest prediction approach, we utilize the trained one-vs-rest classifiers to
predict the labels for each individual problem. For a given problem, we apply the each one-vs-rest
classifier to predict the labels for its associated windows. If any of the windows is predicted to
have that label "on", then the problem is considered to have that label "on" in the final output. This
approach ensures that if a label is present in any of the windows of a problem, it is considered as
an active label for that problem.
To obtain the final label predictions for all 28 labels, we sequentially apply all the trained one-
vs-rest classifiers to the problems. Each classifier predicts the presence or absence of its specific
label for the associated windows of each problem. By iterating through all the classifiers, we
accumulate the label predictions and generate the final output, indicating the presence or absence
of each label for the given set of problem statements. This one-vs-rest prediction strategy allows
us to capture the label associations at the window level, providing a comprehensive representation
of the label presence across the different windows associated with each problem.

2.5.5.1 Multilabel Ranking

In the context of multi-label ranking, obtaining probability scores for each label is crucial. To
achieve this, we employed one-vs-rest classifiers to predict the probability scores for each label
independently. This approach allows us to estimate the likelihood of each label being active or
inactive for a given problem.
Since we have multiple windows associated with each question, we explored two different ap-
proaches to aggregate the scores from the window level to the problem level. The first approach
involved averaging the scores across all the windows, considering the normalized scores for fair
comparison. This approach assumes that the overall label relevance can be determined by consid-
ering the collective contributions from all the windows.
The second approach involved selecting the maximum score among the scores obtained from the
windows. This approach assumes that a single window might have a significant impact on deter-
mining the relevance of a label. By considering the maximum score, we ensure that if at least one
window indicates a high relevance score for a label, it will have a greater influence on the final
ranking.
After obtaining the probability scores for each label for every problem, we proceed to rank the
labels based on their corresponding scores. For each problem, we iterate through the labels and
arrange them in descending order based on their probability scores. We then select the top T labels
to be active for that specific problem. This ensures that we always consider the most relevant labels
for each problem, even if the model may not accurately rank all the labels. By setting a threshold
of T, we aim to capture the most significant labels for each problem and reduce the chances of all
labels being inactive.

2.5.5.2 Ranking-Style Prediction

In the context of Ranking-Style prediction, we follow a similar procedure as in multi-label rank-
ing. Firstly, we obtain the probability scores for each label and each problem using the one-vs-rest
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Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.8 0.4118 0.7 0.5185
Loops_Basic 0.6615 0.4375 0.35 0.3889
TerminalIO_Advanced 0.8615 0.125 0.3333 0.1818
Arrays_Basic 0.8615 0.3333 0.5 0.4
Pointers_Advanced 0.9846 0.0 0.0 0.0
Conditionals_Flags 0.9538 0.0 0.0 0.0
Structures_Basic 0.9538 0.0 0.0 0.0
Char-String_Basic 0.8615 0.1667 0.2 0.1818
Conditionals_Basic 0.6154 0.1176 0.1667 0.1379
Functions_Advanced 0.8308 0.3333 0.8333 0.4762
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 0.9846 0.0 0.0 0.0
Algorithms_Recursion 0.9231 0.625 0.7143 0.6667
Structures_Advanced 0.9538 0.0 0.0 0.0
Algorithms_DP 1.0 1.0 1.0 1.0
Conditionals_Advanced 0.9692 0.0 0.0 0.0
Loops_Advanced 0.7231 0.619 0.5652 0.5909
Arrays_Advanced 0.9077 0.1667 0.5 0.25
Char-String_Advanced 0.9385 0.0 0.0 0.0
TerminalIO_Basic 0.9385 0.0 0.0 0.0
Pointers_Basic 0.9385 0.25 0.5 0.3333
Structures_DS 0.9846 0.5 1.0 0.6667
Arrays_Memory 0.9385 0.25 0.5 0.3333
Algorithms_DC 1.0 1.0 1.0 1.0
Functions_Basic 0.7846 0.1333 0.6667 0.2222
Loops_Invariants 0.9385 0.0 0.0 0.0
Overall 0.9016 0.4727 0.3006 0.3675
Micro 0.9016 0.4344 0.3094 0.3306

Table 2.6: FastText Label Prediction using Ranking Style Prediction

classifiers, as previously described. Additionally, we rank the labels based on their corresponding
scores, allowing us to prioritize the most relevant labels.
To make predictions, we utilize the results obtained from the standard predictions of the one-
vs-rest classifiers. For each problem, we check if the number of predicted labels is less than a
predefined threshold, denoted as T. If the number of predicted labels is already below k, we retain
all the predicted labels as active for that particular problem.
However, if the number of predicted labels exceeds T, we apply the ranking of labels based on their
scores. We select the top T labels with the highest scores and consider them as active predictions.
For the remaining labels, we set their predictions to zero, indicating that they are not relevant for
the given problem. This approach ensures that we only predict labels for which we have higher
confidence and avoids making excessive predictions.
By incorporating label ranking and the threshold of T, we aim to improve the precision of pre-
dictions and focus on the most reliable label assignments. This methodology enables us to make
informed decisions regarding label activation, considering both the probability scores and the rank-
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ing information.

2.6 Experiments and Results

2.6.1 Micro metric

Apart from conventional evaluation metrics like precision, recall, F-score, and accuracy for the
overall labels, we used the micro metric to evaluate the performance of our model. While the
overall metric provides an average performance measure for all labels, the micro metric provides
a more detailed analysis by taking into account each individual data point in the dataset. For the
micro metric, we first use our multiclass classification model to predict the labels for every data
point. The accuracy, F-score, precision, and recall are then calculated based on the anticipated
accurate labels for that particular data point. Each and every data point in the dataset goes through
this process, yielding values for micro precision, micro recall, micro F-score, and micro accuracy
by averaging over all of them.

Let yi denote the predicted label vector for data point i, where yi is a 1 ⇥ 28-dimensional
vector representing the predicted labels for the 28 classes. Similarly, let ytrue,i denote the ground
truth label vector for data point i, where ytrue,i is also a 1⇥ 28-dimensional vector.

To calculate precision (Preci), recall (Reci), F-score (Fi), and accuracy (Acci) for each data
point i, we use the following formulas:

Preci =
TPi

TPi + FPi
,

Reci =
TPi

TPi + FNi
,

Fi =
2 · Preci · Reci
Preci + Reci

,

Acci =
TPi + TNi

TPi + TNi + FPi + FNi

where TPi is the number of true positives, FPi is the number of false positives, FNi is the
number of false negatives, and TNi is the number of true negatives for data point i. These values
are calculated by comparing yi with ytrue,i.

Once we have computed Preci, Reci, Fi, and Acci for each data point, we can then calculate
the micro-average precision (Precmicro), micro-average recall (Recmicro), micro-average F-score
(Fmicro), and micro-average accuracy (Accmicro) as follows:

Precmicro =
1

N

NX

i=1

Preci,

Recmicro =
1

N

NX

i=1

Reci,

Fmicro =
1

N

NX

i=1

Fi,
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Accmicro =
1

N

NX

i=1

Acci

where N is the total number of data points in the dataset. These micro metrics provide a
comprehensive evaluation of the model’s performance across all classes by considering each data
point individually.

Using the micro metric will give us a detailed understanding of how the model is performing
in data at atomic level and will serve as a effective tool to evaluate the model in this problem setup.

2.6.2 Relevance Classification

Model Accuracy Precision Recall F1_score
KNN 0.9504 0.9546 0.995 0.9744
Decision Tree 0.9266 0.9571 0.9658 0.9614
Random Forest 0.9542 0.957 0.9965 0.9763
Logistic Regression 0.8694 0.9693 0.8903 0.9281
SVM 0.9485 0.9484 1.0 0.9735

Table 2.7: Relevant Windows Prediction

The presented in table 2.1 provides a comprehensive overview of the outcomes derived from
the Bag of Words (BoW) representation technique. In this context, the vectors generated are of
dimensionality k, signifying the selection of the top k correlated words associated with each label.
Notably, each label undergoes training using an individual model in a one-vs-rest fashion, with
Support Vector Machines (SVM) serving as the chosen algorithm for this purpose. The table
encapsulates the results of this approach, shedding light on the performance and efficacy of the
BoW representation coupled with SVM in the context of label prediction.

2.6.3 Standard Label Prediction Conclusion:

The results highlight a few key observations:

• Comparing 2.1 and 2.2 reveals that the relevance model contributes positively to the predic-
tions, demonstrating improved results when irrelevant windows are excluded.

• Analyzing 2.2 and 2.4 indicates that FastText vectors outperform BOW vectors in label
prediction.

• Examining 2.5, 2.4, and 2.6 emphasizes the effectiveness of the multilabel ranking method,
showcasing superior performance in terms of accurate ranking. While the overall prediction
accuracy might not be optimal, the method excels in assigning correct ranking orders based
on probabilities.

25



26 Chapter 2. Label prediction using text features

26



CHAPTER 3

Hybrid Models

Contents
3.1 Bridging the Gap: Integrating AST and Statement Models . . . . . . . . . . . . . . . 28

3.2 Early Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.0.1 Advantage of using Early fusion . . . . . . . . . . . . . . . . . . . . . 29

3.2.0.2 Combining Strategies for features: . . . . . . . . . . . . . . . . . . . . 30

3.2.0.3 Hyperparameter tuning: . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.0.4 Model Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Deep Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Wide and Deep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.1 Implemented Architecture: . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Deep and Deep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2.1 Deep and Deep Architecture: . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2.2 Loss Funtion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2.3 Custom Loss: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2.4 Optimizer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Results of Deep learning based predictions: . . . . . . . . . . . . . . . . . . . . . 43

As we saw in Chapter 2 the how to use the text features, we discovered the usefulness of prob-
lem statements(text features) in the process of predicting program labels. The effectiveness of the
AST-based approach was demonstrated over a comprehensive range of programming use cases as
described in the theses [3] and [16]. However, as per a comparative analysis we can see that there
were times when the statement-based technique was able to outperform its AST equivalent. This
was the case in a number of different scenarios. This frequently occurred when the AST did not
provide a detailed picture of the approach that was being taken to solve the problem.

In this chapter, we will discuss various ways to combine these two methodologies since both
the methods have there own strengths and are two powerful models, each of which excels in its
own unique field of application. Our objective is to design a label prediction system that draws on
the positive aspects of both AST and Statement models. This should result in a tool that is both
flexible and powerful, making it suitable for use by both educators and programmers.
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28 Chapter 3. Hybrid Models

3.1 Bridging the Gap: Integrating AST and Statement Models

We have investigated three different methodologies—Late Fusion(This is discussed in Utkarsh’s
thesis [17]), Early Fusion, and Deep Learning-based models—to combine two models for predic-
tion tasks. Each of these strategies has its own pros and drawbacks.

However, there have been a number of difficulties we have faced along the way, such as:

• Result Representation: One key problem is effectively describing the results provided by
each model so that they may be seamlessly combined to achieve the final results.

• Generalization Across Labels: Creating a combination approach that can be applied con-
sistently to all labels presents another noteworthy problem. Relying on a static merging
strategy is not always acceptable because some labels may benefit more from one model
than the other. Therefore, it is necessary to adopt a more dynamic approach to combining
that takes into account the distinctive qualities of each label.

In the following parts, a brief discussion will be held on how actually two of these approaches
were put into practice and evaluated. The detail regarding the third approach which is late fusion
can be found on Utkarsh’s thesis [17].

3.2 Early Fusion

Early fusion, also known as feature-level fusion, involves merging features from multiple sources
before feeding them into an unique model. This approach aims to create a joint feature represen-
tation that captures complementary information from different models.

Steps involved in achieving the above are as follows:

1. Feature Selection:
Early Fusion involves merging features from different sources before inputting them into
an unified model. Let Xs and Xa represent the feature vectors from the Statement-Based
Model and AST Model, respectively. The combined feature vector Xcombined is obtained by
merging or concatenating these features:

Xcombined = [Xs, Xa]

Here, [Xs, Xa] denotes the concatenation of feature vectors Xs and Xa.

2. Model Prediction:
Once the features are merged, they are used as input for a machine learning model. Let F
be the mapping function that takes Xcombined as input and produces predicted probabilities
Pcombined:

Pcombined = F (Xcombined)

The model F can be any machine learning algorithm. During training, the parameters of
F are optimized to effectively leverage the combined information from both models. This
process enhances the model’s ability to capture intricate patterns and relationships in the
data.
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3.2.0.1 Advantage of using Early fusion

Using early fusion for hybrid model give us various benifits as follows:

• Information Integration:

– Early fusion integrates features from both the AST and the problem statement at an
early stage, allowing the model to consider a holistic representation that captures the
intricacies of both sources.

• Optimal Model Training:

– By combining features early, the model is trained on a unified input space, facilitating
more effective learning and adaptation to the combined information.

• Enhanced Generalization:

– Shared Feature Space: Early fusion promotes improved generalization by creating
a shared feature space that captures common patterns present in both the AST and
problem statement.

• Interpretability in Label Prediction:

– Unified Output Interpretation is achieved as the combined features lead to a unified
output, making it easier to interpret and understand how both the AST and problem
statement contribute to the predicted labels.

• Efficient Inference:

– During inference, a single model processes the combined features, streamlining the
prediction process and reducing computational complexity.

• Robustness to Missing Information:

– Partial Information Handling: In situations where either the AST or the problem state-
ment is incomplete or missing, early fusion models can still make predictions based
on the available information, maintaining robustness.

• Adaptability to Label Prediction:

– Early fusion offers flexibility in combining features, allowing adaptation to the label
prediction task. Different fusion schemes can be explored based on the characteristics
of the data.

• Preservation of Contextual Information:

– Early fusion ensures that contextual information from both the AST and the problem
statement is retained, which is crucial for accurately predicting labels.

• Reduced Risk of Information Loss:
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– Maximized information utilization by combining information early, the risk of losing
essential details is minimized, ensuring that both modalities contribute effectively to
the label prediction.

• Simplified Model Deployment:

– The early fusion approach simplifies the deployment of the model, as there is a single
model that integrates information from both sources for predicting labels.

3.2.0.2 Combining Strategies for features:

Program Label Accuracy Score Precision Score Recall Score F1 Score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.7692 0.5625 0.5294 0.5455
Loops_Basic 0.6769 0.3529 0.375 0.3636
TerminalIO_Advanced 0.8615 0.4545 0.625 0.5263
Arrays_Basic 0.7538 0.36 1.0 0.5294
Pointers_Advanced 0.9385 0.0 0.0 0.0
Conditionals_Flags 0.8769 0.0 0.0 0.0
Structures_Basic 1.0 1.0 1.0 1.0
Char-String_Basic 0.8769 0.4167 0.8333 0.5556
Conditionals_Basic 0.6615 0.4074 0.6471 0.5
Functions_Advanced 0.7538 0.4839 1.0 0.6522
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.9538 0.7273 1.0 0.8421
Structures_Advanced 0.9538 0.5 0.3333 0.4
Algorithms_DP 0.9385 0.2 1.0 0.3333
Conditionals_Advanced 0.8615 0.1818 1.0 0.3077
Loops_Advanced 0.9077 0.8571 0.8571 0.8571
Arrays_Advanced 0.9538 0.7143 0.8333 0.7692
Char-String_Advanced 0.8923 0.0 0.0 0.0
TerminalIO_Basic 0.8615 0.0 0.0 0.0
Pointers_Basic 0.8923 0.3333 0.75 0.4615
Structures_DS 0.9692 0.5 1.0 0.6667
Arrays_Memory 0.9692 0.6667 1.0 0.8
Algorithms_DC 0.9692 0.0 0.0 0.0
Functions_Basic 0.6769 0.4167 1.0 0.5882
Loops_Invariants 0.9385 0.0 0.0 0.0
Overall Metrics 0.8874 0.4416 0.6994 0.5414
Micro 0.8874 0.4707 0.6974 0.5319

Table 3.1: Early Fusion with Logistic Regression, Bag of words and same top feature selection

To combine the features effectively, two crucial parameters were considered in our approach:

1. Feature Selection Based on Pearson Score:
Before feeding the combined feature set into the machine learning model, a careful feature
selection process was implemented. For each label x, a specific set of top k features was
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Program Label Accuracy Score Precision Score Recall Score F1 Score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.7231 0.4706 0.4706 0.4706
Loops_Basic 0.6769 0.3529 0.375 0.3636
TerminalIO_Advanced 0.8462 0.4286 0.75 0.5455
Arrays_Basic 0.6769 0.3 1.0 0.4615
Pointers_Advanced 0.9538 0.0 0.0 0.0
Conditionals_Flags 0.9077 0.2 0.3333 0.25
Structures_Basic 1.0 1.0 1.0 1.0
Char-String_Basic 0.8615 0.3846 0.8333 0.5263
Conditionals_Basic 0.6615 0.4074 0.6471 0.5
Functions_Advanced 0.7538 0.4839 1.0 0.6522
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.9538 0.7273 1.0 0.8421
Structures_Advanced 0.9538 0.5 0.3333 0.4
Algorithms_DP 0.9692 0.0 0.0 0.0
Conditionals_Advanced 0.8615 0.1818 1.0 0.3077
Loops_Advanced 0.9077 0.8571 0.8571 0.8571
Arrays_Advanced 0.9538 0.7143 0.8333 0.7692
Char-String_Advanced 0.9077 0.1429 1.0 0.25
TerminalIO_Basic 0.8615 0.0 0.0 0.0
Pointers_Basic 0.8769 0.3 0.75 0.4286
Structures_DS 0.9692 0.5 1.0 0.6667
Arrays_Memory 0.9692 0.6667 1.0 0.8
Algorithms_DC 1.0 1.0 1.0 1.0
Functions_Basic 0.6769 0.4167 1.0 0.5882
Loops_Invariants 0.9385 0.0 0.0 0.0
Overall Metrics 0.8857 0.4377 0.711 0.5419
Micro 0.8857 0.4621 0.703 0.5261

Table 3.2: Early Fusion with Logistic Regression, Fasttext embeddings and same top feature se-
lection

determined from the combined features set. This selection was based on the Pearson cor-
relation score, a measure of the linear correlation between two variables. There were two
distinct strategies employed to identify these top features:

(a) Single Top k Relevant Feature:
In this approach, a single set of top k relevant features was selected from the combined
features for each label x.

(b) Set-wise Top k Relevant Features:
Alternatively, a two-step process was followed. Initially, the top k1 relevant features
were identified from the AST feature set, and another set of top k2 relevant features
from the Statement feature set was determined. These sets of features were then used
collectively.

2. Handling Statement-Based Features:
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In the case of statement-based features, a decision had to be made regarding whether to use
all the words or employ FastText-based feature embeddings. Two distinct experiments were
conducted to explore both approaches and assess their impact on the model’s performance.

This process emphasizes the importance of selecting relevant features tailored to each label,
ensuring that the most informative features contribute to the model’s learning. The Pearson cor-
relation score serves as a valuable metric in identifying the strength and direction of the linear
relationship between features, guiding the selection of top features for optimal predictive per-
formance. The experimentation with different feature selection strategies and the consideration
of various options for statement-based features aim to refine and enhance the model’s ability to
capture the nuances present in both the AST and statement-based representations.

Program Label Accuracy Score Precision Score Recall Score F1 Score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.8 0.625 0.5882 0.6061
Loops_Basic 0.6462 0.3478 0.5 0.4103
TerminalIO_Advanced 0.9077 0.5714 1.0 0.7273
Arrays_Basic 0.7692 0.375 1.0 0.5455
Pointers_Advanced 0.9846 0.5 1.0 0.6667
Conditionals_Flags 0.9077 0.2 0.3333 0.25
Structures_Basic 1.0 1.0 1.0 1.0
Char-String_Basic 0.9077 0.5 0.8333 0.625
Conditionals_Basic 0.6769 0.4375 0.8235 0.5714
Functions_Advanced 0.7692 0.5 0.9333 0.6512
Arithmetic_Advanced 0.9692 0.5 0.5 0.5
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.9538 0.7273 1.0 0.8421
Structures_Advanced 0.9846 0.75 1.0 0.8571
Algorithms_DP 1.0 1.0 1.0 1.0
Conditionals_Advanced 0.8769 0.2 1.0 0.3333
Loops_Advanced 0.9231 0.9 0.8571 0.878
Arrays_Advanced 0.9692 0.75 1.0 0.8571
Char-String_Advanced 0.9231 0.1667 1.0 0.2857
TerminalIO_Basic 0.8308 0.0 0.0 0.0
Pointers_Basic 0.9077 0.4 1.0 0.5714
Structures_DS 1.0 1.0 1.0 1.0
Arrays_Memory 0.9692 0.75 0.75 0.75
Algorithms_DC 1.0 1.0 1.0 1.0
Functions_Basic 0.7538 0.4815 0.8667 0.619
Loops_Invariants 0.8769 0.1429 0.3333 0.2
Overall Metrics 0.9027 0.4928 0.7861 0.6058
Micro 0.9027 0.5214 0.7786 0.5933

Table 3.3: Early Fusion with Logistic Regression, Bag of words and different top feature selection
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Program Label Accuracy Score Precision Score Recall Score F1 Score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.8 0.5909 0.7647 0.6667
Loops_Basic 0.6769 0.3529 0.375 0.3636
TerminalIO_Advanced 0.8769 0.5 0.875 0.6364
Arrays_Basic 0.7692 0.375 1.0 0.5455
Pointers_Advanced 0.9846 0.5 1.0 0.6667
Conditionals_Flags 0.9077 0.2 0.3333 0.25
Structures_Basic 1.0 1.0 1.0 1.0
Char-String_Basic 0.9538 0.6667 1.0 0.8
Conditionals_Basic 0.7385 0.5 0.7647 0.6047
Functions_Advanced 0.8462 0.619 0.8667 0.7222
Arithmetic_Advanced 0.9538 0.0 0.0 0.0
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.9538 0.7273 1.0 0.8421
Structures_Advanced 0.9538 0.5 0.6667 0.5714
Algorithms_DP 1.0 1.0 1.0 1.0
Conditionals_Advanced 0.8308 0.1538 1.0 0.2667
Loops_Advanced 0.9385 0.8696 0.9524 0.9091
Arrays_Advanced 0.9538 0.7143 0.8333 0.7692
Char-String_Advanced 0.9231 0.1667 1.0 0.2857
TerminalIO_Basic 0.8308 0.0 0.0 0.0
Pointers_Basic 0.8923 0.3333 0.75 0.4615
Structures_DS 1.0 1.0 1.0 1.0
Arrays_Memory 0.9692 0.6667 1.0 0.8
Algorithms_DC 0.9231 0.1667 1.0 0.2857
Functions_Basic 0.7385 0.4688 1.0 0.6383
Loops_Invariants 0.9385 0.0 0.0 0.0
Overall 0.9044 0.4982 0.7803 0.6081
Micro 0.9044 0.549 0.7752 0.6088

Table 3.4: Early Fusion with Logistic Regression, FastText embeddings and different top feature
selection

3.2.0.3 Hyperparameter tuning:

We have two hyperparameter values to tune, the two values are K1(number of top features to
be selected for Statement features), K2(number of top features to be selected for AST features).
Given the sparse labeling in our training dataset and our use of a Ranking-style prediction method
for early fusion, choosing the best hyperparameters (i.e., the number of top features from both
statement-based and AST-based features) proved to be difficult. We used an iterative process to
gradually raise these hyperparameter values until we saw appreciable improvements in the overall
F-score. However, reaching a saturation limit beyond which additional increments were ineffective
in producing appreciable gains in the training set’s F-score. This saturation point is where we set
the hyperparameters.
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3.2.0.4 Model Prediction

For model prediction, we leverage two distinct methodologies utilizing the predicted label proba-
bility scores outputted by the model:

1. Prediction up to Top T Labels:
In this method, the labels are initially predicted using the trained model. The resulting
probability scores for each label, denoted as Pi, are obtained. Subsequently, only the top T

labels with the highest scores are retained. Mathematically, the prediction is expressed as:

Predicted Labels = {i | Pi are in the top T highest probabilities}

(a) Overall labelwise (b) Micro

Figure 3.1: Early Fusion Accuracy Variation Overall Comparision for different T-value in Ranking
style prediction

(a) Overall labelwise (b) Micro

Figure 3.2: Early Fusion F-score Variation Overall Comparision for different T-values in Ranking
style prediction

These prediction strategies enable the model to provide nuanced outputs based on the confi-
dence levels of each label. The mathematical formulations encapsulate the process of selecting the
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top T labels either directly from the sorted probability scores or from the initial set of predicted
labels. These methodologies are essential for tailoring the model’s output to meet specific criteria,
such as choosing only the most probable labels for further consideration or limiting the output to
a predefined number of top labels.

3.2.1 Results

• The results from table 3.1 and table 3.2 shows that the model’s performance in ranking style
prediction with logistic regression. This uses same k features selected from pool of all the
features combined. Now it can be seen that the Fasttext based vectors outperforms the Bag
of word based vectors in overall average over all the labels. However, Bag of words is also
performing good in terms of the Micro metrics.

• By optimizing feature selection to focus on the most informative features from both the AST
and statement feature sets, the model can better capture the nuanced characteristics of the
input data. This targeted approach ensures that the model leverages the strengths of each
feature type, thereby enhancing its ability to discern meaningful patterns and relationships
in the data which can be seen in table 3.3 and table 3.4.

• Now, as can be seen in table 3.3 and table 3.4, fasttext based feature vectors outperforms the
Bag of words features in both Micro and overall metric of accuracy and fscore.

• This model which used the ranking style prediction with different set of top features also
shows a substantial increase in the accuracy and fscore of the model and beats the AST
based model of theses [3] and [16].

• As this is ranking-style prediction we are using in early fusion, we can see in the figures 3.1
and 3.2 the Early fusion model is able to beat the AST based model for different T values.

3.3 Deep Models

In this section, we delve into the application of Deep Neural Networks (DNNs) to address the
challenges posed by the aforementioned problem. We aim to explore the versatility and expressive
power of DNNs in capturing intricate patterns and relationships within the given Priority dataset.
This section provide insights into the experimentation process and present the results obtained
through the application of deep learning techniques.

Utilizing deep neural networks for this problem presents several advantages:

1. Capturing Complex Relationships:
Deep neural networks excel at capturing intricate and non-linear relationships within data.
Given the complex nature of programming problems and their corresponding labels, deep
networks can potentially unveil intricate dependencies that may be challenging for tradi-
tional models to discern.
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Table 3.5: write new

Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.8 0.5294 0.6429 0.5806
Loops_Basic 0.7846 0.625 0.5556 0.5882
TerminalIO_Advanced 0.9231 0.375 1.0 0.5455
Arrays_Basic 0.8769 0.7778 0.5385 0.6364
Pointers_Advanced 0.9846 0.0 0.0 0.0
Conditionals_Flags 0.9385 0.0 0.0 0.0
Structures_Basic 0.9846 0.0 0.0 0.0
Char-String_Basic 0.9231 0.5 0.6 0.5455
Conditionals_Basic 0.7385 0.3529 0.5 0.4138
Functions_Advanced 0.8462 0.6667 0.6667 0.6667
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.8769 0.5 0.5 0.5
Structures_Advanced 0.9538 0.3333 0.5 0.4
Algorithms_DP 0.9846 0.0 0.0 0.0
Conditionals_Advanced 0.9538 0.0 0.0 0.0
Loops_Advanced 0.8615 0.8095 0.7727 0.7907
Arrays_Advanced 0.9538 0.6667 0.8 0.7273
Char-String_Advanced 0.9692 1.0 0.3333 0.5
TerminalIO_Basic 0.9231 0.75 0.4286 0.5455
Pointers_Basic 0.9538 0.5 0.6667 0.5714
Structures_DS 0.9692 0.0 0.0 0.0
Arrays_Memory 0.9538 0.5 0.6667 0.5714
Algorithms_DC 0.9846 0.0 0.0 0.0
Functions_Basic 0.7385 0.3333 0.4167 0.3704
Loops_Invariants 0.9538 0.0 0.0 0.0
Overall 0.9203 0.5087 0.5946 0.5483
Micro 0.9203 0.5645 0.6128 0.5634

Table 3.6: Wide and Deep Predictions

2. Automatic Feature Learning:
Deep networks possess the ability to automatically learn hierarchical representations of fea-
tures from raw data. This can be particularly advantageous for tasks where the relevant
features are not explicitly defined, allowing the model to autonomously discover relevant
patterns and representations.

3. End-to-End Learning:
Deep networks facilitate end-to-end learning, enabling the model to directly map input data
to output predictions. This can streamline the training process and potentially enhance the
model’s ability to discern intricate relationships between problem statements and corre-
sponding labels.

4. Transfer Learning:
Deep neural networks, especially those pre-trained on large datasets, can leverage transfer
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learning. This allows the model to transfer knowledge gained from a different but related
task, potentially boosting performance, especially in scenarios like Priority dataset with
limited labeled data.

5. Adaptability to Various Data Types:
Deep networks are adaptable to different data types, including text and numerical data.
Given the diverse nature of the features involved in programming problems, the flexibil-
ity of deep learning architectures makes them well-suited for handling a variety of input
modalities.

6. Potential for Ensemble Learning:
Deep networks can be seamlessly integrated into ensemble learning frameworks. Com-
bining multiple deep models can lead to improved predictive performance, harnessing the
diversity of individual models to enhance overall accuracy and robustness.

In summary, leveraging deep neural networks for this problem offers the potential to uncover
intricate relationships, automatically learn relevant features, handle large-scale datasets, and ben-
efit from transfer learning and ensemble strategies. In the following sections we discuss two
approaches we took to get the desired predictions:

3.3.1 Wide and Deep

Wide and Deep Neural Networks represent a hybrid architecture that combines the strengths of
both deep learning and traditional machine learning. The "wide" component refers to a linear
model with a broad feature space, capturing simple and direct relationships. In contrast, the "deep"
component involves a neural network with multiple hidden layers, allowing for the extraction of
complex hierarchical patterns.The generic architecture for is shown in 3.3 [4]

The wide component excels at memorizing feature combinations, while the deep component
focuses on generalization and learning intricate relationships. Together, they offer a powerful
framework for handling a variety of data types and capturing both shallow and deep insights from
the input data.

By combining memorization and generalization capabilities, wide and deep neural networks
provide a flexible and effective solution for tasks that demand a balance between capturing simple
and complex patterns in the data.

3.3.1.1 Implemented Architecture:

In our implementation of the wide and deep neural network, we propose the following architecture.

• Wide Component (AST-based features)
The wide component is designed to capture immediate correlations and interactions between
features. For AST-based features, which represent the structural properties of code, this
component can be expressed as:

Ywide = Dense(28, activation = ’relu’)(Xwide)
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Figure 3.3: Wide and Deep Generic Architecture [4]

where Xwide is the input vector of AST-based features.

• Deep Component (FastText embeddings)
The deep component excels at learning complex and hierarchical representations. For Fast-
Text embeddings, capturing semantic information from code snippets, the deep component
can be expressed as:

Ydeep = Dense(30, activation = ’relu’)(Dropout(0.2)(Dense(64, activation = ’relu’)(Dropout(0.2)(Xdeep))))

Here, Xdeep represents the input vector of FastText embeddings. The deep component con-
sists of two dense layers with ReLU activation and dropout layers in between for regular-
ization.

• Combining Wide and Deep Components
The outputs from the wide and deep components are combined to obtain the final predic-
tions:

Yfinal = Dense(28, activation = ’sigmoid’)(Concatenate([Ydeep, Ywide]))

Here, [Ydeep, Ywide] denotes the concatenation of predictions from the deep and wide com-
ponents. The final combination includes a dense layer with a sigmoid activation to ensure
the output is in the [0, 1] range for binary classification.

3.3.2 Deep and Deep

For experimentation, this approach was explored, termed "Deep and Deep," wherein both AST and
Statement features were separately fed into distinct neural networks. Each network independently
processed the features, capturing intricate patterns and representations. Subsequently, the outputs
of these networks were combined into a unified representation. This approach aimed to harness
the unique strengths of each feature set through dedicated processing, enabling the networks to
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Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.8154 0.5294 0.6923 0.6
Loops_Basic 0.7077 0.5625 0.4286 0.4865
TerminalIO_Advanced 0.9385 0.625 0.8333 0.7143
Arrays_Basic 0.8308 0.6667 0.4286 0.5217
Pointers_Advanced 0.9846 0.0 0.0 0.0
Conditionals_Flags 0.9077 0.0 0.0 0.0
Structures_Basic 0.9846 0.0 0.0 0.0
Char-String_Basic 0.9231 0.6667 0.5714 0.6154
Conditionals_Basic 0.7077 0.2353 0.4 0.2963
Functions_Advanced 0.8462 0.6667 0.6667 0.6667
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.8769 0.375 0.5 0.4286
Structures_Advanced 0.9538 0.0 0.0 0.0
Algorithms_DP 0.9692 0.0 0.0 0.0
Conditionals_Advanced 0.8923 0.0 0.0 0.0
Loops_Advanced 0.8615 0.7143 0.8333 0.7692
Arrays_Advanced 0.9538 0.6667 0.8 0.7273
Char-String_Advanced 0.9846 0.0 0.0 0.0
TerminalIO_Basic 0.9385 0.5 0.5 0.5
Pointers_Basic 0.9385 0.5 0.5 0.5
Structures_DS 0.9846 0.5 1.0 0.6667
Arrays_Memory 0.9538 0.75 0.6 0.6667
Algorithms_DC 0.9846 0.0 0.0 0.0
Functions_Basic 0.7538 0.2667 0.4444 0.3333
Loops_Invariants 0.9538 0.0 0.0 0.0
Overall 0.9137 0.474 0.5541 0.5109
Micro 0.9137 0.5346 0.6423 0.5505

Table 3.7: Deep and Deep Predictions

specialize in their respective domains. The intention was to leverage the complementary nature of
AST and Statement features, allowing each network to focus on its inherent characteristics. This
experimentation sought to evaluate whether the collaboration of two individually trained networks
could yield enhanced predictive performance compared to other fusion strategies.

3.3.2.1 Deep and Deep Architecture:

The model comprises two main components: one for processing AST inputs and another for pro-
cessing text inputs.

• Text Part
It takes the FastText Embeddings as input and then use for further processing.
Text_Out = Dense(28, ReLU)(Text_Inputs)
Here, Text_Inputs is the Fastext Embedding.

• AST Part
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It takes the AST features vector as input and transforms it to a 30 sized concentrated vectors.
AST = Dense(30, ReLU)(AST_Inputs) AST_Out = Dense(30, ReLU)(AST)

• Combining Parts
Before, Final output combining both the new sets.
Combined = Concatenate([AST_Out, Text_Out])

• Output Layer
Outputs a set of 28 vectors where each corresponds to a label.
Output = Dense(28, Sigmoid)(Combined)

This architecture effectively integrates information from both AST and text representations,
providing a comprehensive approach for label prediction.

Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9846 0.0 0.0 0.0
Arithmetic_Basic 0.8 0.4706 0.6667 0.5517
Loops_Basic 0.7692 0.5625 0.5294 0.5455
TerminalIO_Advanced 0.9231 0.375 1.0 0.5455
Arrays_Basic 0.8462 0.6667 0.4615 0.5455
Pointers_Advanced 0.9846 0.0 0.0 0.0
Conditionals_Flags 0.9538 0.0 0.0 0.0
Structures_Basic 0.9538 0.0 0.0 0.0
Char-String_Basic 0.9077 0.5 0.5 0.5
Conditionals_Basic 0.7538 0.2353 0.5714 0.3333
Functions_Advanced 0.8154 0.4 0.6667 0.5
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.8769 0.375 0.5 0.4286
Structures_Advanced 0.9385 0.0 0.0 0.0
Algorithms_DP 0.9846 0.0 0.0 0.0
Conditionals_Advanced 0.9385 0.0 0.0 0.0
Loops_Advanced 0.8615 0.7143 0.8333 0.7692
Arrays_Advanced 0.9692 0.8333 0.8333 0.8333
Char-String_Advanced 0.9385 0.0 0.0 0.0
TerminalIO_Basic 0.9692 0.75 0.75 0.75
Pointers_Basic 0.9385 0.5 0.5 0.5
Structures_DS 0.9692 0.0 0.0 0.0
Arrays_Memory 0.9538 0.5 0.6667 0.5714
Algorithms_DC 1.0 1.0 1.0 1.0
Functions_Basic 0.7385 0.2667 0.4 0.32
Loops_Invariants 0.9538 0.0 0.0 0.0
Overall 0.917 0.4335 0.5859 0.4983
Micro 0.917 0.4897 0.6154 0.5211

Table 3.8: Wide and Deep with custom loss Prediction
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3.3.2.2 Loss Funtion:

We have used Binary Cross Entropy Loss. Binary Cross-Entropy is a loss function commonly
used for binary classification problems. In the context of this experimentation, when dealing with
a multi-label classification task (each label is treated independently as a binary classification),
binary cross-entropy is suitable. Mathematically, for a single data point with n labels, the binary
cross-entropy loss is calculated as follows:

L(y, ŷ) = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)]

where yi is the true label, ŷi is the predicted probability of the label being ’on’, and the sum is
taken over all labels losses.

3.3.2.3 Custom Loss:

Now, since the DNN based models were noticed to be baised for the frequently occuring labels and
is doing really good in them but many minority labels were getting ignored by the model. Hence,
in order to filter this phenomena we modified the Binary Cross-entropy loss to uplift the minority
labels. The method adopted was some sort of weighted Binary CrossEntropy loss. Following are
the steps to calculate it:

• Calculate the Binary CrossEntropy loss per class (Li).

• Calculate the scale value for each class as below:

1. Count the number of samples in each class in your training data. Let’s denote the
counts as classcounts, where classcounts[i] represents the number of samples in class
i.

2. Compute the inverse of the class frequencies by dividing the total number of samples
by the number of samples in each class:

classfrequencies = sum(classcounts)/classcounts

3. Normalize the class frequencies to sum up to the number of classes. This step ensures
that the scale factors form a valid probability distribution:

normalizedfrequencies = classfrequencies/sum(classfrequencies)

4. adjust the scale factors by raising them to a power (k). This can be useful to further
emphasize the importance of smaller classes:

adjustedfrequencies = normalizedfrequenciesk

5. The adjustedfrequencies array now contains the scale factors for each class. You can
use these scale factors as class weights during the training of your deep model.
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• Now, the Cross-entropy loss can be taken as:

Lnew = Lold ⇤ adjustedfrequencies

Label Accuracy Precision Recall F1_score
Arithmetic_Bit 0.9846 0.0 0.0 0.0
Algorithms_Greedy 0.9538 0.0 0.0 0.0
Arithmetic_Basic 0.8308 0.5294 0.75 0.6207
Loops_Basic 0.8308 0.5625 0.6923 0.6207
TerminalIO_Advanced 0.8769 0.375 0.5 0.4286
Arrays_Basic 0.8462 0.5556 0.4545 0.5
Pointers_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Flags 0.9231 0.0 0.0 0.0
Structures_Basic 0.9846 0.0 0.0 0.0
Char-String_Basic 0.8923 0.3333 0.4 0.3636
Conditionals_Basic 0.7385 0.2353 0.5 0.32
Functions_Advanced 0.8615 0.4 1.0 0.5714
Arithmetic_Advanced 0.9692 0.0 0.0 0.0
Conditionals_Switch 1.0 1.0 1.0 1.0
Algorithms_Recursion 0.8615 0.125 0.3333 0.1818
Structures_Advanced 0.9385 0.0 0.0 0.0
Algorithms_DP 1.0 1.0 1.0 1.0
Conditionals_Advanced 0.9077 0.0 0.0 0.0
Loops_Advanced 0.8308 0.6667 0.7778 0.7179
Arrays_Advanced 0.9385 0.6667 0.6667 0.6667
Char-String_Advanced 0.9692 0.0 0.0 0.0
TerminalIO_Basic 0.9385 0.5 0.5 0.5
Pointers_Basic 0.9231 0.25 0.3333 0.2857
Structures_DS 1.0 1.0 1.0 1.0
Arrays_Memory 0.9538 0.5 0.6667 0.5714
Algorithms_DC 0.9846 0.0 0.0 0.0
Functions_Basic 0.7692 0.4 0.5 0.4444
Loops_Invariants 0.9231 0.0 0.0 0.0
Overall 0.9143 0.4162 0.5669 0.48
Micro 0.9143 0.4709 0.5951 0.4934

Table 3.9: Deep and Deep with custom loss predictions

3.3.2.4 Optimizer:

Adam (Adaptive Moment Estimation) [11] is used for our problem combined with the Binary
cross entropy loss. It is a widely used algorithm for multi-label classification. The most important
feature of Adam optimizer is adaptive learning rates for particular parameters.

Mathematically, the update rule for the parameters ✓ in Adam is given by:

✓t+1 = ✓t �
⌘p

v̂t + ✏
m̂t

where ⌘ is the learning rate, m̂t is the exponentially decaying average of past gradients, v̂t is the
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exponentially decaying average of past squared gradients, and ✏ is a small constant to prevent di-
vision by zero. Using binary cross-entropy loss with Adam optimizer is a common for multi-label
classification tasks. Overall, the training process involves iteratively updating the model parame-
ters using the Adam optimizer and binary cross-entropy loss, while leveraging the complementary
information from both statement-based and AST-based features to improve the accuracy and ef-
fectiveness of the multiclass classification model.

3.3.3 Results of Deep learning based predictions:

• The tables 3.6 and 3.7 results shows how the wide and deep architecture performs better
than the deep and deep architecture in terms of both the overall and micro metrics including
the accuracy and fscore.

• The wide and deep network architecture combines the strengths of both wide and deep learn-
ing approaches, leveraging a hybrid model that incorporates both shallow and deep layers.
This design allows the model to capture both low-level features and high-level representa-
tions, enabling it to learn complex patterns and relationships in the data more effectively.

• Another thing to notice here is that despite the deep learning model’s considerable capabili-
ties it fails to surpass the performance achieved by the early fusion approach. This is mostly
because the deep learning models is getting optimised over the overall metric due to which
it is more baised towards the dominant classes.

• To overcome this, we tried adding a custom loss which takes a scaled loss which will try
to create a more balanced loss for the overall classes. The results from tables 3.9 and 3.8
shows the output after adding custom loss.

• Still the deep learning based methods is failing to address the class imbalance issue and
continues to learn the dominant classes.
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CHAPTER 4

Future Work

In this chapter, we will discuss some future avenues for research and improvements to enhance the
performance and capabilities of the existing models. The following are the directions which can
be further explored for making further advancements in label prediction and problem tagging:

• SaimeseXML[7] could be used to make the label prediction task more robust by using ex-
treme multiclass classifiers.

• Some more data collection for the data set will also increase the robustness of the models.
So, a direction to explore it is data collection to apply the techniques to a furthermore diverse
set of data points for training.

• Better ensemble techniques can be explored in direction to combine the statement features
and AST based features.

• Graph Neural Networks (GNNs) to improve the learning of AST-based features. By repre-
senting the abstract syntax tree (AST) as a graph structure, GNNs can effectively capture
the hierarchical relationships between different nodes in the tree. This approach has the
potential to better exploit the inherent structure and semantics of the code, leading to more
accurate label predictions as discussed in thesis [3].
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CHAPTER 5

Conclusion

In this thesis, we have made significant revisions to the Prutor platform’s backend machine learn-
ing algorithm, PRIORITY, before integration. By combining statement features and AST-based
feature vectors in a clever way and adding careful feature selection and model tweaking, we have
seen notable improvements in F-score and overall accuracy. Notably, combining these factors
has not only made forecasts more accurate overall but has also made it possible to identify and
anticipate classes with lower enrollment. These improvements highlight how well our improved
algorithm performs in raising the bar for the machine learning features of the Prutor platform.
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