
ParseIT++: Teaching tool for parsing

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Tushar Gautam
20111071

to the
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR
July, 2022

Declaration

This is to certify that the project titled “ParseIT++: Teaching tool for pars-

ing” has been authored by me. It presents the research conducted by me under the

supervision of “Prof. Amey Karkare”.

To the best of my knowledge, it is an original work, both in terms of research

content and narrative, and has not been submitted elsewhere, in part or in full, for

a degree. Further, due credit has been attributed to the relevant state-of-the-art

and collaborations (if any) with appropriate citations and acknowledgments, in line

with established norms and practices.

Name: Tushar Gautam

Roll No: 20111071

Programme: Master of Technology

Department of Computer Science & Engineering

Indian Institute of Technology Kanpur

July 2022

iv

ABSTRACT

Name of student: Tushar Gautam Roll no: 20111071

Degree for which submitted: Master of Technology

Department: Computer Science & Engineering

Thesis title: ParseIT++: Teaching tool for parsing

Name of Thesis Supervisor: Prof Amey Karkare

Month and year of thesis submission: July, 2022

Compiler design is a core course of the undergraduate computer science branch.

Compiler courses are very theoretical, and most of the part comprises of parsing

techniques. It is also hard to find everyday use of parsing, so it becomes difficult

to connect with it simply by gaining theoretical knowledge. For such reasons many

teaching tools are built to make the course interactive and practical. However,

many of these parsing tools are not widely popular and easily accessible. Mostly

these parsing tools only focus on either practical or theoretical aspects. Also these

tools do not focus on collecting information about how tools are used.

In this thesis, we present a web-based tool ParseIT++ for teaching parsing

techniques. ParseIT++ is an extension of console-based tool ParseIT. It follows

a question-answer-based approach for teaching theoretical concepts of parsing along

with visualizations for connecting the practical and theoretical aspects of the course.

For question-answer-based sections, it provides hints based on the user’s solutions.

ParseIT++ provides visualizations for Parse Table sections and generates a string

for an erroneous entry in the parse table.

As most of the available teaching tools do not focus on data collection, Studies

done using these teaching tools are mainly based on feedback or are test-based

v

studies. But ParseIT++ collects all the activities of the user, and separate studies

can be performed based on this data like how users are using the tool, improvements

that can be helpful, and comprehensive studies on parsing theory.

To my family and friends

Acknowledgements

I would like to express my gratitude to my thesis supervisor Prof. Dr. Amey

Karkare, for letting me work on this project. I am very grateful to him for his support

and guidance throughout this thesis work. He has provided me with invaluable input

on the tool and also guided me to build an effective tool. I am highly thankful for

all the motivation that he has provided to accomplish the thesis work.

I am thankful to Nimisha Agarwal for helping me understand the working of

ParseIT and its setup.

I would like to thank Manish Sundriyal and Harsika Diksha for helping me in

building the tool and for giving their valuable input on the UI design.

Contents

Acknowledgements vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Objective . 2

1.2 Motivation . 2

1.3 Contribution . 3

2 Tools study and survey 4

2.1 JFLAP . 4

2.2 ParseIT . 6

2.3 LL(1) and LR(0) Tools . 7

2.4 Other tools . 9

2.5 Survey . 10

2.6 Results of Tools Study & Survey . 10

3 ParseIT++ 14

3.1 Limitations of ParseIT . 15

3.2 Improving ParseIT . 15

3.3 Algorithms Implemented . 16

3.3.1 Question and Hint Generation 17

ix

3.3.2 String Generation . 17

3.3.3 Parsing Algorithm & Tree Generation 17

4 ParseIT++ Web-based User Interface 18

4.1 Tool’s Architecture . 19

4.2 Front-end . 19

4.2.1 Home: . 20

4.2.2 Question-Based Section: . 21

4.2.3 Parse Table Section: . 23

4.2.4 Parsing Section: . 23

4.2.5 Parse Table Game Section: 24

4.3 Back-end . 25

4.3.1 Database & Data Collection 27

4.4 Potential Studies based on Data Collected 27

5 A quick tour of ParseIT++ 31

5.1 Home . 31

5.2 MCQ-Based Sections . 33

5.3 Parse Table Sections . 33

5.4 Parsing Sections . 36

5.5 Parse Table Game Section . 36

6 User Manual 41

6.1 Home . 41

6.2 MCQ-Based Sections . 42

6.3 Parse Table Sections . 42

6.4 Parsing Sections . 43

6.5 Parse Table Game Section . 43

7 Conclusions & Future Work 44

References 45

List of Tables

2.1 Summary of the features of the teaching tools 8

2.2 Parsers supported by the teaching tools 8

2.3 Survey Questions and corresponding tools 11

2.4 Student’s survey results . 12

4.1 User data collected for First Set . 27

4.2 User data collected for Follow Set . 27

4.3 User data collected for SLR Closure section 28

4.4 User data collected for SLR Goto sections 28

4.5 User data collected for Parse table sections 28

4.6 User data collected for Parsing sections 28

4.7 User data collected for SLR table game 29

List of Figures

4.1 Overview of working of front-end & back-end 20

4.2 Working of addition of grammar . 21

4.3 Working of question based sections 22

4.4 Working of parse table sections . 24

4.5 Working of parsing section . 25

4.6 Working of parse table game section 26

4.7 Working of Back-end . 26

5.1 Home page . 32

5.2 Adding a grammar . 32

5.3 Success message for addition of grammar 32

5.4 Selection of added grammar . 33

5.5 MCQ based section (First Set) . 34

5.6 Type-I Hint question for First set . 34

5.7 Type-II Hint question for First set 34

5.8 Parse table section for LL(1) . 35

5.9 Parse table section showing entry swap 35

5.10 Parse table section after shuffling the parse table 36

5.11 Parsing section page for LL(1) with invalid input string 37

5.12 Parsing section page for LL(1) with valid input string 37

5.13 Parsing section page showing wrong stack action (Push) 37

5.14 Parsing section page showing wrong stack action (POP) 38

5.15 Parsing section after completing string parsing 38

xii

5.16 SLR table game section showing the table and parsing strings 39

5.17 SLR table game section showing the asked question 39

5.18 SLR table game section after submitting correct option 40

Chapter 1

Introduction

Compiler design is a core course of the Computer Science branch, and it is heav-

ily comprised of parsing techniques theory. Compiler course seems complicated to

students because of their theoretical nature, and also, in the early times, not many

efforts were made to make this course more interesting and interactive. Many tools,

such as YACC, BISON, Flex, etc are used in this course to give practical knowledge

of parsing. But these tools are built for professionals who already have knowledge

about compiler design. It becomes cumbersome for students to use these tools as

they have to understand the parsing concepts and have to learn how to use these

tools as well.

Because of these issues, many teaching tools are built for parsing techniques like

JFLAP, LR(0) & LL(1), ParseIT, LISA, etc. But, these are not widely popular and

accessible. Usually, these tools are used for teaching in the institute where they

are built. Most tools focus on visualizations to impart practical aspects of parsing.

It also helps students to stay interested in the parsing and understands parsing

by seeing the techniques in action. There are a few tools that focus on theoretical

aspects of parsing, like ParseIT. These teaching tools lack to impart the combination

of theory and practical aspects of parsing.

In this thesis, we have developed a teaching tool that combines both theory and

practical aspects of parsing. It helps users with theory using MCQ questions and a

hint-based approach, and it also provides visualizations to give a practical view of

2

parsing. We also present a survey done on parsing teaching tools and developed a

tool that solves the problems with these tools.

1.1 Objective

Develop a teaching tool for parsing that can solve the problem of teaching theoretical

and practical aspects of parsing. The main objective is to build a web-based tool for

teaching parsing that generates MCQ questions and, based on user input, generates

hint questions. For Parse, the table section provides a puzzle of shuffled parse table

and provides visualization of the parse tree for a generated string to excite erroneous

entry as a hint. Also, develop a section for parsing and parse table game. The parsing

section provides a workspace where users can practice parsing techniques. In the

parse table game section, it gamified the detection of erroneous entries in the parse

table.

1.2 Motivation

Compiler courses are difficult to understand because of their theoretical nature and

no practical exposure. It heavily comprises parsing techniques, and it is difficult

to find practical implications of parsing in day-to-day life, so it becomes hard to

connect with the theory.

In recent years interactive learning has imparted a significant impact on the

world of teaching. It has made it easier for students to connect with concepts and

reduced the burden on teachers. There are tools that are built for teaching parsing,

but they lack in a few areas. Also, many such tools are not accessible to the wider

community, and because of this, people have to build similar tools again. Available

teaching tools mainly focus on visualizations and can only provide a practical view of

parsing, and there are few tools that focus on theoretical understandings of parsing

but lack interactivity and practicality.

Based on the survey done in this thesis, it seems that web-based tools are pre-

3

ferred by users may be because of easy accessibility, shareability, and no extra

installations. We developed a web-based tool that helps users with the theoretical

and practical aspects of parsing. We extended the ParseIT tool to add visualiza-

tions, practice sections, and gamification and increase the interactivity of the tool.

One of the reasons to work on ParseIT was that it was built at IIT, Kanpur, so

codes and detailed information about the tool was easily available.

1.3 Contribution

In this thesis, we extended the ParseIT tool, which includes the addition of visual-

izations, GUI features, a parsing section, gamification, and data collection of user

activity. We have implemented GUI based parsing teaching tool that also collects

the user’s activity. We implemented a question-generation algorithm for parsing.

MCQ Questions are automatically generated based on context-free input grammar

and based on the user’s answer, hint questions are generated. This question-answer-

based approach is implemented for the First set, Follow set, SLR closure, and SLR

goto sections. We have implemented a string generation algorithm for generating

strings to excite erroneous cells in the parse table and corrected the minor error in

the algorithm. Along with the string parsing algorithm, we implemented a practice

section for parsing, we added visualization features and data collection of user’s

activity.

Chapter 2

Tools study and survey

Teaching tools are has become very popular with the modern learning. There are

teaching tools for various courses to keep students more engaged in learning. Many

teaching tools for parsing are built but are not accessible to the wider community,

because of which people have to build similar tools again. Web based tools seems to

be more preferred by students because of no no installation steps, easily accessible

and easily sharable. Teaching tools built so far are mainly focuses on visualisations

and can only provide practical view over parsing and there are few tools that focuses

on theoretical concepts to be taught but lack interactivity and practicality.

2.1 JFLAP

JFLAP [1] project started at Rensselaer Polytechnic Institute as a collection of tools.

Later it was moved to Duke University. Users can download it from [2]. JFLAP is

a visualization tool and it is not only suitable for teaching parsing but, also provides

the features that can be used in other CS courses. It supports different kinds of

parsers, from which we experimented with SLR(1), LL(1), CYK, and brute-force

parsers. We have listed below the features of JFLAP according to our experience

while using the tool:

1. Installation: JFLAP is a jar executable application, users do not have to

install the application. But for executing JFLAP, users must have Java JDK

5

and JRE installed in the system.

2. Supported Parsers: JFLAP supports a lot of parsers including LL(1),

SLR(1), brute-force parser, multiple brute-force parser, user control parser,

CYK parser, and multiple CYK parser. We used this tool for LL(1), SLR(1),

brute-force parser, and CYK parser.

3. Grammar Format: There is a specific format in which it takes the input

grammar which is very similar to Backus–Naur form, the format used in class-

rooms. There are few restrictions on the set of terminals and non-terminals,

it treats every small alphabet as a terminal and every capital alphabet as a

non-terminal. Users cannot define terminals and non-terminals of more than

one alphabet and also each symbol on RHS of a production rule should not

be space-separated. ‘ϵ’ symbol is represented using the ‘λ’ symbol.

4. Error Reporting and Messages: If grammar is not parsable by a parser,

JFLAP reports it in different ways for different parsers. In the case of LL(1),

it gives a popup reporting that grammar is not LL(1) and lets users proceed

to parse table construction. In the case of SLR(1), it does not report but

highlights the conflicted cells and users can choose the entry for these cells.

While parsing it informs about the steps taken and also highlights the corre-

sponding cells of the parse table. In the CYK parser, if the grammar does

not accept any string it simply reports it and does not move to the parsing

option. Brute-force parser never reports anything about the grammar and

always provides users with the option to parse the string.

5. Visualizations: It shows the visualizations of the parse trees. It also shows

viable prefixes automaton for SLR(1) parsers. But as the number of states

increases, the automaton is not easy to visualize due to clutter. Along with

the parse tree, it also shows derivation and the inverted tree.

6. Auto-String Generation: It doesn’t auto-generate any string for showing

6

parsing but users have to input a string for which they can see the complete

parsing steps, parse tree, and derivation tree.

2.2 ParseIT

ParseIT [3] was developed at the Indian Institute of Technology, Kanpur, and is

available at [4]. ParseIT supports LL(1) and SLR(1) parsers and we experimented

with both the parsers. It is not a visualization tool but is a console question-

answer-based teaching tool. It auto-generates questions for a given grammar for

various sections of the parsing process. Depending on the user’s inputs it provides

auto-generated hint questions to help students with the problems. For the parsing

table sections it auto generates a string corresponding to an erroneous entry in the

table and shows parsing steps to the users. In LL(1) parser, ParseIT can detect left

recursion and non-determinism. In the case of the LL(1) parser, if the grammar

is not LL(1) but can be converted to LL(1) by left factoring, it can do so on the

user’s demand. Based on our experience we have detailed the features of ParseIT

as follows:

1. Installation: ParseIT is a jar executable application, users do not have to

install the application. For executing ParseIT, users must have Java JDK and

JRE installed in their system.

2. Supported Parsers: ParseIT supports LL(1) and SLR(1) parsers.

3. Grammar Format: The grammar format accepted by ParseIT is the same

as used in classrooms which is also used in the Dragon book [5]. For using the

‘ϵ’ symbol in the productions users have to write complete “epsilon” text in

place of ‘ϵ’.

4. Error Reporting and Messages: ParseIT generates hint questions based

on user input and does not do any reporting or provide any messages. It

generates a string and shows its parsing steps as hints for parse table problems.

7

ParseIT can detect the non-determinism and left-recursion in the grammar.

In case of incompatible grammar, ParseIT simply prints the message in the

console and exits for Parsing Moves options.

5. Visualizations: ParseIT does not show any visualizations for any option

but shows the step-by-step parsing of the string.

6. Auto-String Generation: It can auto-generate the input string and show

the parsing steps. Users can also input a string for which they have to complete

the parsing steps.

2.3 LL(1) and LR(0) Tools

LL(1) and LR(0) tools are web-based tools available on the internet at [6] and [7]

respectively. Both the tools show visualization for parse trees while parsing an input

string. LR(0) does not generate any parse table and parses the string using LR(0)

automaton. An interesting feature of LR(0) is that it can parse sentential forms

(a string of terminals and non-terminals of the Grammar) too. Following are the

feature details about LL(1) and LR(0) tools based on our experience:

1. Installation: LL(1) and LR(0) tools are web-based tools hosted at [6] and

[7] respectively. Users only need to have a browser to use these tools.

2. Supported Parsers: LL(1) and LR(0) tools support LL(1) and LR(0)

parsers respectively.

3. Grammar Format: LL(1) and LR(0) tools accept grammar in BNF with

some reserved symbols. Each production rule should be in separate lines and

symbols should be space-separated. There are a few restrictions on symbols

that can be used in grammar. In LL(1), the symbol ‘S’ is reserved and cannot

be used as a terminal or non-terminal. It always appends the grammar with a

production rule “S → start symbol of the original grammar”. In LR(0) symbol

8

‘S′’ is reserved for augmented production. In both the tools epsilon symbol is

represented through empty single quotation marks ”.

4. Error Reporting and Messages: In LL(1), users can see the parsing

stack and production rule used while building the parse tree. LR(0) tool

shows parsing stack and the last action performed, alongside the parse tree.

5. Visualizations: Both the tools show the visualizations of parse trees. LR(0)

also shows the LR(0) automaton.

6. Auto-String Generation: Both the tools cannot generate any string for

showing parsing but users have to input a string for which they can see the

complete parsing steps and parse tree.

Table 2.1: Summary of the features of the teaching tools

✓ signifies that parser provides the corresponding feature
× signifies that parser does not provides the corresponding feature.
− signifies that corresponding feature is not applicable for the parser

JFLAP JFLAP LR(0) LL(1) JFLAP JFLAP ParseIT ParseIT
Feature LL(1) SLR(1) Tool Tool Brute-Force CYK LL(1) SLR(1)

Parse Table ✓ ✓ − ✓ − − ✓ ✓
Parsing × ✓ ✓ ✓ ✓ × × ×

Visualization ✓ ✓ ✓ ✓ ✓ ✓ × ×

String Generation × × × × × × ✓ ✓

Table 2.2: Parsers supported by the teaching tools

✓: Parser supported ×: Parser not supported
Tool LL(1) LR(0) SLR(1) Brute-force CYK
1. JFLAP ✓ × ✓ ✓ ✓
2. LR(0) × ✓ × × ×

3. LL(1) ✓ × × × ×

4. ParseIT ✓ × ✓ × ×

9

2.4 Other tools

There are many tools that are developed for different courses and for different pur-

poses. One example is online judges like SPOJ [8], Codechef [9], Prutor [10], etc.

Online judges have become very popular in competitive programming nowadays.

There are tools like VISUALGO [11] that visualizes the algorithms to help students

with the practical view of algorithms. Many tools for automata courses like [1, 12,

13] are also popular in the computer science community.

Interactive Tutoring System (ITS) [14] was introduced by Rafael del Vado Vírseda

for compiler design courses. In this system, teachers can select tools for different

phases of the compiler and integrate them together into one environment. These

tools can be changed later, and the evaluation process of ITS will not be affected.

ITS solves this issue of the integration of various teaching tools with different spec-

ifications. Automatic grader checks the students’ code in different languages and

evaluates and reviews the progress of students.

LISA (Language Implementation System based on Attribute Grammars) [15]

Tool for teaching compiler construction was built considering the effectiveness of ac-

tive and constructive learning. In the LISA tool, students can experiment, visualize

and test the techniques used in compiler design. It can be used as an educational as

well as a compiler generator tool. It is an IDE in which language can be specified,

and programs in the specified language can be compiled and executed. Users can see

the compilation process of a program in LISA, and visualization for lexical, syntax,

and semantic phase give a better, intuitive, and long-lasting understanding of the

compilation process. Through the phases presented in LISA, users can learn about

regular expressions, DFA and their implementations, Backus-Naur Form, LL(k) and

LR(k) parsers, attribute grammar, and attribute evaluation strategies.

10

2.5 Survey

We did student survey of JFLAP, LR(0) & LL(1) tools and ParseIT. We asked

students who studied compiler courses in their undergraduate to use these tools

voluntarily and fill out the google form. Due to time constraints and students

could not be available physically, only few students could fill the circulated survey

form. For each tool, we asked few questions listed in Table 2.3 with their responses

in Table 2.4. Table 2.3 represents all the questions asked in the survey and the

questions applicable for each tool. Along with these questions, we also asked for

ratings of the tools and reasons if a student didn’t use the tool.

Table 2.4 contains the question number for questions available in Table 2.3 and

corresponding to each question; all the options are also listed in the table. For each

tool, we recorded the number of students (and percentage of students) who selected

a particular option, and ‘−’ is used to represent that the option is not applicable

for that tool. Some students did not use JFLAP and ParseIT because it requires

installation, and are tedious & are time consuming. Based on the survey it can be

claimed that students like to use web-based tools as the maximum number(15) of

students used LL(0) & LR(1) tools and also reasoned the. The combined use of

ParseIT and JFLAP can be effective in teaching, as students found unique features

of these tools useful.

2.6 Results of Tools Study & Survey

Based on the observations of tools, we recommend using a combination of tools that

can help students with both practical and theoretical aspects of parsing. From our

experience, we believe that the combined use of JFLAP and ParseIT can suffice this

purpose, where ParseIT’s quiz-based sections can help students learn the theory, and

JFLAP can help students with the practical knowledge of parsing and visualization.

Due to covid-19 we get very few responses from students. About 71.4% students

used LL(1) & LR(0), about 28.6% students used JFLAP and about 23.8% students

11

Table 2.3: Survey Questions and corresponding tools

✓: Question applicable ×: Question not applicable
Question JFLAP LR(0), ParseIT

LL(1)
1. How often did you use this

tool?
✓ ✓ ✓

2. Which section(s) do you
find most helpful?

✓ × ✓

3. Was manual filling of en-
tries useful?

✓ × ×

4. Was automatically filling of
entries useful?

✓ × ×

5. Did you find conflict detec-
tion of this tool useful?

× ✓ ×

6. Was string parsing section
beneficial for better under-
standing of parsing?

× ✓ ×

7. Was “question-based hint”
approach helpful in bet-
ter understanding of syntax
analysis?

× × ✓

8. Was string generation
mechanism for parse table
useful?

× × ✓

9. Do visualisations help in
better understanding of
syntax analysis?

✓ ✓ ×

10. Did this tool crash while us-
ing it?

✓ ✓ ✓

11. Do you find this tool use-
ful?

✓ ✓ ✓

12

Table 2.4: Student’s survey results

count (%) is the number (percentage) of students who selected an option.
− denotes that the option is not applicable for that tool.

Q # Options JFLAP LR(0) & LL(1) ParseIT
count (%) count (%) count (%)

1.

Very Frequent 0 (0%) 1 (6.6%) 1 (20%)
Frequent 2 (33.3%) 2 (13.3%) 1 (20%)
Regularly 0 (0%) 3 (20%) 1 (20%)
Sometimes 4 (66.7%) 9 (60%) 40 (2%)

2.

Build parser 2 (33.3%) − −
Parse 3 (50%) − −

Automatic fill 5 (83.3%) − −
First Set − − 2 (40%)

Follow Set − − 3 (60%)
SLR Closure − − 4 (80%)
SLR Goto − − 2 (40%)

Parse Table − − 4 (80%)
Parsing Moves − − 2 (40%)

3. Yes 5 (83.3%) − −
No 1 (16.7%) − −

4. Yes 5 (83.3%) − −
No 1 (16.7%) − −

5. Yes − 13 (86.7%) −
No − 2 (13.3%) −

6. Yes − 12 (80%) −
No − 3 (20%) −

7. Yes − − 5 (100%)
No − − 0 (0%)

8. Yes − − 2 (40%)
No − − 0 (0%)

Don’t know − − 3 (60%)

9. Yes 6 (100%) 13 (86.7%) −
No 0 (0%) 2 (13.3%) −

10. Yes 1 (16.7%) 14 (93.3%) 0 (0%)
No 5 (83.3%) 1 (6.7%) 5 (100%)

11. Yes 6 (100%) 14 (93.3%) 5 (100%)
No 0 (0%) 1 (6.7%) 0 (0%)

13

used ParseIT and filled the circulated survey form. Around 23.8% students didn’t

use any of these tools. On average students give all these tools almost same rating

that is 4.3. Based on students’ rating of these tools and reasons for not using a tool,

we can be conclusive about the results even with low participation of students.

Based on the results of student’s survey, we can say that students prefer tools

that do not require extra efforts. For example, they prefer web based tools instead

of installing a software as is evident from the reasons for not using the tools and

the fact that maximum students used web-based tools LL(1) & LR(0). Overall,

students found these tools helpful, and will prefer these tools for learning parsing.

Survey gives hint that students like unique features of each tool but, it is difficult

to substantiate the usefulness of the unique features of these tools because of low

participation.

Chapter 3

ParseIT++

ParseIT++ is an extension of ParseIT, and it is a GUI-based tool for teaching

parsing. In the background, it executes ParseIT to generate processed data, and

also the working mechanism of some of its sections is similar to that of ParseIT.

ParseIT is a console-based question-answering tool. It was built in Java. ParseIT

provides various sections for users to understand different concepts of parsing. It

generates MCQ questions for a given grammar, for which users have to select the

answers from available options. It moves to the next question or generates hint

questions based on the user’s answer. If the user selects all the correct answers,

it will move to the next question. But if the user selects the wrong option, it will

generate a hint question, and if the user doesn’t select one of the correct options,

it will generate a different type of hint question. It takes grammar as input and

processes it to generate all the data for generating questions. The processed data

includes the first set, follow set, the collection of LR(0) items, and parse tables.

It provides different sections for users to understand different concepts of parsing.

Based on user input, it generates hint questions, and for sections like First Set,

Follow Set, SLR Closure, and Goto-I & II, it generates MCQ questions and hints

questions. Whereas for Parse Tables sections, it generates MCQ questions and, as

a hint, generates a string that will excite the erroneous entry in the table.

15

3.1 Limitations of ParseIT

ParseIT solves the problem of imparting theoretical knowledge through an auto-

mated tool. Such tools reduce the burden on professors and course TAs. However,

it lacks some of the features that an automated teaching tool should have. Below

are some of the drawbacks that are restricting the capabilities of the tool:

• It is a console-based tool, so all the work is done on the console. Users have to

write on the console to answer the questions, which could be a tedious task.

It makes it different from using as users have to follow a specific format to

answer questions, and user experience is compromised.

• It is a question-answer-based tool and only has MCQ questions to teach theo-

retical concepts, which makes it difficult to understand practical implications

and get a practical view of parsing.

• Any kind of visualization or practical view of parsing is not provided by the

tool, which makes it less interactive and cannot make parsing interesting for

users.

• It is a Java jar file, and users have to download it and need to have Java

installed in their system, and it adds an extra step for users before using it.

• It doesn’t collect any kind of data related to how users are using the tool, so it

becomes difficult to understand what should be improved in the tool for better

user experience and effective learning. In fact, none of the tools we explored

collects data related to user activity.

3.2 Improving ParseIT

ParseIT++ is an extension of ParseIT and provides additional features. We im-

proved the tool by eliminating the limitations mentioned in the previous sections.

16

These improvements can be viewed as the additional features provided by Par-

seIT++. These features are included to make the tool more interactive and in-

teresting for the students. This results in increasing interest in parsing techniques.

These features can also result in long-lasting learning of the concepts. We also added

the data collection ability in the tool to collect the user’s activity. The below list

shows the new features added in ParseIT++:

• GUI features: ParseIT was a console-based tool limiting its interactivity

and abilities. ParseIT++ is a GUI-based tool that makes it more interactive

and results in an improved user experience.

• Web-based tool: Web-based tools do not require any cumbersome instal-

lations or any other additional work. And also it can be easily shared and

operated with a few clicks.

• Gamification: We wanted to increase the interactivity of the tool and make

it more interesting for the students. It could help in increasing interest in the

course and long-lasting learning effects. So we built the tool with an interesting

puzzle-oriented structure.

• Data collection: Currently, available tools do not collect any user data, so it

becomes difficult to know how users are using the tool. And what do they want

in the tool? Our tool collects the data of users’ activity to gather information

to answer these questions.

3.3 Algorithms Implemented

ParseIT++ uses many standard algorithms related to parsing. Most are imple-

mented in ParseIT, like generating the first set, follow set, a canonical collection of

LR(0) items, parse tables, etc. We didn’t implement those algorithms but directly

used ParseIT for that purpose. Some algorithms that we implemented in ParseIT++

are as follows:

17

3.3.1 Question and Hint Generation

We have implemented the algorithm for generating MCQ questions for various con-

cepts of parsing and also implemented the hint generation algorithm for generating

hints depending on the user’s solutions. We have implemented the same algorithm

as used in ParseIT for Question and hint generation. The algorithm is explained in

detail in [3].

3.3.2 String Generation

For generating strings for erroneous entries in the parse table, we are using the same

algorithm as used in ParseIT, which is given in [3]. For LL(1), we have made slight

modifications as there was a minor error in the algorithm, which results in an infinite

loop.

According to the algorithm present in [3], if there are rules like “A → α B” & “B

→ γ A” and these rules have the smallest RHS for non-terminals A and B, then this

algorithm (terminal-only string generation algorithm) will fall in an infinite loop as

it will keep on choosing these production rules one after the other. We handled this

issue by marking the production rules that are already selected in the generation of

the string. This way, it will not select the same production rule again and avoids

the loop.

3.3.3 Parsing Algorithm & Tree Generation

For paring, standard parsing algorithms given in [5] are implemented in ParseIT++.

ParseIT++ parses a valid input string and generates the parse tree. Generated parse

tree is then visualized. Parse trees are generated using the standard algorithms given

in [5].

Chapter 4

ParseIT++ Web-based User

Interface

ParseIT++ is a GUI-based tool for teaching parsing based on ParseIT. There are

various sections available in ParseIT++, these sections available in ParseIT++ can

be divided into four types named question-based sections, parse table sections, pars-

ing sections and parse table game. Question-based sections include the First set,

Follow set, SLR Closure, and SLR goto-I & II. For a selected grammar, it generates

MCQ questions in these sections. Based on the user’s solution, it generates hint

questions of two types. This whole mechanism is similar to as of ParseIT. For the

Parse Table sections, it gives a shuffled parse table, and users have to unshuffle it.

In this section, it generates a string that can excite an erroneous entry in the parse

table. It also shows a parse tree for that particular generated string to help users

identify the error. Users can also navigate to various steps of generation of that

parse tree. These visualizations help users to connect with the practical implica-

tions of parsing. In ParseIT++, we added practice sections for LL(1) and SLR(1)

parsing where users can practice the string parsing algorithm, and these sections

come under parsing sections. It also shows the visualizations of the step-by-step

generation of the parse tree of that string. ParseIT++ also provides a parse table

game section which is similar to the parse table section. Along with these features,

19

data on user’s activity is also collected, which can give insights into how users use

the tool, what the issues are and what can be improved to make learning easier and

more interesting.

4.1 Tool’s Architecture

ParseIT++ can be divided into two parts, front-end, and back-end. The front-end

is built in ReactJS, and for back-end is developed in NodeJS. Back-end handles all

the data-related work like DB operations and data processing. Front-end mainly

has a Home page and four types of sections and the functioning of each section

is different. These sections are the Question-based section, Parse Table section,

Parsing section, and Parse Table Game section. Each section needs data related to

the selected grammar. This data includes the first set, follow set, CLR items, and

parse tables corresponding to the selected grammar, and we call this data processed

data. This data is generated at the back-end. We are using ParseIT.jar to generate

the processed data for a given grammar. At the back-end, we are running the

ParseIT.jar file, which generates all the processed data for the given grammar. This

processed data is then stored in the database for future use. The front-end requests

this data for each section for the selected grammar, and the back-end makes the DB

query and returns the requested data.

4.2 Front-end

Front-end of the tool is designed to be very interactive and interesting. It includes

different types of the section with which users can interact. Each with different types

of interactions, working, and views. It covers sections for the First set, Follows set,

SLR(1) closure, SLR(1) goto-I & goto-II, which comes in Question-based sections.

It covers the LL(1) Parse table and SLR(1) Parse table, which can be grouped as

Parse table sections. In the Parsing sections, LL(1) and SLR(1) Parsing sections

are included. It also provides SLR(1) Parse table game section. These sections are

20

Figure 4.1: Overview of working of front-end & back-end

discussed below in detail.

4.2.1 Home:

On the home page, users first have to get themselves authenticated using their

Gmail account. On successful logging in, the home page shows the instructor’s

grammars and students’ grammars. Instructor grammars are those that are added

by the admin/instructor and grammars added by students are student’s grammar.

Instructor’s grammars are visible under “Available grammars”. A grammar added

by the student is only visible to that particular student. On the home page, it

provides the option to add grammar. Students can add grammar using that, and

added grammar will be visible under “Student’s grammars”. To add grammar, users

have to enter grammar according to the specific format explained in Section 6.1 of

Chapter 6. On submitting the grammar, entered grammar is sent to the back-end,

where processed data is computed for that grammar and stored in the database.

21

Figure 4.2: Working of addition of grammar

4.2.2 Question-Based Section:

It generates MCQ questions for sections like the First set, Follow set, SLR Closure,

SLR goto-I and II. The flow of working of our tool for the Question-based section is

that first, it requests the processed data for the selected grammar from the back-end.

It generates a question for the selected section using this processed data, then, based

on the user’s solution, it generates hints and helps students to understand parsing

better. For generating a questionnaire for First Set, Follow set, and SLR closure

& SLR Goto sections, it needs the first set, follows set, and Canonical collection of

LR(0) items, respectively. These sections work in similar ways as that of ParseIT but

with GUI features. In these sections, an MCQ question is generated for the selected

section, and users have to select the correct option from the available options. If

users give a correct answer, it moves to the next question, but if selected options are

not correct, it generates hint questions. It generates two types of hint questions:

Type-I: It is generated when users select a wrong option from the available

options.

Type-II: It is generated when users misses a correct option from the available

22

options.

Sections included in this are:

• First Set: Questions are generated based on First set of the selected grammar.

• Follow Set: Questions are generated based on Follow set of the selected

grammar.

• SLR Closure: Questions are generated for the SLR closure moves for the

canonical collection of LR(0) items of the selected grammar.

• SLR Goto-I: Questions are generated for the SLR Goto moves for the canon-

ical collection of LR(0) items of the selected grammar.

• SLR Goto-II: Questions are generated for the SLR Goto moves for the canon-

ical collection of LR(0) items of the selected grammar. Here questions are

asked in a different pattern than that in Goto-I.

This section is similar to that in ParseIT, but in ParseIT, these are console-based,

whereas, in ParseIT++, we have an interactive GUI-based interface.

Figure 4.3: Working of question based sections

23

4.2.3 Parse Table Section:

Parse Table section includes LL(1) and SLR(1) parse table section. In this section,

a parse table is given in which entries will be shuffled. Users have to unshuffle the

table by swapping the entries in the cells. This section requires a parse table for the

selected grammar and then shuffles the entries of the table. This shuffled table is

then rendered, and users have to unshuffle it. It generates a string that can help in

the detection of erroneous cells in the table. This string is generated by the string

generation algorithms given in [3] for LL(1) (with slight modification mentioned

in 3.3.2) and SLR(1). Along with this, our tool generates the parse tree for the

generated string. Also, it shows a visualization of the generated string. Users can

view the generation of the parse tree through the visualizations step-by-step.

This section is available for both SLR, and LL(1) parse tables. It is also a GUI-

based section. In these sections, a shuffled parse table is displayed, which users

can manipulate. Through the series of manipulation of the table, the user has to

unshuffle this parse table. It generates a string that, on parsing, can excite an

erroneous cell in the table. It shows the visualization of the parse tree for that

generated string. Users can also navigate and see the step-by-step generation of the

parse tree.

4.2.4 Parsing Section:

This section is available for SLR and LL(1) parsing and is also a GUI-based section.

This section is like a practice space for users where they can practice parsing a

string. In this section, an empty stack is given, and users have to fill the stack in a

similar fashion as it will be while parsing that string. Users have to input a string

to parse, and if the string is not valid, it will be indicated, and if the input string

is valid, it allows the user to parse the string. Users are provided with symbols as

options that can be pushed into the stack and a POP option to pop symbols out of

the stack. Using these options, users have to mimic the actions on the stack. It also

24

Figure 4.4: Working of parse table sections

generates a parse tree as actions on the stack are performed by the user. If the user

tries to perform a wrong action on the stack, it doesn’t allow it and alerts the user.

The visualization of a parse tree helps students to understand the practical view of

parsing. ParseIT++ computes the parse tree and parse stack for the input string

and uses them to alert users about their mistakes and to show the visualization of

the parse tree.

4.2.5 Parse Table Game Section:

This section is similar to that of the Parse Table section. This section is only

available for SLR(1) parse table. A parse table is given in which one non-error entry

is swapped with an error entry. Few strings are given from which only one string on

parsing can excite the erroneous entry in the table. Now users have to correct the

table, and after correcting the table, they are asked to select the string that helped

them to detect the error. This section helps students to connect the parse table

with the parsing. For this, ParseIT++ first generates the strings to excite the cell

for each cell. After generating such strings, for each cell, it finds the strings that do

not excite that cell. After doing this for each non-empty cell, it has a list of strings

25

Figure 4.5: Working of parsing section

that excites that cell and does not excite that cell. For a particular cell, this list is

then provided to the users, and a parse table with that entry swapped is rendered

for the users. Users can perform the same actions as provided for the parse table

section to correct the table.

4.3 Back-end

Back-end deals with all the data and database-related stuff. At the back-end, we

have created APIs for adding grammar, getting processed data from DB, and storing

user activities in DB. When API for adding grammar is hit, it sends the input gram-

mar to the back-end, and there, ParseIT.jar is executed to generate the processed

data. This processed data is stored in the database for using it in the future. APIs

for getting processed data to return all the processed data requested by the front-

end. Front-end sends the grammar ID based on the user’s selection of grammar,

and the back-end sends the processed data to the front-end. On every action by the

user, the user’s activity is sent to the back-end through a specific API. All the data

collected related to the user’s activity is discussed in the next Section 4.3.1.

26

Figure 4.6: Working of parse table game section

Figure 4.7: Working of Back-end

27

4.3.1 Database & Data Collection

We are capturing user activities: how users are using this tool, which sections are

visited the most by the users, on which grammar students spend more time, etc.

All this data is stored in the database. We have four tables in our database named

processeddata, userdata, userprofile, and bugreports. For each section, different

type of data is collected, but we are storing users’ activity for different sections in

the same table userdata. There is no specific scheme for the user’s data we are

collecting; for this reason, we are using a NoSQL database. User’s data is stored

in the userdata table, and the data fields collected for each section are listed in

Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7.

First Set
Table 4.1: User data collected for First
Set

Field Type
1. GrammarID String
2. page-name String
3. Question String
4. options Array
5. correct-options Array
6. users-selected-options Array
7. Question-type String
8. is-correct String
9. userid String

Follow Set
Table 4.2: User data collected for Fol-
low Set

Field Type
1. GrammarID String
2. page-name String
3. Question String
4. options Array
5. correct-options Array
6. users-selected-options Array
7. Question-type String
8. is-correct String
9. userid String

4.4 Potential Studies based on Data Collected

In the previous section, we elaborated on the data collected by ParseIT++. It

tries to capture every activity of the user, and it can be used to know how users

are using the tool. We can also figure out the improvements required in the tool

and additional features that can be added to the tool and can also figure out the

28

SLR closure section
Table 4.3: User data collected for SLR
Closure section

Field Type
1. GrammarID String
2. page-name String
3. Question String
4. options Array
5. correct-options Array
6. users-selected-options Array
7. Question-type String
8. is-correct String
9. userid String

SLR gotos

Table 4.4: User data collected for SLR
Goto sections

Field Type
1. GrammarID String
2. page-name String
3. Question String
4. options Array
5. correct-options Array
6. users-selected-options Array
7. Question-type String
8. is-correct String
9. userid String

Parse Table sections
Table 4.5: User data collected for Parse
table sections

Field Type
1. GrammarID String
2. page-name String
3. prev-row Number
4. prev-col Number
5. curr-row Number
6. curr-col Number
7. generated-string String
8. is-correct String
9. userid String

Parsing sections

Table 4.6: User data collected for Pars-
ing sections

Field Type
1. GrammarID String
2. page-name String
3. input-string String
4. is-string-valid String
5. stack-action String
6. element String
7. curr-token String
8. is-correct String
9. userid String

29

SLR Parse Table game section

Table 4.7: User data collected for SLR table game

Field Type
1. GrammarID String
2. page-name String
3. prev-row Number
4. prev-col Number
5. curr-row Number
6. curr-col Number
7. Question String
8. options Array
9. correct-options Array
10. users-selected-options Array
11. is-correct String
12. userid String

information related to the conceptual concepts of parsing. Using this data, we can

understand and answer the following questions:

• Which grammar is being used the most?

• Which section is being used the most?

• For a particular grammar which section is used the most?

• For a particular section which grammar is used the most?

• For each user, which grammar is used the most?

• For each user, which section is used the most?

• For each user, for a particular grammar which section is used the most?

• For each user, for a particular section which grammar is used the most?

• How much time do users spend on the tool?

• Percentages for every question asked above.

30

• It could help to understand how students use the tool, which grammar is

difficult to work with, and which section struggles them the most.

Chapter 5

A quick tour of ParseIT++

In this section, we give a quick tour of ParseIT++. The sections below represent the

various sections provided by ParseIT++. We show examples of each section for a

small grammar. This selected grammar is given below. The actual flow is explained

in the dedicated section for each web page.

S → A A

A → a A

A → b

5.1 Home

On the home page, all the grammars (Student and instructor grammar) are visible,

and users can select any one of them. It also provides the option of adding grammar

to users, as can be seen in Figure 5.1 under the “Add Grammar” box. In our

case, we are adding above mentioned grammar can be seen in Figure 5.2. After

clicking submit button, it sends the grammar to the back-end, and based on the

response from the back-end, it shows the message to users. In our case, grammar

is successfully added, and it shows the“Grammar Added” message shown in Figure

5.3. Now grammar is visible in available options, and users can select this grammar,

as shown in Figure 5.4.

32

Figure 5.1: Home page

Figure 5.2: Adding a grammar

Figure 5.3: Success message for addition of grammar

33

Figure 5.4: Selection of added grammar

5.2 MCQ-Based Sections

This section provides a question for the first set, and users have to select the op-

tions for the available options. For our example grammar, it generates the question

“Which symbol should be included in FIRST[A]?” with options ‘a’, ‘b’, and ‘$’ as

can be seen in Figure 5.5.

Users have to select the correct options from the available options. ParseIT++

generates a Hint question of type-I if users select the wrong options, which is depicted

in Figure 5.6. It generates hint questions of type-II for options that are correct but

are left by the users, which can be seen in Figure 5.7. If the user selects the wrong

options for a hint question, then the same hint question is asked again. In Figure 5.5

user selects the first option, which is ‘a’, which is correct. If the user selects the

correct answers, then the next hint question or questions on the selected sections

are asked.

5.3 Parse Table Sections

In this section, users have to unshuffle the given shuffled parse table. For the selected

grammar, the shuffled parse table generated by ParseIT++ is shown in Figure 5.8.

Users have to unshuffle it by swapping two entries. In Figure 5.8, a string and pare

34

Figure 5.5: MCQ based section (First Set)

Figure 5.6: Type-I Hint question for First set

Figure 5.7: Type-II Hint question for First set

35

tree are given; parsing this string will excite the first erroneous entry in the parse

table row major-wise. The tree presented below is the parse tree of the generated

string, and users can view the construction using the arrow button available at the

bottom-left.

Users have to swap entries to unshuffle the table; an entry swap is shown in

Figure 5.9. When the user corrects the entry corresponding to which string is

generated, ParseIT++ generates another string corresponding to the first erroneous

entry in the table. This keeps on till the user completely unshuffles the table, as can

be seen in the Figure 5.10

Figure 5.8: Parse table section for LL(1)

Figure 5.9: Parse table section showing entry swap

36

Figure 5.10: Parse table section after shuffling the parse table

5.4 Parsing Sections

In this section, users have to input a string and then have to complete the parsing

stack. If the input string is invalid, then it is altered to the user as shown in the

Figure 5.11, the user has entered string “a b a”. In case of a valid input string, users

are allowed to push/pop operations on the stack.

As shown in the Figure 5.12 user has input string “a b b”. Now users have to

perform actions on the provided stack. In Figures 5.13, 5.14, user try to perform

incorrect stack operations PUSH and POP respectively and are altered to user by

converting buttons’ in reddish colour. On performing correct actions on the stack,

a parse tree is built. Building of tree can be seen to the right of parsing stack in

the Figures 5.13, 5.14. After parsing the complete string, the complete parse tree is

generated, and a pop-up message is shown as visible in Figure, 5.15.

5.5 Parse Table Game Section

In this section also, the user gets a parse table in which they have to perform the

actions, but only one entry in the table is misplaced. Users are given some strings

from which only one string on parsing can excite that entry. Like in our case it

can be seen in Figure 5.16 and strings are “bb”, “abab” and “aabb”. Users have to

37

Figure 5.11: Parsing section page for LL(1) with invalid input string

Figure 5.12: Parsing section page for LL(1) with valid input string

Figure 5.13: Parsing section page showing wrong stack action (Push)

38

Figure 5.14: Parsing section page showing wrong stack action (POP)

Figure 5.15: Parsing section after completing string parsing

39

correct the parse table by swapping the entries similar to that in the parse table

section. After correcting the table, users are asked to choose which string can be

used to detect that entry, as seen in Figure 5.17. Users have to select the option

from the available options and click submit. If the user selects the wrong option,

the same question will be asked as in Figure 5.17 user selects string “bb”, which is

incorrect. After submitting the correct option, users can either replay the game or

go to the home page, which can be seen in Figure 5.18.

Figure 5.16: SLR table game section showing the table and parsing strings

Figure 5.17: SLR table game section showing the asked question

40

Figure 5.18: SLR table game section after submitting correct option

Chapter 6

User Manual

There is no significant difference between student users and admin users. The inter-

face for both types of users is similar. ParseIT++ have 10 sections named First Set,

Follow Set, LL(1) Table, LL(1) Parsing, SLR(1) Closure, SLR(1) Goto-I, SLR(1)

Goto-II, SLR(1) Table, SLR(1) Parsing, and SLR(1) Table Game. MCQ-based sec-

tions like First Set, Follow Set, SLR(1) Closure, SLR(1) Goto-I, and SLR(1) Goto-II

have the same interface. Parse Table sections like LL(1) Table and SLR(1) Table

have a similar interface, Parsing sections LL(1) parsing and SLR(1) Parsing have

similar interface and SLR(1) Table game have very little difference in interface than

that of Table sections.

6.1 Home

On the Home page, users can select a grammar on which they want to work or can

add grammar. The tool can generate problems for the selected grammar. Users can

select a grammar by clicking on the grammar listed on the page. To add grammar,

users have to enter the grammar in the provided box on the page in a specific format

and click submit. The format for the grammar to be added is as follows:

• Start symbol should be S.

• Symbols should be space separated.

42

• Non-terminals should be single character capital letter.

• Terminals should be small letters and can be of multiple characters.

• For inserting epsilon production write whole epsilon word for eg. S -> epsilon.

• LHS and RHS should be separated by “->” with a space on each side of “->”

for eg. S -> a B.

• Each production rule should be in a separate line.

• Grammar should contain more than one production rule

6.2 MCQ-Based Sections

In these sections, an MCQ question is given. Users have to select all the applicable

options from the list of available options and then click on submit button. If the

user selects the wrong options, then hint questions will be asked, and users have to

answer them correctly. If users leave a correct option, then a different type of hint

question will be asked. If users select the wrong options for hint questions, then the

same hint question will be asked again. Users can use the grammar given to the

right to answer these questions.

6.3 Parse Table Sections

In this section, a shuffled parse table will be given. Users have to unshuffle this

parse table by swapping the entries of the parse table. For swapping the entries,

select a cell by clicking on it and then click on the cell with which you want to swap.

Grammar First set and Follow set are given, which can help users to unshuffle the

table. A string will be generated that, on parsing, will excite an erroneous entry in

the table. Users can see a parse tree on the left of the generated string. Users can

check how this parse tree is built by clicking on the left/right button present at the

bottom of the Parse tree.

43

6.4 Parsing Sections

This section is provided to understand the string parsing and parse tree generation

process. In this section, users have to input a valid string and click on the start

button, for the invalid string will be indicated. Users have to push/pop from the

stack in a similar way as while parsing the input string. Symbol buttons are given

on the bottom, and users have to click on these buttons to push a symbol into the

stack. Users can use the POP button available just above the stack to pop from the

stack. In the Parse Tree area, a parse tree for the input string will be built as users

work on the stack.

6.5 Parse Table Game Section

This section is similar to the Parse Table section, with an MCQ question asked at

the end. Users can use this section in a similar way as the Parse table section and

MCQ question-based section, depending on the applicable scenario.

Chapter 7

Conclusions & Future Work

We have built a web-based system that can be used as a teaching tool for parsing

techniques. We have extended the current work (ParseIT) by adding GUI and visu-

alizations features. It can be used to teach parsing techniques in an undergraduate

compiler courses. It could be used as a combined tool for teaching theoretical and

practical aspects of parsing. The tool is built to be very interactive and can derive

student’s interest in the compiler courses. We have built this tool with the capability

to capture activities of the users.

We could not use this tool in an actual compiler course because of the delay in

the tool’s completion. Compiler course is offered once a year so it can’t be used

in classroom for teaching parsing. In future we can use this tool in a classroom

for teaching parsing. This could give us data on which separate studies can be

performed to gather information about the difficulties in the course, requirements of

the students, student’s usage of the tool, etc. Currently tool only provides sections

for LL(1) and SLR(1), we can extend it to cover more parsing techniques and more

theoretical concepts of parsing.

References

[1] Susan H. Rodger et al. “Increasing Engagement in Automata Theory with
JFLAP”. In: Proceedings of the 40th ACM Technical Symposium on Computer
Science Education. SIGCSE ’09. Chattanooga, TN, USA: Association for Com-
puting Machinery, 2009, pp. 403–407. isbn: 9781605581835. doi: 10.1145/
1508865.1509011. url: https://doi.org/10.1145/1508865.1509011.

[2] S. H. Rodger. JFLAP. last accessed Jan 2022. 2022. url: https://www.
jflap.org/.

[3] Amey Karkare and Nimisha Agrawal. “ParseIT: A Tool for Teaching Pars-
ing Techniques”. In: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. SIGCSE ’16. Memphis, Tennessee, USA: As-
sociation for Computing Machinery, 2016, p. 590. isbn: 9781450336857. doi:
10.1145/2839509.2850513. url: https://doi.org/10.1145/2839509.
2850513.

[4] Nimisha Agarwal. ParseIT. last accessed Jan 2022. 2016. url: https://cse.
iitk.ac.in/users/nimisha/parseit/index.html.

[5] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd Edi-
tion). USA: Addison-Wesley Longman Publishing Co., Inc., 2006. isbn: 0321486811.

[6] Zak Kincaid and Shaowei Zhu. LL(1) Tool. last accessed Jan 2022. 2022. url:
https://www.cs.princeton.edu/courses/archive/spring20/cos320/
LL1/.

[7] Zak Kincaid and Shaowei Zhu. LR(0) Tool. last accessed Jan 2022. 2022. url:
https://www.cs.princeton.edu/courses/archive/spring20/cos320/
LR0/.

[8] Sphere Research Labs. SPOJ. last accessed Jan 2022. 2022. url: https://
www.spoj.com/.

[9] Unacademy. CodeChef. last accessed Jan 2022. 2022. url: https://www.
codechef.com/.

[10] kanpur IIT. Prutor. last accessed Jan 2022. 2022. url: https://esc101.cse.
iitk.ac.in/.

[11] National University of Singapore. VISUALGO. last accessed Jan 2022. 2022.
url: https://visualgo.net/en.

[12] Mohamed Hamada. “Web-based Active e-Learning Tools for Automata The-
ory”. In: Seventh IEEE International Conference on Advanced Learning Tech-
nologies (ICALT 2007). 2007, pp. 877–879. doi: 10.1109/ICALT.2007.283.

https://doi.org/10.1145/1508865.1509011
https://doi.org/10.1145/1508865.1509011
https://doi.org/10.1145/1508865.1509011
https://www.jflap.org/
https://www.jflap.org/
https://doi.org/10.1145/2839509.2850513
https://doi.org/10.1145/2839509.2850513
https://doi.org/10.1145/2839509.2850513
https://cse.iitk.ac.in/users/nimisha/parseit/index.html
https://cse.iitk.ac.in/users/nimisha/parseit/index.html
https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/
https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/
https://www.cs.princeton.edu/courses/archive/spring20/cos320/LR0/
https://www.cs.princeton.edu/courses/archive/spring20/cos320/LR0/
https://www.spoj.com/
https://www.spoj.com/
https://www.codechef.com/
https://www.codechef.com/
https://esc101.cse.iitk.ac.in/
https://esc101.cse.iitk.ac.in/
https://visualgo.net/en
https://doi.org/10.1109/ICALT.2007.283

46

[13] Loris D’Antoni et al. “Automata Tutor v3”. In: Computer Aided Verification.
Ed. by Shuvendu K. Lahiri and Chao Wang. Cham: Springer International
Publishing, 2020, pp. 3–14. isbn: 978-3-030-53291-8.

[14] Rafael del Vado Vı́rseda. “An Interactive Tutoring System for Learning Lan-
guage Processing and Compiler Design”. In: Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education.
ITiCSE ’20. Trondheim, Norway: Association for Computing Machinery, 2020,
p. 552. isbn: 9781450368742. doi: 10.1145/3341525.3393969. url: https:
//doi.org/10.1145/3341525.3393969.

[15] Marjan Mernik and V. Zumer. “An educational tool for teaching compiler
construction”. In: Education, IEEE Transactions on 46 (Mar. 2003), pp. 61–
68. doi: 10.1109/TE.2002.808277.

[16] Bison. GNU Bison. last accessed Jan 2022. 2022. url: https://www.gnu.
org/software/bison/.

[17] Scott E Hudson et al. “CUP parser generator for Java, 1997”. In: (2006).
[18] Elliot Berk. “JLex: A lexical analyzer generator for Java, 1997”. In: (1997).
[19] M. E. Lesk and E. Schmidt. Lex–a Lexical Analyzer Generator. In UNIX Vol.

II: Research System (10th Ed.) 1990, pp. 375–387. isbn: 0030475295.
[20] Vern Paxson et al. “Flex–fast lexical analyzer generator”. In: Lawrence Berke-

ley Laboratory (1995).
[21] David Beazley. “PLY (Python Lex Yacc)”. In: (2022). last accessed Jan 2022.

url: https://www.dabeaz.com/ply/.
[22] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. “Code Gen-

eration Using Tree Matching and Dynamic Programming”. In: ACM Trans.
Program. Lang. Syst. 11.4 (Oct. 1989), pp. 491–516. issn: 0164-0925. doi:
10.1145/69558.75700. url: https://doi.org/10.1145/69558.75700.

[23] Christopher W. Fraser and Todd A. Proebsting. “Finite-State Code Genera-
tion”. In: Proceedings of the ACM SIGPLAN 1999 Conference on Program-
ming Language Design and Implementation. PLDI ’99. 1999, pp. 270–280.
isbn: 1581130945. url: https://doi.org/10.1145/301618.301680.

[24] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. “BURG:
Fast Optimal Instruction Selection and Tree Parsing”. In: SIGPLAN Not.
(Apr. 1992), pp. 68–76. url: https://doi.org/10.1145/131080.131089.

[25] K. John Gough. “Bottom-up Tree Rewriting Tool MBURG”. In: SIGPLAN
Not. (Jan. 1996), pp. 28–31. doi: 10.1145/249094.249110. url: https:
//doi.org/10.1145/249094.249110.

[26] T. J. Parr and R. W. Quong. “ANTLR: A Predicated LL(k) Parser Genera-
tor”. In: Softw. Pract. Exper. 25.7 (July 1995), pp. 789–810. issn: 0038-0644.
doi: 10.1002/spe.4380250705. url: https://doi.org/10.1002/spe.
4380250705.

[27] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. Tech. rep. 1979.

https://doi.org/10.1145/3341525.3393969
https://doi.org/10.1145/3341525.3393969
https://doi.org/10.1145/3341525.3393969
https://doi.org/10.1109/TE.2002.808277
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://www.dabeaz.com/ply/
https://doi.org/10.1145/69558.75700
https://doi.org/10.1145/69558.75700
https://doi.org/10.1145/301618.301680
https://doi.org/10.1145/131080.131089
https://doi.org/10.1145/249094.249110
https://doi.org/10.1145/249094.249110
https://doi.org/10.1145/249094.249110
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705

