
Intelligent Program Analysis and

Program Indexing - II

A Thesis Submitted

In Partial Fulfillment of the Requirements

For the Degree of M.Tech.

by

Preeti Singh

20111044

to the

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Aug, 2022



ii

ii



iii

Declaration

This is to certify that at the thesis titled “INTELLIGENT PROGRAM ANALYSIS AND PROGRAM

INDEXING - II” has been authored by me. It presents the research conducted by me under the
supervision of PROF. PURUSHOTTAM KAR, PROF. AMEY KARKARE.

To the best of my knowledge, it is an original work, both in terms of research content and
narrative, and has not been submitted elsewhere, in part or in full, for a degree. Further, due
credit has been attributed to the relevant state-of-the-art and collaborations (if any) with
appropriate citations and acknowledgments, in line with established norms and practices.

Name: Preeti Singh (20111044)
Program: M.Tech.

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur, Kanpur,

208016.
Aug, 2022

iii



iv

iv



v

Declaration (To be submitted at DOAA Office)

I hereby declare that

1. The research work presented in the thesis titled “INTELLIGENT PROGRAM ANALYSIS AND

PROGRAM INDEXING - II” has been conducted by me under the guidance by my
supervisor(s) PROF. PURUSHOTTAM KAR, PROF. AMEY KARKARE.

2. The thesis has been formatted as per Institute guidelines.

3. The content of the thesis (text, illustration, data, plots, pictures etc.) is original and is the
outcome of my research work. Any relevant material taken from the open literature has
been referred and cited, as per established ethical norms and practices.

4. All collaborations and critiques that have contributed to giving the thesis its final shape
have been duly acknowledged and credited.

5. Care has been taken to give due credit to the state-of-the-art in the thesis research area.

6. I fully understand that in case the thesis is found to be unoriginal or plagiarized, the
Institute reserves the right to withdraw the thesis from its archive and also revoke the
associated degree conferred. Additionally, the Institute also reserves the right to apprise
all concerned sections of society of the matter, for their information and necessary action
(if any).

Name: Preeti Singh
Program: M.Tech.

Department of Computer Science and Engineering
Roll No.: 20111044

Indian Institute of Technology Kanpur, Kanpur, 208016.
Aug, 2022

v



vi

vi





viii

viii



ix

Abstract
Name of student: Preeti Singh Roll no: 20111044

Degree for which submitted: M.Tech.
Department: Department of Computer Science and Engineering

Thesis title: Intelligent Program Analysis and Program Indexing - II

Name of thesis supervisor: Prof. Purushottam Kar, Prof. Amey Karkare
Month and year of thesis submission: Aug, 2022

The use of artificial intelligence and machine learning in education has grown significantly in

recent years. Numerous AI-assisted solutions for use in educational settings are constantly being

developed. One such tool has been created for the problem setters of the course ESC101, which is

taught to novice programmers each semester at the Indian Institute of Technology, Kanpur.

PRIORITY offers a web site where users can look up programming queries from previous

ESC101 course offerings.It uses machine learning methods to automatically label each program-

ming question so that it may be searched and could help the tutors to prepare the programming

questions. Problem statement and golden solution has been provided for each particular program-

ming questions. The task of feature engineering is therefore not straightforward when trying to

extract features from such data. Predicting the programming labels and estimating the level of

difficulty of the challenge are the other two elements.

This thesis suggests a number of modifications to the PRIORITY back-end machine learning

architecture.The label prediction problem is primarily the subject of this thesis. By traversing the

abstract syntax tree of C programmes, we were able to extract the features, which contributed

to the more reliable creation of features. Features have been extracted using graph methods and

depth first traversal.

We have experimented with various correlation strategies for feature selection. The effective

feature selection carried out by the Pearson correlation algorithm resulted in a significant rise in

the f1-score for the test data points. The model is trained via supervised feature selection followed

by one-vs-rest logistic regression. Programming labels exist that require various quantities of

features to be identified because they rely heavily on programming language tokens. As a result,

we tried different number of features for each programming label and observed a substantial rise in

the f1-score.We suggested additional optimization by using the ensemble technique in the feature

selection stage. This strategy combines Pearson correlation and normalised mutual information

for various values of K, and it significantly improves accuracy and f1-score.

ix



x

x



Acknowledgments

I would like to express gratitude to all the people who helped me during my stay at IIT Kanpur. I

especially thank my advisors Purushottam Kar and Amey Karkare for guiding me throughout this

thesis work and also to help me improve as a person. They were always there when I got stuck or

need help with something.

I would also like to thank Debanjan and Mayank who have been my partner during this thesis

and have been a constant source of support. I also extend thanks to my batch mates, friends and

family members. A special thanks to Fahad and Sharath, our seniors in the M.Tech program from

the graduating batch of 2021 at the Indian Institute of Technology Kanpur.

This thesis was compiled using a template graciously made available by Olivier Commowick

http://olivier.commowick.org/thesis_template.php. The template was suitably modi-

fied to adapt to the requirements of the Indian Institute of Technology Kanpur.

Preeti Singh

Aug, 2022

xi

http://olivier.commowick.org/thesis_template.php


xii

xii



Contents

Acknowledgments xi

List of Figures xiv

List of Tables xv

1 Introduction 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Works 5

3 PRIORITY 7
3.1 Key challenges: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 AST Analysis of Each Label: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Featurization : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Machine Learning Model: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Experiments 21
4.1 Feature Selection: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Comparison of Results of Ensemble Approaches: . . . . . . . . . . . . . . . . . 26

5 Conclusion and Future Work 27
5.1 Conclusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Future Work: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Appendix 29
6.1 PycParser Node Types for C language: . . . . . . . . . . . . . . . . . . . . . . . 29

7 Introduction 3
7.1 Our Contribution: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

8 Related Works 5
8.1 TRACER (Targeted RepAir of Compilation ERrors): . . . . . . . . . . . . . . . 5

8.2 TEGCER: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

8.3 MACER (Modular Accelerated Compilation Error Repair): . . . . . . . . . . . . 6

8.4 Dr Repair: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

8.5 SampleFix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8.6 DECAF: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8.7 MACER++: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8.8 PyMACER: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

xiii



xiv Contents

9 Proposed Approach 9
9.1 Analysis of Repair Class of MACER: . . . . . . . . . . . . . . . . . . . . . . . 9

9.2 Changes made in Abstraction: . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9.3 Changes made in Tokenization: . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

10 Experiments and Results 13
10.1 Tune the Hyperparameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

10.2 Changes made in Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Bibliography 15

xiv



List of Figures

3.1 Distribution of Labeled Data Points. Image Credit [13] . . . . . . . . . . . . . . 8

3.2 AST of sample code of arithmetic advanced . . . . . . . . . . . . . . . . . . . . 10

3.3 AST of nested for loop (Advanced Loop) . . . . . . . . . . . . . . . . . . . . . 12

3.4 Example of basic Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Example of Advanced Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Comparison of Metrics of Mutual information and Pearson Correlation Approach

@5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xv



xvi List of Figures

xvi



List of Tables

3.1 Example of TerminalIO Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Example of TerminalIO Advanced . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Example of Arithmetic Advanced . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Sample Code and AST of example of Arithmetic Bit . . . . . . . . . . . . . . . 10

3.5 Example of Conditional Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Sample code of Nested For loop . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 Example of Basic & Advanced Function . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Logistic Regression model Metrics using Pearson’s Correlation Approach . . . . 22

4.2 Logistic Regression Model Metrics using Ensemble approach . . . . . . . . . . . 23

4.3 Logistic Regression Model Metrics using Ensemble approach with different k . . 25

4.4 Logistic Regression Model Metrics using Variable value of K for each labels . . . 26

4.5 Comparison of the metrics of different Ensemble approaches . . . . . . . . . . . 26

7.1 Example of repair prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

9.1 Example of incorrect position of semicolon(;) . . . . . . . . . . . . . . . . . . . 9

9.2 Example of Invalid token identification . . . . . . . . . . . . . . . . . . . . . . . 10

9.3 Example of repair class of unbalanced parantheses . . . . . . . . . . . . . . . . 10

9.4 Example of repair class of same insertion and deletion . . . . . . . . . . . . . . 10

9.5 Example of repair class having error in first token . . . . . . . . . . . . . . . . . 11

10.1 Results of tuning the length of repair classes . . . . . . . . . . . . . . . . . . . . 13

10.2 Comparison of Results after making changes in tokenization stage . . . . . . . . 14

1



2 List of Tables

2



PART I : PRIORITY



2 List of Tables

2



CHAPTER 1

Introduction

Contents
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

In today’s Era, Artificial Intelligence and Machine Learning are now being utilized to solve

a wide range of real-world problems in a wide range of industries. Several intelligent tools are

continually being created in the field of education to improve the teaching process.

Every semester, the Indian Institute of Technology, Kanpur, teaches ESC101, which is an in-

troductory programming course to a considerable number of students. As it is an introductory

programming course, hence Lab sessions are conducted on a regular basis. In each lab session,

programming questions are provided to students which need to be solved within the allotted time.

Hence every year, tutors and faculty of ESC101 need to prepare programming questions from

scratch.The re-usability of programming questions is one of the key challenges faced by such a

huge course comprising hundreds of students. PRIORITY is an online portal that was created to

give course problem setters access to a library of a large number of programming questions from

previous offerings.

PRIORITY creates a search index for all of the programming challenges in the database. Users

can look for programming questions based on the programming principles or skills needed to

solve the problem, as well as the difficulty level of the challenge. Figure 1.1 depicts the PRIOR-

ITY web portal’s problem/programming query search page. PRIORITY has roughly two thousand

programming questions in total. Now, in order to index this set of programming problems, each

problem must be labeled using the web portal’s search parameters. As a result, each programming

question must have a label for programming skills as well as a mark for difficulty. Given the

difficulty of annotating such a vast corpus, PRIORITY relies on machine learning algorithms to

label the whole corpus of problems. The collection of programming queries is referred to as the

PRIORITY data.

The first step is to create machine learning models that forecast the programming concepts/skills

(also known as programming labels) that are connected with a problem. The second objective is

to create machine learning models to forecast the difficulty of the problem. One important prob-

lem in using machine learning algorithms on the PRIORITY data is conducting suitable feature

engineering. Each programming query must be converted into a carefully chosen set of quality

attributes that will aid in the learning of the aforementioned prediction tasks.

We propose various improvements to PRIORITY’s back-end Machine Learning architecture in

this thesis, affecting all three primary components: feature engineering, programming label pre-

diction, and difficulty score prediction. The results reveal that the recommended improvements

improved the performance of the two prediction tasks significantly.

3



4 Chapter 1. Introduction

1.1 Our Contributions

The Key Contribution has been enumerated below:

1. Learning the confidence score : Previously In Priority, label propagation algorithm had been

run for around twenty times to label the unlabelled data points and every time top fifty data

points had been selected to include them in training data points for the next round of the

algorithm. Hence, we thought that instead of running the algorithm twenty times, we could

learn the confidence score and run the algorithm as many times as it is making appropriate

changes in unlabelled data points. Details of this could be found in Mayank’s thesis[3].

2. Featurization : For syntactic analysis of the solution of the programming question, we have

used an abstract syntactic tree and extracted the programming terms needed for predicting

the labels. For each data point, we have around 4992 feature vectors.

3. Experimented with correlation Techniques(Feature Selection) : For feature selection, we

have experimented with some correlation techniques such as mutual information, Pearson,

Spearman, precision, recall and f1-score.

4. With variable K value : As we have some labels for which only one feature is enough

to predict the labels such as Conditional_Switch and some are for which more than one

features are required to predict the labels such as Function_advanced. Hence we have also

experimented with different values of K for each label during feature selection. We got an

appropriate rise in f1-score with variable K values.

5. Ensemble Techniques(with correlation ) : We have further improved the feature selection

by performing ensemble technique. We have performed an ensemble of Pearson correlation

techniques with K=12 and mutual information correlation techniques with K=20 and found

some improvement in f1-score, precision, recall and accuracy of the model.

6. Feedback : We have also tried to use feedback provided by the users, who use the web

application to make the new questions. We are using text based feedback to improve the

model by changing the model weights. Details of this could be found in Mayank’s thesis[3].

7. Difficulty Score: We have followed a mixture of Experts techniques to improve the pre-

diction of difficulty score. We found that the Random forest classifier model is performing

better for (1-2) difficulty score whereas Gradient boosting regressor model is performing

better for (3-5) difficulty score. Hence we used a combination of both algorithms. Details

of this could be found in Debanjan’s thesis[5].

4



CHAPTER 2

Related Works

Technology and information utilisation in education could give students quick access to infor-

mation and speed up their learning. The teachers, tutors, and students are the most significant

participants in any course. One such course is ESC101, which is provided to new students at the

Indian Institute of Technology Kanpur each semester . As a result, since this course is an introduc-

tion to programming, it has been necessary to prepare or set up programming problem statements

in accordance with the subjects covered in earlier weeks. Since the students in this course are

absolute beginners, instructors must create the topic-based problem statement for the lab session

from scratch each semester.

Tutors could not use the previous offers’ problem statements because they could not be searched.

In order to make the issue statements searchable based on programming concepts like strings, ar-

rays, loops, etc., Fahad[13] and Sharath[10] developed PRIORITY. We have outlined some of the

background information in brief below.

• Data Preparation: There is a large and unlabeled corpus of problem data accessible from

ESC101’s previous offers. There is a SQL dump available with roughly 2K data points

obtained from PRUTOR[7]. These issues cover problem statements, ideal solutions, and

templates for addressing the problem statements. Despite the fact that the entire corpus is

unlabeled, a few senior tutors have been asked to classify certain data points from the corpus

in accordance with the level of programming expertise required to resolve the given issue.

We have approximately 461 tagged data points from the 2K corpus after conducting this

experiment.

• Front-end Design: A web application has been developed to make the problem statements

searchable. It could be helpful for the tutors and faculty to search for a particular problem

that covers certain programming topics. Both non-functional and functional requirements

are considered while building the web application. The front-end part was built using An-

gularJS. Simplicity, intuitiveness, and user-friendliness are certain terms that are considered

while building a web application. Login-based authenticity, login and logout functionality,

feedback submission by registered users, display of search results based on query entered

by user are the functional requirement implemented by Fahad[13] and Sharath[10].

• Back-end Design:They have created a backend using Django, with MYSQL running on the

database server, in addition to the front-end component. The set of API has been created

and put into use to ensure that the web application functions properly. Following is a brief

description of some of the API:

– Create User:username and password are the two parameters taken by this API and

saved it in auth_user table. Password are saved in encrypted form.

5



6 Chapter 2. Related Works

– Authenticate User:When registered user tries to login this API has been used to au-

thenticate the credentials of the user.

– Text Feedback: user, query,number of results, version and feedback are the five argu-

ment taken by this API and saved it in text_feedback table.

– Feedback Rating: user,problem feedback,query, time, position of recommendation

and rating are the six parameter taken by this API and returns the same data entered

by user with auto generated id.

– Feedback: user_id, problem_id and new label annotation has been asked from the

user as feedback. users can also provide difficulty score. In this, if the user think that

particular problem should be under some additional labels then they can provide it as

feedback.

– Passive Feedback: user, problem feedback, query, start time, end time, position of

recommendation and category are the arguments passed to this API and it will save in

the table.

– Problem Details: This API returns the JSON object which contains details about the

problem like golden solution, problem statements and template etc specified by the

problem id parameter.

– Problem Search: labels has been provided to this API as parameter and it will return

the set of problems which matches the labels provided in the query section and also

according to the difficulty score.

• ML Model: As we have 461 labeled data and around 1539 data points are unlabelled.

Hence Fahad and Sharath have tried to label the unlabeled data using the labeled data points.

They have used semi-supervised algorithm names such as Label Propagation to mark the

unlabeled data points. Machine learning will predict the labels for unlabelled data points

with a confidence score and then will choose the top fifty data points from that and then

include those data points in the training portion in the next iteration.This process will repeat

itself for about twenty iterations.

• Web Application Deployment: There has been two separate docker container on which

front end and backend is hosted. It is hosted on cloud computer server instance of Indian

Institute of Technology of Computer Science and Engineering Department.

6



CHAPTER 3

PRIORITY

Contents
3.1 Key challenges: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 AST Analysis of Each Label: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Featurization : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Categorical Features: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Ordinal Features: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.3 Feature Extraction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.4 Feature Selection: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.4.1 Correlation Approach: . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.4.2 Variable K value for each labels: . . . . . . . . . . . . . . . . . . . . . 17

3.3.4.3 Ensemble Techniques: . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Machine Learning Model: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Label Prediction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1.1 Training the Model: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1.2 Prediction by the Model: . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Difficulty score Prediction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

PRIORITY is the web portal designed to make the corpus of the previous offering program-

ming question searchable so that tutors don’t need to prepare programming problems from scratch.

We are aware that we have a more number of unlabeled data points than identified ones.The ma-

chine learning model must be trained in order to forecast the labels and difficulty score for each

unlabeled data item.

Prediction of Label and difficulty scores are the two most crucial objectives of the thesis.Each

question includes a problem statement, a golden solution, and a template taken from the PRUTOR

SQL dump.Users of the portal could look for programming questions based on the level of com-

plexity and the amount of programming knowledge needed to solve them.As we have about 2K

data points, each problem must be indexed by the programming knowledge needed to solve it as

well as on the level of complexity if we want it to be found based on the passed query.

3.1 Key challenges:

• Label De-duplication: In the annotation stage, some problems have been given to many

tutors so that we could get some sort of consistency in the labeled data points.Although,

redundant data points are the major challenge after this stage. Therefore, those redundant

7



8 Chapter 3. PRIORITY

Figure 3.1: Distribution of Labeled Data Points. Image Credit [13]

data points need to be removed. The redundant data points are being merged using union

technique in the current PRIORITY scenario.

• Missing Label Problem: Numerous labels that are used frequently in programming ques-

tions include TerminalIO, Arithmetic, Conditionals Statements, and others. Since every

tutor has a unique combination of skills and perspective, some tutors may choose to over-

look labels that are frequently used, such as understanding of terminal input/output, and

instead annotate the issue with the most crucial label. For instance, if a specific program-

ming challenge calls for an understanding of conditional statements, arrays, and recursion.

But the tutors just annotate this issue with the recursion label because they believe that if

a student knows about recursion, he or she should also be familiar with conditional state-

ments and arrays, hence decided that other label are irrelevant to annotate. As a result, we

had a problem with missing labels. To fix it, we combined the labels and the difficulty score

averages for the data points annotated by two or more instructors.

• Problem of Class Imbalance: In our dataset, we have fewer labeled data points.Figure 3.1

shows the distribution of problems among twenty eight labels in sorted form. We can ob-

serve from the plot that there is a significant imbalance in the labels.Some labels that are

more popular have many problems labelled, while some labels that are less popular have

fewer problems identified.Therefore, a machine learning model that uses labels with fewer

problems that have been marked may perform poorly.

8



3.2. AST Analysis of Each Label: 9

3.2 AST Analysis of Each Label:

Previously in Priority, our seniors have used bag of words techniques for performing feature selec-

tion which didn’t capture the syntactic and semantic features of the source code. Abstract Syntax

Tree is the tree representation of the source code of any programming language. In this, each node

will depict the programming terms or constructs occurring in the source code which will help to

capture syntactic behavior of the source code . We have used the pycparser[4] compiler for getting

the abstract syntax tree of the source code. As it is a kind of tree so traversal will be easier. In

pycparser[4], there are a total of 49 node types such as For,PtrDecl,ArrDecl, etc.

We have 461 labeled data points which were labeled by tutors and faculties who conduct the course

ESC101 in IITK every semester and prepare lectures and questions for the lab sessions. We have

analyzed AST of problems tagged under each labels and tried to find which all nodes are necessary

for predicting the particular labels. We have ten major labels and two or three minor labels under

each major label.

1. TerminalIO:
Basic and Advanced are the two minor labels which come under the TerminalIO major

label. The presence of console input such as scanf,getline,gets and console output such as

puts, printf states about the terminalIO label.

• Basic: It includes simple console input and output statements with simple format

specifiers.

1 printf("%d\n", cur);

1 FuncCall: (at temp.c:20:17)
2 ID: printf (at temp.c:20:17)
3 ExprList: (at temp.c:20:24)
4 Constant: string , "%d\n"
5 ID: cur (at temp.c:20:32)

printf syntax with simple format specifier AST representation of basic printf

Table 3.1: Example of TerminalIO Basic

• Advanced:It includes console input and output with complex format specifier eg.%0.4lf .

1 printf("%0.4lf", area);

1 FuncCall: (at temp.c:18:5)
2 ID: printf (at temp.c:18:5)
3 ExprList: (at temp.c:18:12)
4 Constant: string , "%0.4lf"
5 ID: area (at temp.c:18:22)

printf syntax with complex format specifier AST representation of advanced printf

Table 3.2: Example of TerminalIO Advanced

After Analysis we have come to conclusion that for this label, we need to check for Func-

Call, ID and Constant node type.

2. Arithmetic:
This major label includes three minor labels such as basic,advanced and bit. This label

includes arithmetic operations present in C.

9



10 Chapter 3. PRIORITY

Figure 3.2: AST of sample code of arithmetic advanced

• Basic: This label includes binary operation in simple format. There should not be

any nested form of binary operation. All binary operators are included except the bit

operators.

• Advanced: All binary operators except the bit operators are present in nested form.

1 int main()
2 {
3 int res=1,var1 =4;
4 res1=res1*var1*var1*var1*var1;
5 }

Table 3.3: Example of Arithmetic Advanced

Figure 3.2 shows the level of BinaryOp present in above sample code.Hence to detect this

level we need feature which should count the number of level of same node types.

• Arithmetic Bit: All bit operators such as bitwise AND, bitwise OR, bitwise NOT are

included in this label.

1 #include <stdio.h>
2 int main()
3 { int a,b;
4 scanf("%d %d" ,&a,&b);
5 printf("%d",a^b); //xor is

false if both the bits
are 1

6 return 0;
7 }

1 FuncCall: (at temp.c:8:5)
2 ID: printf (at temp.c:8:5)
3 ExprList: (at temp.c:8:12)
4 Constant: string , "%d"
5 BinaryOp: ^ (at temp.c

:8:17)
6 ID: a (at temp.c:8:17)
7 ID: b (at temp.c:8:19)

Table 3.4: Sample Code and AST of example of Arithmetic Bit

10



3.2. AST Analysis of Each Label: 11

Here, we can see that we only need to check the operator of the BinaryOp node type. Hence

we need features for all unary,binary, ternary and bit operators which keeps the cunt of each

operators.

3. Conditionals: This major label includes four minor labels such as basic, advanced, switch

and flags.

• Conditionals Basic: This minor labels includes problems which has simple if-else

and if conditionals statements.Hence, here we should define feature which could find

whether any conditional node type is present or not.

• Conditional Advanced: This label includes problems which have nested if-else state-

ments.Hence, here bigram feature and count of number of same node type feature is

required as we need to check whether presence of bigram of (IF-IF).

• Conditional Switch: This minor label includes problems which have switch state-

ments. The count of switch statements and nested switch statements defines the diffi-

culty score. Hence here, we can say that unigram feature of switch node type is enough

to detect this label.

• Conditionals Flags: : This label includes the problems where some boolean variable

define the flow of the code.

1 #include <stdio.h>
2 int main(){
3 int n,mat[n][n];
4 scanf("%d",&n);
5 for(int i=0;i<n;i++){
6 for(int j=0;j<n;j++){
7 scanf("%d",&mat[i][j]);}}
8 int skew =1;
9 for(int i=0;i<n&&skew;i++){

10 for(int j=0;j<n;j++){
11 if(mat[i][j]!=-mat[j][i]){
12 skew =0;
13 break;
14 }}}
15 if(skew) printf("SKEW MATRIX\n");
16 else printf("NOT SKEW\n");
17 return 0;
18 }

Table 3.5: Example of Conditional Flags

Table 3.5shows the example of flag(skew=0) used. Presence of flag could be analysed logi-

cally. Hence we could not analyse it with the help of AST.

4. Loops:

• Basic: In this minor label, we have simple for,while and do-while loop. In this the

program should not contain any form of nested loop. Hence just the presence of for,

11



12 Chapter 3. PRIORITY

Figure 3.3: AST of nested for loop (Advanced Loop)

while node type is enough to detect this label. Unigram of for or while loop is required

to detect this loop and count of these loop could contribute to get the difficulty score

of the problem.

• Advanced : In this minor label, we have nested form of the loop.Hence just unigram

is not enough to detect this label. Combination of unigram and bigram is required to

detect this label. Below example briefly described the fact.

1 for(i=0;i<n;i++)
2 for(j=0.j<10;j++)
3 printf("%c", a[i][j]);
4 }

Table 3.6: Sample code of Nested For loop

Figure 3.3 clearly shows that we need to check for bigram feature (For-For) from the AST

and also level of same node type to detect this label.

• Loop-Invariant: As loop invariant is the condition which is true at every iteration.

Evaluating this label comes under dynamic analyses. Dynamic analysis could not be

performed by abstract syntax tree as it is used to extract syntactic details.

5. Arrays:

• Basic: This minor label includes one dimensional array with all the operation such as

creation,manipulation and iteration. Hence, here we need to check for the presence of

ArrDecl node type and compute the dimension of the array.

• Advanced: This label includes 2D array or nD arrays. As dimension is the only factor

which create the difference between basic and advance label hence dimension compu-

tation is required. We are employing the same procedure we used in the conditional

12



3.2. AST Analysis of Each Label: 13

statement and loop to check for nested form here. Bigram feature of parent−child

relationship could be used to detect this label.

• Memory: This minor label includes some of the memory management function such

as sizeof,malloc,calloc,realloc,free. As all these are function call hence we need to

check ID of FuncCall node type from the abstract syntax tree to detect this label.

6. Pointers:

• Basic: This minor label includes the declaration of pointers and simple operation

with pointers such as referencing,pointer arithmetic and dereferencing. The abstract

syntax tree of the problem solution should contain PtrDecl node type. There could be

any number of this node, however it should be present in nested form.

• Advanced: This minor label includes complex declaration of pointers such as pointer

to pointer and array of pointers. Below examples show the representation of abstract

syntax tree of pointer to pointer declaration.

1 int *C; 1 int **D;

Figure 3.4: Example of basic

Pointers
Figure 3.5: Example of Advanced

Pointers

Figure 3.4Figure 3.5shows the AST of basic and advanced pointers respectively. It

clearly states that unigram and bigram feature of parent−child relationship could be

used to detect basic and advanced pointers respectively.

13



14 Chapter 3. PRIORITY

7. Char-String:

• Basic: This minor label includes character declaration, character arithmetic, EOF and

NULL value.

• Advanced: This minor label includes declaration of character array, string function

and string manipulation. Currently we are ignoring the headers of the solution , how-

ever if we use, we could extract string.h from the header to detect this label.

8. Functions: For this label, we need to check for the parameter declared and passed to func-

tion and also the return value from the function.

• Basic: This minor label includes the declaration of function with simple parameter

and should return simple values.

• Advanced: This minor label includes the declaration of function with complex pa-

rameter such as arrays, structure or pointers. It could also return the array , structure

or pointer.

1 #include <stdio.h>
2 float exponential(int n, float

x) {
3 float sum = 1.0f;
4 int i;
5 for (i = n - 1; i > 0; --i )
6 sum = 1 + x * sum / i;
7 return sum;
8 }

1 #include <stdio.h>
2 void product(int p[], int n,

int* pro){
3 int i;
4 for(i=0; i<n; i++){
5 *pro = *pro * p[i];
6 }
7 return;
8 }

Table 3.7: Example of Basic & Advanced Function

9. Structures:

• Basic: Members of the structure in this label should be basic. arrays could be a mem-

ber, but pointers shouldn’t be present.Hence, We need to check Decl node type of each

member.

• Advanced: Members of the structure in this label may be complicated types, such

as pointers to structures and pointers to pointers. This category also includes nested

structures. Hence, we need to check unigram and bigram features of each member.

• DS(Data Structures): This minor label implements a number of significant data

structures, including linked lists, stacks, queues, trees, and graphs. These implemen-

tations are logical, therefore employing an abstract syntax tree was unable to capture

them. We have determined that there is a strong likelihood that this label will be

present if we have an advanced structure and recursion.

10. Algorithms:

• Recursion: We used a call graph to detect recursion. The easiest technique to spot

recursion is to create a directed call graph where each function is a node and all the

14



3.3. Featurization : 15

other functions it calls are connected by edges. Cycles in the graph lead to recur-

sion.Many static-analysis programs can produce call graphs from C source. However,

function pointers make it difficult for analyzers to find recursion since they would have

to look at every conceivable value that the program may assign the pointer to. If the

code contains function pointers, this could result in false negative results when em-

ploying static analysis. Details of the implementation of call graph could be found in

Debanjan’s thesis[5].

• DC(Divide and Conquer): This label includes the problem which divide the problem

into sub problem and solve each sub problem and combine the results of sub problem

to solve the problem.

• Greedy: This label includes the problem which could be solved by adopting best

possible approach.

• Dynamic Programming: This label includes the problem which could be solved by

algorithms based on dynamic programming.

Three labels—Algorithm DC, Algorithm Greedy, and Algorithm DP—need a dynamic

analytic approach for detection.Since the programming problem covered by these la-

bels may be resolved by identifying its logical behaviour, utilising an abstract syntax

tree is not an option.

3.3 Featurization :

According to our dataset, there are more unlabeled data points in PRIORITY; therefore, if we use

a machine learning model to predict labels for these data points, these data points will serve as the

train and test datasets. Each programming question must be modelled as a feature vector for this.

Since the problem setter typically presents the problem statements in the form of a situation or a

tale, we have totally dismissed the programming problem statements for feature extraction.

Prior to this, our seniors in PRIORITY have extracted the features using bag of words methodolo-

gies. We need strong features that can help predict the label for unlabeled data points and enhance

the performance of the machine learning model because we have less labelled data points.For

each solution code, we have employed an abstract syntax tree for feature extraction. In above sec-

tion 3.2, we have briefly described the analysis of each label using abstract syntax tree. Following

the analysis stage, we have carefully selected the features that would offer useful data and aid in

forecasting the labels and difficulty score for the specific challenge.We have taken into account

categorical and ordinal features to offer a more robust feature set.. Below is a brief description of

the features.

3.3.1 Categorical Features:

• Unigram Features: We have used Pycparser[4] to generate the abstract syntax tree. For C

language, Pycparser provide forty nine node types in abstract syntax tree. Hence there will

forty nine unigrams which will provide usful information and help in predicting some labels

such as Conditional Switch.Details of this features could be found in Debanjan’s thesis[5]

15



16 Chapter 3. PRIORITY

• Parent−Child Bigram Features:To identify the nested form of programming phrases like

nested loop, nested if-else, etc., we employed the parent−child bigram. We must navi-

gate the C code’s abstract syntax tree to accomplish this. Since Pycparser offers 49 types

of nodes, hence the parent-child bigram will have a total of 2401 features.Details of this

features could be found in Debanjan’s thesis[5]

• Parent−GrandChild Bigram Features: When two for loops or if statements are separated

by curly brackets, we can use the parent−grandchild bigram to detect the nested form of the

programming terminology such as nested loop, nested if−else, etc. We must navigate the

C code’s abstract syntax tree to accomplish this. Since Pycparser offers 49 node kinds, the

parent−grandchild bigram will have 2401 features in total.Details of this features could be

found in Debanjan’s thesis[5]

• Recursion check Features: Call graph technology has been used to implement this feature.

It is a binary feature, with a value of 1 if the cycle is present in the call graph and a value

of 0 otherwise. As a result, there will be one recursion check feature overall. Cycle in the

call graph has been found using depth first search.Details of this features could be found in

Debanjan’s thesis[5]

• Boolean Function Call Features: There is an easy way to tell if a function call is present

in C code. To accomplish this, we must navigate the abstract syntax tree and look for nodes

of the FuncCall node type. It is a binary feature that, if the FuncCall node type is present,

will be set to 1; otherwise, it will be set to 0.As a result, there will be one boolean function

Call feature overall.Details of this features could be found in Debanjan’s thesis[5].

3.3.2 Ordinal Features:

• Maximum Count of Same Node Type Sub−Tree Features: In place of basic unigram and

bigram features, we can extract more effective features. We could capture how frequently

that node type appears in the subtree. We simply take into account the maximum frequency

out of all the frequencies. We shall have features of dimension 49 because there are 49

different sorts of nodes provided by Pycparser[4].Details of this features could be found in

Debanjan’s thesis[5].

• Maximum Cycle length in Call Graph Features: We should calculate the call graph’s

cycle duration to provide some effective features. This will increase the accuracy of de-

tecting direct recursion and also aid in capturing indirect recursion.Maximum length should

be taken into consideration. As a result, there will be one maximum cycle length feature

overall. Details of this features could be found in Debanjan’s thesis[5].

• Maximum Depth of Same Node Type Features: In the AST, we have the frequency of

occurrence for each type of node. However, looking at the overall frequencies won’t reveal

as much about the program’s syntactic structure. As a result, we suggest that we count the

instances of each node type from the subtree’s root to its leaves for each subtree that is

rooted at that node type. We only use the highest possible count for each type of node. We

16



3.3. Featurization : 17

shall have features of dimension 49 because there are 49 different sorts of nodes provided

by Pycparser[4].Details of this features could be found in Debanjan’s thesis[5].

• Count of Operators Features: As we have discussed in section3.2, We need to feature

some of the values acquired from node types instead than just taking into account node

types. One feature determines whether the ID of the FuncCall is console input/output, and

if it is, another feature for the format specifier is available. We require features for each

BinaryOp, UnaryOp, and TernaryOp because we need to determine whether the BinaryOp

is a bit operator for the Arithmetic bit label. These features will keep track of frequency of

each operator appears in the programming problem’s solution. Debanjan’s feature set now

includes a total of 40 additional functionalities which has been by considering some of the

labels which requires value of the node type.

3.3.3 Feature Extraction:

Our seniors have employed bag−of−words for feature extraction, as we covered in chapter 2. In

order to create a robust feature set given the limited number of labelled data points, we employed

abstract syntax trees to extract the features from the answers to the programming problems. We

have discussed feature extraction for label prediction in this thesis. We have a 4992-dimensional

feature vector for each programming questions.

3.3.4 Feature Selection:

For each data point, we obtained a 4992 dimension feature vector after evaluating the abstract

syntax tree. We won’t use all the features to identify a specific label for the label prediction

job. Reducing the number of features for a learning task frequently improves how well machine

learning models perform.A subset of the features is sufficient to detect the specific label because

the features are resilient in nature.

As a result, we explored supervised feature selection strategies that filtered the features depending

on how input and output were related.

3.3.4.1 Correlation Approach:

The concept of correlation describes the relationship between two or more input variables that

can be utilised to forecast a target variable. We have experimented with a variety of correlation

techniques, such as selecting features based on precision, recall, or f1-score, and in doing so, we

have run into difficulties determining the threshold value that will convert non-binary features

to binary features. The pearson, spearman, and mutual information correlation approaches have

also been tested. All other methodologies are outperformed by the pearson correlation method by

tuning the hyperparameter K.

3.3.4.2 Variable K value for each labels:

By altering the value of K, we have conducted a number of experiments to obtain the right number

of features for each label that could be useful for prediction. As there are some programming

17



18 Chapter 3. PRIORITY

labels for which we required only one or two features that might help in detecting the particular

label for test cases, while there are other programming labels for which we need more than 10

features. Therefore, we considered testing out different K values for each programming label.We

conducted the experiment by varying the value of K from 1 to 40 and then selected the value of K

that produced the highest f1-score for each individual label.

3.3.4.3 Ensemble Techniques:

When we explored with correlation strategies, we found that the mutual information approach

and the Pearson correlation approach both produced good results for certain labels. Therefore,

we considered using an ensemble approach to integrate the outcomes of both approaches before

selecting the features. We have compiled the results of each strategy’s score for the Ensemble

approach using the formula below.

Final scores = T * P +(1- T) * M;

where T is hyperparameter, P is scores by Pearson approach,

M is scores by Mutual information approach.

In order to conduct this experiment, we first chose the same value of K for both approaches before

varying K values for each approach. Different values outperformed, as we discovered.

3.4 Machine Learning Model:

Our next objective is to select a suitable machine learning model that could employ these feature

vectors and aid in predicting labels for test data points after we have completed feature sets for

each programming label.

In chapter 2, we reviewed how Fahad and Sharad had previously trained the Balanced Random

Forest Classifier with bag-of-words features.In order to label unlabelled labels, they employed a

semi-supervised approach called label propagation. They have chosen the top fifty data points

from the unlabeled portions after each label propagation step and added those data points to the

training set for the subsequent iteration.Labels and difficulty scores are the two search criteria

being offered to search for a particular type of programming question. Therefore, label prediction

and difficulty score are the two main goals discussed below.

3.4.1 Label Prediction:

Predicting all the pertinent programming concepts linked to a given programming topic is what is

meant by the term "label prediction task." There are 28 different programming labels used in all.

An effective model for this task is a multi-label classification problem. After carefully examining

each programming label and its abstract syntax tree to obtain a feature vector of dimension 4992

for each data point, we will now examine the various machine learning approaches that can be

used to accomplish this task.

18



3.4. Machine Learning Model: 19

3.4.1.1 Training the Model:

There are roughly twenty eight programming labels, and we have chosen features for each of them.

We will individually train 28 distinct binary classifiers after feature selection. In this instance, we

applied the one-vs-all (OVA) method, which is intended to address the multi-label classification

problems during training. After the training phase, we will have 28 binary classifiers that can

predict a specific label. Gradient boosting Regressors and Logistic Regression cross validation are

two classifier algorithms that we have explored during training.

3.4.1.2 Prediction by the Model:

We have examined the One-vs-Rest technique for model prediction. For one-vs-Rest classification,

we must create N-binary classifier models for the dataset of N-class examples. The number of

created binary classifiers and the number of class labels contained in the dataset must be equal.

We have 28 binary trained classifiers that will determine whether or not the label is present. This

is one of the common methods for resolving multi-label categorization problems.

3.4.2 Difficulty score Prediction:

The instructors might use an important search criteria to discover an appropriate problem, which

is the level of difficulty of a programming task. It is necessary to create a machine learning model

to estimate the difficulty score of a programming question because a significant portion of the

PRIORITY data points are left unlabeled. As discussed in chapter 2, Previously this task was con-

sidered as multi class classification problem and the Random Forest Classifier method was used

to perform a straightforward classification with five classes. However, this method ignores the

ordinal relationship between the difficulty scores that exists.

This task is a good illustration of ordinal regression. We have investigated numerous regression

strategies to tackle this problem. For lower difficulty levels (1 and 2) across many metrics, we

discovered that the Random Forest classifier model performed better than the Gradient Boosting

Regressor model, whereas for higher difficulty scores(3, 4, 5), the Gradient Boosting Regres-

sor model performed better than the Random Forest Classifier. In order to benefit from both

methodologies, we have used an ensemble approach.Details of this could be found in Debanjan’s

Thesis[5].

19



20 Chapter 3. PRIORITY

20



CHAPTER 4

Experiments

Contents
4.1 Feature Selection: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Selection of Correlation Technique: . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Ensemble Approach Used in Correlation Technique: . . . . . . . . . . . . . . . . 22

4.1.3 Ensemble Approach with variable K value for each Labels: . . . . . . . . . . . . 24

4.1.4 Using variable value of K for each Labels: . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Comparison of Results of Ensemble Approaches: . . . . . . . . . . . . . . . . . . . . . 26

We will examine the experiments that we have conducted for the label prediction task in this

chapter and their accompanying findings.

4.1 Feature Selection:

4.1.1 Selection of Correlation Technique:

The concept of correlation describes the relationship between two or more input variables that can

be utilised to forecast a target variable. We have experimented with a variety of correlation strate-

gies to choose features, such as employing precision, recall, or f1-score as correlation techniques.

Both categorical and ordinal characteristics have been defined in our feature set, as it was ex-

plained in the section above. For categorical features, we can choose the essential traits for each

programming label by using precision, recall, or the f1-score as a correlation strategy. We had

difficulty with ordinal features, though, because we had to turn them into categorical characteris-

tics in order to use the correlation strategy. The threshold value is important information for this

conversion. Assuming a threshold value is challenging since some labels just require one or two

features to be identified while other labels require multiple features. Even though we tried with a

few threshold values, our findings weren’t very promising.

Following that, we tried with a few more correlation techniques, including mutual information and

Pearson’s correlation. Pearson Correlation is use to test whether there is a statistically significant

linear relationship among the features and also help to determine the strength and direction of

the association. After experimenting with Pearson’s approach, we found some promising results

hence we proceed with Pearson for future experiments. For different values of k, we compared

various metrics from the Logistic Regression Cross Validation model, such as accuracy, precision,

recall, and f1-score.

For feature selection , we are considering top-k features which has highest correlation score for

each label. Hence k is the hyperparameter and we have experimented with many values of K.

21



22 Chapter 4. Experiments

Program Label Accuracy @5 Precision @5 Recall @5 F1-Score @5
Arithmetic_Bit 0.9846 0 0 0
Algorithms_Greedy 0.9846 0 0 0
Arithmetic_Basic 0.7538 0.5263 0.5882 0.0.5556
Loops_Basic 0.6769 0.3529 0.375 0.3636
TerminalIO_Advanced 0.8 0.381 1 0.5517
Arrays_Basic 0.6308 0.2727 1 0.4286
Pointers_Advanced 0.9538 0 0 0
Conditionals_Flags 0.9077 0.2 0.3333 0.25
Structures_Basic 0.9846 0.5 1 0.6667
Char-String_Basic 0.6923 0.2083 0.8333 0.3333
Conditionals_Basic 0.5538 0.3571 0.8824 0.5085
Functions_Advanced 0.6769 0.4167 1 0.5882
Arithmetic_Advanced 0.9692 0 0 0
Conditionals_Switch 1 1 1 1
Algorithms_Recursion 0.9538 0.7273 1 0.8421
Structures_Advanced 1 1 1 1
Algorithms_DP 0.9231 0.1667 1 0.2857
Conditionals_Advanced 0.8615 0.1818 1 0.3077
Loops_Advanced 0.8923 0.7917 0.9048 0.8444
Arrays_Advanced 0.9538 0.7143 0.8333 0.7692
Char-String_Advanced 0.9231 0.1667 1 0.2857
TerminalIO_Basic 0.7077 0 0 0
Pointers_Basic 0.9077 0.3333 0.5 0.4
Structures_DS 9846 0.6667 1 0.8
Arrays_Memory 0.9692 0.75 0.75 0.75
Algorithms_DC 0.9692 0.3333 1 0.5
Functions_Basic 0.6769 0.4167 1 0.5882
Loops_Invariants 0.9385 0 0 0
Overall 0.8654 0.3935 0.7688 0.5205

Table 4.1: Logistic Regression model Metrics using Pearson’s Correlation Approach

Table 4.1 shows the metrics of the Logistic Regression Cross validation model by using Pearson’s

Correlation approach.

4.1.2 Ensemble Approach Used in Correlation Technique:

To choose a better feature that could aid in forecasting the programming labels, we have tried

with both Pearson correlation and mutual information correlation strategies. We have looked at

many values of k, which range from five to twenty. As was mentioned in the subsection 4.1.1, the

Pearson Correlation approaches produced encouraging findings.

However, after more analysis, we discovered that for some programming labels, Pearson corre-

lation is performing better and for some programming labels, mutual information is performing

better.As a result, we considered combining the findings from the two correlation methodologies

in some way so that we might benefit from both. There are two methods for doing this: the first

is to simply combine the results using simple statistical equations, and the second is to learn the

combination using a machine learning model.

22



4.1. Feature Selection: 23

The first strategy, which involves combining the results from the two correlation approaches

using a statistical formula, has been used in this thesis. The formula is presented in the chapter 3.

This combination of results is known as ensemble technique. Figure 4.1 shows the comparison

of the metrics of Mutual information and Person Correlation techniques at k=5. From the figure,

we have analyzed the f1-score obtained from the Pearson Correlation approach for some pro-

gramming labels such as Char-String Advanced, Arrays_Memory, TerminalIO_Advanced, Char-

String_Basic, and Conditionals_Basic is more than obtained from the mutual information ap-

proach. However, there are some labels such as Arithmetic_Basic, Loops_Basic, Arrays_Basic,

Pointers_Advanced, and TerminalIO_Basic for which the f1-score of mutual information is more

than Pearson. Rest labels have the same values for both approaches.Table 4.2 shows the metrics

obtained by the ensemble approach. This experiment has been performed by considering the same

value of k for both the correlation approaches.

Program Label Accuracy@5 Precision@5 Recall@5 F1-Score@5
Arithmetic_Bit 0.9846 0 0 0
Algorithms_Greedy 0.9846 0 0 0
Arithmetic_Basic 0.7692 0.5714 0.4706 0.5161
Loops_Basic 0.6769 0.3529 0.375 0.3636
TerminalIO_Advanced 0.9077 0.5714 1 0.7273
Arrays_Basic 0.7538 0.36 1 0.5294
Pointers_Advanced 0.9692 0 0 0
Conditionals_Flags 0.9077 0.2 0.3333 0.25
Structures_Basic 0.9846 0.5 1 0.6667
Char-String_Basic 0.8 0.2667 0.6667 0.381
Conditionals_Basic 0.6923 0.2083 0.8333 0.3333
Functions_Advanced 0.6769 0.4167 1 0.5882
Arithmetic_Advanced 0.9692 0 0 0
Conditionals_Switch 1 1 1 1
Algorithms_Recursion 0.9538 0.7273 1 0.8421
Structures_Advanced 1 1 1 1
Algorithms_DP 0.9231 0.1667 1 0.2857
Conditionals_Advanced 0.8615 0.1818 1 0.3077
Loops_Advanced 0.8923 0.7917 0.9048 0.8444
Arrays_Advanced 0.9538 0.7143 0.8333 0.7692
Char-String_Advanced 0.9538 0 0 0
TerminalIO_Basic 0.8154 0 0 0
Pointers_Basic 0.9077 0.3333 0.5 0.4
Structures_DS 0.9846 0.6667 1 0.8
Arrays_Memory 0.9692 0.75 0.75 0.75
Algorithms_DC 0.9692 0.3333 1 0.5
Functions_Basic 0.6769 0.4167 1 0.5882
Loops_Invariants 0.9385 0 0 0
Overall 0.8846 0.4332 0.6936 0.5333

Table 4.2: Logistic Regression Model Metrics using Ensemble approach

23



24 Chapter 4. Experiments

Figure 4.1: Comparison of Metrics of Mutual information and Pearson Correlation Approach @5

4.1.3 Ensemble Approach with variable K value for each Labels:

We experimented with a combination of mutual information and Pearson’s correlation approach at

different values of k after studying the outcomes of a mixture of two correlation techniques for the

same value of k. According to Debanjan’s thesis[5], mutual information performs better at k=20

and from subsection 4.1.1 we have found that Pearson performs better at k=5, respectively. When

24



4.1. Feature Selection: 25

we compare both the Table 4.2,Table 4.3, we can see that there is significant increment in f1-score

for the ensemble approach with different k value for each correlation technique.

Program Label Accuracy Precision Recall F1-Score
Arithmetic_Bit 0.9846 0 0 0
Algorithms_Greedy 0.9846 0 0 0
Arithmetic_Basic 0.8 0.6667 0.4706 0.5517
Loops_Basic 0.7385 0.4615 0.375 0.4138
TerminalIO_Advanced 0.9077 0.5714 1 0.7273
Arrays_Basic 0.7538 0.36 1 0.5294
Pointers_Advanced 0.9846 0 0 0
Conditionals_Flags 0.9231 0 0 0
Structures_Basic 1 1 1 1
Char-String_Basic 0.7692 0.2353 0.6667 0.3478
Conditionals_Basic 0.6923 0.4348 0.5882 0.5
Functions_Advanced 0.7538 0.4828 0.9333 0.6364
Arithmetic_Advanced 0.9692 0 0 0
Conditionals_Switch 1 1 1 1
Algorithms_Recursion 0.9538 0.7273 1 0.8421
Structures_Advanced 1 1 1 1
Algorithms_DP 1 1 1 1
Conditionals_Advanced 0.8769 0.2 1 0.3333
Loops_Advanced 0.8923 0.85 0.8095 0.8293
Arrays_Advanced 0.9538 0.7143 0.8333 0.7692
Char-String_Advanced 0.9538 0.25 1 0.4
TerminalIO_Basic 0.8615 0 0 0
Pointers_Basic 0.9231 0.4 0.5 0.4444
Structures_DS 1 1 1 1
Arrays_Memory 0.9692 0.75 0.75 0.75
Algorithms_DC 0.9846 0.5 1 0.6667
Functions_Basic 0.6769 0.4167 1 0.5882
Loops_Invariants 0.9385 0 0 0
Overall 0.9016 0.4879 0.6994 0.5748

Table 4.3: Logistic Regression Model Metrics using Ensemble approach
with different k

4.1.4 Using variable value of K for each Labels:

By adjusting the amount of K, we have run a number of tests to obtain the right number of features

for each label that could be useful for prediction. For some programming labels, we just require

one or two qualities that could aid in identifying the specific label for test cases, however for other

programming labels, we need more than ten features that could aid in identifying the specific label

for test instances.

Therefore, we considered testing out numerous K values for each programming label. We con-

ducted the experiment by varying the value of K from one to forty, and then we chose the value of

K that produced the highest f1-score for each individual label. Table 4.4shows the metrics of the

Logistic Regression model using variable value of k for each programming labels. After compar-

25



26 Chapter 4. Experiments

ing the scores of Table 4.1,Table 4.2, Table 4.4, we can see that there is significant increase in the

f1-score in Table 4.4 for the newly proposed approach of using different value of k for each label.

Program Label Accuracy@5 Precision@5 Recall@5 F1-Score@5
Arithmetic_Bit 0.9846 0 0 0
Algorithms_Greedy 0.9385 0.2 1 0.3333
Arithmetic_Basic 0.7692 0.55 0.6471 0.5946
Loops_Basic 0.6923 0.3889 0.4375 0.4118
TerminalIO_Advanced 0.8308 0.4211 1 0.5926
Arrays_Basic 0.7692 0.375 1 0.5455
Pointers_Advanced 0.9846 0.5 1 0.6667
Conditionals_Flags 0.9077 0.2 0.3333 0.25
Structures_Basic 1 1 1 1
Char-String_Basic 0.8154 0.2857 0.6667 0.4
Conditionals_Basic 0.6615 0.4194 0.7647 0.5417
Functions_Advanced 0.7538 0.4839 1 0.6522
Arithmetic_Advanced 0.9231 0.2 0.5 0.2857
Conditionals_Switch 1 1 1 1
Algorithms_Recursion 0.9538 0.7273 1 0.8421
Structures_Advanced 1 1 1 1
Algorithms_DP 1 1 1 1
Conditionals_Advanced 0.8615 0.1818 1 0.3077
Loops_Advanced 0.9077 0.8571 0.8571 0.8571
Arrays_Advanced 0.9538 0.7143 0.8333 0.7692
Char-String_Advanced 0.9231 0.1667 1 0.2857
TerminalIO_Basic 0.9385 0 0 0
Pointers_Basic 0.8923 0.3333 0.75 0.4615
Structures_DS 1 1 1 1
Arrays_Memory 0.9692 0.6667 1 0.8
Algorithms_DC 0.9846 0.5 1 0.6667
Functions_Basic 0.6769 0.4167 1 0.5882
Loops_Invariants 0.9385 0 0 0
Overall 0.894 0.4658 0.7861 0.5849

Table 4.4: Logistic Regression Model Metrics using Variable value of K for each labels

4.2 Comparison of Results of Ensemble Approaches:

Metrics Ensemble@same_K Ensemble@different_K Ensemble@variable_K
Accuracy Score 0.8846 0.9016 0.894
Precision Score 0.4332 0.4879 0.4658
Recall Score 0.6936 0.6994 0.7861
F1-Score 0.5333 0.5748 0.5849

Table 4.5: Comparison of the metrics of different Ensemble approaches
From Table 4.5,we can say that Ensemble approaches with variable value of k shows promising
results in f1-score. However one-vs-rest algorithm suffer from low precision score. As PRIOR-
ITY suffer from missing label which results in high recall score.

26



CHAPTER 5

Conclusion and Future Work

Contents
5.1 Conclusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Future Work: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Conclusion:

This thesis makes several suggestions for enhancements to the machine learning models used in the

PRIORITY portal’s back-end.As discussed in chapter 3, we mainly concentrated on the feature-

stretching methods employed in PRIORITY. It is obvious that the suggested improvements have

greatly enhanced label prediction performance.

The improvements are the result of a careful examination of the abstract syntax tree and testing

a number of correlation strategies in order to identify the most effective correlation strategy for

feature selection. We need to extract better features because there is a shortage of labelled data.In

order to combine two or more correlation techniques at once and choose more reliable characteris-

tics, we have experimented with ensemble strategies. For the model’s training and prediction, we

employed a conventional logistic regression model. The explanation for the higher scores is that

the machine learning models were trained using more robust features.

5.2 Future Work:

• We are not using the problem statement for prediction labels, as we have described in this

thesis. In order to use the problem statement for label prediction in future work, some

methodologies could be investigated.

• At the training and prediction stages, we have only investigated the One-Vs-Rest algorithm.

As a result, several algorithms for training and prediction might be investigated.

27



28 Chapter 5. Conclusion and Future Work

28



CHAPTER 6

Appendix

Contents
6.1 PycParser Node Types for C language: . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 PycParser Node Types for C language:

• ArrayDecl

• ArrayRef

• Assignment

• Alignas

• BinaryOp

• Break

• Case

• Cast

• Compound

• CompoundLiteral

• Constant

• Continue

• Decl

• DeclList

• Default

• DoWhile

• EllipsisParam

• EmptyStatement

• Enum

• Enumerator

• EnumeratorList

• ExprList

• FileAST

• For

• FuncCall

• FuncDecl

• FuncDef

• ID

• Goto

• IdentifierType

• If

• InitList

• Label

• NamedInitializer

• ParamList

• PtrDecl

• Return

• StaticAssert

• Struct

• StructRef

• Switch

• TernaryOp

• TypeDecl

• Typedef

• Typename

• UnaryOp

• Union

• While

• Pragma

29



30 Chapter 6. Appendix

30



PART II : MACER



2 Chapter 6. Appendix

2



CHAPTER 7

Introduction

Contents
7.1 Our Contribution: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Research is currently being done on the use of AI-assisted tools for educational and software
engineering applications. Compilation mistakes represent a significant learning obstacle for be-
ginning programmers. Additionally, the compiler’s comments generally addresses to more expe-
rienced programmers and may not make sense to novices. Programmers can benefit substantially
from automated compilation error repair, which generates fixes for flawed programmes using AI-
based techniques. For instance, if we use the condition "1=a" in a loop (where an is an integer
variable), the compiler will generate the error "expression is not assignable," which is challenging
for a new programmer to comprehend. Although the error statement mentions expression, the
problem in this case is with assignment.

Therefore, it could be frustrating for a novice programmer to comprehend these error messages
produced by the compiler and implement the fix. Although an experienced coder should have
no trouble understanding it because he has probably encountered this issue before. However, in
this case, if the inexperienced programmers receive some assistance from some knowledgeable
instructors, that might aid them to learn quickly. It is impossible to provide human mentors to
every student, despite the fact that the number of students is growing every year.

A lot of attention has grown in recent years around employing a machine learning method to
correct flawed programmes. We have seen some encouraging outcomes in this area. One of the
first studies, DeepFix[8], used a sequence-to-sequence machine learning model to produce right
target code from flawed source code.The next strategy in this field was TRACER[1], which relies
on source and target pairs provided from PRUTOR[7] and helps to identify student errors so that
programmes can be corrected based on this data rather than artificially manufactured data.

A simple machine learning model that predicts the types of repairs that could be made as well
as the locations where they should be made has been utilised by MACER[6] to establish six major
modules for predicting repairs for the incorrect programme.As a result, it has demonstrated im-
provement over TRACER[1] in terms of accuracy as well as training and testing time.MACER[6]
just uses the line number supplied by the compiler generated message and does not fully utilise
the compiler diagnostic error message.

DrRepair[14] is one method for fixing a source programme with a compilation error. To gen-
erate the correct target code from the incorrect source code, they employed a sequence to sequence
model with a graph attention mechanism, which completed the operation in a single pass.

The approach that SampleFix[9] recommended focused mostly on the variety and uncertainty
of source code. We know that several types of code may have the same outcome, thus they pro-
pose a one-to-many mapping between the source and target programmes to repair the flawed pro-
gramme.In order to increase accuracy, especially when there are fewer labels, and scale up the
XML demands with many labels, DECAF[12] created initialization procedures for categorization.

Every module was optimised by MACER++[13] using the MACER[6] principle. They made
use of the MACER[6] repair class generation idea, and TRACER was employed to provide syn-
thetic data. PLT[11] (Probabilistic Label Tree), DiSMEC (one-vs-rest classifier for multi-label
classification), and Tree Based XML approaches have been utilised to enhance the MACER[6]
pipeline.

3



4 Chapter 7. Introduction

The MACER++[13] pipeline was initially developed for the C programming language, but as
Python gained popularity and adoption, a tool was created that provides interactive feedback to
help programmers fix compilation errors in Python scripts. There is now an application called
PyMACER[10] that uses the MACER++[13] pipeline to correct Python code problems.

Below is the example which shows the erroneous source code , corrected target code and
compiler generated error message.

1 #include <stdio.h>
2 int check_prime(int num)
3 {
4 int i;
5 for(i=2;i<=num -1;i++)
6 {
7 if(num%i=!0)
8 {
9 return 0;

10 }
11 }
12 return 1;
13 }

1 #include <stdio.h>
2 int check_prime(int num)
3 {
4 int i;
5 for(i=2;i<=num -1;i++)
6 {
7 if(num%i != 0)
8 {
9 return 0;

10 }
11 }
12 return 1;
13 }

Compiler generated error message: test.c:6:12: error: expected expression
Repair predicted by MACER: Replace =! with != on line 7.

Table 7.1: Example of repair prediction

7.1 Our Contribution:

• We have analyzed the repair classes provided by MACER. We have found that some of the
repair classes are giving promising results.

• We have proposed changes in Tokenization step by correcting the first token of the erroneous
source line.

4



CHAPTER 8

Related Works

Contents
8.1 TRACER (Targeted RepAir of Compilation ERrors): . . . . . . . . . . . . . . . . . . 5
8.2 TEGCER: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
8.3 MACER (Modular Accelerated Compilation Error Repair): . . . . . . . . . . . . . . 6
8.4 Dr Repair: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8.5 SampleFix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.6 DECAF: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.7 MACER++: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.8 PyMACER: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

In recent years, there has been a lot of interest in using artificial intelligence and deep learning
to fix flawed programming codes . For the automatic repair of programs, this area has produced
many encouraging outcomes.
The compiler creates messages that display program errors and include the line number where the
error occurred. However, those messages produced by the compiler are challenging for new pro-
grammers to grasp. These compiler-generated messages are more obscure in nature, making them
difficult for beginning programmers to understand yet simple for expert programmers. Beginner
programmers need to spend a lot of time understanding the messages produced by the compiler as
a result. Due to this, many researchers have developed a keen interest in this field. We’ve covered
some of the relevant research that has been done in this area below.

8.1 TRACER (Targeted RepAir of Compilation ERrors):

• The repair process was originally broken down into several stages by TRACER[1], including
Abstraction of the Code, Concretization, Localization of the Error, and Abstract Repair of
Code.

• Instead of training on the entire incorrect source code, TRACER[1] was trained on the pair
of incorrect source line and rectified target line.

• TRACER[1] abstracts identifiers and literals into certain generic tokens like TYPEKIND_INT,
TYPEKIND_Literals, etc. instead of working directly on the source code.

• TRACER[1] took three lines from the source code; the first is the error line produced by the
compiler, and the other two are the lines immediately above and below it. The deep learning
model was fed these three lines.

8.2 TEGCER:

• Based on the solutions or modifications submitted by their peers, TEGCER[2] is a system
that suggests corrections to the student’s incorrect code.

• With the aid of the messages the compiler produces, TEGCER[2] initially creates the error-
repair classes and offers advice on how to fix erroneous lines.

5



6 Chapter 8. Related Works

• The compiler reported error lines and the bigrams and unigrams of the incorrect line are
used to generate an encoded feature vector.

• A dense feedforward neural network is trained using this feature vector to forecast the error-
repair classes.

8.3 MACER (Modular Accelerated Compilation Error Repair):

In addition to locating the lines that require repair, MACER[6] also identifies the type of repair
each line requires as well as the location of the repair.TEGCER[2]-generated repair classes have
been used in MACER[6]. They have investigated multi-class and multi-label learning tasks, such
as hierarchical classification and reranking algorithms, for the challenge of code repair.The six
modules that make up MACER[6] are outlined below.

• Repair Lines : This module aids in locating lines of the source code that require repairing.

• Feature Encoding :Code abstraction has been carried out in this module for the specified
lines to produce a feature vector with a 2239-dimension.

• Repair Class Prediction :Out of 1016 repair classes, the type of repair to be employed in
the source code was selected using the feature vector.

• Repair Profile prediction :The position of the repair inside the source code has been pre-
dicted in this module using the feature vector.

• Repair Application : Predicted repairs have been used in this module at predicted sites.

• Repair Concretization : In this module, undo the code’s abstraction before compiling it to
verify that the repair was successful or not.

8.4 Dr Repair:

• The proposed Graph Attention-based network and compiler diagnostic feedback are used to
correct compiler errors. It encodes diagnostic compiler feedback and flawed source code as
inputs, then decodes the error line and fixed code using LSTM and graph attention models.

• All of the source code identifiers and diagnostic parameter symbols were taken into consid-
eration as nodes, and it was suggested that instances with the same symbols that characterise
sematic behaviour be connected.Then, they created a neural network model using a graph
attention mechanism that could simulate the process of tracking symbols.

• By employing a feedforward network and a pointer-generator decoder, they were able to
model the likelihood that a line would be incorrect. Training is more time-consuming and
requires a hugely powerful equipment.The hardest part is fine-tuning the hyperparameter so
that it can concentrate on particular kinds of faults.

• They have suggested a method to produce more fictitious training data. Based on three sce-
narios—beginner programmer, professional programmer, and predicted code—they have
examined compiler faults.They have investigated several datasets based on these cases and
divided them into four main groups, including syntax, ID-type, keyword, and ID-typo. Fol-
lowing that, they looked into codeforces websites to gather more syntactically sound pro-
grammes and looked into probability distribution to produce additional source-target pairs.

6



8.5. SampleFix: 7

8.5 SampleFix:

• The method that SampleFix[9] suggested was primarily concerned with the diversity and
ambiguity of source code. They suggest a one-to-many mapping between the source and
target programmes in order to fix the flawed programme because we know that different
types of code may generate the same result.

• A conditional variational autoencoder is trained to offer efficient fixes to flawed programmes,
and after interacting with the compiler, the repair’s correctness is assessed. The regularizer
which penalises the repairs has increased the effectiveness of the fixes.

8.6 DECAF:

• For challenges involving multi-label categorization, DECAF[12] introduced an XML tech-
nique. According to this technique, each data point is given a specific subset of labels from
the overall huge collection of labels. When we have less training data points, collaborative
learning is employed and this label metadata is utilised.

• According to the one-vs-rest methodology, they have learned a unique linear classifier for
each label in the DECAF[12] paper. These classifiers use the label’s metadata and offer
helpful data.

• DECAF[12] developed initialization strategies for categorization that let them improve ac-
curacy, particularly when there are less labels, and scale up the XML workloads with large
numbers of labels.

• They introduce the following three topics: A lightweight text embedding block generated
distinct one-vs-rest classifiers for each label and a shortlisted that offers high recall for data
points for short-text applications.

8.7 MACER++:

• The MACER[6] approach, which was previously discussed, has been improved with MACER++.
On MACER++, Fahad[13] and Sharath[10] have collaborated. This offers improvements to
a few MACER[6] modules while essentially maintaining the same pipeline overall. Since
the pipeline is essentially unchanged, it provides all of MACER’s[6] advantages while also
being more efficient and helpful.

• Basically, it presents a brand-new method for producing synthetic data. Using existing
data (source programmes), the synthetic data creation technique creates fresh samples with
realistic errors that match those committed by inexperienced programmers. Considering
how little of the Python dataset we have to work with there is, this is also really helpful.

• MACER++ has been developed for C programming languages and dataset was obtained
from TRACER[1].

8.8 PyMACER:

• MACER++ was performing better and becoming more well-known. The development of an
interactive and practical application that informs students of Python programme mistakes
was carried out.

7



8 Chapter 8. Related Works

• As mentioned above, the MACER++ pipeline was developed for the C programming lan-
guage. PYMACER is a Python programming language implementation that uses a machine
learning model as its backend and follows the MACER++ pipeline.

8



CHAPTER 9

Proposed Approach

Contents
9.1 Analysis of Repair Class of MACER: . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

9.2 Changes made in Abstraction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9.3 Changes made in Tokenization: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A light machine learning model that identifies the types of repairs that could be made as well as
the locations where they should be made has been utilised by MACER[6] to describe the methods
of predicting repair for the incorrect programme in six different modules. In terms of precision of
repair, MACER’s[6] performance is more encouraging than that of earlier approaches, and it also
requires fewer resources.

Full compiler diagnostic error messages are not used by MACER[6]. They merely use the line
number that the compiler provides. Machine learning model performance may be improved by us-
ing the knowledge included in compiler diagnostic error signals, as demonstrated by DrRepair[14].
The problem with MACER[6] is that zero shot cases cannot be repaired using it. Zero shot cases
are those in which the machine learning model cannot make a repair because they are not included
in the training dataset. Additionally, MACER[6] does not make use of potentially useful infor-
mation offered by the repair classes. We have made an effort to investigate some of the concerns
raised above and also to enhance the repair class prediction.

9.1 Analysis of Repair Class of MACER:

In order to remove compilation errors from the abstracted source code, repair classes combine the
insertion and deletion of tokens. It is one of MACER’s[6] modules. We examined a few of the
repair classes discovered by MACER[6], which are briefly stated below:

• Case 1: Incorrect position of the ; in a line: From the Table 9.1, we can see that there
is same type of error in all the three examples such as the semicolon is present before the
bracket. After analysis, it seems that the repair class depends on the type of bracket. As for
common and square bracket is insertion and deletion of bracket whereas for curly braces,
it is insertion and deletion of semicolon. It seems that these types of errors are handled by
using multiple repair classes.

Source Line Target Line Repair class
printf("%c",a1[i];) printf("%c",a1[i]); Delete: )

Insert: )
else { return b}; else { return b;} Delete: ;

Insert: ;
str[j]=str[j+(count/2)+1;] str[j]=str[j+(count/2)+1]; Delete: ]

Insert: ]

Table 9.1: Example of incorrect position of semicolon(;)

9



10 Chapter 9. Proposed Approach

• Case 2: Invalid Token Identification: As we can see in Table 9.2, the repair could be
deletion of ! and insertion of a backslash symbol ( \ ) and there is no need of deletion of
this token "); and insertion of again ) and ; as individual token. Hence in this case while
tokenization, "); is identified as single token which is invalid if we consider the rules of C
programming language.

Source Line Target Line Repair class
- !
- ");

printf ( " \\\" " ! "); printf ( " \\\" \" " ) ; + )
+ ;
+ \"

Table 9.2: Example of Invalid token identification

• Case 3: Unbalanced Parentheses: Another frequent repair class was formed due to unbal-
anced parentheses which leads the parser to consider valid function calls as invalid tokens.
In Table 9.3, we can see both text and abstracted form of the source and target line.If we
keep each token in stack then we can clearly see that ceilf function is valid function and
printf is invalid if one bracket is missing. However, it is identifying valid function as invalid
and vice versa.

Source Text/Abstracted Target Text/Abstracted Repair class
printf("%f",ceilf(rad); printf("%f",ceilf(rad)); - TypeKind.INVALID

+ TypeKind.FUNCTIONCALL
+ )

printf ( "%f " , TypeKind.INVALID printf ( " %f " ,
TypeKind.FLOAT ) ; TypeKind.FUNCTIONCALL (

TypeKind.FLOAT ) ) ;

Table 9.3: Example of repair class of unbalanced parantheses

• Case 4: Same Insertion and deletion: Another frequent repair class was formed due to
deletion and insertion of same type of token. The example has been shown for this type
of case in Table 9.4. As we know that MACER[6] has introduced three type of operation
such as insert,delete and replace which was performed for repairing the source code , hence
if we could introduce one more operation named as shift. This shift operation should be
performed when we have same deletion and insertion and it could provide repair by shifting
that token either by left or right then there is no need to perform deletion and insertion of
same token.

Source Line Target Line Repair class
if else ( TypeKind.INT != else if ( TypeKind.INT != - else
TokenKind.LITERAL_INT ) TokenKind.LITERAL_INT ) + else
TypeKind.POINTER = ( * int ) malloc TypeKind.POINTER = ( int * ) malloc - int
( ( TypeKind.INT + TypeKind.INT ( ( TypeKind.INT + TypeKind.INT + int
) * sizeof ( int ) ) ; ) * sizeof ( int ) ) ;

Table 9.4: Example of repair class of same insertion and deletion

10



9.2. Changes made in Abstraction: 11

• Case 5: Repair of First token: There are approximately 289 data points in our datasets
where the error is in only the first token, according to our analysis of repair classes. These
token are the reserved words of the C programming language. In Table 9.5, we can see

Source Text Source Abstracted Form
whileb ( i = 10 ) "TypeKind.FUNCTIONNOPROTO ( TypeKind.INT =

TokenKind.LITERAL_INT )

Table 9.5: Example of repair class having error in first token

that whileb is identified as TypeKind.FUNTIONNOPROTO which means it is considering
whileb as function name. However if we could extract first token and correct it then this
source could compile successfully.

9.2 Changes made in Abstraction:

The source code in MACER[6] has been abstracted, and error lines provided by the compiler
have been retrieved from the abstracted code. The source lines include a number of user-defined
literals and identifiers but are not helpful for error correction. It is typical in the literature to lower
the input vocabulary size in order to prevent saturating the machine learning approach with these
meaningless tokens.This is accomplished by MACER[6] by maintaining keywords and symbols
while substituting literals and identifiers by their associated abstract LLVM token types.

By taking into account its type information, MACER[6] is substituting literals and identifiers.
An exclusive token named INVALID is used to replace unrecognised identifiers. For example,
the expression double a=4.5; will have the abstracted form as double VARIABLE DOUBLE =
LITERAL DOUBLE;.

After analysing the repair classes, we have conducted experiment to reduce the vocabulory size
to some extent. This attempt is performed by removing the type consideration used by MACER[6]
at the time of substituting literals and identifiers. We have replaced the all literals by special to-
ken called LITERALS and replaced all identifiers by special tokens called NON_NUMERIC and
NUMERIC. For example whether the identifier is int or double , it will be replaced by NUMERIC
token. We have trained the model and tested on TRACER[1] dataset, however there was no im-
provement in the accuracy. The accuracy was similar to MACER[6] accuracy.

9.3 Changes made in Tokenization:

We discovered problems in the tokenization and abstraction steps after analysing the repair class
in section 9.1. In the tokenization stage, we attempted to give some modifications. Lightweight
tokenization has been employed. For the C programming language, we have created lexer rules.
ANTLR was used to write these lexer rules. ANTLR is a robust parser generation tool that pro-
cesses, executes, and translates binary or structured text files.

Rules for doing Tokenization:

• All reserved word,format specifiers,escape sequence and operators from C programming
language should be identified as single token.

• All other terms, excluding those stated in first point , are tokenized as characterwise.

• With the exception of situations when the second operator is a unary operator, there should
never be any whitespace between two operators.

Lexer helped us remove whitespaces by identifying them as unknown due to the inconsistent
spacing in the source line token. For example, the statement if(num != = 0) will be tokenized

11



12 Chapter 9. Proposed Approach

using lexer rules as [’if’,’n’,’u’,’m’,’!==’,’0’,’)’] .Lexer rules were used to generate tokens, which
we then used to create bigrams and apply the sliding window technique on.

To locate the token that has to be added or removed to make the source code accurate, we
used the sliding window technique.Let’s examine the sliding window method for windows with
a size of two. Let’s look at an illustration where the source = ’abcd’ and target = ’abd’. The
example makes it abundantly evident that the ’c’ token needs to be deleted. As the window size
is two for sliding window hence token for source will be [’ab’,’bc’,’cd’] and for target will be
[’ab’,’bd’]. After comparing the source and target, we have found that [’bc’,’cd’] token from
source is not present in target token list and last term of ’bc’ is same as first term of ’cd’,hence if
we could delete the common term and combine it with similar window size of two then we will get
similar token list as target. If we have this common term in target token list then, insertion need
to be performed.However, for window sizes greater than two, the same concept for discovering
insertion and deletion did not function effectively. As a result, we have abandoned the sliding
window method and instead used the Sequence Matcher algorithm of difflib library of Python to
match the tokens.

Our vocabulary size has expanded after training the model with the adjustment in the tokeniza-
tion stage, which includes roughly 4k models trained as bigrams which was previously around 2k.
We didn’t acquire any encouraging outcomes from this experiment. As we were getting many
spurious bigrams which reduces the accuracy of repair.Let’s use the word "num" as an example to
understand about spurious bigrams. Since it is not a reserved word so it will follow characterwise
tokenization, the unigrams and bigrams for this word will be [’n’,’u’,’m’,’nu’,’um’]. Three uni-
grams and two bigrams were produced from this, however they are useless since they will confuse
the machine learning model and act as noise.The spurious bigrams is the reason to remove char-
acterwise tokenization. However, characterwise tokenization has removed some of the issue from
repair class discussed in section 9.1.

After this attempt, we have set new rules for tokenization. We will be removing whitespaces
between two operators, with the exception of situations when the second operator is a unary oper-
ator. The first token, which is mostly a reserved token from the C programming language, will be
corrected from the source code. We discovered about two hundred data points from the datasets
with only the first token being incorrect.

We have taken the first token from the source text line and used the Python NLTK package to
run a similarity check against the list of reserved words for the C programming language in order
to rectify the first token of the incorrect line. The correct reserved term has been substituted in the
source text line if the similarity score of the token is more than 0.8, which strongly indicates that
it is a reserved word. Following the first token’s correction, we invoked the abstraction function,
which transformed the source text line into an abstracted form. Finally, using the exception rules,
we eliminated the whitespaces between the operators, completing the tokenization process. Fol-
lowing that, we used the MACER[6] pipeline to train and test the model using the TRACER[1]
dataset.

12



CHAPTER 10

Experiments and Results

Contents
10.1 Tune the Hyperparameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.2 Changes made in Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

We will examine the experiments that we have conducted for the optimizing the modules of
MACER[6] in this chapter and their accompanying findings.

10.1 Tune the Hyperparameter:

This experiments has been conducted on MACER[6].After analysing the repair classes, we dis-
covered that several of them have lengths of more than one hundred.Hence we have performed
experiment by tuning the length of the repair classes and run the model on TRACER[1]dataset
at different pred@K value. Pred@K is the proportion of a model’s programmes that successfully
matched the target code. K indicates that the number of repairs anticipated by the model were
taken into consideration.

Length of repair class No.of data points Pred@5 Pred@8 Pred@10
4 3791 0.616 0.629 0.633
10 713 0.662 0.67 0.673
20 150 0.65 0.66 0.664
30 54 0.636 0.65 0.652

Table 10.1: Results of tuning the length of repair classes

In Table 10.1,we have shown the results of tuning the length of repair classes of MACER[6].Here
length of repair class means we have restricted the length of repair class and we have removed
those repair classes from the diffset who has more length then the specified one. Number of
data points defines the data points from the dataset which has more length then the specified one.
Though we didn’t get any promising results with this experiment as the accuracy at Pred@5 men-
tioned in MACER[6] paper is 0.693.

10.2 Changes made in Tokenization

After examining the repair class, we found issues in the tokenization and abstraction phases.We
have made some rules for tokenization.With the exception of circumstances when the second op-
erator is a unary operator, whitespace will no longer be allowed between two operators. We will
correct the first token from the source code, which is mostly a reserved token from the C program-
ming language. About two data points were extracted from the databases, and only the first token
was inaccurate.

To repair the first token of the wrong line, we have taken the first token from the source text
line and performed a similarity check against the list of reserved words for the C programming
language. If the similarity score of the token is more than the threshold value, which strongly
suggests that it is a reserved word, the correct reserved term has been substituted in the source

13



14 Chapter 10. Experiments and Results

Dataset
Pred@5 Rep@5

Old New Old New
TRACER 0.69 0.65 0.79 0.75

Table 10.2: Comparison of Results after making changes in tokenization stage

text line. After adjusting the first token, we used the abstraction function to turn the original text
line into an abstracted version. The tokenization procedure was finally finished by removing the
whitespace in between the operators using the exception rules. Following that, we trained and
tested the model using the TRACER[1] dataset using the MACER[6] process. We have shown the
comparison of results from the original MACER[6] after making changes in tokenization stages.
However, we have not received any promising results.

14



Bibliography

[1] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gulwani.
Compilation error repair: for the student programs, from the student programs. International
Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET), 2018.

[2] Umair Z. Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare. Targeted ex-
ample generation for compilation errors. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 327–338, 2019.

[3] Mayank Bansal. Intelligent program analysis and program indexing - iii. M.tech. thesis,
Indian Institute of Technology Kanpur, 2022. unpublished thesis.

[4] Eli Bendersky et al. Pycparser: https://github.com/eliben/pycparser.

[5] Debanjan Chatterjee. Intelligent program analysis and program indexing - i. M.tech. thesis,
Indian Institute of Technology Kanpur, 2022. unpublished thesis.

[6] Darshak Chhatbar, Umair Z. Ahmed, and Purushottam Kar. MACER: A modular framework
for accelerated compilation error repair. CoRR, abs/2005.14015, 2020.

[7] Rajdeep Das, Umair Z. Ahmed, Amey Karkare, and Sumit Gulwani. Prutor: A system for
tutoring CS1 and collecting student programs for analysis. CoRR, abs/1608.03828, 2016.

[8] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common c
language errors by deep learning. In 31st AAAI Conference on Artificial Intelligence (AAAI),
pages 1345–1351, 2017.

[9] Hossein Hajipour, Apratim Bhattacharyya, and Mario Fritz. Samplefix: Learning to correct
programs by sampling diverse fixes. CoRR, abs/1906.10502, 2019.

[10] Sharath HP. Real World Deployments of AI-assisted compilation error repair and program
retrieval. M.tech. thesis, Indian Institute of Technology Kanpur, 2021. unpublished thesis.

[11] Kalina Jasinska, Krzysztof Dembczynski, Róbert Busa-Fekete, Karlson Pfannschmidt, Timo
Klerx, and Eyke Hullermeier. Extreme f-measure maximization using sparse probability
estimates. In 33rd International Conference on Machine Learning (ICML), pages 1435–
1444, 2016.

[12] Anshul Mittal, Kunal Dahiya, Sheshansh Agrawal, Deepak Saini, Sumeet Agarwal, Pu-
rushottam Kar, and Manik Varma. Decaf: Deep extreme classification with label features..
In Proceedings of the Fourteenth ACM International Conference on Web Search and Data
Mining (WSDM ’21), Virtual Event, Israel. ACM, New York, NY, USA, 2021.

[13] Fahad Shaikh. Advancements in ai-assisted compilation error repair and program retrieval.
M.tech. thesis, Indian Institute of Technology Kanpur, 2021. unpublished thesis.

[14] Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from di-
agnostic feedback. Proceedings of the 37 th International Conference on Machine Learning,
Vienna, Austria, PMLR 119., 2020.

15


	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Our Contributions

	Related Works
	PRIORITY
	Key challenges:
	AST Analysis of Each Label:
	Featurization :
	Machine Learning Model:

	Experiments
	Feature Selection:
	Comparison of Results of Ensemble Approaches:

	Conclusion and Future Work
	Conclusion:
	Future Work:

	Appendix
	PycParser Node Types for C language:

	Introduction
	Our Contribution:

	Related Works
	 TRACER (Targeted RepAir of Compilation ERrors):
	TEGCER:
	MACER (Modular Accelerated Compilation Error Repair):
	Dr Repair:
	SampleFix:
	DECAF:
	MACER++:
	PyMACER:

	Proposed Approach
	Analysis of Repair Class of MACER:
	Changes made in Abstraction:
	Changes made in Tokenization:

	Experiments and Results
	Tune the Hyperparameter:
	Changes made in Tokenization

	Bibliography

